
Project 1: loading Calc data

108 Master OpenOffi ce.org

Calc: Load data
with macros
Tried of trawling through stock exchange data only to find that you definitely
won’t be buying that yacht today? Macros will make your life much easier…

Exchange is MSF.L. Once you’ve entered this symbol and
pressed Get Quotes, you’ll see the most current results for
the company. And now we getting to the bit that we’re really
interested in – the download.

If you look at the quotes screen, you’ll see a link: Download
Data. From this we can obtain the URL for the data itself:
http://download.finance.yahoo.com/d/quotes.csv?s=MSF.
L&f=sl1d1t1c1ohgv&e=.csv. And why do we want the URL?
Because we can now type this directly into the web browser at
any time. It’s not a major time saver – but it’s a start.

It’s this next step we can make the big saving on. If you click on
Download Data or type in the URL, Calc will load the CSV file into
its Import wizard. With this you tell OOo about the separators that
the file uses (obviously commas in this case), and then OOo will
place each of the fields in its own column. So, nothing new so far –
you’ve probably done this type of thing hundreds of times before.
However, we can improve this process by removing our manual
input, and to do that we’re going to have to write a macro.

The first macro
You’ve already learned that we can obtain the stock market
quote by entering a symbol representing a company as part of
a URL into your web browser. You can then load this as a CSV
file into OOo Calc via its Import wizard. Now, before we write
our macro to carry out our import, let’s just examine that data
we’re actually going to be importing. You’ll find that the fields
that are downloads are defined by the f parameter in the URL.
If you experiment with them you’ll be able to work out what
each one does, but we’re only interested in three of then: s,
the company name, l1, the last trading price, and d1, the last
trade date. Our URL, therefore, becomes http://download.
finance.yahoo.com/d/quotes.csv?s=MSF.L&f=sl1d1&e=.csv,
and that’s what we’ll use in the macro.

OK – we’re down to writing the macro. Open OOo (it doesn’t
matter which application – Calc or Writer will be fine), then click
on Tool > Macros > Organize Macros > OpenOffice.org Basic.
You’ll see that you have a selection of languages to work in
(Basic, Python, BeanShell or JavaScript), but it’s Basic that we’re
interested in. A dialog box will open, and at this point you’ll need
to press the Organizer button. Another dialog will open, and you’ll
see that you’re in the Module tab with Standard selected. At this
point you may be wondering what on earth is going on – but it’s

H opefully your stocks and shares are doing better than
mine. If not, you’re probably sitting sobbing into your beer,
but don’t be too downhearted. Here at Linux Format we

may not be able to improve your market-forecasting skills, but at
least we can help you see how badly you’re doing more easily.

This is where OpenOffice.org comes in. In this tutorial, we’re
going to look at how to download financial data from a website
directly into its spreadsheet component Calc, then we’ll see how
to turn that data into a chart, and to top it all, we’ll explore how to
do all of that automatically. In fact, you’ll learn how to do all of this
without even having to open up OOo (apart from viewing the end
result, of course). Well, when I say you won’t have to open up OOo,
you will have to write a macro or two – but then you’ll be able to
process the data without having to open up OOo.

Anyway, our first step is going to be to find the online financial
data. Now, you may have your own sources – but in this case
we’re going to be using the financial portal Yahoo Finance. If you
don’t happen to have an interest in the stock market, don’t turn
the page: the skills you’ll learn don’t have to be used with stocks
and shares, so you can go on to use them with many other data
sources. For the purposes of this tutorial, however, greed is good!

Obtaining the data
You’ll find Yahoo Finance at http://finance.yahoo.com, and
you’ll also find that it’s very easy to use – there’s a box containing
the words Enter Symbol(s) and a button named Get Quotes.
All you have to do is to enter the symbol for the company you’re
interested in, and Yahoo Finance will provide a link (Symbol
Lookup) that will give you the symbol for the company. For
example, the symbol for Microsoft on the London Stock

 You can download stock exchange data as a CSV file from
Yahoo Finance into OpenOffice.org’s spreadsheet component.

LXFS11.project1 Sec2:108LXFS11.project1 Sec2:108 22/8/07 10:35:0322/8/07 10:35:03

Project 1: loading Calc data

Master OpenOffi ce.org 109

In this tutorial, we’ve
made use of the
daily snapshots, but
you may want to
investigate the
historical data for
each company.

Quick
tip

quite simple, really. Standard is a library, and a library is used
to store groups of modules. Modules are used to store groups
of macros. If you’ve got that, click on New to create your own,
brand-new module in the Standard library.

When you hit New you’ll see that OOo suggests a name for
your module: Module1. Don’t use this. It gets very tedious having
modules named Module1, Module2, Module3, Module4 ad
infinitum. Instead give it a meaningful name – for instance, I
named the module lxf94. With this new module in place click on
Edit, and OOo will take you to the Basic edit screen – and it’s here
that we’ll create the macro itself.

Actually, you’ll find that OOo will have already created a macro
for you, a subroutine named Main. Before we go any further, don’t
confuse this with the Main that you see in other programming
languages: it’s simply a blank macro so that OOo has something
to work with if you happen to press the run button (the button
showing the corner of a page and a downwards pointing arrow).
In fact, OOo will run the first macro that it finds in the module.
So, for example, you could place Main1 above Main and that
would be run instead.

With that said we’re ready to write the macro itself (place this
after the Main subroutine):
Function open_csv_file (url as String) as Object
Dim oProperty(0) as New com.sun.star.beans.PropertyValue
oProperty(0).Name = “FilterOptions”
oProperty(0).Value = “44”
open_csv_file = starDeskTop.loadComponentFromUrl(url, “_
blank”, 0, oProperty())
End Sub

Here we’ve created a function that will load any CSV file without
the need to use the import wizard. It does this by making use of
the FilterOptions property, and setting it to 44. Why 44? Because
44 is the ASCII code for – yes, you’ve guessed it – a comma. And
why are we using a function here? It’s because open_csv_file
creates an object – the document itself – and we’ll need to access
this object from our code.

Now, if you try running your code, nothing will happen.
That’s simply because Main doesn’t do anything yet, so let’s
get it to do something:
Sub Main
Dim oDoc as Object
oDoc = open_csv_file _
 (“http://download.finance.yahoo.com/d/quotes.
csv?s=MSF.L&f=sd1l1&e=.csv”)
End Sub

And now, when you click the run button something will happen:
after a moment or two (depending on your connection speed)
a Calc file will appear containing the last trading price for
Microsoft on the London Stock Exchange. That’s nice, but

you’ll be thinking, “I don’t want to have to do this for each of
my companies – I want to run it once for my whole portfolio.”
Fine, that’s what we’ll look at next.

A macro for multiple inputs
We’ve seen how easy it is to automate the loading of the data
for a single company. In order to do the same for a number of
companies we just need to obtain the new symbol and add it to
the URL. For example, if we’re interested in Novell we need to
add the symbol NOVL, and our URL becomes http://
download.finance.yahoo.com/d/quotes.csv?s=MSF.
L&s=NOVL&f=sd1l1&e=.csv. We just have to modify our
code to create this new information. First we’ll add a new
subroutine to keep our lives nice and simple:
Sub download_stock_price(companySymbols)
Dim oDoc as Object
Dim cSymbols as String, oUrl as String
cSymbols = join(companySymbols, “&s=”)
oUrl = “http://download.finance.yahoo.com/d/quotes.csv?s=” _
 & cSymbols & “&f=sl1d1&e=.csv”
oDoc = open_csv_file(oUrl)
End Sub

You’ll notice that this new macro takes companySymbols as an
input – this is actually going to be an array containing the list
of company symbols.

The subroutine joins all of the symbols as a single string (with
&s= inserted between each symbol), and then creates the
correct URL to be used with the open_csv_file subroutine that
we created earlier. Having created this new macro, we need to
change the Main subroutine so that we can send the array of
company symbols to it:
Sub Main
download_stock_price(array(“MSF.L”,”NOVL”))
End Sub

When you hit the run button this time, you’ll end up with a Calc file
containing details for all of the companies that you’ve listed in the
array – and, of course, you can add as few or as many company
symbols as you want.

Saving the file
The next stage of our automation is to save the file to the hard
drive. To do this we need another simple subroutine:
Sub save_file_as_ods(doc as Object, directory as String, prefix as
String)
Dim oUrl as String
oUrl = convertToUrl(directory & “/” & prefix & “.ods”)
doc.storeAsUrl(oUrl,Array())

 If you don’t use
a macro, you’ll
have to go through
Calc’s Import
wizard. A lot!

Using crontab
If you’re new to crontab, the fields and stars may look a little
confusing. However, the field order is quite simple really:
1 Minute (0-59)
2 Hour (0-23)
3 Day of the month (1-31)
4 Month (1-12)
5 Day of the week (0-6 with 0 as representing Sunday)
6 The command to be run
The star means “run for every occasion” – so * in the third field
means “run on every day of the month”. You can also use
combinations of numbers in the fields, so (again in the 3rd field)
1,3,10-20 would mean “run on the 1st, the 3rd and every day
from the 10th to the 20th”.

LXFS11.project1 Sec2:109LXFS11.project1 Sec2:109 22/8/07 10:35:0622/8/07 10:35:06

Project 1: loading Calc data

110 Master OpenOffi ce.org

End Sub
There’s a couple of things to take notice of here: firstly, the
convertToUrl function. When opening and closing files, the
macro needs the file name to be in a particular format – and
convertToUrl does this conversion for you. Secondly, you’ll see
that as well as the directory and file prefix (that is, the filename
without .ods) to the subroutine we also pass doc. This is the name
of the object that we create with the open_csv_file function.

Next, you need to make a little change to download_stock_
price. Add the following line to the end of the subroutine:
save_file_as_ods(oDoc, “/tmp”, “test_lxf94”)

This time, when you run Main you’ll find that your document will
be named ‘test_lxf94’, and if you look in the /tmp directory you’ll
find a file entitled test_lxf94.ods, which (if you open it) will
contain your newly downloaded data.

To the command line!
At the start of this article I said that you’d be able to do all of this
without opening OOo (apart from viewing the end result), so let’s
look at how we can achieve that. Having seen how to automatically
open and save our file, you’ll now see how to do that without any
visual output. We’ll start by adding a line of code to the end of the
download_stock_price macro:
oDoc.close(true)

All that does is close your document. If you do run Main at the
moment you’ll just see the document open and immediately close.
Why we have done this first? Simply to ensure that we don’t end
up with any session left hidden in the background when we make
the next change, which will be to hide our document.

You’ve already learned that we can open a CSV file without
using the import wizard by setting the appropriate properties, and
so I expect you’ll realise that opening a document in Hidden mode
is just the same. Therefore, it’s back to the open_csv_file function.
First we need to redefine the number of properties that we’re
going to be using:
Dim oProperty(1) as New com.sun.star.beans.PropertyValue

Then we need to add the details for the new property:
oProperty(1).Name = “Hidden”
oProperty(1).Value = True

Once you’ve made the change to the code, press the run button…
and nothing happens. Worry not. Check the file details:
bainm@aeneas:~> ls -l /tmp/test_lxf94.ods

-rw-r--r-- 1 bainm users 6455 2007-04-23 09:00 /tmp/test_lxf94.ods
Now run the macro and check again. You’ll see that the file does
actually update:
bainm@aeneas:~> ls -l /tmp/test_lxf94.ods

-rw-r--r-- 1 bainm users 6454 2007-04-23 09:01 /tmp/test_lxf94.ods
This means that we can run the process invisibly, but (at the
moment) we still need to have OOo open in order to do this. Well,
no, we don’t. Close all instances of OOo, and then type the
following on the command line:
scalc -headless “macro:///Standard.lxf94.Main”

Absolutely nothing will happen – you won’t even see the OOo
introduction screen. However, if you do an ls -l on the file again
you’ll see that the file has been updated.

Now we can complete the automation task by creating a Cron
job. Once we’ve done that you won’t have to worry about running
the macro. For example, you may want to set the Cron job to run
every day at 8:45am so that the new file is ready for you to view as
soon as you get in the office at 9:00 am. To do this, go to the
command line. Type crontab -e, and then
45 8 * * * scalc -headless “macro:///Standard.lxf94.Main”

Next, press Ctrl-D to save the Cron file. And that’s all there is to it –
your stock market download is now totally automated.

Introducing charts
Everyone knows the saying “a picture paints a thousand words”,
and that’s true of charts as well. I don’t know about you, but I find
it much easier to understand a graph than just a mass of figures –
and that’s all we’ve got at the moment. So let’s transform our data.

Now you do know how to create a chart in OOo, don’t you?
Just select the cells that you want to use as your data ranges,
click on the Insert Chart button and follow the instructions –
nothing could be simpler. But it’s a wee bit time-consuming, isn’t
it? I think that you’ll agree that this is another candidate for a bit of
automation. Obviously we’re going to be creating a new
subroutine to create the chart for us, but before that we just need
to make some temporary changes to the existing code.

First we’ll stop the document from closing in the download_
stock_price subroutine:
REM oDoc.close(true)

Then we’ll stop the document from being hidden in
open_csv_file with
oProperty(1).Name = “Hidden”
oProperty(1).Value = False

This means that we can develop the new code without having to
open up the saved file to see what effect we’ve had. However, if
you do this you must remember to enable the document close
and document hiding functions once you’ve finished. If you’re
happy with that, create a new subroutine:
Sub insert_chart (doc as Object, cTitle as String)

End Sub
and then insert a new line into download_stock_price:
insert_chart (oDoc, “My Shares”)

You’ll need to place this just before the save_file_as_ods
statement. Next we’ll need to think about the code we need to
add to our new subroutine.

If you’ve already tried manually creating a chart from the
downloaded data, you’ll realise that there’s a problem: the key
doesn’t have a sensible title (it just says Column B). This is, of
course, because the key comes from the first row – but in this
case it’s all data. To rectify this, we’ll get the macro to insert a title
for us:
Sub insert_chart (doc as Object, cTitle as String)

In the tutorial, we switched off the Hidden mode, but if you’re
going to be doing this a lot you may want to change the code to
make this optional:

Function open_csv_file (url as String, Optional show_form as
Boolean) as Object
Dim oProperty(1) as New com.sun.star.beans.PropertyValue
if ismissing(show_form) then
 show_form = False
end if
oProperty(0).Name = “FilterOptions”
oProperty(0).Value = “44”
oProperty(1).Name = “Hidden”
if (show_form) then
 oProperty(1).Value = False
else
 oProperty(1).Value = True
end if
open_csv_file = starDeskTop.loadComponentFromUrl(url, “_

blank”, 0, oProperty())
End Function

Now remember that, by default, the document will remain
invisible, but if you want to see it, you can simply change the
code in open_csv_file to

oDoc = open_csv_file(oUrl, True)

Optional inputs for macros

A quick way to get
to the Organizer is
to click on Tools >
Macros > Organize
Dialogs, and then go
to the Module tab.

Quick
tip

LXFS11.project1 Sec2:110LXFS11.project1 Sec2:110 22/8/07 10:35:0722/8/07 10:35:07

Project 1: loading Calc data

Master OpenOffi ce.org 111

Dim oSheet as Object, oCell as Object
oSheet = doc.Sheets(0)
oSheet.getRows.insertByIndex(0,1)
oCell = oSheet.getCellByPosition(1,0)
oCell.String = “Share Value”
End Sub

Just to explain what’s going on here – we’re selecting the first
sheet of the spreadsheet, then we’re inserting a new row, and then
setting the contents of B1 to be Share Value.

If you now run Main and then create a chart manually, you’ll
see that the key now says Share Value. That’s a good start: now
let’s get the macro to create the chart itself. The first thing that we
need to do is get the macro to work out the dimensions of the
data to be used:
r = 1
oCell = oSheet.getCellByPosition(0,r)
while oCell.String <> “”
 r = r + 1
 oCell = oSheet.getCellByPosition(0,r)
wend

With this information we need to define the range for the data in
the sheet:
Dim oRange as Object
Dim oRangeAddress as Object

oRange = oSheet.getCellRangeByPosition(0,0,1,r – 1)
oRangeAddress = oRange.getRangeAddress

Now we can use this range to define the x and y data in a
CellRangeAddress object:
Dim oCellRangeAddress(1) as New com.sun.star.table.
CellRangeAddress

‘Set X axis
oCellRangeAddress(0).Sheet = oRangeAddress.Sheet
oCellRangeAddress(0).startColumn = oRangeAddress.
endColumn
oCellRangeAddress(0).endColumn = oRangeAddress.endColumn
oCellRangeAddress(0).startRow = oRangeAddress.startRow
oCellRangeAddress(0).endRow = oRangeAddress.endRow

‘Set Y axis
oCellRangeAddress(1).Sheet = oRangeAddress.Sheet
oCellRangeAddress(1).startColumn = oRangeAddress.
startColumn
oCellRangeAddress(1).endColumn = oRangeAddress.
startColumn
oCellRangeAddress(1).startRow = oRangeAddress.startRow
oCellRangeAddress(1).endRow = oRangeAddress.endRow

The next step is to define the area for the chart. You’ll find that the

default size is quite small, so we just need to make it a little bigger:
Dim oRect as New com.sun.star.awt.Rectangle
oRect.Width= 20000
oRect.Height = 10000

Right, now we can write the code that will create the chart itself:
Dim oCharts as Object
oCharts = oSheet.Charts
oCharts.addNewByName(cTitle, oRect, oCellRangeAddress(),TR
UE,TRUE)

At this point you can run the macro if you want – and the chart will
be created. However, there’s still some tidying up to do – such as
setting the chart title, and putting labels on the X and Y axis:
Dim oChart as Object
oChart = oCharts.getByName(cTitle).embeddedObject
oChart.HasMainTitle = True
oChart.Title.String = cTitle

oChart.diagram.HasXAxisTitle = True
oChart.diagram.XAxisTitle.String = “Company Symbol”

oChart.diagram.HasYAxisTitle = True
oChart.diagram.YAxisTitle.String = “Closing Value”

With that done, you’ve got a completely automated system for
downloading your stock market data and creating a chart out of it.
All you have to do now is re-enable the automatic closing and
screen hiding… and then come in tomorrow morning, have a cup
of coffee and see the results of your hard labour.

“Hang on!” I hear you cry ,“I don’t want bar charts, I want the
data in a doughnut – how do I do that?” Actually this is quite easy,
but it’s not very obvious from what we’ve done so far. We’ve only
used the default chart style, and to use any other we have to use
oChart.diagram = oChart.createInstance(“com.sun.star.chart.
DonutDiagram”)

The complete list of charts that you can use is: AreaDiagram,
BarDiagram (and that, as we’ve seen, is the default),
DonutDiagram, LineDiagram, NetDiagram, PieDiagram,
StackableDiagram, StockDiagram and XYDiagram.

Where you go from here is up to you. You can now download a
CSV file directly into Calc, you can create any chart you want from
the data, and you can do that all completely automatically without
having to have any manual input at all. In this tutorial we’ve
concentrated on Yahoo Finance because it’s freely available and is
in CSV format. You can, of course, use any CSV file, or in fact any
data source – provided that you can load the data into OOo – so
you could (for example) use this technique with a database as
your source. However, if you do use this for analysing your stock
market performance, and you do make a bundle, just remember
who first pointed you in the right direction! LXF

 With the
minimum of effort
you’ll have a pretty
chart showing
you just how badly
your shares are
doing. Hurrah!

 If you need to make the figures in this Calc project clearer and
more visually attractive, turn back to p34 to find out how.

LXFS11.project1 Sec2:111LXFS11.project1 Sec2:111 22/8/07 10:35:0722/8/07 10:35:07

