
Scripting: OOo Basic in-depth

76 Master OpenOffi ce.org

OOo Basic
Use macros in Writer
Take your office skills to the next level by learning how to use
OpenOffice.org Basic and scripting your own macros. Awesome!

T here is a powerful programming language built in to
OpenOffice.org – and in this new series we, the lucky ones,
are going to learn how to use it. The language is OpenOffice.

org Basic, and in this first section we’ll apply it to the word
processing part of the suite, Writer, an later on to Calc, then finish
with some tips and tricks.

You may well ask why a user of OOo Writer should be
interested in programming. The answer is simple: automation.
Imagine that you have to produce a report every day, and in the
report you need to include disk space usage, or a list of logged-on
users. Not a difficult job by any means (you could just use who

and df, then copy and paste the results into your Writer
document). However, it’s boring and time-consuming – it might
not take long on a daily basis, but five minutes here, five minutes
there all add up. Wouldn’t it be better to have Writer do the work
for you, then get down the pub a bit quicker?

As you’ll find in this tutorial, using OpenOffice.org Basic we can
write macros to automate all sorts of tasks, from opening Writer
documents and inserting external data to creating a dialog box,
working with dynamic data and beyond. For the tutorial I’ve used
OpenOffice.org 2.0 (1.9.79) on Linux and version 1.1.4 on
Windows (sorry – I just wanted to see how well it would work:
most things should be the same for the version on the DVD).

There are many similarities between OpenOffice.org Basic and
every other ‘Basic’ out there. I first used Basic on a Sinclair ZX81 in
the early eighties. Now there are other implementations of Basic
all over the place – Visual Basic and Gambas to name but two. All
of them have the same command structure; it’s really just a
matter of learning each one’s peculiarities. But remember that
when I talk about Basic from now on I only mean OpenOffice.org
Basic. Don’t expect to be able to take code from the examples and
have it work in every other implementation of Basic!

You will naturally want me to discuss functions and subroutines,
variables and objects before doing anything else. No? You just

want to get in there and get something to work? OK, here’s a
simple piece of code that opens a new blank Writer document.
Use the Macro Organizer to create a new module (see The Macro
Organizer box, below), then type in the following code:
Sub Main
 loadNewFile
End Sub
Sub LoadNewFile
 dim doc as object
 dim desk as object
 dim url as string
 dim args()
 desk = CreateUnoService(“com.sun.star.frame.Desktop”)
 url = “private:factory/swriter”
 doc = desk.loadComponentFromUrl(url, “_blank”, 0, args())
End Sub

You can now use the Run BASIC button on the toolbar to see the
end result – which is a new document, as promised.

From the code above you might be able to deduce how to load
any file that you want. The secret is in the URL, such as
 url =”file:///home/bainm/test.odt”

Even better, you can build a subroutine that will open either a
named file or, failing that, an empty one:
Sub LoadNewFile (optional myFile as string)
 dim doc as object
 dim desk as object
 dim url as string
 dim Dummy()
 if isMissing(myFile) then
 myFile = “private:factory/swriter”
 end if
 desk = CreateUnoService(“com.sun.star.frame.Desktop”)
 url = myFile
 doc = desk.loadComponentfromurl(url,”_blank”,0,Dummy())
End Sub

If you’ve used Basic at all you’ll recognise the general structure –
we’ve created two subroutines. The first (Main) is used to control
the operation of the macro. The second (loadNewFile) does the
actual work. It defines some variables to use (doc, desk, url and
args), then creates a UNO (Universal Network Object), which gives
you access to the methods and properties of the Writer objects.

Macro Organiser
The OOo Macro Organizer is your way
of accessing and maintaining macros,
dialogs and even libraries. You can
create new items, edit them and
delete old ones if you need. If you are
very brave (or maybe that’s
foolhardy) you can modify OOo’s
built-in macros. The way that you

access the Organizer will depend on
the version of OpenOffice.org that
you’re using. In version 1.1.4 you need
to click on Tools, then Macros >
Macro... > Organizer. If you’re using
version 2.0 you’ll need Tools >
Macros > Organize Macros,
OpenOffice.org Basic > Organizer.

Access macros,
dialog boxes
and libraries
through the Macro
Organiser.

LXFS11.scripting Sec2:76LXFS11.scripting Sec2:76 22/8/07 10:47:4122/8/07 10:47:41

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 77

Write to a document
A blank file is not particularly useful by itself, and you can create
one pretty easily yourself with Ctrl+N. So let’s add a subroutine
that will write to the document:

Sub Insert_words
 dim doc as object
 dim cursor as object
 doc=thisComponent
 cursor=doc.text.createTextCursor
 cursor.string=”Hello World”
End Sub

You’ll also need to modify the Main subroutine:
Sub Main
 loadNewFile
 insert_words
End Sub

This shows you how easy it is to use code to control the Writer app.
To make most use of this, you can write a subroutine that accepts
an input and writes it to the document as a paragraph:
Sub Add_paragraph (myText as String)
 dim doc as object
 dim cursor as object
 doc=thisComponent
 cursor=doc.text.createTextCursor
 cursor.gotoEnd(False)
 doc.text.insertControlCharacter(cursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,
 False)
 doc.text.insertControlCharacter(cursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK,
 False)
 cursor.string = myText
End Sub

This time the code moves the cursor to the end of the
document, creates a new paragraph and inserts any text that you
sent it. For instance:

Sub Main
 loadNewFile
 add_paragraph(“This is my first paragraph.”)
 add_paragraph(“This is my second paragraph.”)
End Sub

In this example it would actually be quicker to type the details into
a Writer document. But, you’re probably already thinking of
potential uses – especially if we now combine this functionality
with the ability to load information from external files. If you’ve
used any Basic flavour at all, this next bit is going to be quite
familiar to you:
Sub Load_report_file(myFile as String)
 dim filenumber As Integer
 dim iLine As String
 dim pText As String
 filenumber = Freefile
 open myFile For Input As filenumber
 while not EOF(filenumber)
 Line Input #filenumber, iLine
 if (iLine <> “”) then
 pText = PText & iLine
 else
 add_paragraph(pText)
 pText=””
 end if
 wend
 if (PText<>””) then
 add_paragraph(pText)
 end if
 close #filenumber
End Sub

This subroutine takes a filename as an input. It then scans through
the file looking for complete paragraphs. If it finds a complete
paragraph (it identifies this by an empty line) it’ll send it to our new
document. If not, it goes on looking until it gets to the end of the file.

There are just a couple of things that may need clarifying in the
code. The first of these is the use of Freefile. The open statement
expects you to assign a unique integer to the opened file as a
reference number. You could give it your own number… but then
have to remember any that you’ve already used (this becomes
important if you have more than one file open at a time). Or you
could use Freefile, which simply assigns the next from a sequence
of numbers. The second thing that you may ask is why there is a
second add_paragraph statement outside of the while... wend
loop. This is simply to catch any paragraph at the end of a file that
is not terminated by an empty line.

OK, now you can use this functionality by loading information
from any files that you need, ie:
Sub Load_report_simple
 dim rep_dir as String
 rep_dir = “~/articles/lxf75_ooobasic1/demo/”
 load_report_file(rep_dir & “manager_header.txt”)
 load_report_file(rep_dir & “body.txt”)
End Sub

There is still little advantage in building up your document in this
way – you could just as easily type the info directly in to your

Associate Code & Objects
You may be used to languages that
automatically associate code and
object – Delphi, Kylix or Gambas for
instance (or even Visual Basic).
However, when using OpenOffice.org
Basic you must build the code and
the objects separately, then manually

associate the code with the object
(such as a button). You can do this
through the Events tab on the
object’s property form (use the right
mouse button to click on the object,
then select Properties). Easy, yes: but
not that intuitive to start with.

The OpenOffice.org desktop contains a Basic code editor.

LXFS11.scripting Sec2:77LXFS11.scripting Sec2:77 22/8/07 10:47:4222/8/07 10:47:42

Scripting: OOo Basic in-depth

78 Master OpenOffi ce.org

OpenOffice.org
Basic is case-
insensitive.
Therefore it will
recognise
myVariable as being
the same as
myvariable or even
MYVARIABLE. It
doesn’t matter
which one you
choose. Just choose
one naming
convention and
stick to it.

To close a dialog
box just press the
Escape key.

When you’ve
created a button,
and written the code
for it, don’t forget
that you will have to
associate the code
with the button
through the
Properties screen.

Quick
tip

Writer document, then save or print it. However, we can start
making the code very useful if we introduce an element of choice:
Sub Load_report (optional reportType as integer)
 const rep_dir as string = “~/articles/lxf75_ooobasic1/
 demo/”
 if isMissing(reportType) then
 reportType = 1

 end if
 select case reportType
 case 1
 load_report_file(rep_dir & “manager_header.txt”)
 case 2
 load_report_file(rep_dir & “contractor_header.txt”)
 end select
 load_report_file(rep_dir & “body.txt”)
End Sub

This time there are two possible files that can be loaded
(manager_header.txt or contractor_header.txt) depending on
the value of the reportType variable supplied to the subroutine.
However, both cases end with the same file being inserted (body.
txt). All you need to do is to change the Main subroutine, with
Sub Main
 loadNewFile
 load_report(1)
End Sub

or
Sub Main
 loadNewFile
 load_report(2)
End Sub

I’m sure that you’ll immediately see a drawback here – you have
to modify the code every time that the different reports need to be
created. We need some neat way of being able to call the particular
files that we need. To do this we are going to build a nice little
dialog box to allow us to control the output.

Build a dialog box
You need to use the Macro Organizer to create a dialog box. This
time, go to the Dialogs tab before clicking on the New button. If you
name the dialog dlgReport, you can call it with the following code:
dim dlgReport as object

Sub DlgReport_show
 basicLibraries.loadLibrary(“Tools”)
 dlgReport = loadDialog(“Standard”,”dlgReport”)
 dlgReport.execute()
End Sub

You’ll need to change the main subroutine as well:
Sub Main
 dlgReport_show
End Sub

The dialog box won’t actually do anything yet (when you’ve run the
code, just press the Escape key to close the box). However, we can
now create buttons and list boxes in the dialog box, and then write
some code for the necessary functionality that we want.

We’re going to use this dialog box to control the type of report
that Writer opens. To do this we’ll need a list box and a button. For
the button, select the object that you want from the toolbox, then
draw it on to the dialog box. Use the Properties editor to set their
names to lstReport and btnReport respectively, and put some
useful text on the button (I’d suggest the words ‘Create Report’).

Next we’ll load the list box with details using one of OOo’s built-
in methods – addItem. You might immediately jump in and try the
following (I know I did):
Sub DlgReport_show
 basicLibraries.loadLibrary(“Tools”)
 dlgReport = loadDialog(“Standard”,”dlgReport”)
 dlgReport.lstReport.AddItem(“Managers”,0)
 dlgReport.lstReport.AddItem(“Contractors”,1)
 dlgReport.execute()
End Sub

Seems logical enough, but that’s not the way that OpenOffice.org
Basic does it. Instead you need
dim lstReport as object
sub DlgReport_show
 basicLibraries.loadLibrary(“Tools”)
 dlgReport = loadDialog(“Standard”,”dlgReport”)
 lstReport = dlgReport.getControl(“lstReport”)
 lstReport.AddItem(“Managers”,0)
 lstReport.AddItem(“Contractors”,1)
 dlgReport.execute()
End Sub

Notice that you need to define the list box as a unique object. You
can only access it once you’ve used the dialog box’s getControl
method. We’ve also defined lstReport as a global parameter –
this means that once it has been initiated, it can be used in any
subroutine that we write (as we’ll see).

Activate the button
Next we write the code that will run when the Create Report
button is clicked. Add this subroutine:
Sub BtnReport_Click
 loadNewFile
 load_report(lstReport.selectedItemPos)
End Sub

No doubt you’ve now run the main macro and found that you’ve
got a working combo box, but when you click on the button
nothing happens. You probably haven’t associated any code with it
yet. Go to the button’s Properties screen, click on the Events tab
and select the subroutine that you want to run when the button is
clicked (use the Escape key to close the screen when you’ve
finished). With that done you will have a fully functioning form to
control the creation of the two different documents.

Going further
I’m sure you’ll agree that it’s always important to save your work.
In all our examples so far we’ve compiled the documents but then
needed to save them manually. Since this tutorial is all about

You can use the Organizer to create new dialog boxes – with a
selection of buttons – as well as code.

LXFS11.scripting Sec2:78LXFS11.scripting Sec2:78 22/8/07 10:47:4322/8/07 10:47:43

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 79

F rom Charles Babbage’s Difference Engine to OOo’s
spreadsheet Calc, number crunching was always meant to
be automated. Taking some of the pain and monotony out

working with columns of data is one of the great reasons for using
a spreadsheet in the first place. Thanks to a combination of OOo
Basic and Calc, it’s possible not only to automate of the most
arduous tasks but, as I’ll show you, to manipulate interesting data
directly from the command line. As with the previous section, the
first step to macro nirvana is creating a document. The code to
open a new, blank Writer document is:
sub main
 loadNewFile
end sub
sub loadNewFile
 dim doc as object, desk as object, myFile as string, Dummy()
 myFile = “private:factory/swriter”
 desk = CreateUnoService(“com.sun.star.frame.Desktop”)
 doc = desk.loadComponentFromUrl(myFile,”_blank”,
 0,Dummy())
end sub

If you look through the code you will see that the type of file to be
opened is defined by the line
 myFile = “private:factory/swriter”

It’s then just a matter of knowing what to put in instead of swriter.
To open a spreadsheet we need to change it to scalc:
 myFile = “private:factory/scalc”

automation, we’d better look at using code to save the files. Try:
Sub SaveMyFile (fileUrl as string)
 dim params()
 doc.saveAsUrl(“file:/” & fileUrl, params())
 doc.close(true)
End Sub

We may, however, just want to print each document and not save
it. In this case we could create a subroutine to do that:
Sub PrintMyFile
 dim params()
 doc.print(params())
 doc.close(true)
End Sub

OK, we’ve looked at handling Writer documents and how to
extract data from external files. We’ve looked at static files and
how to read from them. Excitingly, it is also possible to generate
dynamic data by making use of OpenOffice.org’s
SystemShellExecute method, thus:
Sub RunCommand (command as string)
 dim svc as object
 svc = createUnoService(“com.sun.star.system.
 SystemShellExecute”)
 svc.execute(command, “”, 0)
End Sub
Sub BtnReport_Click
 const tmpfile as string = “/tmp/myfile.tmp”

 loadNewFile
 load_report(lstReport.getselectedItemPos())
 runCommand(“df > “ & tmpfile)
 load_report_file(tmpfile)
End Sub

Here, the df command is sent as a Linux shell command with its
output being saved to a file (in this case /tmp/myfile.tmp). The
content of the file is then loaded in to the new Writer document
with a result that looks something like

‘Filesystem 1K-blocks Used Available Use% Mounted on
/dev/hda3 3470204 3089264 201816 94% /
/dev/hda4 1510060 1064572 368780 75% /opt
/dev/hda1 4593600 3732708 860892 82% /WINDOWS.’

Useful though this is, it isn’t that attractive or easy to read; the
output would look much better in a table. In the www.linuxformat.
co.uk/special/ooo directory on our website, you’ll find the
complete code for loading a table with the contents of a file;
download all the file name at this location. The code is much too
long for us to show you here, but if you look through it carefully,
you’ll certainly find a wealth of useful Basic functionality such as
Chr (which returns an ASCII code for a given integer), Array (which
creates an array from a series of strings) and ubound (which
returns the maximum index number for an array). Your homework
is to look at the btnReport_Click subroutine. Examine the way that
the command variable is built up and then sent to the shell.

 Keep spreadsheets at arm’s length and work with data from the
console – just follow our lead and you’ll get to grips with it right away.

Remember to be lazy
Now, I know what you’re thinking – you don’t want a separate
subroutine for each file type; you just want a single subroutine to
do all the work. Well that’s exactly how a good programmer should
think, and here’s how you’d do it:
sub main
 loadNewFile(“scalc”)
end sub
sub loadNewFile (filetype as string)
 dim doc as object, desk as object, myFile as string, Dummy()
 myFile = “private:factory/” & filetype
 desk = CreateUnoService(“com.sun.star.frame.Desktop”)
 doc = desk.loadComponentfromurl(myFile,”_blank”,0,Dummy())
end sub

Notice how we now send the file type to the subroutine, giving us
much more flexibility. Most important of all, we only need one
subroutine regardless of whether we want to open a Writer
document or a Calc spreadsheet. If you want, you can even give it
a default file type, by making use of the Optional parameter and
the isMissing method:
sub loadNewFile (optional filetype as string)
 if isMissing(filetype) then
 filetype = “scalc”
 end if

OK – now we can open up a blank spreadsheet – but what about
writing to one of the cells? This next subroutine will do just that:

OOo Basic
Use macros in Calc

LXFS11.scripting Sec2:79LXFS11.scripting Sec2:79 22/8/07 10:47:4422/8/07 10:47:44

Scripting: OOo Basic in-depth

80 Master OpenOffi ce.org

Use CreateUno
Service to access
OpenOffice.org’s
various interfaces
(or Universal
Network Objects)

If you find it a bit
unwieldy referring
to thisComponent
all the time you
could use a simpler
alias:
dim doc as

object
doc =

thisComponent
Remember the
difference between
a function and a
subroutine – a
function runs some
code and returns a
result. A subroutine
runs some code but
doesn’t return a
result.

Quick
tip

sub writeToCell
 dim sheet as object, cell as object
 sheet=thisComponent.sheets(0)
 cell=sheet.getCellByPosition(0,0)
 cell.string=”Hello World”
end sub

You’ll have to remember to run this from the Main subroutine. It
may be worth looking through the writeToCell subroutine just to
understand the basics fully. We’ve seen thisComponent before
(when we looked at OOo Basic and the Writer document) and it
simply refers to the current document (in this case, the
spreadsheet) that we’re in. Next we select the sheet that we’re
dealing with, which is sheet(0) – the first sheet (or Sheet1) in Calc.
Sheet(1) would refer to the second sheet, and so on. Finally we
select the cell that we want by using the getCellByPosition
method, which requires the column number and row number to
be input. Position (0,0) refers to A1, (1,0) to B1, (0,1) to A2 etc.

This is great, but the order of your sheets may change; what if
you want to refer to them by name?. No problem – instead of the
sheets statement use the getByName method:
 sheet=thisComponent.sheets.getByName(“Sheet1”)

We’ve seen how easy it is to write text to the document (even
easier than it is in Writer), so let’s start using the spreadsheet to
do something useful:
sub simple_maths
 dim sheet as object, cell as object
 sheet=thisComponent.sheets.getByName(“Sheet1”)
 cell=sheet.getCellByPosition(0,0)
 cell.value=10
 cell=sheet.getCellByPosition(0,1)
 cell.value=10
 cell=sheet.getCellByPosition(0,2)
 cell.formula=”=A1+A2”
end sub

Admittedly that’s not particularly useful, but it does show you how
simple it is to load the spreadsheet with data, and then to
manipulate that data. It can be made more useful by allowing the
numbers to be input to the subroutine:
sub simple_maths(numbA as double, numbB as double)
 dim sheet as object, cell as object
 sheet=thisComponent.sheets.getByName(“Sheet1”)
 cell=sheet.getCellByPosition(0,0)
 cell.value=numbA
 cell=sheet.getCellByPosition(0,1)
 cell.value=numbB
 cell=sheet.getCellByPosition(0,2)
 cell.formula=”=A1+A2”
end sub

Now you just need to amend the Main subroutine:
 simple_maths(12.5,35.7)

This is a very simple example, and it would be quicker to type
the details directly into the spreadsheet. However, it’s only meant
to be a starting point, and you can start making the operation as
complicated as you require. You may also think that only passing
two numbers into the subroutine is just too limiting – you may
want to pass 10 figures, or 100 or 1,000. Fortunately, it’s very easy
to pass an array to a subroutine:
sub main
 loadNewFile
 simple_maths_array(array(45,67,89,34))
end sub
sub simple_maths_array(numbers)
 dim sheet as object, cell as object, r as integer, sum as double
 sheet = thisComponent.sheets.getByName(“Sheet1”)
 sum = 0
 for r = 0 to ubound(numbers)
 sum = sum + numbers(r)
 cell = sheet.getCellByPosition(0,r)
 cell.value = numbers(r)
 next
 cell = sheet.getCellByPosition(0,r+1)
 cell.value = sum
end sub

The simple_maths_array subroutine populates the first column
of Sheet1 with the contents of an array of numbers, then inserts
the sum of all of the numbers at the bottom.

Having written information to a spreadsheet, you may well be
asking if it is possible to use data in an existing one. Of course it is

– I wouldn’t have mentioned it if it wasn’t. This next subroutine
opens an existing spreadsheet (~/test.ods) and displays the
contents of cell A1 of Sheet1:
sub dataFromExistingFile
 dim doc as object, desk as object, sheet as object, cell as object
 dim url as string, contents as double, Dummy()
 desk = CreateUnoService(“com.sun.star.frame.Desktop”)
 url=”file://~/test.ods”
 doc=desk.loadComponentfromurl(url,”_blank”,0,Dummy())
 sheet = thisComponent.sheets.getByName(“Sheet1”)
 cell = sheet.getCellByPosition(0,0)
 contents = cell.value
 msgbox(contents)
end sub

A thought may occur to you at this point – what happens if the cell
contains text instead of a number? Surely the command
contents = cell.value will cause the subroutine to crash. Actually
it doesn’t: if the cell contains text, the value parameter is set to
zero, thus preventing any such problems.

Adding maths to the equation
Everything we’ve looked at so far is very simple – just reading and
writing to cells. How about doing something a little more
interesting? How about using the mathematical formulae that are
built into OpenOffice.org Calc? Let’s say that instead of just writing
an array of numbers to the spreadsheet, we want the total, or the
average, or even the standard deviation. We can do this by using
the FunctionAccess service:
sub usingOOoFunctions(iArray)
 dim service as object, sheet as object, cell as object
 service = createUnoService(“com.sun.star.sheet.
FunctionAccess”)
 sheet = thisComponent.sheets.getByName(“Sheet1”)
 cell = sheet.getCellByPosition(0,0)
 cell.value = service.callFunction(“STDEV”, iArray)
end sub

As always remember to change Main so that the new subroutine
can be run:

Don’t forget – you create, edit and run your code through the
OpenOffice.org Macro Organizer.

LXFS11.scripting Sec2:80LXFS11.scripting Sec2:80 22/8/07 10:47:4422/8/07 10:47:44

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 81

 usingOOoFunctions(array(45,67,89,34))
I’m sure that you can immediately see a couple of disadvantages
with usingOOoFunctions – at the moment it would only be able
to calculate standard deviation, it will only use Sheet1, and it will
only write to cell A1. However, by the suitable use of input
parameters we can make this a very adaptable subroutine:
sub usingOOoFunctions(fType as string, sName as string, _
 c as integer, r as integer, iArray)
 dim service as object, sheet as object, cell as object
 service = createUnoService(“com.sun.star.sheet.
FunctionAccess”)
 sheet = thisComponent.sheets.getByName(sName)
 cell = sheet.getCellByPosition(c,r)
 cell.value = service.callFunction(fType, iArray)
end sub

Modify Main so that it contains:
 usingOOoFunctions(“STDEV”,”Sheet1”, 1, 1, array(45,67,89,34))

This raises rather an important question – how can you handle
results that might cause the program to crash? For instance, you
could try the following:
 usingOOoFunctions(“SQRT”,”Sheet1”, 1, 1, array(-1))

It’s probably obvious to you that this won’t work, because it calls
for the square root of –1, always a no-no! You can try capturing all
error-creating situations by writing code such as
 if (fType <> “SQRT” and iArray(0) <> -1) then

but this means you’ll have to know every possible combination of
function and number that could cause you a problem.

The most efficient solution would be to write an error handler.
Let’s look at an example (that will crash):
function dummy as double
 dim service as object
 service = createUnoService(“com.sun.star.sheet.
FunctionAccess”)
 dummy = service.callFunction(“SQRT”, array(-1))
end function

Run it with
 msgbox (dummy)

This will complain as soon as it gets to the return line, but we
can stop that happening by introducing an ‘on error resume next’
statement at the start of the function. If an error occurs this time,
the function will just move straight on to the next line of code.
However you may (quite rightly) say that you don’t want the code
to continue – you want it just to exit neatly. If so, you need to add
some code to handle the error appropriately:
function dummy as double
 dim service as object
 on error goto errorFound
 service = createUnoService(“com.sun.star.sheet.
FunctionAccess”)
 dummy = service.callFunction(“SQRT”, array(-1))
 exit function
 errorFound:
 msgbox(“Invalid input. Result set to -1”)
 dummy=-1

end function
Rather than just continuing, the function will jump to the point

in the code marked errorFound: – the colon (:) defines it as being
a jump destination. Notice that the code contains a line stating

exit function just before the error-handling portion. Without this,
the error-handling code will always be run even if there is no error

– we, of course, only want the error handling to operate if there
actually been an error.

Functions are not subroutines
In the examples above we’ve used functions and subroutines. You
may be wondering what the difference is between the two. A
function and a subroutine are basically the same, except that the
function will return a result. This means that when you define a
function you must state which data type it is going to return.
Here’s a simple example to give you the idea.

First we’ll set a variable by using a subroutine:
dim sheet as object, cell as object
sub main
 loadNewFile
 sheet=thisComponent.sheets(0)
 cell=sheet.getCellByPosition(0,0)
 simple_sub
end sub
sub simple_sub
 cell.value = 1
end sub

Next we’ll do the same again, but this time by using a function:
dim sheet as object, cell as object
sub main
 loadNewFile
 sheet=thisComponent.sheets(0)
 cell=sheet.getCellByPosition(0,0)
 cell.value = simple_function
end sub
function simple_function as integer
 simple_function = 1
end function

Notice that the subroutine writes to the cell directly, whereas the
function supplies an output that is then used to write to the cell. A
second thing to take note of is that some of the variables (sheet
and cell) have been made global. This means that they are made
available to all of the functions and subroutines. If a variable is
defined within a procedure, it only exists for the time that the
subroutine or function is running (this is often referred to as the
scope of the variable). This is very useful, but it does mean that you
have to be very careful when it comes to the naming of variables:
dim sheet_number as integer
dim sheet as object, cell as object
sub main
 loadNewFile

If you find that
you’re repeating the
same piece of code,
consider putting it
into a subroutine or
a function.

If you are building
code to send to the
shell, test it by
viewing it in a
msgbox.

Quick
tip

You can access
OpenOffice.org’s
Universal Network
Objects through the
CreateUnoService
method. These
objects are referred
to as “Services”.

Unos to
use

Handling an error nicely after our intervention.

An error message that you don’t want to see.

LXFS11.scripting Sec2:81LXFS11.scripting Sec2:81 22/8/07 10:47:4522/8/07 10:47:45

Scripting: OOo Basic in-depth

82 Master OpenOffi ce.org

 set_sheetnumber
 sheet= _
 thisComponent.sheets(sheet_number)
 cell=sheet.getCellByPosition(0,0)
 cell.value = sheet_number
end sub
sub set_sheetnumber
 sheet_number = 1
end sub

The number 1 is written to A1 in Sheet2.
If we were to insert dim sheet_number as integer into the

subroutine set_sheetnumber in the example above, a new
variable called sheet_number would be created. This new variable
would only be accessible within the set_sheetnumber subroutine.
Despite having the same name as the variable in the main
subroutine, both variables are different, and can hold different
values.

Now we can happily read and write to any cell that we want, in
any of the sheets within the spreadsheet. This means that we can
have a look at the sheet names next. They’re a bit boring as they
stand – Sheet1, Sheet2, Sheet3 – and not very informative. And
there are only three of them anyway.
sub changeSheetNames
 dim sheet as object
 sheet = thisComponent.createInstance(“com.sun.star.sheet.
Spreadsheet”)
 thisComponent.Sheets.insertByName(“MySheet”, Sheet)
 thisComponent.sheets.removebyname(“Sheet1”)
 thisComponent.sheets.removebyname(“Sheet2”)
 thisComponent.sheets.removebyname(“Sheet3”)
end sub

Nice and easy – but unfortunately still a bit limiting. It can be
made really useful by passing in a array containing the sheet
names to be created – watch:
 dim i as integer
 for i = 0 to ubound(sheetNames)
 sheet = thisComponent.createInstance(“com.sun.star.sheet.
Spreadsheet”)
thisComponent.Sheets.insertByName(sheetNames(i), Sheet)
 next

On my command…
Finally, we can bring together everything that we’ve looked at in
this tutorial (plus some bits from last month). The following code
will run shell commands (in this case df and du), save the results
to file and load the data into a spreadsheet.

Here goes:
const tmpFile as string = “/tmp/myfile.tmp”
const bshFile as string = “/tmp/runme.bsh”
sub main
 theFullWorks
end sub
function buildCommand (ipCommand as string) as string
 buildCommand = “rm -f “ & tmpFile & “;” _

 & ipCommand & “ | sed s/’\t’/’ ‘/g >” & tmpFile & “;” _
 & “while [“”$(grep ‘ ‘ “ & tmpFile & “)”” != “”””];” _
 & “do cat “ & tmpFile & “ | sed s/’ ‘/’ ‘/g > “ & tmpFile &
 “1;” _
 & “mv “ & tmpFile & “1 “ & tmpFile & “;” & “done”
end function
sub theFullWorks
 dim command as string
 loadNewFile
 changeSheetNames (array(“Disk Space Usage”,”File Usage”))
 command = buildCommand(“df|grep -v Filesystem”)
 reportSheet(command,”Disk Space Usage”)
 command = buildCommand(“du /| sort -nr”)
 reportSheet(command,”File Usage”)
end sub
sub reportSheet (command as string, sheetName as string)
 dim sheet as object, cell as object
 dim iNumber As Integer, oNumber As Integer, iLine As String
 dim i as integer, c as integer
 iNumber = Freefile
 oNumber = Freefile
 Open bshFile For output As #oNumber
 print #oNumber,command
 close #oNumber
 shell(“bash -c “”” & bshFile & “”””,,,true)
 i = 1
 sheet=thisComponent.sheets.getByName(sheetName)
 Open tmpFile For Input As #iNumber
 While not EOF(iNumber)
 dim cArray
 Line Input #iNumber, iLine
 cArray = split(iLine)
 for c=0 to ubound(cArray)
 cell=sheet.getCellByPosition(c,i)
 cell.string=cArray(c)
 next
 i = i + 1
 wend
 Close #iNumber
end sub

Most of the code here is quite straightforward, but there are a few
places that may look a bit intimidating. For instance, that bit with
all the &s. What’s that all about? This is just building up the
command that will be sent to the Linux shell. If you want to see
what is actually going to be sent, just add a msgbox thus:
Sub main
 dim command as string
 command = buildCommand(“df|grep -v Filesystem”)
 msgbox(command)
end sub

(see the example below). The code that we’ve looked at is all fairly
simple, but I’m sure that you’ll agree that we can start to do some
very powerful things with it. There’s plenty more example code for
this section at www.linuxformat.co.uk/special/ooo/calc.

Use msgbox to
view code to be
sent to the shell.

LXFS11.scripting Sec2:82LXFS11.scripting Sec2:82 22/8/07 10:47:4622/8/07 10:47:46

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 83

More time-saving tricks: macro and database tips will help you run
queries, create reports in an OOo app and keep track of your stuff!

O ur aim here is to be as lazy as possible. Imagine, for
instance, that you’re just about to prepare an invoice for a
popular Linux magazine that you write for. Why spend

time retyping stuff that you’ve already got stored? This tutorial will
give you the tools to shirk many more time-leaking jobs!.

First, you’ll need a database – after all, this is all about using
macros to get information out of one. But, I’m not going to go into
setting up a database – that’s outside the scope of the tutorial. Of
course, if you were to say that you hadn’t got a database and
didn’t know where to start, I’d then suggest that you wanted a
database server. You could use just any old PC that you’ve got,
connect it to your network and then install Debian (if you didn’t
have a second PC, you could run the server on your own machine).
You might create yourself a minimal boot installation CD from
www.debian.org, stick it in your CD drive, reboot and follow the
instructions. You wouldn’t bother installing any of the extras
(desktop, file server, web server etc) as you’d just want a bare
bones setup. Now I would tell you to turn this into a database
server by typing apt-get install mysql-server, and then to edit
the /etc/mysql/my.cnf file to hash out the line ‘bind-address =
127.0.0.1’ (so that it looked like ‘#bind-address = 127.0.0.1’). This
would allow you to access the server from any other PC on your
network. As you’d want a database and a user to access it, I’d
probably tell you to do the following:
mysql -uroot mysql
set password for ‘root’@’localhost’ = password(‘put your own
password here’);
create database accounts;
grant all privileges on accounts.* to ‘your user’@’%’
identified by ‘your user password’;
exit;

Finally, I would suggest you gave your new server a static IP
address by editing the /etc/network/interfaces file so that the
end of it looked something like
#iface eth0 inet dhcp
iface eth0 inet static
 address 192.168.1.3
 netmask 255.255.255.0
 gateway 192.168.1.1

At that point, I’d say, you could reboot and log on to the PC on
which you’d be running OpenOffice.org. But since this tutorial is all
about using OOo Basic and not creating databases, I won’t !

Accessing your database
Don’t fire up OOo just yet. To make life even easier for ourselves
(which is what macros are all about) we’ll be using UnixODBC, an
API for accessing data sources. This will save us the nitty-gritty of
making connections to server and databases – the protocols,
signals sent, etc. Instead, the hardest thing that you’ll have to do is
install UnixODBC and its MySQL libraries on to the machine where
you’re going to be using OOo. On Debian this is as easy as
apt-get install unixodbc
apt-get install libmyodbc

Obviously, if you’re using another distro you’ll have to check the

process for that – have a look at the UnixODBC website at www.
unixODBC.org. However you get UnixODBC installed, you’ll just
need to finish off by doing two things. First, edit /etc/hosts so
that it includes a reference to your database server, eg 192.168.1.3
acamas. Then edit /etc/odbc.ini to include something like:
[accounts]
Description = MySQL db test
Driver = MySQL
Server = acamas
Database = accounts
Port = 3306

We’re done: no more command line stuff – for a few lines, anyway!

Sort out your database
Open OpenOffice.org. It doesn’t matter which type of document,
but let’s say Writer for now. In Tools, you’ll see that one of the sub-
menus says Data Sources. Click on that and you’ll notice the Data
Source Administration form.

Click on New Data Source and set the database type to MySQL
in the General tab. Then go to the MySQL tab, add the database
name to Data Source URL and put in your username (remember
to create the empty database and a user before trying to access it
from OOo). Next click on the Tables tab. There won’t be anything
there (because you haven’t created any tables yet). Guess what
we’re going to do now? That’s right – it’s time to create the data. If
you’re a command-line freak (and I must admit I am), go back to
your database server, log on to the database and create the tables.
Don’t forget that you can log on directly from your current server.
bainm@hector:~/ooobasic3$ mysql -hacamas -ubainm -
pmypassword accounts
mysql > create database accounts;
create table accounts.customer (id int auto_increment,
surname varchar(50), firstname varchar(50),
address1 varchar(50), address2 varchar(50), city varchar(50),
county varchar(50),
country varchar(50), postcode varchar(50),primary key (id));
create table accounts.invoice (id int auto_increment,customer_id
int,
sent_date date,paid_date date,primary key (id));
create table accounts.item (id int auto_increment,customer_id int,
invoice_id int,title varchar(50),details varchar(255),value double,
primary key (id));
insert into accounts.customer
(surname,firstname,address1, address2,city,county,country,postco
de) values
(‘Smith’,’John’,’The Big House’,’1 The Street’,’Thistown’,’Thisshir
e’,’UK’,’TH1 1HT’);
insert into accounts.customer
(surname,firstname,address1, address2,city,county,country,postco
de) values
(‘Jones’,’Mary’,’Building A’,’Industrial Est.’,’Hereton’,’Herehire’,’U
K’,’HE1 1EH’);
insert into accounts.item (customer_id,title,value) values (1,’A fine
piece of work’,500);

OOo Basic
Query databases

LXFS11.scripting Sec2:83LXFS11.scripting Sec2:83 22/8/07 10:47:4722/8/07 10:47:47

Scripting: OOo Basic in-depth

84 Master OpenOffi ce.org

insert into accounts.item (customer_id,title,value) values (1,’A
great job’,500);
insert into accounts.item (customer_id,title,value) values (2,’Day
1’,1500);
insert into accounts.item (customer_id,title,value) values (2,’Day
2’,1600);

If that doesn’t appeal, just use the Data Source Administration
form, go to the Tables tab and click on the New Table Design
button. You can use the Table Design form to easily create any
tables that you need.

Using your new tables
We’ve spent quite a bit of time on the database side of things –
simply because that has to be right before you start. Everything
else will just fall into place. Now we can take a look at our first
database-using macro. If you were paying attention in the last
section, you’ll be used to the OOo CreateUnoService function (you
have been practising, haven’t you?). We’re going to be using it
again here, this time to get access to OOo’s data RowSet. This is
an OOo name for the record set, and it allows you to run queries
on the database and retrieve information from it.
 RowSet = createUnoService(“com.sun.star.sdb.RowSet”)

Now, all you have to do is to tell the RowSet about the
database that you want to connect to (ie the one you set up in
Data Source Administration), give it your username, password and
the query that you want to run. The RowSet then obtains the
result of the query and makes it available for you to use.

Therefore you probably want to do something like
sub main
 sql1
end sub
Sub sql1
 Dim RowSet
 RowSet = createUnoService(“com.sun.star.sdb.RowSet”)
 RowSet.DataSourceName = “Accounts”
 RowSet.User=”bainm”
 RowSet.Password = “password”
 RowSet.Command = “SELECT count(*) c FROM item”
 RowSet.execute()
 RowSet.next()
 MsgBox “There are “ + rowSet.getString(1) + “ items”
End Sub

This is fine, but have a look at the next example:
Dim RowSet
Sub Main
 connectToDatabase (“Accounts”, “bainm”, “kawasaki”)
 sql1
End Sub
Sub connectToDatabase(database as string, username as string,
password as string)
 RowSet = createUnoService(“com.sun.star.sdb.RowSet”)
 RowSet.DataSourceName = database

 RowSet.User = username
 RowSet.Password = password
End Sub
Sub updateRowSet(sql as string)
 RowSet.Command = sql
 RowSet.execute()
 End Sub
Sub sql1
 updateRowSet(“SELECT count(*) c FROM item”)
 RowSet.next()
 MsgBox “There are “ + rowSet.getString(1) + “ items”
End Sub

With the second example, it becomes very easy to extend the
functionality of the macro. Take a look:
Sub sql2
 updateRowSet(“SELECT id, surname, firstname FROM
customer”)
 while RowSet.Next()
 MsgBox “Customer No. “ + rowSet.
getString(1) + “ “ + rowSet.getString(2) + _
 “ “ + rowSet.getString(3)
 wend
End Sub

Writer reports
So far we’ve seen just how easy it is to access a database from a
macro and to display the results. But we haven’t really seen
anything that you couldn’t do as easily directly from the command
line. If you cast your mind back to the first section, you’ll recall that
we were writing directly to OOo Writer documents. That seems
the sensible thing to do now, using information from our database.

The great thing is that we can start doing very impressive
things with very little new code. We’ve already got the
loadNewFile subroutine (we set off with that in the first section,
and modified it in the second section of this mega-tutorial) for
creating a new Writer document, and we have the add_paragraph
subroutine for writing to the document (and don’t worry – the
code that you need is on the coverdisc). All we have to do is add
simple subroutines to create reports from the information in the
database. Here’s a simple way to create a document containing a
list of all of the customers in the Accounts database:
Dim RowSet
Sub Main
 connectToDatabase (“Accounts”, “bainm”, “kawasaki”)
 loadNewFile
 createCustomerReport
End Sub
Sub createCustomerReport
 updateRowSet(“SELECT id, surname, firstname FROM
customer”)
 while RowSet.Next()
 add_paragraph(“Customer No. “ + _
 rowSet.getString(1) + “ “ + rowSet.
getString(2) + “ “ + rowSet.getString(3))
 wend
End Sub

Really, that’s all there is to it. The process is as simple as that:
send your query to the database, then display the result in a
document. End of story. Well, not quite. As we identified in the first
section of this tutorial, you don’t really want to have to change the
Main subroutine every time you want to run a new report unless
you’re a masochist. Again, the key thing here is to build yourself a
dialog box to control the jobs that need to be done.

This time you won’t hard code the contents of elements such
as list boxes. No, this time you’ll load them directly from the
database. Let’s say that you’ve added a list box and called it

You’ll need to
know which
database you want
to access from
OpenOffice.org.

LXFS11.scripting Sec2:84LXFS11.scripting Sec2:84 22/8/07 10:47:4822/8/07 10:47:48

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 85

lstCustomers in a dialog called dlgAccounts. What to load it with?
You’re there ahead of me: we can just send a query to the
database requesting a list of customers:
 updateRowSet(“SELECT surname, firstname FROM
customer”)

Then you can loop through the record set, loading the list box with
info as you go:
 lstCustomers.AddItem(rowSet.getString(2) + “ “ +
rowSet.getString(1), i)

Have a look at the subroutine loadlstCustomers that’s at www.
linuxformat.co.uk/special/ooo/qdb to see how this works.

You can use this new list box as the filter for any reports that
you wish to great. For example, if you wanted to see all of the items
bought by a particular customer you would use the selectedItem
property of the list box to obtain the text that’s been selected. You
could then use that to build an SQL statement, like this:
sql = “ select title,value from customer, item “ + _
 “ where customer.id = item.customer_id “ + _
 “ and concat(customer.firstname,concat(‘ ‘,customer.
surname)) = ‘” + _
 lstCustomers.selectedItem +”’”

Even better – build the SQL into a function. Why? This way you
can use the query in any of the subroutines that you write without
having to rewrite any code. Now you can add a button to the
dialog box, associate a subroutine to the button and start making
use of this. For a start, get the subroutine to output a message box
so that you can see the SQL statement that you’ve built. When
you’re happy with that, use the SQL to load a new record set, then
write this all to a Writer document. Scope out cmdItemReport on
the disc to see this in action.
I’m sure that you can see just how easy this all is (and that’s the
key thing to remember – this is easy), and that automating the
extraction from a database into an OOo Writer document is pretty
simple. It probably won’t surprise you to learn that it’s just as easy
with the spreadsheet program Calc. The interactions with the
database are just the same. The only difference is that you have to
write to individual cells rather than paragraphs – if anything this
gives you even more flexibility in the way that you can lay out your
information.
So I’ll leave it to you to work out what to do now – we’ve already
discussed all that you need in the previous couple of sections. And
if you really still don’t know what to do, just look on the URL at the
end of this section – it’s all there waiting for you to use.

A media library
To finish today, we’ll just look at a simple application – one in
which you can store and view a library of all of your CDs, DVDs,
LPs or books.
Start by creating the tables in your database. You’ll have to ask
yourself a question: do I put all of my tables in my original
database or do I create a new database for each project that I’m
working on? I’d recommend the latter – you’ll find it much easier
to manage all of your information this way. However, if you do
choose this method don’t forget to add a reference for your new
database to your /etc/odbc.ini file, then add it as a new data
source into OpenOffice.org. You’ll also need to instruct your macro
to use the new database by changing connectToDatabase

(“Accounts”, “bainm”, “kawasaki”) to connectToDatabase
(“library”, “bainm”, “kawasaki”).

Next thing: don’t be tempted to try to shove everything into a
single table – you’re just asking for problems if you do. What kind
of problems? Well, let’s look at a simple example – a field
containing a name. You know that ‘Bill Gates’, ‘William Gates’, ‘B
Gates’, and ‘Evil Overlord of Darkness’ all refer to the same person,
but your computer doesn’t. This can make querying the data very
difficult. Look at this table:
Table: item

Instead of this, you could use two tables – one with the item
details, the second with the Author details:
Table: item

Table: author

This way, instead of having to remember every possible spelling of
the author’s name, all you need is the author’s ID number.

Similarly, you don’t want to store the words ‘cd’ or ‘lp’ or ‘book’
in the table containing the title. Instead use something like:
Table: item

Table: media

Now, all it takes is a little crafty SQL so you can get useful
information out of the database:
select item.title, author.name, media.type
from item, author, media
where item.author_id = author.id
and item.media_id = media.id;

Next use this SQL in a subroutine to fill a spreadsheet with the
results from the query – look at the files available from the URL
overpage to see just how this works (you’ll also find the SQL to
create your new database as well as an example /etc/odbc.ini). If
you examine the code you’ll find that the macro does not include

“By their own follies…”
If you’re wondering about my choice of host names – they’re all from Homer’s
The Iliad. Much as I love The Lord of the Rings (the source for most host
names), I find it amazing that a story from the Bronze Age has as much
relevance today as it ever did, and that humanity hasn’t really changed that
much over all that time.

Title Author

Cat’s Cradle Kurt Vonnegut

Slaughterhouse 5 K Vonnegut

Title Author ID

Bagombo Snuff Box 1

The Sirens of Titan 1

 ID Name

1 Kurt Vonnegut Jr.

Title Media ID

Mind Bomb 2

Zen and the Art of Motorcycle
Maintenance

1

 ID Type

1 Book

2 CD

LXFS11.scripting Sec2:85LXFS11.scripting Sec2:85 22/8/07 10:47:4922/8/07 10:47:49

Scripting: OOo Basic in-depth

86 Master OpenOffi ce.org

O ver the past three sections, we’ve automated tasks and
reports, written to documents from the command line,
sped up data interrogation and more. This section should

build on that know-how that you’ve picked up: there’s 14 OOo
Basic tips and tricks that will help you get more from your macros,
whichever program you use them with.

1 Get your data structure right
Strictly this isn’t exactly an OOo Basic tip, it’s just a good
programming tip: think about your data before you even think
about doing any coding – it’ll save you a heap of problems later on.

Let’s look at a common example that you’re going to come
across using OOo macros: a database containing a list of names
and addresses. If you’re new to databases you might be tempted
to put these in a single table, say one containing five fields – name,
address, telephone number, mobile phone number and email
address. That seems sensible enough. But let’s think: imagine that
you’re dealing with some large organisations. You might end up
with details for several people at the same address, and straight
away you’ve got massive duplication of data. Not a good idea –
you’ll be using more disk space than you need and there’s a much
greater likelihood of data being incorrect. Look at this example:
Table - Customer
Name Address
Joe Thwaites, Unthank, Cumbria, CA11 9TG
Joseph Thwaites, Unthank, Cumbria, CA10 9TG

Given that there is an Unthank in CA11 and one in CA10, and that
Thwaites is a common surname around here, we don’t know if this
is two men by the name of Joe Thwaites, or one Joe Thwaites with
a spelling mistake in the postcode. By designing the database well
you can minimise this type of problem.

I’m not going to get into database design here, but there is a
simple rule that you can use: make sure that you only enter any
one piece of information once. So instead of creating one big table,
we could split the data into two tables:
Table - Customer
ID First_Name Surname Address_id

hard-coded column numbers when writing to the spreadsheet;
rather, the RowSet.Columns.Count property is used to create a
loop. So what? Well, this means that it doesn’t matter if you
change the number of records obtained from a query – the macro
will automatically insert the correct number of columns into the
spreadsheet.Now that’s handy!

Filtering data
“But I don’t want to see everything in the database!” I hear you cry,
“I want to be able to see only CDs or only books, or just a single
artist’s work.” Calm down, it’s easily done – if you create a new
form you can add list boxes and populate them from the author
and media tables (just like we’ve already done in the accounting
example). These list boxes can now be used build filters for the
query. The files at www.linuxformat.co.uk/special/ooo/qdb,
find showFilteredLibrary show you how to use optional inputs to
build such a filter and then to display the results in the

spreadsheet. To add new items, authors or media types to the
database you need an insert statement, such as
insert into library.author (name) values (‘Hawkwind’);
insert into library.item (title,author_id,media_id) values (‘The
Ambient Anarchists’,4,1);

This can easily be done on the command line, but with the
knowledge that you’ve picked up in this in-depth tutorial, you
should be able to build forms to do the job for you.

A little homework
Have a look at your normal day-to-day tasks and see which ones
could be automated in the ways that we’ve been looking at. That’s
nothing to do with ‘improved productivity’ – this just comes down
to pure unadulterated laziness. I’d also recommend you look into
update queries – there’s no reason that you can’t write to your
database as well as reading from it. There’s more example code
for this section at www.linuxformat.co.uk/special/ooo/qdb.

Take your macro knowledge further with our pearls of wisdom…
1 Joe Thwaites 1
2 Joseph Thwaites 2

Table - Address
ID Town County Postcode
1 Unthank Cumbria CA11 9TG
2 Unthank Cumbria CA10 9TG

Now you can see that there are two customers with the same
name, but with different addresses. Actually, Joe (who calls at our
house every Tuesday with his mobile video shop) actually lives in
Langwathby, but that doesn’t work as well for the example.

2 Make the most of the database
With your database constructed correctly you can avoid one of
the biggest clangers: hard coding values into your macros. Let’s
say you’ve got a form for adding addresses to a spreadsheet, and
that one of the columns is to contain the county. One option is to
type all of the details directly into the sheet – but we don’t want to
do that, do we? No, far better to use a dialog box and macros to do
all of the hard work.

So back to that data entry – obviously the best thing to do is to
have a list box containing all of the county names. More choices
for you: choose A to write a macro with all of the county names in
an array then load a list box from this, or B to store the county
names in a table on the database and load the list box from that. A
big, loud “Baaaarp” if you chose A, and a nice warm, squelchy
feeling if you chose B.

Why is B the better solution? Because things change (“When I
wur a lad there wurnt none of this Cumbria rubbish, it wuz
Westmulund and Cumbalund, my lad – proper names they wur”).
You don’t want to have to edit your code every time a little bit of
data is added, so store your data in the database and let the
macro do all the work for you. And that takes us neatly on to:

3 Automate with dialog boxes
If you’re happy maintaining your data from the command line,
that’s great. But if you don’t, or if you want to give the job to

OOo Basic
Tips and tricks

LXFS11.scripting Sec2:86LXFS11.scripting Sec2:86 22/8/07 10:47:5022/8/07 10:47:50

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 87

someone else, consider using dialog boxes to do the updating for
you. This way, it’s possible to add data by writing a macro that
builds an insert statement from the contents of a text box, thus:
SQL = “insert into county (name) values (‘” + textbox.value +
 “‘)”

You can also change data by using a list box, a text box and an
insert statement:
SQL = “update county set name = ‘” + textbox.value + “‘” _
 + “ where name =’” + listbox.value + “‘”

4 Work with OOo 2.0
Before you start creating applications, make sure you’re using
OpenOffice.org 2.0. You may find that your favourite distro doesn’t
have the most up-to-date version of the suite installed by default –
if you use Debian Sarge, for instance, the choice is OOo 1.1.3. You
should install version 2.0 before you get down to coding. Why?
Because OOo Basic has been extended for that version; in
particular, you can now use code to add menu items.

If you’ve created macros using OOo 1.x.x and then upgrade to
OOo 2.x.x, you will find that your modules have disappeared – all
of that blood, sweat and tears gone, for nothing. Don’t despair – all
is not lost. Start whichever terminal that you like to work in, go to
your home directory, and run ls -la. In among all your other files
and directories you should see something like
drwxr-xr-x 3 bainm bainm 4096 1999-10-20 04:08

.openoffice
drwx------ 3 bainm bainm 4096 2006-05-31 20:30 .openoffice.org2

Of course those lovely OpenOffice.org developers haven’t zapped
your old macros – they’re just stored in a different directory. If you
hunt through the two directories you’ll come across something
like .openoffice/1.1.3/user/basic/Standard and .openoffice.
org2/user/basic/Standard. These are the directories where
your modules and dialogs are stored, so before you get coding
make sure that OOo 2.0 has access to your old macros with
mv .openoffice.org2/user/basic/Standard .openoffice.org2/user/
basic/Standard_old
ln -s .openoffice/1.1.3/user/basic/Standard openoffice.org2/user/
basic/Standard

Restart OpenOffice.org, and it should pick up your old macros.

5 Run macros from the menu bar
You’re already used to running macros by using the Run button in
the Basic window (the one where you write the code). You also
know how to run a macro by going to the Menu and clicking on
Tools > Macros > Macro… before selecting the macro that you
want to run. That’s fine, but it’s a bit long-winded – especially if
there’s a macro that you use a lot. Why not just add a link to useful
macros into the OOo menu? Good idea!

Click on Tools in the OOo menus then Configure…. OOo will
display its Configuration form – make sure that you’ve got the
Menu tab selected. Use the bottom half of the screen to select the
macro that you want to add to the menu. Use the top half of the
screen to find the position for your new menu item, and then click
on New to create it.

Now you will be able to call up your macro easily and whenever
you want. If you’re more of a Ctrl+Shift+G or F5 type, it’s possible
to assign macros to keystrokes instead. Again, use OOo’s
Configuration form, but this time use the Keyboard tab instead. To
run a macro when a document opens, yes, you’ve guessed it – we
just use the Configuration form. If you select the Events tab you’ll
see all of the possible events that you can assign macros to – just
select Open Document.

6 Add menus automatically
If you use or have upgraded to OOo 2.0 you’ll be able to create
additional menu items from within a macro. To do this, make use

of OOo’s com.sun.star.beans.PropertyValue object property. For
example if you want to add the subroutine showMessage from a
module named ooobasic4 you could use:
MenuItem(0).Name = “CommandURL”
MenuItem(0).Value = “macro:///Standard.ooobasic4.
showMessage()”
MenuItem(1).Name = “Label”
MenuItem(1).Value = “Do whatever you want direct from the
menu”
Menu.insertByIndex(0,MenuItem)

To see this actually working, have a look at setUpMenu in the files
at www.linuxformat.co.uk/special/ooo/tips. And before you
ask, you can’t delete any of the default’s and you can only add
your own items as sub-items on to the ordinary OOo menus.

7 Split lines of code
This tip will improve the readability of your code. Readability. Is
that actually a word? Anyway, you can improve it by splitting long
lines of code with an underscore to spread them over multiple
lines. We can turn
MenuItem = CreateMenuItem(“macro:///Standard.ooobasic4.
showMessage()”, “Show a test message”)

into
MenuItem = _
 CreateMenuItem(“macro:///Standard.ooobasic4.
showMessage()”, _
 “Show a test message”)

This has no effect on the way that the code works, it just looks
nicer – sorry, I mean it improves readability.

Using an underscore won’t work, though, if you’re trying to split
a string, such as
SQL = “select customer.firstname, customer.surname, address.
town, address.county, address.postcode where customer.address_
id = address.id”

To split this into a more visually appealing format you also need to
use a plus sign:
SQL = “select customer.firstname, customer.surname” _
 + “, address.town, address.county, address.postcode” _
 + “ where customer.address_id = address.id”

Again, it won’t affect how the macro runs, but it does make it
much easier for you to see what’s going on.

Go online to get
more information
on the modules
built into
OpenOffice.org.

LXFS11.scripting Sec2:87LXFS11.scripting Sec2:87 22/8/07 10:47:5022/8/07 10:47:50

Scripting: OOo Basic in-depth

88 Master OpenOffi ce.org

8 Remember modules and libraries
Rather than save all your work into one massive module, aim to
organise your macros into modules according to their functions,
then give the module a name that reflects its purpose – macro1,
macro2, macro3 etc is very boring and doesn’t tell you much. If
you give some thought to the names (you might use

‘accountingMacros’ or ‘customerCareMacros’, say) you’ll thank me
for it. Don’t go too far – try not to end up with dozens of modules
each with just one or two macros.

As you write more modules it might be worth grouping them
into libraries. Again, try to give them useful names.

9 Use comments liberally
At the time when you’re writing a macro, you tend to think that
you’re coding it in a sensible and logical manner. More often than
not, when you come back to it six months or a year later when it is
no longer fresh in your mind, things don’t seem so clear. I’d
recommend you leave notes to yourself as you’re going along –
just to explain what you’re trying to achieve.

How do you add a comment? Start the line with REM or a
single quote, like this:
REM This is a comment

‘ So is this
But this line would cause you a problem

You can also add comments at the end of a line:
msgbox “This is a message” ‘but this is comment

On the other hand, don’t put in so many comments that you lose
sight of the code – you don’t have to explain everything:
REM The aim of the next piece of code is to feed visual
information
REM back to the user. It will display text in a simple form, and
will
REM expect the user to confirm that they have read the screen.
The
REM program will not continue until they have carried out this
REM confirmation.
msgbox “Hello user”

10 Try built-in dialog boxes
There’s no reason why you have to do all of the work yourself when
it comes to building dialog boxes – there are already some useful
ones built in to OpenOffice.org that you can make use of. Let’s say
that you want the user of your macro to be able to manually select
a folder, perhaps to save an output. All you need to do is use the
FolderPicker dialog:
Dim FolderDialog, UserFolder
FolderDialog = CreateUnoService(“com.sun.star.ui.dialogs.
FolderPicker”)
UserFolder = FolderDialog.Execute()

To find out what other dialogs you can use, consult the OpenOffice.
org website – in particular, http://snipurl.com/rh5z. On this
page you’ll find the details of each dialog box. There aren’t many,
but you should find them useful and time-saving.

While I’m on the subject of com.sun.star... These are OOo’s
set of built-in modules. You’ve no doubt noticed in these tutorials
that whenever we make use of one of the OOo objects we always
use it in the format of
MyObject = CreateUnoService(“com.sun.star.something.theother.
someobject”)

That’s straightforward enough, but then you’ve got the problem of
finding out which other objects you can make use of. Again, you’ll
be able to find the information that you need on the OpenOffice.
org website at http://snipurl.com/rh61, where you’ll find a
listing of all of the modules contained in com.sun.star.

11 Format your reports
Over this whole in-depth tutorial, we’ve looked at how to write to
Writer, calculate in Calc and use data in databases. You can also
use macros to make your work look professional with the
minimum of effort. Imagine you’ve extracted your information
from your database into a spreadsheet, you’ve carried out all of
the work that you need to do (by using a macro, of course), and
you’re now ready to print your report for your managing director/
degree supervisor (who’s obviously going to give you a pay rise/
good grades because of your fantastic work). What are the
normal things that you’d have to add prior to printing? I’d say that
typically this would be a title, a page number and a page count, oh,
and the date. This is easily done:
oDoc = ThisComponent
oPageNumber = oDoc.createInstance(“com.sun.star.text.
TextField.PageNumber”)
oPageCount = oDoc.createInstance(“com.sun.star.text.TextField.
PageCount”)
oDateTime = oDoc.createInstance(“com.sun.star.text.TextField.
DateTime”)
Now you need to get access to the header and footer:
oStyles = oDoc.getStyleFamilies().getByName(“PageStyles”)
oPStyle = oStyles.getByName(“Default”)
oHeader = oPStyle.RightPageHeaderContent
oFooter = oPStyle.RightPageFooterContent

You can write text to any of the panels in the header:
oHeader.getCenterText().setString(“LXF83 Article”)

However, the functions (such as DateTime) need to be handled
slightly differently, by making use of a cursor:
oCursor = oHeader.getRightText().createTextCursor()
oHeader.getRightText().insertTextContent(oCursor, oDateTime,
True)

You can go on to combine both of these techniques to create more
involved inserts:
oFooter.getRightText().setString(“Page “)
oCursor = oFooter.getRightText().createTextCursor()
oCursor.gotoEnd(False)
oFooter.getRightText().insertTextContent(oCursor, oPageNumber,
True)
oCursor.gotoEnd(False)
oCursor.setString(“ of “)
oCursor.gotoEnd(False)
oFooter.getRightText().insertTextContent(oCursor, oPageCount,
True)
Finally, you need to update the page with your new information:

Use Print Preview
to see the header
and footer that
your macro has
created.

LXFS11.scripting Sec2:88LXFS11.scripting Sec2:88 22/8/07 10:47:5122/8/07 10:47:51

Scripting: OOo Basic in-depth

Master OpenOffi ce.org 89

oPStyle.RightPageHeaderContent = oHeader
oPStyle.RightPageFooterContent = oFooter

12 Merge documents
Don’t just create new ones – if you’ve got multiple documents you
need to combine (eg when there’s more than one person working
on a project) use a cursor to combine these in a single document:
oCursor.gotoEnd(false)
oCursor.BreakType = xom.sun.star.style.BreakType.PAGE_
BEFORE
oCursor.insertDocumentFromUrl(SrcFile, argsInsert())

Obviously, you could pick these files up from a directory, or read a
list from a table on a database, then loop through them adding
one file at a time into the master. With all of your documents
merged, a table of contents would be useful. Again, you could do
this automatically:
oDoc = ThisComponent
oCurs = oDoc.getText().createTextCursor()
oCurs.gotoStart(False)
oDoc.getText().insertTextContent(oCUrs, oIndex, False)

13 Find everything you need
Maybe not absolutely everything, but if all you want is an
alphabetical list of all the built-in OpenOffice.org functionality
that’s available to you, go to http://snipurl.com/rh67. You’ll be
able to view every function, property and service and the object
that they belong to.

14 Learn from others
A good way to learn OOo Basic is to look at how other people write
macros – you may not agree with them, but you’ll get useful ideas.
You could Google for ‘openoffice.org macros’, but start at the
official OOo site. You’ll find the examples at http://codesnippets.
services.openoffice.org.and there’s more example code for this
section at www.linuxformat.co.uk/special/ooo/tips.

In his marathon in-depth tutorial, we’ve looked at a few examples,
but I hope you can see just how easy it is to start building powerful
and efficient macros. Thanks to this Linux Format special edition,
you’ve got all of OOo’s resources at your fingertips, so enjoy – the
world’s your OOoO (that’s OpenOffice.org oyster). LXF

Joe’s magical mystery tour
Remember I told you about Joe Thwaites in tip 1?
Well, just for a moment, let’s think about Joe
driving about in the Lakes, doing his rounds.
Whenever he stops at a customer’s house he
opens up the back of his van to reveal the latest
stock of videos, DVDs and games. Imagine, if you
will, a wooden panel built into the van. In the
middle of the wall is a 17-inch Flatron screen, and
on it The Lion, The Witch and The Wardrobe is
playing. If you look carefully you can see the front
of a PC poking out at the bottom of the panel,
along with a keyboard and a mouse.

Obviously you’re wondering about the PC – it’s
running Debian 3.1 (thanks to Linux Format issue
70), with Kaffeine installed to play the DVDs. Both
the PC and the Flatron monitor run off a Belkin
DC-AC converter.

Interesting, but what does all this have to do
with OpenOffice.org? Good question. Before Joe
sets off on his daily run he’ll start an OOo Calc
document with a macro assigned to the ‘Open
Document’ activity. This macro is almost the
same as the connectToDatabase subroutine that
we’ve already developed – the difference is that
this time it has error handling built into it. Why?
Because this time the main MySQL database is
not on the PC in the van – it’s on a PC in Joe’s
house. Joe’s main PC runs a wireless network,
and the van PC has a Wi-Fi antenna. Now, if Joe’s
at home the macro will connect to his database; if
he’s not the Calc document will just open

.

Once the macro detects that the database is
present (that is, a connection can be made) it
looks on one of the sheets in Calc (called Daily
data). Cell A1 contains a date reference. If that
date is less than today’s, the macro will go to a
second sheet and run a subroutine:
uploadYesterdayRoute. When that’s done,
another macro, downloadTodayRoute, will query
the database and extract the details for
customers to be visited today – this data includes
the videos, DVDs, and games that are currently
being rented at each address.

As Joe travels around the county he updates
the Calc spreadsheet, recording who rents what
from him. If anyone is out when he calls, another
subroutine called printReminder creates a Writer
document containing the rental details and when
Joe’s next due in the area. The subroutine also
prints off a copy (to leave for the customer) on a
printer in Joe’s cab. Next morning the process all
starts again. However, for Joe this means that he
has a complete history of his rentals. Also, he can
start to analyse his routes – seeing what’s most
profitable for him, Cumbrian trends in films and
so on. It even means that he can cater for the
audience he’s visiting on any given day.

And why is Joe relevant to you? Bear in mind
that many large companies each spend hundreds
of thousands of pounds developing such systems
as the one we’ve dreamed up for him. You can do
it for free with Linux and a little bit of knowledge.

Linux Format magazine features an Answers section
every issue where our panel of experts solve all your
knottiest hardware and software problems. If you
want to contact the
magazine with your
problem, and also have
the chance to win a
prize, submit your
question to lxf.
answers@futurenet.
co.uk. Also, why not
check out the forums
at www.linuxformat.
co.uk? One of our
expert readers may be
able to help out.

LXF is the Answer!

You can always use all the tips in this tutorial once
you’ve localised your install of OpenOffice.org into
another tongue – see p96 to find out how.

LXFS11.scripting Sec2:89LXFS11.scripting Sec2:89 22/8/07 10:47:5222/8/07 10:47:52

