CODEWORKER
Parsing tool and Code generator

User’s guide & Reference manual

Release
4.5.1

Cédric Lemaire

Last update: july 28, 2008

Email: codeworker@free.fr

Copyright (C) 2002 Cédric Lemaire

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Overview

1.1 Buildingaparsetree
1.2 A universal source code/text generation

1.3 Aboutthe manual
Getting started

2.1 Theparsetree

2.2 Scanning our design with a BNF-driven script
2.3 Parsing our design with a BNF-driven script
2.4 Implementing a leader script
2.5 Generating code with a pattern script
2.6 Expanding text with a pattern script

Discovering more with an example

3.1 Theparsetree
3.2 Parsingourdesign
3.3 Decorating the parse tree

34 Generatingcode
3.5 Expandingafile
3.6 Translatingafile
377 Thedebugger

3.8 Scripts coverage and time consuming
3.9 Translating interpreted scripts to C++ source code

The scripting language

4.1 Command line of the interpreter
4.2 Syntax generalities and statements
4.3 Common functions and procedures
4.4 The extended BNF syntax for parsing
4.5 Reading tokens for parsing
4.6 Syntax and instructions for generating source code

External bindings

5.1 TheJAVA binding
5.2 Developing external functions

The integrated debugger

6.1 Opening the debugger
6.2 General functionalities

CONTENTS

6.3 Commands of thedebugger,

7 Quantifying scripts
7.1 Presentation e e e e e
7.2 Running the profiling tool
7.3 Theprofilingresults

8 Integrating source code generation into a project
8.1 Reusability e
8.2 The interest of controlling the format of the design
8.3 Driving the implementation with CodeWorker

9 Tutorials

Index

305
305
305
305

307
307
309
311

313

315

CHAPTER
ONE

Overview

CodeWorker is a scripting language distributed under the GNU Lesser General Public License and de-
voted to manipulate many aspects of generative programming as easy and intuitive as possible. Gen-
erative programming is a software engineering approach for producing reusable, tailor-made, evolvable
and reliable IT systems with a high level of automation.

The scripting language adapts its syntax to the subject it has to handle: - an extended-BNF syntax
(declarative part of the language) for recognizing the format of the specifications to parse, - a procedu-
ral language for manipulating easily parse trees (the only structured type admitted by *CodeWorker’),
strings, files and directories, - a JSP-like syntax (imperative part of the language), which facilitates the
writing of template-based code generation.

Thanks to this syntax adaptation, the scripting language is able to easily: - acquire any kind of specifica-
tion of the IT system to produce (often XML but not necessary), - generate source code in a classical way
(as Rational ROSE), managing protected areas of text that accept hand-typed code, - expand a source
file like the class-wizard of Visual C++ (generated text is inserted at specified markups), - translate from
a format to another (LaTeX to HTML, XSL to CodeWorker, ... no limit), - transform a source file (to
instrument a source file with profiling features, ...).

These tasks are executed in a straightforward process, with no binding to an external programming
language and with no translation of requirements specification.

1.1 Building a parse tree

CODEWORKER provides two methods for performing a parsing:

e the reading of tokens is procedural,

e the BNF description is declarative, and conforms to a kind of BNF (the Backus-Naur Formalism
represents a grammar in a particular syntax) extended with regular expressions,

During the parsing of files, CODEWORKER feeds an appropriate data structure that is called a tree, a
parse tree. A tree is a convenient structure to represent a hierarchical set of nodes, as in XML for
instance. The parse tree is shared both by the parse task, which takes in charge of populating the tree,
and by the source code generation that will walk through it for generating text.

We suggest to use the file extension " . cwp" for extended-BNF parse scripts.

1.2 A universal source code/text generation

Given a specification provided in any kind of format, CODEWORKER will generate source code or text
as required in template-based scripts.

The source code generation can use three modes: generation, expansion or translation.

e generation mode is used to let the script produce the most part of the output file, processing a
kind of femplate-based generation as it exists for a JSP or PHP script. Only some areas called
protected areas in the vocabulary of CODEWORKER are preserved in the file. This philosophy
has been adopted by some modeling tools that generate a skinny skeleton copiously interspersed
with areas intended to the developer.

e expansion mode is used when the file is mainly written by hand, but small portions need to be
generated. The points where to insert the code are called markups in the vocabulary of the scripting
language. The Class Wizard of Visual C++ changes source code following this principle.

¢ translation mode is used when both parsing and source code generation are required to process a
file. It arrives for processing:

— a source-to-source translation: a file must be rewritten in a different syntax. For example, a
LaTeX file might have to be translated in HTML.

— a program transformation: a source file has to change for optimizing, refactoring, instru-
menting or rewriting some portions.
For example, a script could add a trace at the beginning of each function body of a JAVA or
C++ source code. To do that, parsing will serve to discover function bodies, and source code
generation will insert the C++ or JAVA code that implements the trace.

We suggest to use the file extension " . cwt " for template-based scripts.

1.3 About the manual

Efforts are focused on improving the reliability of this documentation on examples and on the reference
manual (except on English text, I’'m afraid!).

A formal representation describes all functions and procedures that CODEW ORKER provides, with their
prototype and a short explanation and an example and the list of all-similar functions and procedures.
This formal representation is used to generate source codes of CODEWORKER that handle parsing and
C++ mapping and execution of each function and procedure of the scripting language. This formal
representation that conforms to what CODEWORKER expects in terms of function/procedure prototypes,
is reused to generate the LaTeX part of the reference manual that describes each of them. Examples are
executed while generating the documentation to be sure they are correct, and to report an up to date
output.

The chapter getting started is partially generated too, and the guarantee is given that every script runs
successfully and that every example file has the last annotations. To warrant that, scripts are executed
while generating the documentation, and example/script files contain some formatted comments just
before lines to annotate. While including them into the chapter, their content is numerated line by line,
and notes are extracted. Notes are written just after the content, and refer to the line they explain.

The documentation is written in LaTeX. The great advantage of LaTeX is that it offers a powerful text
processing and that it is easy to manipulate for source code generation (text format instead of binary,
and it accepts comments). Markups are inserted into the documentation at the points where generated
text must be included. A markup is a special comment that CODEWORKER recognizes. This mode of
code generation is an illustration of what is called expansion mode before.

2 Chapter 1. Overview

CHAPTER
TWO

Getting started

This chapter is intended to help you to discover the scripting language and how it may serve your
software development process.

CODEWORKER is delivered with:

e an executable called CodeWorker, which runs into a shell and that requires options on a com-
mand line,

e alibrary called CodeWorker.1ib, which may be linked to C++ applications for extending them
with parsing and source code generation feature,

e some C++ headers that allow exploiting the library and that are available into the "include"
directory,

Binaries are available into the "bin" directory.

The scripting language adapts its syntax to the nature of the tasks to handle:

e Acquiring the specifications of what to generate requires to be able to recognize for-
mat, either invented for answering as fine as possible to the particularities of the any
kind of project or existing on the market and available on the script repository (see
http://www.codeworker.org/ScriptsRepository.html, in constant improvement). A declarative lan-
guage processes the scan of the format, following an extended BNF syntax ; it accepts the intrusion
of procedural instruction to populate the parse tree.

e Manipulating internal data easily and executing instructions with an expressiveness similar to a
classical system programming language. The procedural part of the language enables to take them
in charge.

e Generating, expanding or tranforming text. The imperative part of the language offers a template-
based syntax that accepts instructions to navigate into the parse tree and to take advantage of
facilities brought by a programming language.

Example:

CODEWORKER allows saving time to implement source code, if it disposes of a detailed design. Let
start with a tiny modeling language that only understands object types and that we create just for this
example:

// file "GettingStarted/Tiny.tml":
1 class A {
2}

3

n class D {

12 A a
13 C[] c
14}

LINE 1: we declare the class A, without attributes,

LINE 4: we declare the class B, which inherits from 2,

LINE 7: we declare the class C that encapsulates an array of B instances,

LINE 11: we declare the class D that encapsulates an association to an instance of class A and an array
of C instances,

2.1 The parse tree

The role of the parsing is to populate the parse tree. Let suppose that, for each class, we need of the
following attributes:

e name: the name of the class, C for example,
e parent: the name of the parent if exists, A for class B for instance,

e listOfAttributes: an array that contains the description of encapsulated attributes, a and c into
class D for instance,

The description of an encapsulated attribute will require:

e name: the name of the attribute, a into class D for instance,
e class: the name of the class it belongs to, A for attribute a for instance,

e isArray: true if the attribute is an array like ¢ for example,

To discover the parse tree, we’ll first populate it by hand. To do that, let run CODEWORKER in console
mode:
CodeWorker -console

Type the following line into the console, and be careful not to forget the final semi colon:
insert 1istOfClasses/["A"].name = "A";
traceObject (project);

The insert keyword is used to create new branches into the parse tree. The root is named project,
but hasn’t to be specified, and a sub-node (or attribute) listOfClasses has been added. This sub-node is
quite special: it has to contain an array of nodes that describe classes. Items are indexed by a string and
are stored into their entrance order; so, the node that takes in charge of describing the class A is accessed
via listOfClasses["A"]. The string "A" is assigned to the attribute listOfClasses["A"].name.

4 Chapter 2. Getting started

The procedure traceObject (project) shows us the first-level content of the root: the attribute
listOfClasses and all its entries (only "A" for the moment). Let populate the tree with the description of
the class B:

set 1istOfClasses/["B"].name = "B";

The set keyword is used to assign a value to an existing branch of the parse tree. If this branch doesn’t
exist yet, a warning notices you that perhaps you have done a spelling mistake, to avoid inserting new
bad nodes. But the node is inserted despite of the warning. As the language isn’t typed, it allows
avoiding some troubles. Let’s continue:

ref listOfClasses["B"].parent = 1listOfClasses["A"];

traceline (listOfClasses["B"] .parent.name);

The node IlistOfClasses["B"].parent refers to the node [istOfClasses["A"], so listOf-
Classes["B"].parent.name is similar to listOfClasses["A"].name. Let start filling in the tree for
class C:

insert 1istOfClasses/["C"].name = "C";

pushlItem 1istOfClasses["C"].listOfAttributes;

local myAttribute;

ref myAttribute = 1istOfClasses["C"].listOfAttributes#back;

The pushItem assignment command is another way to add a new node into an array, where the item
is indexed by the position of the node, starting at 0. The 1ocal keyword allows declaring a variable on
the stack. This variable is also a parse tree, but not attached to the main parse tree pro ject. For more
commodities, this variable will refer to the last element of the attribute’s list: myAttribute is shorter to
type than listOfClasses["C"].listOfAttributes#back. Notice that the last element of an array is accessed

via ' #back’ . Let complete the attribute b of class C: insert myAttribute.name = "b";
ref myAttribute.class = 1listOfClasses["B"];
insert myAttribute.isArray = true;

The keyword true is a predefined constant string that is worth "true". The keyword false also
exists and is worth an empty string.

Exercise:

Populate the parse tree with the description of class D.

2.2 Scanning our design with a BNF-driven script

Now, we’ll describe the format of our tiny modeling language thanks to a BNF grammar (see paragraph
4.3.216 for more elements about it) like it is recognized by CODEWORKER :

// file "GettingStarted/Tiny-BNF.cwp":

1 TinyBNF ::=

2 #ignore (JAVA)

3 [classDeclaration] *

4 fempty

5 => { traceline("this file is wvalid"); };

¢ classDeclaration ::=

7 IDENT:"class"

8 IDENT

9 (7 IDENT 17

10 classBody;

i classBody ::= ’{’ J[attributeDeclaration]x* "}’;
12 attributeDeclaration ::= IDENT [’ [’ ']’]1? 1IDENT;

2.2. Scanning our design with a BNF-driven script 5

13 IDENT ::= #!ignore ['a’'..’z’ |'A".."Z"]1+;
LINE 1: the clause TinyBNF takes in charge of reading our design,
LINE 2: blanks and comments are allowed between tokens, conforming to the JAVA syntax (/** **/
and ’//),
LINE 3: the clause classDeclaration is repeated as long as class declarations are encountered
into the design,
LINE 4: if no class anymore, the end of file may have been reached,
LINE 5: the " =>’ operator allows executing instructions of the scripting language into the BNF-driven
script; this one will be interpreted once the file will be matched successfully,
LINE 6: the clause classDeclaration takes in charge of reading a class,
LINE 7: the clause IDENT reads identifiers and the matched sequence must be worth "class",
LINE 8: the name of the class is expected here
LINE 9: the declaration of the parent is facultative and is announced by a colon,
LINE 11: the clause classBody reads attributes as long as a it matches,
LINE 12: the clause attributeDeclaration expects a class identifier and, eventually, the symbol
of an array, and the name of the attribute,
LINE 13: the clause IDENT reads an identifier, composed of a letter or more, which cannot be separated
by blanks or comments (required by the directive # ! ignore),

This BNF-driven script only scans the design ; it doesn’t parse the data. Type the following line into the
console to scan the design "Tiny.tml":

parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny—-BNF.cwp", project,
"Scripts/Tutorial/GettingStarted/Tiny.tml");

Output:
this file is wvalid

But this script isn’t sufficient enough to complete the parse tree.

2.3 Parsing our design with a BNF-driven script

We have to improve the precedent script, called now "Tiny-BNFparsing.cwp”, for building the parse tree
that represents the pertinent data of the design:

// file "GettingStarted/Tiny-BNFparsing.cwp":

1 TinyBNF ::= #ignore (JAVA) [classDeclaration]* #empty

2 => { traceline("this file has been parsed successfully"); };
3 classDeclaration ::=

4 IDENT:"class"

5 IDENT : sName

6 => insert project.listOfClasses[sName].name = sName;

7 [

8 It

9 IDENT:sParent

10 => {

1 if !findElement (sParent, project.listOfClasses)

12 error ("class " + sParent + "’ should have been

declared before");

6 Chapter 2. Getting started

13 ref project.listOfClasses[sName] .parent =
project.listOfClasses[sParent];
14 }

15 17

16 classBody (project.listOfClasses[sName]);
17 classBody (myClass : node) ::=

18 "{’ [attributeDeclaration(myClass)]* "}’;
19 attributeDeclaration (myClass : node) ::=

20 IDENT

21 (""" "1"17

2 IDENT;

23 IDENT ::= #!ignore [’a’..'z" |'A".."Z2"]1+;

LINE 5: the name of the class is put into the local variable sName. Note that the first time a variable is
encountered after a token, it is declared as local automatically.

LINE 6: we populate the parse tree as we have proceeded manually,

LINE 9: the name of the parent class is put into the local variable sParent,

LINE 11: the parent class must have been declared before: the item is searched into the list of classes,
LINE 13: we populate the parse tree as we have proceeded manually,

LINE 16: clauses may accept parameters; here, the current class is passed to classBody that will
populate it with attributes,

LINE 17: the clause classBody expects a parameter as a node; a parameter may be passed as value
or node or reference,

LINE 19: little exercise: complete the clause attributeDeclaration that takes in charge of
parsing an attribute of the class given to the argument myClass,

LINE 20: remember that you must parse the class name of the association here (attribute my-
Class.listOfAttributes#back.class refers to the associated class),

LINE 21: remember that you must parse the multiplicity of the association here (attribute my-
Class.listOfAttributes#back.isArray is worth t rue if ’[]’ is present),

LINE 22: remember that you must parse the name of the association here (to put into attribute
myClass.listOfAttributes#back.name),

Exercise:

Complete the precedent clause attributeDeclaration to populate an attribute. You’ll find the
solution into file "Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp".

Solution:

// file "GettingStarted/Tiny-BNFparsingl.cwp":

1 classBody (myClass : node) ::=

2 "{’ [attributeDeclaration(myClass)]* "}’;

3 attributeDeclaration (myClass : node) ::=

4 IDENT:sClass

5 => local myAttribute;

6 => {

7 pushItem myClass.listOfAttributes;

8 ref myAttribute = myClass.listOfAttributes#back;

9 if !findElement (sClass, project.listOfClasses)

10 error ("class " + sClass + "’/ should have been

declared before");
1 ref myAttribute.class = project.listOfClasses[sClass];
12 }

2.3. Parsing our design with a BNF-driven script 7

13 [7[" ’]" => insert myAttribute.isArray = true;]?
14 IDENT:sName => {insert myAttribute.name = sName; };

16 IDENT ::= #!ignore ['a’'..’z" |'A".."Z2"]1+;

LINE 4: the name of the class for the association is assigned to the local variable sName,

LINE 5: we’ll need a local variable to point to the attribute’s node for commodity,

LINE 7: the local variable myAttribute hasn’t been declared here, because it disappears at the end
of the scope (the trailing brace); a new node is added to the list of attributes,

LINE 8: the local variable myAttribute points to the last item of the list,

LINE 9: the class specifier of the association must have been declared,

LINE 11: we populate the parse tree as done by hand,

LINE 13: this attribute isArray is added only if the type of the association is an array,

LINE 14: we complete the attribute description by assigning its name,

Type the following line into the console to parse the design "7Tiny.tml":

parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp", project,
"Scripts/Tutorial/GettingStarted/Tiny.tml");

Output:

this file has been parsed successfully

2.4 Implementing a leader script

Now, we’ll implement a little function that displays the content of our parse tree. We stop using the
console here, and we’ll implement the call to the parsing and the function into a leader script. This
script will be called at the command line, as seen further.

We suggest to use the file extension " . cws" for non-template and non-BNF scripts.

CODEWORKER command line to execute:
—-script Scripts/Tutorial/GettingStarted/Tiny—-leaderScriptO.cws

// file "GettingStarted/Tiny-leaderScriptO.cws":
I parseAsBNF ("Tiny—-BNFparsingl.cwp", project,
"Scripts/Tutorial/GettingStarted/Tiny.tml");
2

3

4 function displayParsingTree () {

5 foreach i1 in project.listOfClasses {

6 tracelLine("class '" 4+ i.name + "' ");

7 if existVariable (i.parent)

8 traceLine("\tparent = '" + i.parent.name + "' ");
9 foreach j in i.listOfAttributes {

10 traceLine("\tattribute " + j.name + "' ");

i traceLine ("\t\tclass = '" + j.class.name + "’'");
12 if existVariable(j.isArray)

13 traceLine ("\t\tarray = '" + j.isArray + "'");

8 Chapter 2. Getting started

16}
17

18 displayParsingTree () ;

LINE 4: a user-defined function without parameters,

LINE 5: the foreach statement iterates all items of an array; here, all classes are explored,
LINE 7: check whether the attribute parent exists or not,

LINE 9: all attributes of the current class i are iterated,

LINE 12: perhaps the association is multiple,

LINE 18: a call to the user-defined function,

Output:

this file has been parsed successfully
class A’
class ’'B’
parent = 'A’
class ’C’
attribute ’'b’
class = "B’
array = "true’
class 'D’
attribute ’a’

class = "A’
attribute ’c’

class = 'C’

array = "true’

2.5 Generating code with a pattern script

The source code generation exploits the parse tree to generate any kind of output files: HTML, SQL,
C++, ...

A pattern script is written in the scripting language of CODEWORKER extended to be able to fuse the
text to put into the output file and the instructions to interpret. It enables to process a template-based
generation. Such a script looks like a JSP template: the script is embedded between tags <%’ and * %>’
or’@’.

We’ll start by generating a short JAVA class for each class of the design. It translates the attributes in
JAVA and it generates their accessors:

// file "Scripts/Tutorial/GettingStarted/Tiny-JAVA.cwt":
1 package tiny;
2
3 public class @this.name@ Q@
4 1f existVariable (this.parent) {

5 @ extends @this.parent.name@ @

6 }

7 @

8 // attributes:

9 @

10 function getJAVAType (myAttribute : node) {

2.5. Generating code with a pattern script 9

11 local sType = myAttribute.class.name;

12 if myAttribute.isArray {

13 set sType = "Java.util.ArrayList/x<" + sType + ">x%/";
14 }

15 return sType;

18 foreach 1 in this.listOfAttributes {

19 @ private @getJAVAType (i)@ _@i.name@ = null;

0 @

21}

2 @

2 //constructor:

2 public @this.name@ () {

25 }

26

2 // accessors:

28 (@

9 foreach i in this.listOfAttributes {

30 @ public @getJAVAType (i)@ get@toUpperString (i.name)@ () {
return _Qi.name@; }

31 public void set@toUpperString (i.name)Q (QgetJAVAType (1)@
@i.name@) { _Q@i.name@ = @i.name@; }

n @

33}
34 setProtectedArea ("Methods") ;
35 @}

LINE 3: swapping to script mode: the value of this.name is put into the output file, knowing that the
variable this is determined by the second parameter that is passed to the procedure generate (see
section 4.3.85 and below). If the notation appears confusing to you (where does the writing mode ends,
where does the script mode starts or the contrary), you can choose to inlay the variables in tags <%’
and *%>’.

LINE 4: swapping once again to script mode for writing the inheritance, if any

LINE 7: swapping to text mode,

LINE 10: we’ll need a function to convert a type specifier of the tiny modeling language to JAVA, which
expects the attribute’s node (parameter mode is variable, instead of value),

LINE 13: we have chosen java.util.ArrayList to represent an array, why not?

LINE 18: swapping to script mode for declaring the attributes of the class

LINE 22: swapping to text mode for putting the constructor into the output file,

LINE 29: swapping to script mode for implementing the accessors to the attributes of the class

LINE 30: the predefined function t oUpperString capitalizes the parameter,

LINE 34: the procedure setProtectedArea (see section 4.6.34) adds a protected area that is
intended to the user and that is preserved during a generation process,

LINE 35: swapping to text mode for writing the trailing brace,

The leader script must be changed to require the generation of each class in JAVA:

CODEWORKER command line to execute:
-script Scripts/Tutorial/GettingStarted/Tiny-leaderScriptl.cws

// file "Scripts/Tutorial/GettingStarted/Tiny-leaderScriptl.cws":
1 parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp",

10 Chapter 2. Getting started

project, "Scripts/Tutorial/GettingStarted/Tiny.tml");

2

3 foreach i1 in project.listOfClasses {

4 generate ("Scripts/Tutorial/GettingStarted/Tiny—-JAVA.cwt", 1i,
"Scripts/Tutorial/GettingStarted/tiny/" + i.name + ".java");

5}

6

LINE 4: the second argument is waiting for a tree node that will be accessed into the pattern script via
the predefined variable this, which has been encountered above,

Output:
this file has been parsed successfully
Let have a look to the following generated file:

// file "Scripts/Tutorial/GettingStarted/tiny/D. java":
package tiny;

public class D {
// attributes:
private A _a = null;
private java.util.ArrayList/x<C>x/ _c = null;

//constructor:
public D() {
}

// accessors:
public A getA() { return _a; }
public void setA(A a) { _a = a; }
public Jjava.util.ArrayList/*<C>x/ getC() { return _c; }
public void setC(java.util.ArrayList/*<C>*/ c) { _c = c; }
//##protect##"Methods"
//##protect##"Methods"

}

2.6 Expanding text with a pattern script

We’ll learn about another mode of generation: expanding a file. Let suppose that you want to inlay
generated code into an existing file. The way to do it is first to insert a special comment at the expected
place. This comment begins with ##tmarkup## and is followed by a sequence of characters written
between double quotes and called the markup key.

Here is a little HTML file that is going to be expanded:

// file "Scripts/Tutorial/GettingStarted/Tiny.html":
<HTML>
<HEAD>
</HEAD>
<BODY>
<!—##markup##"classes"->

2.6. Expanding text with a pattern script 11

</BODY>
</HTML>

The markup key is called "classes” and is put into the file like it: <!- —##markup##"classes" -
_>'

Now, we’ll implement a short script that is intended to populate the markup area with all classes of the
design, displayed into tables:

// file "Scripts/Tutorial/GettingStarted/Tiny-HTML.cwt":

1 @

> 1f getMarkupKey () == "classes" {

3 foreach i1 in project.listOfClasses {

4 @ <TABLE>

5 <TR>

6 <TD colspan=3>@i.name@</TD>

7 </TR>

8 <TR>

9 <TD>Attribute</TD><TD>Type</TD>
<TD>Description</TD>

10 </TR>

n @

12 foreach j in i.listOfAttributes {

13 @ <TR>

14 <TD><I>@7j.name@</I></TD><TD><CODE>(@

15 @@j.class.name@@

16 if j.isArray {

17 @erla

18 }

19 @</CODE></TD><TD>@

20 setProtectedArea(i.name + "::" + j.name);

21 @</TD>

2 </TR>

» @

24 }

25 @ </TABLE>

26 @

27 }

28}

LINE 2: the function getMarkupKey () returns the current expanding markup that is handled,

LINE 3: all classes will be presented sequentially into tables of 3 columns, whose title is the name of
the class, and rows are populated with attributes,

LINE 12: the name, Type and Description of all attributes of the class are presented into the table,

LINE 15: the type is expressed in the syntax of our tiny modeling language,

LINE 20: the description of an attribute must be filled by the user into a protected area, so as to preserve
it from an expansion to another,

The leader script has to take into account the expansion of the HTML file:

CODEWORKER command line to execute:
—-script Scripts/Tutorial/GettingStarted/Tiny-leaderScript2.cws

// file "Scripts/Tutorial/GettingStarted/Tiny-leaderScript2.cws":

12 Chapter 2. Getting started

1 parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp",
project, "Scripts/Tutorial/GettingStarted/Tiny.tml");

2

3 foreach i in project.listOfClasses {

4 generate ("Scripts/Tutorial/GettingStarted/Tiny-JAVA.cwt", i,
"Scripts/Tutorial/GettingStarted/tiny/" + i.name + ".java");

5}

6

7 traceline ("expanding file 'TinyO.html’...");

s setCommentBegin("<!-");

9 setCommentEnd ("->");

10 expand ("Scripts/Tutorial/GettingStarted/Tiny-HTML.cwt",
project, "Scripts/Tutorial/GettingStarted/Tiny0.html");

i1 //normal;

LINE 8: to expand a file, the interpreter has to know the format of comments used for declaring the
markups. If the format isn’t correct, the file will not be expanded.

LINE 10: be careful to call the procedure expand () and not to confuse with generate ()!
Remember that a classic generation rewrites all according to the directives of the pattern script and
preserves protected areas, but doesn’t recognize markup keys.

Output:

this file has been parsed successfully
expanding file ’'TinyO.html’ ...

It hasn’t a great interest to present here the content of the HTML once it has been expanded, but you
can display it (file "Scripts/Tutorial/GettingStarted/Tiny0.html") into your browser. You’ll notice into
the source code that the expanded text is put between tags <!- -##begin##' classes''- -> and <!- -
##end##''classes''- ->. Don’t type text into this tagged part, except into protected areas, because the
next expansion will destroy the tagged part.

For discovering more about CODEWORKER through a more complex example, please read the next
chapter. You’ll learn how to do translations from a format to another, and to use template functions
or BNF clauses (very efficient for readability and extension!), and a lot of various things. But it is
recommended to practice a little before.

2.6. Expanding text with a pattern script 13

14

CHAPTER
THREE

Discovering more with an example

The first time, we recommend to read the precedent chapter, more approachable, before reading this one.
Let imagine that we dispose of a design expressed in a simple modeling language, like it:

// file "GettingStarted/SolarSystemO.sml":
1 class Planet {

2 double diameter;

3 double getDistanceToSun (int day, int month, int year);
4}

5

¢ class Earth : Planet ({

7 string[] countryNames;

10 class SolarSystem {
11 aggregate Planet[] planets;
12}

LINE 1: a class is declared with keyword class

LINE 2: declaration of attributes in a syntax close to C++ or JAVA

LINE 3: declaration of methods in a syntax close to C++ or JAVA

LINE 6: a class may inherit from an other ; the syntax looks like C++, see 2’

LINE 7: an attribute may be an array ; the syntax looks like JAVA

LINE 11: an attribute may be an object or an array of objects, and an object may be an aggregation
(meaning that it belongs to the instance),

This simple modeling language conforms to a BNF grammar (see paragraph 4.3.216 to obtain informa-
tion about the elements of a BNF syntax):

world ::= [class_declaration]x

class_declaration ::= "eclass" IDENT [':' IDENT]? class_body
class_body ::= '"{'" [attribute_decl | method decl]~* "}’
attribute _decl ::= type specifier IDENT ';’'

method_decl ::= type specifier IDENT ' (' [parameters_decl]? ')’
o

parameters_decl ::= parameter [',’' parameters_decl]x*
parameter ::= [parameter_model? type specifier IDENT
parameter._mode ::= "in" | "inout" | "out"

type_specifier ::= basic type ["[' "1’']1?

basic _type ::= "int" | "double" | "string" |

"boolean" | class_specifier

15

class_specifier ::= ["aggregate"]? IDENT
IDENT ::= ['a'..’z’ |'A" .72 |'_'] ['a’".."z’ |"A" ..72"|"_"|'0"..79"]«
Starting from the desing file "SolarSystem0O.sml" seen before, which conforms to the Simple Model-

ing Language described just above, we propose to implement the source code for classes and a light
documentation.

3.1 The parse tree

CODEWORKER doesn’t belong to the category of typed languages. It recognizes only the tree as struc-
tured type and the string as basic type (that may however represent an integer or a boolean, ...). Each
node may contain a string as a value, and/or an array of nodes. The main tree is called project, which
is the name of its root node, accessible everywhere into scripts.

Now, the best way to understand how to handle the tree is to run the console, and to practice some
examples.

Type CodeWorker to the shell to set the console mode. A cursor is waiting for your commands.

Type set a = "little"; and press enter. Don’t forget the semi-colon at the end of the line. If
absent, the console wait for more input: type the expected semi-colon, and it should be right.

What is the impact of the line you typed? You assigned "1ittle" to the variable a, which doesn’t
exist. So, a node named ’ a’ has been added into the main parse tree (called pro ject, remember), to
which the variable a points. You noticed that a varning has occurred. It means that you assigned a value
to a node that doesn’t exist yet. In fact, the instruction set supposes that the variable to assign already
exists, and a warning has been thrown to prevent you of a spelling error (perhaps do you intended to
type another variable that already exists?) or a logic mistake (at this point of the program, the variable
should exist, so what?). It is important to offer this protection, because the language isn’t typed, and so,
a lot of errors may be reported during the runtime.

The variable a has been added, even if the warning has occurred, but we prefer the instruction insert
to add a new node properly : type insert b = "big"; and press enter. No warning was displayed.
Now, the root pro ject node contains two sub-nodes, called * a’ and ' b’ , and we control it by typing
traceObject (project) ;. The following lines are displayed:

Tracing variable ’'project’:
a = "little"
b = "big"
End of variable’s trace 'project’.

Let’s go further. What about storing a list of items?

Type insert classes["Planet"].name = "Planet";. A node node called ' classes’
has been added to project, and then an array entry called "Planet" has been pushed. This entry
points to a node, to which ' name’ is added, and node ’ name’ is worth "Planet".

Type insert classes["Earth"].name = "Earth"; and then ask for tracing node
"project’. The following lines are displayed:

16 Chapter 3. Discovering more with an example

Tracing variable 'project’:

a = "little"
b = "big"
classes = ""

classes["Planet", "Earth"]
End of variable’s trace ’'project’.

Notice that the node ' classes’ has no value (but could have!) and contains an array of nodes where
entries are "Planet" and "Earth".

To iterate items of array ' classes’, type foreach i1 in classes traceline ("handling
class " 4+ i.name + "’ ..."); and see the result:

handling class ’Planet’...
handling class ’'Earth’...

Variable ' i’ is an iterator and is declared locally for processing the foreach instruction. We’ll see
further that the statement 1ocal allows declaring a tree to the stack.

What you know about the parse tree in CODEWORKER is sufficient to tackle the next section.

3.2 Parsing our design

CODEWORKER provides two different approaches for parsing files.

3.2.1 The parsing scripts that read tokens

Those that aren’t familiar with a BNF representation will perhaps be more self-assured in using a
procedure-driven parsing, where control resides within the implementation and where all tokens are
explicitly read by a devoted operation. But it means for instance that ignoring blanks and comments
must be indicated explicitly between reading of tokens.

The parsing scripts that read tokens are the oldest way to parse into CODEWORKER and are the fastest
mode too. But it doesn’t offer the same flexibility as BNF scripts, which are syntax-oriented.

Below is an example of what a script that reads tokens looks like:

// file "GettingStarted/SimpleML-token-reading.cws":
1 declare function readType/();
2

3 while skipEmptyCpp () {

4 if !readIfEqualTolIdentifier("class") error("’class’
expected") ;

5 skipEmptyCpp () ;

6 local sClassName = readIdentifier();

7 if !sClassName error ("class name expected");

8 skipEmptyCpp () ;

9 if readIfEqualTo(":") {

10 skipEmptyCpp () ;

11 local sParentName = readIldentifier();

12 if !sParentName error ("parent name expected for class ’"

+ sClassName + "' ");

3.2. Parsing our design 17

13 skipEmptyCpp () ;
14 }

15 if !readIfEqualTo ("{") error ("' {’ expected");

16 skipEmptyCpp () ;

17 while !readIfEqualTo("}") {

18 skipEmptyCpp () ;

19 readType () ;

20 skipEmptyCpp () ;

21 local sMemberName = readIdentifier();

2 if !sMemberName error ("attribute or method name
expected") ;

23 skipEmptyCpp () ;

2 if readIfEqualTo (" (") {

25 skipEmptyCpp () ;

26 if !readIfEqualTo(")") {

27 do {

28 skipEmptyCpp () ;

29 local iPosition = getInputLocation();

30 local sMode = readIdentifier();

31 if !sMode error ("parameter type or mode
expected") ;

32 if (sMode != "in") && (sMode != "out") &&
(sMode != "inout") {

33 setInputLocation (iPosition);

34 set sMode = "";

35 }

36 skipEmptyCpp () ;

37 readType () ;

38 skipEmptyCpp () ;

39 local sParameterName = readIdentifier();

40 if !sParameterName error ("parameter name
expected") ;

a1 skipEmptyCpp () ;

2 } while readIfEqualTo(",");

43 if !readIfEqualTo(")") error("’)’ expected");

44 }

45 skipEmptyCpp () ;

46 }

47 if !'readIfEqualTo(";") {

48 error ("’;’ expected to close an attribute, instead of

" + readChar() + "'");
49 }
50 skipEmptyCpp () ;
51 }
2}
53 traceLine("the file has been read successfully");

54

ss. function readType () {
56 local sType = readIdentifier();
57 if !sType error ("type modifier or name expected, instead of

"" + readChar() + "'");

18 Chapter 3. Discovering more with an example

58 if sType == "aggregate" {

59 skipEmptyCpp () ;

60 sType = readIdentifier();

61 if !'sType error ("aggregated class name expected");

62 }

63 skipEmptyCpp () ;

64 if readIfEqualTo("[") {

65 skipEmptyCpp () ;

66 if !'readIfEqualTo("]") error("’]’ expected to close an

array declaration");
67 }

68 }

LINE 1: forward declaration of method readType (), so as to start explanations about how to
implement BNF clause worlid ::= [class_declaration]*,

LINE 3: do a loop while the end of file hasn’t been reached, skipping blanks and C++ comments:
skipEmptyCpp () returns false only if an error occurs while reading the stream or the file has
completed,

LINE 4: waiting for token "class" as an identifier (doesn’t accept "class" as the beginning of
another identifier, such as "classes"). If not found, an error occurs. This token announces a class
declaration.

LINE 5: a disadvantage of writing a procedure-driven reading/parsing: don’t forget to skip explicitly
blanks and comments by yourself,

LINE 6: populates a local variable with an identifier token that represents the name of the class

LINE 7: if an identifier token hasn’t been found (token is empty), an error is thrown,

LINE O: if the file location points to ":", announcing the inheritance, function
readIfEqualTo (":") returns true, and the location moves after the matched expression.
If it fails, the file location remains the same.

LINE 15: body of the class declaration expected

LINE 17: while inside the class body, reading of attribute and method members,

LINE 19: we don’t conform exactly to the BNF: beginning of method and attribute declaration is
factorized,

LINE 21: name of the attribute or method member,

LINE 24: not any more ambiguity : it starts by a parenthesis when the members is a method,

LINE 27: the method expects at least one parameter,

LINE 29: we keep the current file position, to be able to come back if the next token isn’t an access
mode ("in", "out" or "inout"),

LINE 33: we were reading a basic type, instead of a parameter access mode: we come back to the
beginning of this token and the mode is set as empty (no mode). Of course, it is possible not to waste
time like this, and to optimize function readType () by passing the token as a parameter. But here is
the occasion of discovering how to handle the file position.

LINE 37: type of the current parameter is expected,

LINE 39: name of the current parameter is expected,

LINE 42: parameters are separated by commas,

LINE 47: both attributes and methods must finish with a semi colon,

LINE 48: function readChar () reads just one character, or returns an empty string if the end of file
has been reached,

LINE 53: once the read of file has completed, a message of success is written,

LINE 55: user-defined function ; may return a value or not. The declaration always starts with keyword
function, even if it announces a procedure (no return value). Reading a type is called at several
points of the grammar, so the code is factorized in the procedure readType (). It doesn’t return any
value about success or failure, because an error is thrown in case of syntax mismatch.

3.2. Parsing our design 19

LINE 58: does the keyword is a modifier? If not sType contains a basic type or a class name
LINE 60: reads the name of the aggregated class
LINE 64: perhaps that the type is an array, represented by [],

This script seems quite far from the BNF of our simple modeling language, while it implements it in
a procedural way. It is able to read a well-formed design file, as our solar system presented at the
beginning of the chapter. It doesn’t care about populating a parse tree yet, but produces contextual error
messages when the design file doesn’t conform to the BNF.

Let apply the script on the design file:

parseFree ("GettingStarted/SimpleML-token-reading.cws",
project, "GettingStarted/SolarSystemO.sml");

Output:
the file has been read successfully
Now, let improve the script to allow populating a parse tree:

// file "GettingStarted/SimpleML-token-parsing.cws":
1 declare function readType (myType : node);
2

3 while skipEmptyCpp () {

4 if !readIfEqualToldentifier("class") error("’class’
expected") ;

5 skipEmptyCpp () ;

6 local sClassName = readIdentifier();

7 if !sClassName error("class name expected");

8 insert project.listOfClasses[sClassName].name = sClassName;

9 skipEmptyCpp () ;

10 if readIfEqualTo(":") {

1 skipEmptyCpp () ;

12 local sParentName = readIldentifier();

13 if !sParentName error ("parent name expected for class ’"
+ sClassName + "' ");

14 insert project.listOfClasses[sClassName] .parent =
sParentName;

15 skipEmptyCpp () ;

16 }

17 if !readIfEqualTo ("{") error ("' {’ expected");

18 skipEmptyCpp () ;

19 local myClass;

20 ref myClass = project.listOfClasses|[sClassName];

21 while !readIfEqualTo("}") {

2 skipEmptyCpp () ;

23 local myType;

2 readType (myType) ;

25 skipEmptyCpp () ;

26 local sMemberName = readIdentifier();

27 if !sMemberName error ("attribute or method name
expected");

28 skipEmptyCpp () ;

20 Chapter 3. Discovering more with an example

2 if readIfEqualTo (" (") {

30 insert myClass.listOfMethods[sMemberName] .name =
sMemberName;

31 if myType.name != "void" {

» setall myClass.listOfMethods[sMemberName] .type =
myType;

33 }

" skipEmptyCpp () ;

35 if !'readIfEqualTo(")") {

36 local myMethod;

37 ref myMethod = myClass.listOfMethods[sMemberName];

38 do {

39 skipEmptyCpp () ;

40 local iPosition = getInputLocation();

41 local sMode = readIdentifier();

) if !sMode error ("parameter type or mode
expected") ;

43 if (sMode != "in") && (sMode != "out") &&
(sMode != "inout") {

44 setInputLocation (iPosition);

45 set sMode = "";

46 }

47 skipEmptyCpp () ;

48 local myParameterType;

49 readType (myParameterType) ;

50 skipEmptyCpp () ;

51 local sParameterName = readIdentifier();

52 if !sParameterName error ("parameter name
expected") ;

53 insert myMethod.listOfParameters[sParameterName] .name
= sParameterName;

54 setall myMethod.listOfParameters[sParameterName] .type
= myParameterType;

55 if sMode {

56 insert myMethod.listOfParameters|[sParameterName] .name
= sMode;

57 }

58 skipEmptyCpp () ;

59 } while readIfEqualTo(",");

60 if !'readIfEqualTo(")") error("’)’ expected");

61 }

62 skipEmptyCpp () ;

63 } else {

64 insert myClass.listOfAttributes[sMemberName] .name =
sMemberName;

65 setall myClass.listOfAttributes[sMemberName] .type =
myType;

66 }

67 if !'readIfEqualTo(";") error("’;’ expected to close an
attribute, instead of " + readChar() + "'");

68 skipEmptyCpp () ;

3.2. Parsing our design 21

69 }
70 }
71 traceline ("the file has been parsed successfully");

72

73 function readType (myType : node) {

74 local sType = readIdentifier();

75 if !sType error ("type modifier or name expected, instead of
" + readChar() + "'");

76 if sType == "aggregate" {

77 insert myType.isAggregation = true;

78 skipEmptyCpp () ;

79 sType = readIdentifier();

80 if !'sType error ("aggregated class name expected");

81 }

82 insert myType.name = sType;

83 if (sType != "int") && (sType != "double") && (sType !=
"boolean") && (sType != "string") {

84 insert myType.isObject = true;

85 }

86 skipEmptyCpp () ;

87 if readIfEqualTo("[") {

88 skipEmptyCpp () ;

89 if !'readIfEqualTo("]") error("’]’ expected to close an
array declaration");

9 insert myType.isArray = true;

91 }

2 }

LINE 8: about parsing, classes are modeled into node project.listOfClasses[sClassName]. Its attribute
name contains the value of sClassName.

LINE 14: this class inherits from a parent, so the optional attribute parent of the class is populated
with the value of sParentName,

LINE 19: to work easier with the current class node project.listOfClasses[sClassName],
we define a reference to it, called myClass,

LINE 23: the class is populated with the characteristics of the member once its declaration has finished.
Otherwise, it may confuse between an attribute or a method declaration. So, we should have factorized
the type declaration and the name of the member into a common clause, for example.

LINE 30: about parsing, methods are modeled into node myClass.listOfMethods[sMemberNamel],
LINE 31: attribute name is compulsory into a type node, so if myType . name returns "void", there
is no return type,

LINE 36: to work easier with the current class node myClass.listOfMethods [sMemberName],
we define a reference to it, called myMethod,

LINE 53: about parsing, parameters are modeled into node
myMethod.listOfParameters[sParameterName],

LINE 64: about parsing, attributes are modeled into node myClass.listOfAttributes[sMemberName],
LINE 65: the type is allocated on the stack, so it is copied into branch type (no node reference)
integrally,

LINE 71: once the parsing of file has achieved, a message of success is written,

LINE 73: function readType () requires a node into which description of type will be populated,
LINE 77: about parsing, myType.isAggregation contains t rue if type is an array,

LINE 82: about parsing, myType.name contains the name of basic type,

LINE 83: check whether the type is a basic one or a class specifier,

22 Chapter 3. Discovering more with an example

LINE 84: about parsing, myType.isObject contains t rue because we suppose that this type is a class

specifier (by default: it isn’t a basic type),
LINE 90: about parsing, myType.isArray contains t rue if type is an array,

The first version of the script was just able to read a well-formed design file written in the simple

modeling language. The second version validates the file and populates the parse tree:

parseFree ("GettingStarted/SimpleML-token-parsing.cws",
project, "GettingStarted/SolarSystemO.sml");

Output:

the file has been parsed successfully

3.2.2 The parsing scripts that describe a BNF syntax

A BNF is more flexible and more synthetic than a procedural description of parsing. CODEWORKER

accepts parsing scripts that conform to a BNF.

For more information about elements of syntax for a BNF, let have a look to paragraph 4.3.216.

Below is an example of what a BNF script looks like:

// file "GettingStarted/SimpleML-reading.cwp":
1 // syntactical clauses:

» world ::= #ignore (C++) [class_declaration]#* #empty

3 => { traceline("file read successfully"); };

4 class_declaration ::= IDENT:"class" IDENT [’ :' IDENT] ?
class_body;

s class_body ::= ’"{’ [attribute_decl | method_decl]* "}’;

¢ attribute_decl ::= type_specifier IDENT ’';’;

7 method_decl ::= [IDENT:"void" | type_specifier] IDENT

8 "(" [parameters_decl]? ')’ "7

9 parameters_decl ::= parameter [’,’ parameters_decl]x*;

10 parameter ::= [parameter_mode]? type_specifier IDENT;

11 parameter_mode = IDENT:{"in", "inout", "out"};

2 type_specifier ::= basic_type ['[’ "1'172;

13 basic_type ::= "int" | "boolean" | "double" | "string" |

class_specifier;
4 class_specifier ::= ["aggregate"]? IDENT;

6 // lexical clauses:
17 IDENT ::= #!ignore ["a’'..'z" |'A".."2Z2"|"_"]
18 [/al..lZ/|IA/../ZI|/_I|/OI..19/]*,.

LINE 2: the world to model is composed of classes ; some special commands are used:

e #ignore (C++) means that blank characters and C++-like comments will be ignored between

pattern matching instructions,

e #empty means that the position must point to the end of the input file,

e => traceLine("file read successfully"),; means that a trace must be executed

3.2. Parsing our design

23

just after matching with the end of file (the pattern matching instruction is #empty) ; let retain
that an instruction or a block of instructions is announced by ’=>’,

LINE 4: a class declaration begins with identifier "class", and TDENT : "class" means that an identi-
fier is expected, and that this identifier is worth "class". This instruction isn’t identical to "class"
IDENT that validates the expression "classes”, where TDENT matches to "es”. A class has a name, read
by the first IDENT clause call, and may inherit from a parent, read by the second IDENT

LINE 5: the body of a class is composed of attributes and methods

LINE 6: the attribute is preceded by its type, and IDENT reads the name of the attribute

LINE 7: the method has a return type or expects void keyword, and may expect some parameters ;
IDENT reads the name of the method

LINE 9: a comma separates parameters

LINE 10: an access mode may be specified to the parameter ; the type is then specified, and IDENT
reads the name

LINE 11: a parameter may be passed:

e in and its value cannot be changed by the method,
e inout and its value may be changed into the method,

e out and the method doesn’t care about the initial value of the parameter, but is expected to assign
a value to it into the body,

The pattern TDENT: {"in", "inout", "out"} means that the identifier must match with one
of the constant strings listed between brackets. It isn’t identical to the pattern "in" | "inout" |
"out" that validates the beginning of "int".

LINE 12: a type is a basic type or an array of basic types

LINE 13: some basic types, including object types

LINE 14: IDENT reads the class name, and the object may be aggregated

LINE 17: this clause reads an identifier, such as pretty_pigl ; #'!ignore means that no character is
ignored, even if it matches C++ comment or a blank. If we forget clause # ! ignore, then IDENT will
validate pretty/*comment*/_pig I as an identifier.

This BNF script is very close to the BNF of our simple modeling language, and is able to read a well-
formed design file, as our solar system presented at the beginning of the chapter. It doesn’t care about
populating a parse tree yet, and doesn’t produce a contextual error message when the design file doesn’t
conform to the BNF.

Let apply the BNF script on the design file:

parseAsBNF ("GettingStarted/SimpleML-reading.cwp",
project, "GettingStarted/SolarSystemO.sml");

Output:
file read successfully

About differences, note that each BNF rule must end with a semi colon, and that they have to indicate
what is their behaviour while encountering blanks and comments.

Now, let improve the BNF script to allow populating a parse tree, or throwing an error when a syntax
error has occurred:

// file "GettingStarted/SimpleML-parsing.cwp":
1 // syntactical clauses:

24 Chapter 3. Discovering more with an example

> world ::= #ignore (C++) [class_declaration]+* #empty

3 => {

4 traceline("file parsed successfully");

5 saveProject ("Scripts/Tutorial/SolarSystemQ.xml") ;

6 bi

7 class_declaration ::= IDENT:"class" #continue

8 IDENT:sClassName

9 => insert project.listOfClasses[sClassName] .name
sClassName;

10 [":" 4#continue IDENT:sParentName

1 => insert project.listOfClasses[sClassName].parent
sParentName;

12 17

13 class_body (project.listOfClasses[sClassName]) ;

14 class_body (myClass : node) ::= "{’

15 [attribute_decl (myClass) | method_decl (myClass)]* "}’;

16 attribute_decl (myClass : node) ::=

17 => local myType;

18 type_specifier (myType) IDENT:sAttributeName ' ;'

19 => {

20 insert myClass.listOfAttributes[sAttributeName] .name
sAttributeName;

21 setall myClass.listOfAttributes[sAttributeName].type
myType;

2 }i

23 method_decl (myClass : node) ::=

2 => local myType;

25 [IDENT:"void" | type_specifier (myType)]

26 IDENT :sMethodName ' ('

27 #continue

28 => {

29 insert myClass.listOfMethods[sMethodName] .name
sMethodName;

30 if myType.name

31 setall myClass.listOfMethods [sMethodName] .type
myType;

32 }

33 [parameters_decl (myClass.listOfMethods[sMethodName])]?

D R

% parameters_decl (myMethod : node) ::=

35 parameter (myMethod)

36 [7,’ #continue parameters_decl (myMethod)] *;

37 parameter (myMethod : node) ::=

38 [parameter_mode] ?: sMode

39 => local myType;

40 type_specifier (myType)

41 IDENT: sParameterName

42 => {

43 insert myMethod.listOfParameters[sParameterName] .name
sParameterName;

44

setall myMethod.listOfParameters|[sParameterName].type

3.2. Parsing our design

25

myType;

45 if sMode {

46 insert myMethod.listOfParameters|[sParameterName] .name
= sMode;

47 }

48 };

49 parameter_mode ::= IDENT:{"in", "inout", "out"};

so type_specifier (myType : node) ::=

51 basic_type (myType)

52 [[’ #continue ']’ => insert myType.isArray = true; 17?;

53 basic_type (myType : node) ::=

54 ["int" | "boolean" | "double" | "string"]:myType.name

55 |

56 class_specifier (myType);

57 class_specifier (myType : node) ::=

58 ["aggregate" => insert myType.isAggregation = true;]7?

59 IDENT:myType.name => {insert myType.isObject = true; };

60

60 IDENT ::= #!ignore [’a’..’z’" |'A’.."2Z2"|"_"]

62 [Ta" ..z |[PTAY T2 T T 0 L 9 T

LINE 2: the pattern [class_declaration]* always matches with the parsed file, so the rule will continue
in sequence in any case (supposing that no error has occurred into clause class_declaration) and the end
of file will be checked. If not reached, it doesn’t write the message "file read successfully",
LINE 7: once keyword "class" has been matched, there is no ambiguity : we are handling a class
declaration and the rule must continue in sequence. To require that, instruction #continue is written
after pattern "class". If a pattern of the sequence doesn’t match the parsed file, the parser throws a
syntax error automatically.

LINE 8: the identifier that matches with clause call IDENT is assigned to the local variable
sClassName : on contrary of other types of script, a new variable is considered as local, instead of an
new attribute added to the current node this,

LINE 9: about parsing, classes are modeled into node project.listOfClasses[sClassName]. Its attribute
name contains the value of sClassName.

LINE 10: if the class inherits from a parent, ’ : / is necessary followed by an identifier (pattern
#continue), and the identifier that matches with clause call IDENT is assigned to the local variable
sClassName,

LINE 11: this class inherits from a parent, so the optional attribute parent of the class is populated
with the value of sParentName,

LINE 14: clause class_body expects an argument: the class node into which the class members
must be described (myClass : node),

LINE 16: the class is populated with the characteristics of the attribute once its declaration has finished.
Otherwise, it may confuse with the beginning of a method declaration. To avoid this ambiguity, we
should have factorized the type declaration and the name of the member into a common clause, for
example.

LINE 20: about parsing, attributes are modeled into node myClass.listOfAttributes[sAztributeName],
LINE 21: the type is allocated on the stack, so it is copied into branch type (no node reference)
integrally,

LINE 23: the class is populated with the characteristics of the method once the opened parenthesis is
recognized,

LINE 27: from here, there is no doubt that we are parsing a method declaration,

LINE 29: about parsing, methods are modeled into node myClass.listOfMethods[sMethodName],
LINE 30: attribute name is compulsory into a fype node, so if condition myType.name returns

26 Chapter 3. Discovering more with an example

false, there is no return type (void),

LINE 36: a parameter declaration is expected after the comma,

LINE 43: about parsing, parameters are modeled into node
myMethod.listOfParameters[sParameterName],

LINE 52: about parsing, myType.isArray contains t rue if type is an array,

LINE 54: about parsing, myType.name contains the name of basic type,

LINE 58: about parsing, myType.isAggregation contains t rue if the object is aggregated,

LINE 59: about parsing, myType.isObject contains t rue because this type is a class specifier,

LINE 61: the lexical clause IDENT recognizes identifiers and might be replaced by the predefined
clause #readIdentifier, which does the same work,

The first version of the script was just able to read a well-formed design file written in the simple
modeling language. The second version validates the file and populates the parse tree:

parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",
project, "GettingStarted/SolarSystemO.sml");

Output:

file parsed successfully

3.3 Decorating the parse tree

Once our design file has been parsed (either procedure-driven or BNF-driven, we don’t care), there
is sometimes a little more work to acomplish on the parse tree. It may be verifying consistency of
the whole, as checking existence of each class referenced as association or parent. It may also be
reorganizing the graph differently, so as to simplify tasks of source code generation. We call it decorating
the parse tree in the CODEWORKER vocabulary.

The next script proposes to check the existence of each class specifier types and to keep a reference
to the node that describes this class specifier. Some nodes change their nature (myClass.parent
becomes a reference to the parent node, for example), some other are added (for object types, the new
node myType.class keeps a reference to the class):

// file "GettingStarted/TreeDecoration.cws":
1 foreach myClass in project.listOfClasses {

2 if myClass.parent {

3 if !findElement (myClass.parent, project.listOfClasses)

4 error ("class " + myClass.parent + "’ doesn’t exist
while class '"

5 + myClass.name + "intends to inherit from it");

6 ref myClass.parent = project.listOfClasses[myClass.parent];

7 }

8 foreach myAttribute in myClass.listOfAttributes {

9 local myType;

10 ref myType = myAttribute.type;

1 if myType.isObject {

12 if !findElement (myType.name, project.listOfClasses)

13 error ("class '" + myType.name + "’ doesn’t exist
while attribute '"

14 + myClass.name + "::" + myAttribute.name +

"' refers to it");

3.3. Decorating the parse tree 27

15 ref myType.class = project.listOfClasses[myType.name];

17 }

18 foreach myMethod in myClass.listOfMethods {

19 if existVariable (myMethod.type) && myMethod.type.isObject
{

20 localref myType = myMethod.type;

21 if !findElement (myType.name, project.listOfClasses)

b2) error ("class '" + myType.name + "’ doesn’t exist
while method ""

23 + myClass.name + "::" + myMethod.name + "/
refers to it");

2 ref myType.class = project.listOfClasses[myType.name];

25 }

26 foreach myParameter in myMethod.listOfParameters {

27 localref myType = myParameter.type;

28 if myType.isObject {

29 if !findElement (myType.name, project.listOfClasses)

30 error ("class '" + myType.name

31 + "’ doesn’t exist while method ’"

» + myClass.name + "::" + myMethod.name

33 + "’ refers to it");

34 ref myType.class = project.listOfClasses[myType.name];

35 }
36 }
37 }

38}

LINE 1: we iterate all classes,

LINE 2: if field parent is filled, we check its existence and then, we change it as a reference to the
parent class,

LINE 8: we iterate all attributes of each class,

LINE 11: only object attributes are interesting,

LINE 12: check whether the class exists or not into the array node that contains all classes: does the key
myType .name exist as an array entry of node project.listOfClasses?

LINE 15: to optimize navigating into the parse tree later, we keep a reference to the class into new node
myType.class,

LINE 18: we iterate all methods of each class,

LINE 26: we iterate all parameters of each method,

Now, we dispose of a parsing script that loads well-formed Simple-Modeling designs, and a script that
decorates the parse tree. It is time to write a leader script that will take in charge calling tasks of parsing,
tree decoration and source code generation:

CODEWORKER command line to execute:
-I Scripts/Tutorial/GettingStarted -define DESIGN_FILE=SolarSystemO.sml
—-script LeaderScriptO.cws

// file "GettingStarted/LeaderScriptO.cws":
1 1f 'getProperty ("DESIGN_FILE")
2 error ("' -define DESIGN_FILE=file’ expected on the command
line");
3 tracelLine ("' Simple Modeling’ design file to parse = \""

28 Chapter 3. Discovering more with an example

4 + getProperty ("DESIGN_FILE") + "\"");
5 parseAsBNF ("SimpleML-parsing.cwp",

6 project, getProperty ("DESIGN_FILE"));
7 #include "TreeDecoration.cws"

LINE 1: we expect the design as a file that conforms to our Simple-Modeling Language ; the file name
is given to the definition preprocessor DESIGN_FILE on the command line by typing ~define
DESIGN_FILE=SolarSystemO.sml,

LINE 5: the file is parsed thanks to our previous BNF script,

LINE 7: the source code for decorating tree is included here, and its content will be executed just after
the parsing,

3.4 Generating code

A script that is intended to source code generation is called a pattern script in the CODEWORKER
vocabulary. The output file is rewritten completely after the protected areas of user’s source code have
been preserved.

Such a script begins with a sequence of characters exactly like they must be written into the output
file, up to it encounters special character @’ or JSP-like tag ’<%’. Then it swaps into script mode,
and everything is interpreted as script instructions, up to special character @’ or JSP-like tag > %>’ are
encountered. Content of the script file is again understood as a sequence of characters to write into the
output file, up to the next special character. And it continues swapping from a mode to another...

For convenience, the script mode may be just restrained to an expression (often the name of a variable)
whose value is written into the output file.

To do source code generation, we’ll need some useful functions, such as converting a Simple-Modeling
type to its C++ representation. These functions might be included into the leader script, so as to be
shared by all pattern scripts.

We’ll discover a new type of functions, called template functions that bring a little generic programming
in the language: let imagine that we need function getType (myType : node), to decline for
every language we could have to generate (C++ and JAVA in this chapter). You plan to generate an
object library from the design you have written in the Simple Modeling Language. This object library
will be delivered both in C++ and JAVA, and a technical documentation will come with each of these
implementations. This technical documentation will give the signature of methods and the type of
attributes in the language the developer will choose. So the C++ documentation will be slightly different
from the JAVA one, just at the level of type’s spelling. Normally, you’ll write the following lines to
recover the type depending on the language for which you are producing the documentation:

if doc_language == "C++" {

sType = getCppType (myParameterType) ;

} else if doc_language == "JAVA" ({

sType = getJAVAType (myParameterType) ;

} else {

error ("unrecognized language ’'" + doc_language + "'");

}

Thanks to the template functions, you may replace the precedent lines by the next one:

3.4. Generating code 29

sType = getType<doc_language> (myParameterType) ;

function getType<"JAVA"> (myType : node) {
. // implementation for returning a Java type
}
function getType<"C++"> (myType : node) {
// implementation for returning a C++ type

During the execution, the function getType<T> (myType : node) resolves on what in-
stantiated function it has to dispatch: either getType<"JAVA"> (myType : node) or
getType<"C++"> (myType : node), depending on what value is assigned to variable

doc_language.

Trying to call an instantiated function that doesn’t exist, raises an error at runtime. However, one might
imagine an implementation by default. For instance:

function getType<T> (myType : node) {
// implementation for any unrecognized language

For those that know generic programming with C++ templates, here is a classical example of using
template functions:

function f<1>() { return 1; }
function f£<N>() { return SN*f<SN - 1$>()$; }
local f10 = £<10>();

if $f10 != 3628800$ error("10! should be worth 3628800");
traceLine("10! = " + £10);

Output:

10! = 3628800

We’ll find below all useful functions we’ll need for source code generation, including the template
function get Type<T> (myType : node) we spoke about:

// file "GettingStarted/SharedFunctions.cws":
1 function normalizeIdentifier (sName) {

2 if sName ({

3 if startString(sName, "_")

4 return "_" + normalizeldentifier (subString (sName,
1))

5 set sName = toUpperString (charAt (sName, 0))

6 + subString(sName, 1);

7 local iIndex = findFirstChar (sName, "_.");

8 if !isNegative (iIndex) {

9 local sNext = subString(sName, add(iIndex, 1));

10 return leftString(sName, iIndex)

1 + normalizeIdentifier (sNext);

12 }

13 }

14 return sName;

30 Chapter 3. Discovering more with an example

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

function getType<"C++"> (myType : node) {
local sType;
if myType.isObject set sType = myType.name + "x";
else if myType.name == "boolean" set sType = "bool";

else if myType.name == "string" set sType = "std::string";

else set sType = myType.name;

if myType.isArray set sType = "std::vector<" + sType +

return sType;

function getParameterType<"C++"> (myType : node, sMode)
local sType = getType<"C++"> (myType);
if endString(sMode, "out") set sType += "&";

{

else if (sMode == "in") set sType = "const " + sType +

return sType;

function getType<"JAVA"> (myType : node) {
local sType;
if myType.name == "string" set sType = "String";
else set sType = myType.name;

">"-
14

"&";

if myType.isArray set sType = "java.util.ArrayList/*<" +

sType + ">«/";

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

return sType;

}

function getParameterType<"JAVA"> (myType : node, sMode)
return getType<"JAVA"> (myType) ;
}

function getVariableName (sName, myType : node) {

local sPrefix;

if myType.isArray set sPrefix = "t";

if myType.isObject set sPrefix += "p";

else {

switch (myType.name) {

case "int": set sPrefix += "i";break;
case "double": set sPrefix += "d";break;
case "boolean": set sPrefix += "b";break;
case "string": set sPrefix += "s";break;

}

return sPrefix + normalizeldentifier (sName);

function getMethodID (myMethod : node) {
local sMethodID = myMethod.name;
foreach i in myMethod.listOfParameters {
set sMethodID += "." + i.type.name;
if i.type.isArray set sMethodID += "[]";

{

3.4. Generating code

31

66 }
67 return sMethodID;

68 }

LINE 1: this function normalizes identifiers, so as to capitalize the first letter and to suppress ’_’ or dots
after capitalizing the letter that follows: average_speed becomes AverageSpeed, for example.
This function is applied on attribute names for instance.

LINE 3: if the identifier starts with an underscore, it is preserved,

LINE 7: points to the first character encountered among an underscore and a dot,

LINE 17: this function returns the C++ type of a Simple-Modeling type node:

an object returns a pointer to it,

type boolean is written bool in C++,
e type stringis written std: : st ring in the C++ standard library,

e an array is written as an instantiated class of std: : vector,

LINE 27: this function returns the C++ type of a Simple-Modeling type node as expected when passed
to a method as a parameter type (sMode is worth "in", "out", "inout” or empty string),

LINE 34: this function returns the JAVA type of a Simple-Modeling type node:

an object returns its class name,

type boolean is written identically in JAVA,
e type string is written St ring in JAVA,

e an array is written as a Java.util.ArrayList interface in JAVA,

LINE 42: this function returns the JAVA type of a Simple-Modeling type node as expected when passed
to a method as a parameter type (sMode is worth "in", "out", "inout" or empty string, but we don’t care
about "inout" or "out” for the moment),

LINE 46: this function returns a variable name whose nomenclature depends on its type,

LINE 51: the switch statement allows selection among multiple sections of code, depending on the
value of expression myType . name, enclosed in parentheses. If no controlling expression (announced
by label case) matches with the value, and no default label is present, CODEWORKER throws an
error.

LINE 61: this function returns a unique method ID, which is composed from the name of the method

and the type of parameters, to avoid confusing protected areas from a method to another,

The next two examples both implement same functionalities, but in different languages (C++ and JAVA).
They describe the skeleton of our objects.

3.4.1 C++ classes

A pattern script may be launched thanks to the procedure generate that expects three parameters:

e the first one is the file name of the script,

e the second one is the current context of execution that will be accessed via the this keyword into
the script,

32 Chapter 3. Discovering more with an example

e the last one is the name of the file to generate,

The next pattern script describes the pattern of a C++ header file:

// file "GettingStarted/CppObjectHeader.cwt":
1 #1ifndef _QRthis.name@_h_
2 #define _@this.name@_h__

4 @

s newFloatingLocation("include files");

6 @

7 // this line separates the two insertion points, so as to

distinguish them!
g @

9 newFloatingLocation("class declarations");

1 function populateHeaderDeclarations (myType : node) {

12 if myType.isObject insertTextOnce (getFloatingLocation("class
declarations"), "class " + myType.name + ";" + endl());

13 if myType.isArray insertTextOnce (getFloatingLocation ("include

files"), "#include
14 if myType

files"), "#include
15 }

17 @

<vector>" + endl());

.name insertTextOnce (getFloatingLocation ("include

<string>" + endl());

18 class Q@this.name@ @
19 1f existVariable(this.parent) {

20 insertTextOnce (getFloatingLocation ("include files"),
"#include \"" + this.parent.name +".h\"" + endl());

21 @: public @this.parent.name@ Q@

2 }

23 @{

2 private:

25 @

%6 foreach i1 in this.listOfAttributes {

27 populateHeaderDeclarations (i.type);

28 @ QgetType<"C++"> (i.type)W@ _Q@getVariableName (i.name,
i.type)@;

20 @

30 }

a1 @

3 public:

3 @this.name@ () ;

34 “@this.name@ () ;

35

36 // accessors:

37 @

33 foreach 1 in this.listOfAttributes {

39 local sVariableName = getVariableName (i.name, i.type);

40 %> inline <%getType<"C++">(i.type) %> get<%normalizeldentifier

(i.name) %> () const

{ return _<%sVariableName%>; }

3.4. Generating code

33

41 inline void set<%normalizeIdentifier (i.name)@ (<%getType
<"C++"> (i.type) %> <%sVariableName@R) { _<%sVariableName%> =
<%sVariableName$%>; }

4 @

43}

44 @

45 // methods:

46 @

47 foreach i1 in this.listOfMethods {

m @ virtual @

49 if existVariable (i.type) {

50 populateHeaderDeclarations (i.type);
51 @RgetType<"C++"> (i.type) @@

52 } else {

53 Qvoid@

54 }

55 @ @i.name@ (@

56 foreach j in i.listOfParameters ({

57 if !'first(j) |

58 @ @

59 }

60 populateHeaderDeclarations (j.type);
61 @@getParameterType<"C++"> (j.type, J.mode)@

@getVariableName (j.name, j.type) @@
62 }
63 Q);
6 @
65
66 @
67 private:
68 @this.name@ (const @this.name@&) ;
69 @this.name@& operator =(const @this.name@¢&);
0 };
71

7 #endif

—

LINE 1: the value of attribute this.name is written to the output file, where this points to a node
that describes the current class. Note that t hi s is facultative, and is assigned by the caller of procedure
generate that runs this script.

LINE 5: put one anchor for including all files that we’ll encounter as compulsory, while iterating
attributes or methods. Example: if an attribute is an array, we’ll need to include the STL header vector
at this position of the file: #include <vector>. This insertion point is called "include files".
LINE 6: to avoid that the two floating locations "include files"and"class declarations"
(described just below) point to the same file position, an empty line is added,

LINE 9: put one anchor for announcing all classes that we’ll encounter as referenced, while iterating
attributes or methods. Example: if an attribute is an object Planet, we’ll need to write class Planet; at
this position of the file. This insertion point is called "class declarations".

LINE 11: this function is called on every type encountered while iterating attributes and methods. Its
role is to populate the "include files" and "class declarations" areas.

LINE 12: the type of an object must be declared at the beginning of the header, otherwise the
compiler will not recognize it : the class is declared once only in the insertion point called "class
declarations". Use of function insertTextOnce assures that if this class has already been

34 Chapter 3. Discovering more with an example

inserted before, it will not be twice.

LINE 13: this type is an array, so the declaration of std: : vector must be included to the insertion

point called "include files",

LINE 14: this type is a string, so the declaration of std: : st ring must be included to the insertion

point called "include files",

LINE 19: if the class inherits from a parent class, this relationship must be written,

LINE 20: the parent class must be declared,

LINE 26: declaration of all attributes,

LINE 27: does the type of the attribute need some backward declarations?
LINE 38: accessors to each attribute,

LINE 40: there are two symbols to swap between writing a sequence of characters and interpreting

script ; we have used the symbol °>@°, and now we illustrate the use of tags <% and > %>,

LINE 41: you can melt the two swapping symbol, but it is more difficult to read, so not very interesting!

LINE 47: declaration of all methods,
LINE 48: each method might be overloaded by subclasses,
LINE 49: the return type of the method is translated to C++,

LINE 50: does the return type of the method need some backward declarations?

LINE 51: expression getType<"C++"> (i.type) to evaluate is embedded between double ’@°.
The first one allow swapping to the sequence of characters mode, but there is no characters to write.
The second one allows swapping to the script mode, which is reduced just to evaluate the expression.

The two final @’ take the same role as seen before.
LINE 56: parameters of the method are iterated to be written in C++

LINE 57: if iterator j doesn’t point to the first parameter, a comma makes a separation with the

precedent,
LINE 60: does the type of the parameter need some backward declarations?

Let’s continue with the pattern that describes the skeleton of a C++ body file:

// file "GettingStarted/CppObjectBody.cwt":
1 #ifdef WIN32

> #pragma warning(disable : 4786)

3 #endif

4

s @

¢ setProtectedArea ("include files");
7 @

8 #include "Q@this.name@.h"

10 @this.name@::@this.name@ ()@
11 local bAtLeastOne = false;
12 foreach 1 in this.listOfAttributes {

13 if !i.type.isArray && (i.type.name != "string")
14 if bAtLeastOne {

15 @ @

16 } else {

17 @ : @

18 set bAtLeastOne = true;

19 }

20 @_Q@getVariableName (i.name, i.type)@ (@

21 if i.type.isObject {

22 @oL@

{

3.4. Generating code

35

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

46

—_— D
—_~

} else {
switch (i.type.name)

case "int":
@o@
break;

case "double":
@0.0@
break;

case "boolean":
@false@
break;

@this.name@:: " @this.name@ () {

@

{

foreach i in this.listOfAttributes {
if i.type.isAggregation && i.type.isObject {

i.type);

47

48

49

@sIndex@ =
@sAttributeName@.end(); ++@sIndex@)

50

51

52

53

54

55

56

57

58

59

60

61

64

65

66

67

68

69

70

local sAttributeName =

" " + getVariableName (i.name,

local sIndex = "iterate" + normalizeIdentifier (i.name);

if i.type.isArray {

Q@ for (std::vector<@i.name@x>::const_iterator

delete *x@sIndex(@;

} else {
@ delete (@sAttribut

@sAttributeName@.begin(); @sIndex@ !=

{

eName@;

foreach i in this.listOfMethods {

if existVariable (i.type) {
@RgetType<"C++"> (i.type) Q@
} else {

}

Q@void@

@ @this.name@::@i.name@ (@
foreach j in i.listOfParameters {

if Ifirst(3) {

36

Chapter 3. Discovering more with an example

71 Q, @

7 }

73 @@getParameterType<"C++"> (j.type, J.mode)@
@getVariableName (j.name, j.type) (@@

74 }

75 @) A

76 @

77 setProtectedArea (getMethodID (1)) ;

78 @}

79 @

80 }

LINE 1: Visual C++-specific pragma must be added to prevent from intempestive warnings about
template class instantiation of std: : vector<T> in DEBUG mode!

LINE 6: the developer will add here all include files he will need for implementation of methods,

LINE 8: the header of this body is compulsory,

LINE 11: this part concerns the initialization of attributes. Some attributes, such as strings and vectors of
the STL don’t require to be initialized explicitly. It justifies the declaration of variable bAt LeastOne
that is worth false as long as no attribute has been initialized yet. We’ll see why below.

LINE 13: arrays and strings are skipped,

LINE 15: if it isn’t the first attribute to be initialized, a comma make a separation with the precedent,
LINE 17: if it is the first attribute to be initialized, a colon is expected to announce the beginning of
initializations

LINE 18: now, there is at least one attribute to be initialized,

LINE 21: attribute is populated with the default value corresponding to its type,

LINE 44: aggregated objects must be deleted before leaving this instance,

LINE 49: all elements of an aggregated array must be deleted

LINE 54: the aggregated object is deleted

LINE 62: implementation of all methods,

LINE 63: the return type of the method is translated to C++,

LINE 69: parameters of the method are iterated to be written in C++

LINE 70: if iterator j doesn’t point to the first parameter, a comma makes a separation with the
precedent,

LINE 77: a protected area is inserted, whose key is the method ID,

The leader script has to be improved to reclaim generation of C++ files:

CODEWORKER command line to execute:
-I Scripts/Tutorial —-path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
-script GettingStarted/LeaderScriptl.cws

// file "GettingStarted/LeaderScriptl.cws":
1 if !'getProperty ("DESIGN_FILE")

2 error ("' —-define DESIGN_FILE=file’ expected on the command
line");

3 traceLine ("' Simple Modeling’ design file to parse = \""

4 + getProperty ("DESIGN_FILE") + "\"");

5 parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",

6 project, getProperty ("DESIGN_FILE"));

7 #include "TreeDecoration.cws"

8

9 #include "SharedFunctions.cws"

10 foreach myClass in project.listOfClasses {

3.4. Generating code 37

11 traceline ("generating class '" + myClass.name + "/ ...");

12 generate ("GettingStarted/CppObjectHeader.cwt", myClass,

13 getWorkingPath() + "Scripts/Tutorial/GettingStarted/Cpp/"
14 + myClass.name + ".h");

15 generate ("GettingStarted/CppObjectBody.cwt", myClass,

16 getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/"
17 + myClass.name + ".cpp");

18}

LINE 9: all useful functions for source code generation are loaded here,

LINE 10: all classes are iterated and their C++ header and body are generated

LINE 12: instruction generate is applied on a pattern script and its second argument expects a node
that will be seen as variable this’ into the pattern script,

LINE 13: getWorkingPath () is worth the output path passed to the command line via the option
" -path’,

Output:

"Simple Modeling’ design file to parse = "GettingStarted/SolarSystemO.sml"
file parsed successfully

generating class ’'Planet’

generating class ’'Earth’

generating class ’SolarSystem’

Let have a look on some generated files:

// file "GettingStarted/Cpp/SolarSystem.h":
#ifndef _SolarSystem_h_
#define _SolarSystem_h_

#include <vector>
#include <string>

// this line separates the two insertion points, so as to
distinguish them!
class Planet;

class SolarSystem {
private:
std::vector<Planet*> _tpPlanets;

public:
SolarSystem() ;
“SolarSystem() ;

// accessors:

inline std::vector<Planetx> getPlanets() const { return
_tpPlanets; }

inline void setPlanets(std::vector<Planetx> tpPlanets) {
_tpPlanets = tpPlanets; }

// methods:

38 Chapter 3. Discovering more with an example

private:
SolarSystem(const SolarSystemé&);
SolarSystem& operator =(const SolarSystemé&);

}i

#endif

// file "GettingStarted/Cpp/Planet.cpp":
1 #ifdef WIN32
» #fpragma warning(disable : 4786)
3 #endif

s //##protect##"include files"
6 //##protect##"include files"

8 #include "Planet.h"

1o Planet::Planet () : _dDiameter (0.0) {
1o}

13 Planet::"Planet () {
14}

16 double Planet::getDistanceToSun (int iDay, int iMonth, int
iYear) {

17 //##protect##"getDistanceToSun.int.int.int"

s //##protect##"getDistanceToSun.int.int.int"

19 }

LINE 1: Visual C++-specific pragma must be added to prevent from intempestive warnings about
template class instantiation of std: : vector<T> in DEBUG mode!

3.4.2 JAVA classes

Some modelers don’t separate clearly the design and its implementation, but theoretically, no language-
dependent data has to be included into the design. The modeling language should be improved to
take into account some finer modeling aspects that lead to choose a mapping (for parameter types, for
example) to the implementation language. The logic of a source code generation process is to factorize
as most as possible the knowledge at the design level. We’ll speak longer about it further.

Our design is totally independent from the implementation : a string isn’t explicitly a const
std::string& or a std::string in C++, but the pattern script decides according to the con-
text whether it is more judicious to choose the first C++ mapping or the second one.

This independence allows us implementing the same functionalities as in C++, but in JAVA now:

// file "GettingStarted/JAVAObject.cwt":
1 package solarsystem;

3 public class @this.name@ Q@
4 1f existVariable (this.parent) {
5 @extends @this.parent.name@ @

3.4. Generating code 39

7 @{

g @

9 foreach i in this.listOfAttributes {

10 @ private QgetType<"JAVA"> (i.type)@ _QgetVariableName (i.name,
i.type)@;

11 @

12}

13 @

14 public @this.name@() {}

15

16 // accessors:

17 @

18 foreach i in this.listOfAttributes {

19 local sVariableName = getVariableName (i.name, i.type);

20 @ public QgetType<"JAVA"> (i.type)@ get@normalizeIdentifier (i.name)®@ ()
{ return _(@sVariableName@; }

21 public void set@normalizeldentifier (i.name)@ (@getType<"JAVA"> (i.type)Aq
@sVariableName@) { _@sVariableName@ = @sVariableName@; }

22 @

3}

2 @

25 // methods:

26 @

27 foreach i in this.listOfMethods {

28 @ public @

29 if existVariable (i.type) {

30 @@getType<"JAVA"> (i.type) Q@

31 } else {

3 @void@

33 }

34 @ @i.name@ (@

35 foreach j in i.listOfParameters ({

36 if I'first(j) {

37 @ @

38 }

39 @QgetParameterType<"JAVA"> (j.type, Jj.mode)d

@getVariableName (j.name, j.type)(@@
40 }
41 @) A
2 @
43 setProtectedArea (getMethodID (1)) ;
4 @ }
45
46 @
47}

4 @}

LINE 4: if the class inherits from a parent class, this relationship must be written,
LINE 9: declaration of all attributes,
LINE 18: accessors to each attribute,
LINE 27: declaration of all methods,

40 Chapter 3. Discovering more with an example

The leader script has to be improved to reclaim generation of JAVA files:

CODEWORKER command line to execute:
-I Scripts/Tutorial -path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
-script GettingStarted/LeaderScript2.cws

// file "GettingStarted/LeaderScript2.cws":
1 if !getProperty ("DESIGN_FILE")

2 error ("' -define DESIGN_FILE=file’ expected on the command
line");

3 traceLine ("' Simple Modeling’ design file to parse = \""

4 + getProperty ("DESIGN_FILE") + "\"");

5 parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",

6 project, getProperty ("DESIGN_FILE"));

7 #include "TreeDecoration.cws"

8

9 #include "SharedFunctions.cws"

10 foreach myClass in project.listOfClasses {

1 traceline ("generating class '" + myClass.name + "’/ ...");

12 generate ("GettingStarted/CppObjectHeader.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".h");

13 generate ("GettingStarted/CppObjectBody.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".cpp");

14 generate ("GettingStarted/JAVAObject.cwt", myClass,

getWorkingPath () + "Scripts/Tutorial/GettingStarted/JAVA/solarsystem/"
+ myClass.name + ".java");
15 }

LINE 14: generates the JAVA implementation of the current design class,

Output:

"Simple Modeling’ design file to parse = "GettingStarted/SolarSystemO.sml"
file parsed successfully

generating class ’'Planet’

generating class ’'Earth’

generating class ’'SolarSystem’

Let have a look on some generated files:

// file "GettingStarted/JAVA/solarsystem/SolarSystem. java":
package solarsystem;

public class SolarSystem {
private Jjava.util.ArrayList/x<Planet>*/ _tpPlanets;

public SolarSystem() {}

// accessors:

public Jjava.util.ArrayList/*<Planet>x/ getPlanets () { return
_tpPlanets; }

public void setPlanets (java.util.ArrayList/*«<Planet>x/

3.4. Generating code 41

tpPlanets) { _tpPlanets = tpPlanets; }

// methods:

// file "GettingStarted/JAVA/solarsystem/Planet.java":
package solarsystem;

public class Planet {
private double _dDiameter;

public Planet () {}

// accessors:

public double getDiameter () { return _dDiameter; }

public void setDiameter (double dDiameter) { _dDiameter =
dDiameter; }

// methods:
public double getDistanceToSun (int iDay, int iMonth, int
iYear) {
//##protect##"getDistanceToSun.int.int.int"
//##protect##"getDistanceToSun.int.int.int"
}

3.5 Expanding a file

Expanding a file consists of generating code to some determined points of the file. These points are called
markups and are noted ##markup##'' name-of-the-markup"', surrounded by comment delimiters.

For example, a valid markup inlayed in a C++ file could be:
//##markup##"factory”

and a valid markup inlayed in an HTML file could be:

<!— —##markup##"classes"- —>

Some data may accompany the markup. The block of data is put between tags ##data##:
//##markup##"switch (sText)"

//##data##

//Customer

//Videostore

//##data##

You obtain the data attached to the current markup key by calling the function getMarkupValue ()
(see 4.6.14). This example extends the C++/Java functionalities with a switch statement working on a
string expression.

A pattern script intended to expand code is launched thanks to the procedure expand that expects three
parameters:

e the first one is the file name of the script,

e the second one is the current context of execution that will be accessed via the this keyword into

42 Chapter 3. Discovering more with an example

the script,

e the last one is the name of the file to expand,

Each time CODEWORKER will encounter a markup, it will call the pattern script that will decide
how to populate it. The code generated by the pattern script for this markup is surrounded by tags
#i#begin##''name-of-the-markup'' and ##end##'' name-of-the-markup"', automatically added by the in-
terpreter. If some protected areas were put into the generated code, they are preserved the next time the
expansion is required.

Note that CODEWORKER doesn’t change what is written outside the markups and their begin/end de-
limiters.

Starting from a (very simple) HTML canvas, we’ll generate an HTML documentation to our project
SolarSystem. Here is the canvas that we would like to keep for all our projects:

// file "GettingStarted/defaultDocumentation.html":
<HTML>
<HEAD>
<TITLE>some title...</TITLE>
</HEAD>
<BODY>
<Hl>some title...</H1>
some global documentation...
<!—##markup##"classes presentation"->
</BODY>
</HTML>

We'll copy it to "GettingStarted/SolarSystem0.html" to populate it with the characteristics of our current
project. The pattern script that will be launched to expand "GettingStarted/SolarSystemO.html" is:

// file "GettingStarted/HTMLDocumentation.cwt":

1@

2> 1f getMarkupKey () == "classes presentation" {

3 foreach i1 in project.listOfClasses {

4 @

5 <H2>@i.name@</H2>

6 @

7 setProtectedArea(i.name + ":presentation");

8 if !isEmpty (i.listOfAttributes) {

9 @

10 <TABLE border="1" cellpadding="3" cellspacing="0"

width="100%">
11 <TR BGCOLOR="#CCCCFF">

12 <TD>Type</TD>

13 <ID>Attribute name</TD>

14 <TD>Description</TD>

15 </TR>

16 @

17 foreach j in i.listOfAttributes {

18 @ <TR>

19 <TD>@composeHTMLLikeString (getType<this.language>
(j.type))@</TD>

20 <TD>@7j.name@</TD>

21 <TD>

3.5. Expanding a file 43

22

@

23 setProtectedArea(i.name + "::" + j.name +
":description");

2 @

25 </TD>

26 </TR>

27 @

28 }

29 @ </TABLE>

30 @

31 }

32 if !isEmpty (i.listOfMethods) {

33 @

34

s @

36

37

38

39

foreach j in i.listOfMethods {
@ @
if existVariable (j.type) {
@function @composeHTMLLikeString (getType

<this.language> (Jj.type))@ @

40

41

4

43

44

45

46

47

48

} else {
@procedurel
}
@Q@j.name@ (@
foreach k in j.listOfParameters {
if !'first(k) {
@, @
}
@@composeHTMLLikeString (getParameterType

<this.language> (k.type, k.mode))@ <I>@getVariableName (k.name,
k.type) @</I>Q@

49

}

50 @)

51

2 @

53 setProtectedArea(i.name + "::" + getMethodID(3j) +
":description");

54 @

55

s6 @

57 }

58 @

59 @

60

61

62

}

LINE 2: the predefined function getMarkupKey () returns the name of the markup to expand,

LINE 3: the markup is worth "classes presentation”, and so, we’ll describe all classes

LINE 7: a protected area is embedded here, which has to be populated by hand into the expanded file
for describing the class,

LINE 9: attributes are presented into a table,

44

Chapter 3. Discovering more with an example

LINE 18: the language into which types have to be expressed is given by this.language,
and is worth "C++" or "JAVA" ; don’t forget to convert the type to the HTML syntax, because
of ’<’ or ’>’ to convert respectively to *&It’ or *>’ for instance. Use the predefined function
composeHTMLLikeString () to do this process.

LINE 23: a protected area is embedded here, which has to be populated by hand into the expanded file
for describing the attribute,

LINE 37: methods are presented into unordered lists,

LINE 53: a protected area is embedded here, which has to be populated by hand into the expanded file
for describing the method,

Now, we have to change the leader script, so as to take into account the generation of the documentation:

CODEWORKER command line to execute:
-I Scripts/Tutorial -path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
—-script GettingStarted/LeaderScript3.cws

// file "GettingStarted/LeaderScript3.cws":
| if !getProperty ("DESIGN_FILE")

2 error ("' —-define DESIGN_FILE=file’ expected on the command
line");

3 traceLine ("' Simple Modeling’ design file to parse = \""

4 + getProperty ("DESIGN_FILE") + "\"");

s parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",

6 project, getProperty ("DESIGN_FILE"));

7 #include "TreeDecoration.cws"

8

9 #include "SharedFunctions.cws"

10 foreach myClass in project.listOfClasses {

1 traceline ("generating class '" + myClass.name + "/ ...");

12 generate ("GettingStarted/CppObjectHeader.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".h");

13 generate ("GettingStarted/CppObjectBody.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".cpp");

14 generate ("GettingStarted/JAVAObject.cwt", myClass,

getWorkingPath () + "Scripts/Tutorial/GettingStarted/JAVA/solarsystem/"
+ myClass.name + ".java");

15 }
6 if l'existFile("Scripts/Tutorial/GettingStarted/SolarSystemO.html")

17 copyFile ("Scripts/Tutorial/GettingStarted/defaultDocumentation.html",
"Scripts/Tutorial/GettingStarted/SolarSystemO.html");

18}

19

20 local myDocumentationContext;

21 insert myDocumentationContext.language = "C++";
» tracelLine ("generating the HTML documentation...");
23 setCommentBegin ("<!-");

2 setCommentEnd ("->");
»s expand ("GettingStarted/HTMLDocumentation.cwt",
26 myDocumentationContext, getWorkingPath ()

3.5. Expanding a file 45

27 + "Scripts/Tutorial/GettingStarted/SolarSystem0O.html");

LINE 16: copy the default empty HTML documentation to "SolarSystem0.html" if it doesn’t exist yet,
LINE 20: the myDocumentationContext variable will be passed to the procedure expand (),
LINE 21: an attribute 1anguage is added to the myDocumentationContext variable, which
specifies whether types must be expressed in C++ or in JAVA into the HTML documentation,

LINE 23: don’t forget to specify comment delimiters that are expected by an HTML file,

LINE 25: the procedure expand () allow populating "SolarSystem0.html" with the characteristics of
the project automatically,

Output:

"Simple Modeling’ design file to parse = "GettingStarted/SolarSystemO.sml"
file parsed successfully

generating class ’'Planet’

generating class ’'Earth’

generating class ’'SolarSystem’

generating the HTML documentation...

After executing this script, we obtain the following HTML documentation, where protected areas have
to be populated, so as to describe classes and attributes and methods:

// file "GettingStarted/SolarSystemO.html":
<HTML>
<HEAD>
<TITLE>some title...</TITLE>
</HEAD>
<BODY>
<Hl>some title...</H1l>
some global documentation...
<!—##markup#f#"classes presentation"-><!-##begin##"classes
presentation"->
<H2>Planet</H2>
<!—##protect##"Planet:presentation"-><!-##protect##"Planet :presentation”"->
<TABLE border="1" cellpadding="3" cellspacing="0"
width="100%">
<TR BGCOLOR="#CCCCFF">
<TD>Type</TD>
<TD>Attribute name</TD>
<TD>Description</TD>
</TR>
<TR>
<TD>double</TD>
<TD>diameter</TD>
<TD>
<!—##protectf#"Planet::diameter:description"-><!—-f#protect##"Planet: :diamet
</TD>
</TR>
</TABLE>

function double getDistanceToSun (int
<I>iDay</I>, int <I>iMonth</I>, int <I>iYear</I>)

46 Chapter 3. Discovering more with an example

<!—##protect##"Planet::getDistanceToSun.int.int.int:description"-><!—-##prot

<H2>Earth</H2>
<!-##protect##"Earth:presentation"-><!-##protect##"Earth:presentation"->
<TABLE border="1" cellpadding="3" cellspacing="0"
width="100%">
<TR BGCOLOR="#CCCCFF">
<TD>Type</TD>
<TD>Attribute name</TD>
<TD>Description</TD>
</TR>
<TR>
<TD>std::vectoré<std::string> </TD>
<TD>countryNames</TD>
<TD>
<!—##protect##"Earth: :countryNames:description"-><!—-##protect##"Earth: :cour
</TD>
</TR>
</TABLE>

<H2>SolarSystem</H2>
<!—##protectf#"SolarSystem:presentation"-><!—fffprotect##"SolarSystem:preser
<TABLE border="1" cellpadding="3" cellspacing="0"
width="100%">
<TR BGCOLOR="#CCCCFF">
<TD>Type</TD>
<TD>Attribute name</TD>
<TD>Description</TD>
</TR>
<TR>
<TD>std::vector<Planet*> </TD>
<TD>planets</TD>
<TD>
<!—##protect##"SolarSystem: :planets:description"-><!—##protect##"SolarSyste
</TD>
</TR>
</TABLE>
<!—##end##"classes presentation"->
</BODY>
</HTML>

We’ll suppose that the skeleton of the HTML documentation is acceptable for us. It will evolve with our
design "SolarSystem0.sml": if some classes or some members are added or removed, the skeleton will
take these changes into account. When the reference to a protected area disappears, because the member
it was linked to changes its name or is removed, the protected area is kept up at the end of the file.

Now, we have to populate protected areas and parts of text that are put outside the markups, so as to
complete our documentation. This work has been done to "SolarSystem1.html".

3.5. Expanding a file 47

3.6 Translating a file

Up to now, we discovered parsing on one side and source code generation on the other side. The
translation mode merges the two: it offers to parse a file conforming to a BNF and to translate it into
another format, all in the same translation script.

A translation script looks like a BNF-driven parsing script, but where:

e special swapping character @’ or JSP-like tag <%,

e all functions and procedure intended to source code generation,

are allowed into compound statements that are announced by ’=>’.

Outputs are written into another file, so the input file is preserved. The procedure that takes the transla-
tion in charge is called translate().

Little practical example: all our documentation has been written in HTML, but we would like to translate
it to LaTeX, into our own format. Why not?

First step, we must be able to read an HTML file according to a BNF representation. The corresponding
BNF-driven script we have to write is restricted to be able to write our file "SolarSystem1.html":

// file "GettingStarted/HTML-parsing.cwp":

1 #noCase

2

3 HTML ::= #ignore (HTML) #continue ’<’ "HTML" ’'>’ HTMLHeader
HTMLBody ’<’ '/’ "HTML" '>’ #empty;

4 HTMLHeader ::= "<’ #continue "HEAD" ’>’ [~ [’<’ '/’ "HEAD"
I>I]:|* I<l I/l "HEAD" I>l;

s HTMLBody ::= ’<’ #continue "BODY" ’>’ HTMLText ’<’ ’/’ "BODY"
I>l;

¢ HTMLText ::=

7 [

8 ~I<l

9 |

10 '[7<" /"] #continue ’<’

1 freadIdentifier:sTag HTMLNextOfTag<sTag>
12 Ix;

13 HTMLNextOfTag<"H1">

#continue ’>’ HTMLText ’<’ '/’ "H1"

1>t

14 HIMLNextOfTag<"H2"> ::= #continue ’>’ HTMLText ’<’ '/’ "H2"
1>t

15 HTMLNextOfTag<"A"> ::= [HTMLAttribute]* #continue ’'>’ HTMLText
rerorr o rpr It

16 HTMLNextOfTag<"TABLE"> ::= [HTMLAttributel]x #continue ’>’
[HTMLTag ("TR")]~ "<’ 7/’ "TABLE" '>';

17 HTMLTag (sTag : value) ::= ’'<’ #readText (sTag) #continue
HTMLNextOfTag<sTag>;

18 HTMLNextOfTag<"TR"> ::= [HTMLAttribute]* #continue ’>’
[HTMLTag ("TD")]+ ’'<’ '/’ "TR" ’>';

19 HTMLNextOfTag<"TD"> ::= [HTMLAttribute]* #continue ’>’ HTMLText

< I/I nTp" r>r;
20 HTMLNextOfTag<"UL"> [HTMLAttribute]» #continue ’>’
[HTMLTag("LI")]* r<r I/l "L I>I;

48 Chapter 3. Discovering more with an example

21 HTMLNextOfTag<"LI"> ::= [HTMLAttribute]* #continue ’'>’ HTMLText

I<l I/I "LI" I>I;

» HTMLNextOfTag<"B"> ::= #continue ’>’ HTMLText ’'<’ 7/’ "B" ’>’;

3 HTMLNextOfTag<"I"> ::= fcontinue ’>’ HTMLText ’<’ 7 /7 "I"™ ’'>’;

24 HTMLNextOfTag<"FONT"> ::= [HTMLAttribute]* #continue ’>’
HTMLText ’'<’ '/’ "FONT" ’'>';

s HTMLNextOfTag<"BR"> ::= [’/’]? 4#continue ’'>';

2 HTMLAttribute ::= #readIdentifier [’=’ #continue

[STRING_LITERAL | WORD_LITERAL]]?;
27
28
29 STRING_LITERAL ::= #!ignore "\"/ ["/\""1x "\"’;
30 WORD_LITERAL ::= #!ignore [~ [’'>" | /" | " ' | ’\t’]]+;

LINE 1: we don’t care about the case: <BODY> and <Body> must be recognized as identical for

instance,
LINE 6: the clause HTMLText reads the value between tags,

LINE 11: the best way to assure an easy extension of the grammar: to declare a template clause for

describing the reading of a tag,

LINE 17: a clause to read a determined tag: the token #readText matches the input stream to the
evaluated expression passed in parameter and the rest is read by the template clause that describes the

reading of a tag,

Second step, we have to improve the BNF-driven script to add some features for generating the LaTeX
code properly. Don’t be afraid about the length of the source code, but go forward to the notes directly:

// file "GettingStarted/HTML2LaTeX.cwp":

1 #noCase

2

3 HTML2LaTeX ::= #ignore (HTML) #continue ’<’ "HTML" ’>’
HTMLHeader HTMLBody ’<’ 7/’ "HTML" ’'>’ fempty;

4 HTMLHeader ::= ’'<’ #continue "HEAD" ’'>’ [~ ['<’ '/’ "HEAD"
'>M1]% <’ ' /r "HEAD" '>';

s HTMLBody ::= ’'<’ #continue "BODY" ’>’ HTMLText ’'<’ '/’ "BODY"
T

¢ HTMLText ::= #!ignore

7 [

8 &' #continue #readIdentifier:sEscape

HTMLEscape<sEscape> ;'

9 |

10 "’ <’ :cChar => writeText (cChar);

11 |

12 '[’<’ blanks "/'"]

13 [

14 "<!-" #continue [T"->"]x "->"

15 ‘

16 "<’ #continue #ignore (HTML) f#readIdentifier:sTag
HTMLNextOfTag<sTag>

17]

18 1*;

19 HTMLEscape<"1lt">
20 HTMLEscape<"gt">

=> {@<@};
=> {@>Q};

3.6. Translating a file

49

21 HTMLTag (sTag : value) ::= "<’ #readText (sTag) #continue
HTMLNextOfTag<sTag>;
» HTMLNextOfTag<"H1"> ::=

23 #continue ’>’ => {@\subsection{@}

24 HTMLText

25 T/ MHIY I => {(Q)Q);

26 HTMLNextOfTag<"H2"> ::=

27 #continue >’ => {@\subsubsection{@}

28 HTMLText

29 rr o/ MH2M I = (@R}

30 HTMLNextOfTag<"A"> ::= [HTMLAttribute]* #continue ’>’ HTMLText

r<ror)1 I r>r;
31 HTMLNextOfTag<"TABLE"> ::=

3 [HTMLAttribute] * #continue ’'>’ => {

33 @\begin{table@

34 newFloatingLocation ("table PDF suffix");

35 @r{a

36 newFloatingLocation ("table columns");

37 @}y{.5}@

38 }

39 => local sPDFTableSuffix;

40 HTMLTableTitle (sPDFTableSuffix)

41 [HTMLTableLine (sPDFTableSuffix)]«

2 ’<’/ 7/’ "TABLE" ’>’ => {@\end{table@sPDFTableSuffix@}

s @}y

4 HTMLTableTitle (sPDFTableSuffix : node) ::=

45 "<’ "TR" [HTMLAttribute]x

46 #continue >’

47 [HTMLTableCol (sPDFTableSuffix)] *

a8 TP/ MTRM >0 =>

49 insertText (getFloatingLocation("table PDF suffix"),
sPDFTableSuffix);

50 writeText (endl ());

51 }i

52 HTMLTableCol (sPDFTableSuffix : node) ::=

53 r<’/ "TD" [HTMLAttribute]* #continue ’'>’ => {

54 @{a@

55 if !sPDFTableSuffix insertText (getFloatingLocation ("table
columns"), "1");

56 else insertText (getFloatingLocation ("table columns"),
"1

57 set sPDFTableSuffix += "i";

58 }

59 r<r 'Y '>! [#lignore [T/ <’ :cChar => writeText (cChar);]x]
rror o rprory

60 T/ NTD" YT => {Q}Q};

6 HTMLTablelLine (sPDFTableSuffix : wvalue) ::=

62 <’ "TR" [HIMLAttribute]* #continue ’>’' =>
{@\1line@sPDFTableSuffix@@}

63 [HTMLTag ("TD")]+ ’'<’ '/’ "TR" 7>/ =>

{writeText (endl ()); };

50 Chapter 3. Discovering more with an example

64 HTMLNextOfTag<"TID"> ::=

65 [HTMLAttribute] * #continue ’'>’ => {Q@{@Q}
66 HTMLCellText ’<’ '/’ "TD" ’>' => {@}@};
¢ HTMLCellText ::= #!ignore

68 [

6 "&" #continue #readIdentifier:sEscape

HTMLEscape<sEscape> ' ;’

70 |

7 ["\r’1? ["\n’] => {@ @}

7 |

73 “r<’:cChar => writeText (cChar);

74 |

75 '["<’" blanks /']

76 [

7 "<!-" fcontinue [T"->"]%x "->"

78 \

79 "<’ #continue #ignore (HTML) #readIdentifier:sTag
HTMLNextOfTag<sTag>

80]

81 1*;

g2 HTMLNextOfTag<"UL"> ::=

8 [HTMLAttribute]» #continue ’>’ => {@\begin{itemize}

g4 @1}

85 [HTMLTag ("LI")]~

86 r<ror/rowyL 77 => (@\end{itemize}

g7 @}
gg. HTMLNextOfTag<"LI"> ::=

89 [HTMLAttribute] x #continue ’>’ => {@\item @}

90 HTMLText

91 reror /o LI > => {writeText (endl ());};

9o HTMLNextOfTag<"B"> ::=

93 #continue >’ => {Q@\textbf{@}

94 HTMLText

95 T r /"B I => [(@}QRY);

96 HTMLNextOfTag<"I"> ::=

97 #continue >’ => {@\textbf{@}

98 HTMLText

9 T oI > o => {@1Q);

100 HTMLNextOfTag<"FONT"> ::= [HTMLAttribute]* #continue ’>’
HTMLText ’'<’ '/’ "EFONT" ’'>';

100 HTMLNextOfTag<"BR"> ::= [’/ /’]1? f{#continue ’'>' => {
writeText (endl());};

102 HTMLAttribute ::= #readIdentifier [’=’ #continue

[STRING_LITERAL | WORD_LITERAL]]?;
103

104

s blanks ::= [7 7| '\t’" | "\’ | "\n’]1x;
6 STRING_LITERAL ::= #!ignore "\"/ [“'\""1x "\"’;
w7 WORD_LITERAL ::= #!ignore [“[’>" | 7/’ | 7 ' | '\t']11+;

LINE 6: blank characters are interesting, so we refuse to ignore HTML blanks and comments,
LINE 8: handling of HTML escape sequences, announced by character &,

3.6. Translating a file

LINE 10: if not the beginning of a tag, the current character of the input stream is put to the output
stream,

LINE 12: token operator !’ doesn’t move the position of the input stream, and it continues in sequence
only if the token expression that follows doesn’t match; here, we check whether we have reached an
end of tag or not,

LINE 14: we do not ignore comments anymore, so we have to do it my ourselves,

LINE 16: an embedded tag has been encountered,

LINE 19: template clauses HTMLEscape<T> are always valid and just convert special characters to
their LaTeX representation,

LINE 22: in the real life, HTML tag <HI> could represent a chapter, but the LaTeX output file is
intended to be included into the reference manual of CODEWORKER as an illustration ; it will be a part
of a section, so chapters are translated as sub sections!

LINE 26: in the real life, HTML tag <H2> could represent a section, but for the same reason as above,
it will be translated as a sub-sub section,

LINE 34: with HTML, the number of columns the table expects is deduced later. However, a latex table
(well-formed for a PDF conversion) must know explicetly of how many columns it is composed. So, a
floating position is attached to the current position of the output file. While discovering columns, text
will be inserted here and further.

LINE 36: the format of each column is specified at this place,

LINE 39: we consider that the first line of the table gives the name of the columns, and we’ll take the
PDF table suffix (’ii’ for 2 columns, ’iii’ for 3 columns, ...) to write lines of the table correctly,

LINE 41: we translate as many lines of the table as we can read, knowing the PDF suffix,

LINE 52: the clause is intended to read the name of a column of a table, and to translate it to LaTeX,
knowing that some text must be inserted into the declarative part of the LaTeX table,

LINE 67: the text into a cell of a table shouldn’t contain paragraph jumps (empty line in LaTeX),

LINE 71: the simplest way to avoid empty lines is to ignore end of lines, and to replace it to a space,

2

Last step, we have to change the leader script, so as to take into account the translation of the HTML
documentation to the LaTeX one:

CODEWORKER command line to execute:
-I Scripts/Tutorial -path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
—-script GettingStarted/LeaderScriptd.cws

// file "GettingStarted/LeaderScript4.cws":
1 if !getProperty ("DESIGN_FILE")

2 error ("' -define DESIGN_FILE=file’ expected on the command
line");

3 traceLine ("' Simple Modeling’ design file to parse = \""

4 + getProperty ("DESIGN_FILE") + "\"");

5 parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",

6 project, getProperty ("DESIGN_FILE"));

7 #include "TreeDecoration.cws"

8

9 #include "SharedFunctions.cws"

10 foreach myClass in project.listOfClasses {

1 traceline ("generating class '" + myClass.name + "’/ ...");

12 generate ("GettingStarted/CppObjectHeader.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".h");

13 generate ("GettingStarted/CppObjectBody.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +

52 Chapter 3. Discovering more with an example

myClass.name + ".cpp");

14 generate ("GettingStarted/JAVAObject.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/JAVA/solarsystem/"
+ myClass.name + ".java");

15}

17 local myDocumentationContext;

18 insert myDocumentationContext.language = "C++";
19 traceline ("generating the HTML documentation...");
20 setCommentBegin ("<!=-");

21 setCommentEnd ("->") ;

» expand ("GettingStarted/HTMLDocumentation.cwt",

23 myDocumentationContext, getWorkingPath ()

24 + "Scripts/Tutorial/GettingStarted/SolarSysteml.html");

»s translate ("GettingStarted/HTML2LaTeX.cwp", project,
"GettingStarted/SolarSysteml.html", getWorkingPath() +
"Scripts/Tutorial/GettingStarted/SolarSystem.tex");

LINE 22: the procedure expand () will allow populating "SolarSystem.html" with the characteristics

of the project,
LINE 25: a context of execution (project here) is given as a this variable, although no parsing will
be processed: reading and writing only, no data to keep,

Output:

"Simple Modeling’ design file to parse = "GettingStarted/SolarSystemO.sml"
file parsed successfully

generating class ’'Planet’

generating class ’'Earth’

generating class ’'SolarSystem’

generating the HTML documentation...

It generates the LaTeX file that composes the next sub section:

3.6.1 Design of a solar system

We dispose of some classes both in C++ and JAVA that allow building applications working on notions
of planets, stars and solar systems.

Planet
This class represents the characteristics of a planet.

Type ‘ Attribute name ‘ Description
double ‘ diameter ‘ the average diameter of the planet

e function double getDistanceToSun(int iDay, int iMonth, int iYear)

This function returns the distance to the sun at a given trivial earthly date. This function reclaims
more attributes for the planet, but we’ll see it later (I'm afraid not!).

3.6. Translating a file 53

Earth

This class represents our planet, for instantiating our particular solar system for instance, and working
on geopolitical data perhaps!

Type ‘ Attribute name ‘ Description
std::vector<std::string> ‘ countryNames ‘ the name of all countries are put into

SolarSystem

This class represents the solar system, with its constituents, the sun excluded for the moment.

Type ‘ Attribute name ‘ Description
std::vector<Planet*> ‘ planets ‘ the planets that compose the solar system.

3.7 The debugger

The —debug option passed to the command line allows running the interpreter in debug mode. See
chapter 5.2.2 for more information about its functionalities. We’ll apply it on our precedent leader
script:

CODEWORKER command line to execute:

-I Scripts/Tutorial —-path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
—-script GettingStarted/LeaderScript5.cws —-stdin GettingStarted/Debugger.cmd
—debug

// file "GettingStarted/LeaderScript5.cws":
if !'getProperty ("DESIGN_FILE")
error ("' —-define DESIGN_FILE=file’ expected on the command
line");

traceLine ("' Simple Modeling’ design file to parse = \""
+ getProperty ("DESIGN_FILE") + "\"");

parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",
project, getProperty ("DESIGN_FILE"));

#include "TreeDecoration.cws"

#include "SharedFunctions.cws"
foreach myClass in project.listOfClasses {
traceline ("generating class '" + myClass.name + "’/ ...");
generate ("GettingStarted/CppObjectHeader.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".h");
generate ("GettingStarted/CppObjectBody.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".cpp");
generate ("GettingStarted/JAVAObject.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/JAVA/solarsystem/"
+ myClass.name + ".java");

}

local myDocumentationContext;

54 Chapter 3. Discovering more with an example

insert myDocumentationContext.language = "C++";

traceline ("generating the HTML documentation...");
setCommentBegin ("<!=-");
setCommentEnd ("->") ;

expand ("GettingStarted/HTMLDocumentation.cwt",
myDocumentationContext, getWorkingPath ()
+ "Scripts/Tutorial/GettingStarted/SolarSysteml.html");
translate ("GettingStarted/HTML2LaTeX.cwp", project,
"GettingStarted/SolarSysteml.html"”, getWorkingPath() +
"Scripts/Tutorial/GettingStarted/SolarSystem.tex");

Output:

"LeaderScript5.cws" at 5: if !getProperty ("DESIGN_FILE")

// The controlling sequence stops on the first statement of the
leader script.

// We go the next instruction:

n
"LeaderScript5.cws" at 7: tracelLine("’Simple Modeling’ design file

to parse = \""

// twice more:

n2

"Simple Modeling’ design file to parse = "GettingStarted/SolarSystemO.sml"

"LeaderScript5.cws" at 11: parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",
//let plunge into the BNF-driven script:

s

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 6: world ::= #ignore (C++)

[class_declaration]* #empty

//We are pointing to the beginning of the rule. Let execute

"#ignore (C++) ' :

S

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 6: world ::= #ignore (C++)

[class_declaration]* #empty

//Let go to the unbounded expression ’[class_declaration]*’:

S

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 6: world ::= #ignore (C++)

[class_declaration] x #empty

//Now, we have a look to ’class_declaration’:

S

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 16: class_declaration ::= IDENT:"class"

fcontinue

//We visit "INDENT:"class"’ and we step over immediatly. Into a

BNF-driven script, tokens of a

//sequence are iterated step by step, and 'next’ runs all the

sequence in one shot:

S

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 112: IDENT ::= #!ignore

3.7. The debugger 55

[lal.‘lzl|lAl'.lZl|I l]

n

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 21: IDENT:sClassName

//We visit ’INDENT:sClassName’ and we step over immediatly:

S

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 112: IDENT ::= #!ignore

[7a’ .7z ["A" .72 |]

n

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 25: => insert project.listOfClasses[sClassName] .name
= sClassName;

//What about all local variables available on the stack?

1

sClassName

//What is the value of ’'sClassName’?

t sClassName

Planet

//Now, we are looking at a classical statement of the language, an
"insert’ assignment. But

//it might be more convenient to see more source code:

d 4

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
21: IDENT:sClassName

22: //note: about parsing, classes are modeled into node

23: //note: \textbf{project.listOfClasses|[}\textit{sClassName}\textbf{]}.
Its attribute

24 : //note: \samp{name} contains the wvalue of \textit{sClassName}.
25: => insert project.listOfClasses[sClassName].name = sClassName;
26: //note: if the class inherits from a parent,
\samp{\textbf{’:”}} is necessary followed by

27: //note: an identifier (pattern \samp{\#continue}), and the

identifier that matches with
28: //note: <clause call \textit{IDENT} is assigned to the local
variable \samp{sClassName},

29: [r:r #continue IDENT:sParentName

//What about the call stack?

stack

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 25: => insert project.listOfClasses[sClassName] .name
= sClassName;

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"SimpleML-parsing.cwp" at 6: world ::= #ignore (C++)

[class_declaration]* #empty

parsed file is "e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSyste
"LeaderScript5.cws" at 11: parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",
//Exiting the debug session:

q

file parsed successfully

generating class ’'Planet’

56 Chapter 3. Discovering more with an example

generating class ’'Earth’
generating class ’'SolarSystem’
generating the HTML documentation...

3.8 Scripts coverage and time consuming

The —quantify option passed to the command line allows running the interpreter with the profiling
mode. See chapter 6.3 for more information about its functionalities. We’ll apply it on our precedent
leader script:

CODEWORKER command line to execute:

-I Scripts/Tutorial -path . -define DESIGN_FILE=GettingStarted/SolarSystem0.sml
-script GettingStarted/LeaderScript6.cws —quantify
Scripts/Tutorial/GettingStarted/quantify.html

// file "GettingStarted/LeaderScript6.cws":
if !getProperty ("DESIGN_FILE")
error ("' -define DESIGN_FILE=file’ expected on the command
line");

traceLine ("' Simple Modeling’ design file to parse = \""
+ getProperty ("DESIGN_FILE") + "\"");

parseAsBNF ("GettingStarted/SimpleML-parsing.cwp",
project, getProperty ("DESIGN_FILE"));

#include "TreeDecoration.cws"

#include "SharedFunctions.cws"
foreach myClass in project.listOfClasses {
traceline ("generating class '" + myClass.name + "/ ...");
generate ("GettingStarted/CppObjectHeader.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".h");
generate ("GettingStarted/CppObjectBody.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/Cpp/" +
myClass.name + ".cpp");
generate ("GettingStarted/JAVAObject.cwt", myClass,
getWorkingPath () + "Scripts/Tutorial/GettingStarted/JAVA/solarsystem/"
+ myClass.name + ".java");

}

local myDocumentationContext;

insert myDocumentationContext.language = "C++";
traceline ("generating the HTML documentation...");
setCommentBegin ("<!-");

setCommentEnd ("->") ;

expand ("GettingStarted/HTMLDocumentation.cwt",
myDocumentationContext, getWorkingPath ()
+ "Scripts/Tutorial/GettingStarted/SolarSysteml.html");
translate ("GettingStarted/HTML2LaTeX.cwp", project,
"GettingStarted/SolarSysteml.html", getWorkingPath() +
"Scripts/Tutorial/GettingStarted/SolarSystem.tex") ;

Output:

3.8. Scripts coverage and time consuming 57

"Simple Modeling’ design file to parse
file parsed successfully

"Planet’

"Earth’

class ’SolarSystem’

the HTML documentation...

generating class
generating
generating

generating

class

Profiling results:

- quantify session -
quantify execution time = 179ms
User defined functions:

populateHeaderDeclarations(...)

at 29: 7 occurences in Oms
getMethodID(...)

at 98: 3 occurences in Oms
getParameterType(...)

at 44: 3 occurences in Oms
getType (...)

at 31: 13 occurences in Oms
getVariableName (...)

at 76: 26 occurences in 1lms

normalizeIdentifier(...)
at 5: 39 occurences in Oms
Predefined functions:

= "GettingStarted/SolarSystemO.sml"

file "e:/Projects/generator/Scripts/Tutorial/
file "e:/Projects/generator/Scripts/Tutorial/GettingStarted/
file "e:/Projects/generator/Scripts/Tutorial/GettingSta
file "e:/Projects/generator/Scripts/Tutorial/GettingStarted/Shar
file "e:/Projects/generator/Scripts/Tutorial/GettingStar

file "e:/Projects/generator/Scripts/Tutorial/Getting

charAt (...): 39 occurrences
composeHTMLLikeString(...): 7 occurrences
endString(...) : 9 occurrences

endl (...): 19 occurrences
executeStringQuiet (...): 1 occurrences
existVariable(...): 11 occurrences
findElement (...): 2 occurrences
findFirstChar(...): 39 occurrences
first(...): 12 occurrences
getFloatingLocation(...): 23 occurrences
getMarkupKey (...): 1 occurrences
getProperty(...): 3 occurrences
getWorkingPath(...): 11 occurrences
isEmpty(...): 6 occurrences

isNegative (...): 39 occurrences

newFloatingLocation(...):

12 occurrences

not (...): 72 occurrences
startString(...): 39 occurrences
subString(...): 39 occurrences
toUpperString(...): 39 occurrences
Procedures:
_ RAW_TEXT_TO_WRITE(...): 498 occurrences
clearVariable(...): 1 occurrences
expand (...): 1 occurrences
generate(...): 9 occurrences
insertTextOnce(...): 24 occurrences
parseAsBNF (...): 1 occurrences
58 Chapter 3. Discovering more with an example

setCommentBegin(...): 1 occurrences

setCommentEnd(...): 1 occurrences

setProtectedArea(...): 19 occurrences

tracelLine(...): 5 occurrences

translate(...): 1 occurrences

writeText (...): 325 occurrences
Covered source code: 83%

- end of quantify session -

When the —quant ify option isn’t followed by an HTML file name, the synthetic profiling results are
reported to the console:

e cach user function appears, recalling the script file where it was defined, and giving how many
times it was executed followed by the total execution time in milliseconds,

e cach predefined function or procedure appears, giving how many times it was executed,

e the proportion of source code that was executed, considering visited scripts only,

If a file name was specified, the HTML output file highlights all visited script, so as to show parts of the
code that are executed a lot and those that are less executed. Each visited line is prefixed by the number
of times the controlling sequence has run on it.

Some points to notice:

e the function called not represents the unary boolean operator !,

e the instruction called __RAW_TEXT_TO_WRITE represents the text of a pattern script to put into
the output stream directly, which is inlayed in @...@ or in %>...<% tags,

e the instruction called writeText represents an expression of a pattern script that was inlayed
in @...@ or in <%...%> tags,

3.9 Translating interpreted scripts to C++ source code

Once the scripts are considered as stable, it might be interesting to convert the interpreter and all neces-
sary scripts to an executable, for many reasons:

e the executable is largely faster than the interpreter, especially on big projects,
e a script file could be forgotten while delivering the project to somebody else,

e it is more convenient to handle an executable only rather than a set of script files and a long
command line on the interpreter,

The executable is built starting from the corresponding C++ source codes of the script files. It exists two
ways to ask for compiling the CODEW ORKER script files to C++:

e the —c++ option on the command line: it must be followed by the path of the directory where the
C++ sources will be generated and the option ~script or —~compile must be set to specify the
leader script to convert to C++,

e the compileToCpp () procedure (see 4.3.20): the required arguments are the leader script to
convert to C++ and the directory where the C++ sources will be generated,

3.9. Translating interpreted scripts to C++ source code 59

Compiling the project to C++ will convert the leader script and all its dependencies (meaning that all
scripts that may be required by the leader will be compiled to C++) and then two makefiles will be
created (a DSP for Visual C++ and a classical makefile intended to LINUX). The project takes the name
of the leader script.

To compile our Simple Modeling Language project to C++, we may choose to proceed as one of the
following:

e CODEWORKER command line to execute:
-I Scripts/Tutorial -path . -compile GettingStarted/LeaderScript6.cws
-c++ Scripts/Tutorial/GettingStarted/bin

e instruction to execute in the console or into a script:

compileToCpp ("GettingStarted/LeaderScript6.cws",
"Scripts/Tutorial/GettingStarted/bin", ".");

The directory called "Scripts/Tutorial/GettingStarted/bin" contains the C++ source files and the make-
files:

Scripts/Tutorial/GettingStarted/bin/CGExternalHandling.h
Scripts/Tutorial/GettingStarted/bin/CGRuntime.h
Scripts/Tutorial/GettingStarted/bin/CppObjectBody_cwt.cpp
Scripts/Tutorial/GettingStarted/bin/CppObjectBody_cwt.h
Scripts/Tutorial/GettingStarted/bin/CppObjectHeader_cwt.cpp
Scripts/Tutorial/GettingStarted/bin/CppObjectHeader_cwt.h
Scripts/Tutorial/GettingStarted/bin/CppParsingTree.h
Scripts/Tutorial/GettingStarted/bin/DynPackage.h
Scripts/Tutorial/GettingStarted/bin/HTML2LaTeX_cwp.cCcpp
Scripts/Tutorial/GettingStarted/bin/HTML2LaTeX_cwp.h
Scripts/Tutorial/GettingStarted/bin/HTMLDocumentation_cwt.cpp
Scripts/Tutorial/GettingStarted/bin/HTMLDocumentation_cwt.h
Scripts/Tutorial/GettingStarted/bin/JAVAObject_cwt.cpp
Scripts/Tutorial/GettingStarted/bin/JAVAObject_cwt.h
Scripts/Tutorial/GettingStarted/bin/LeaderScript6.dsp
Scripts/Tutorial/GettingStarted/bin/LeaderScript6_cws.cpp
Scripts/Tutorial/GettingStarted/bin/LeaderScript6_cws.h
Scripts/Tutorial/GettingStarted/bin/Makefile
Scripts/Tutorial/GettingStarted/bin/SimpleML-parsing_cwp.cpp
Scripts/Tutorial/GettingStarted/bin/SimpleML-parsing_cwp.h
Scripts/Tutorial/GettingStarted/bin/UtlException.h

The main C++ source file is "LeaderScript6.cpp” and the executable will be called "LeaderScript6.exe”.

60 Chapter 3. Discovering more with an example

CHAPTER
FOUR

The scripting language

CODEWORKER must be seen as a script interpreter that is intended to parse and to generate any kind of
text or source code. This interpreter admits some options on the command line. Some of them look like
those of a compiler.

CODEWORKER doesn’t provide any Graphical User Interface, but a console mode allows interactivity
with the user.

4.1 Command line of the interpreter

The leader script is the name given to the script that is executed first by the interpreter. It exists six ways
to pass this leader script to the interpreter via the command line:

e the script describes all the processing tasks for parsing text, decorating the graph and generating
code ; the option of the command line is —script to execute the script,

e the script describes an extended BNF grammar ; the option of the command line is ~-par seBNF
for executing the script and parsing the source file,

e the script describes how to generate code ; the option of the command line is —generate to
execute the script and to generate the output file,

e the script describes how to expand a file ; the option of the command line is —expand to execute
the script and to expand the output file into its markups,

e a file contains embedded scripts driving their own expansion ; the option of the command line is
—autoexpand to execute embedded scripts located below each markups, expanding the output
file on markups,

e the script describes a source-to-source translation ; the option of the command line is
-translate to execute the script and to translate the source file to the output file,

To find easier a file to open for reading among some directories, the option —I specifies a path to explore.
It gives more flexibility in sharing input files (both scripts and user files, excepting generated or expanded
files) between directories, and it avoids relative or absolute paths into scripts.

It is possible to define some properties on the command line, thanks to option ~define (or —D). These
properties are intended to be exploited into scripts.

It is recommended to specify a kind of working directory with option —path. The assigned value
is accessible into scripts via the function getWorkingPath (). This working directory generally
indicates the output path for copying or generating files. The developer of scripts decides how to use it.

61

CODEWORKER interprets scripts efficiently for speed. However, it is more convenient to run a stan-
dalone executable, instead of the interpreter and some script files. Moreover, once scripts are stable,
why not to compile them as an executable to run the project a few times faster? Option —c++ allows
translating the leader script and all its dependencies to C++ source codes, ready-to-compile.

To facilitate the tracking of errors, an integrated debugger is called thanks to the option —debug. It runs
into the console, and some classical commands allow taking the control of the execution and exploring

the stack and the variables.

Here are presented all switches that are allowed on the command line:

Switch

Description

-args larg]*

—autoexpand file-to-expand

—c++ generated-project-path
CodeWorker-path?

—-ct++2target script-file
generated-project-path target-language?

—c++external filename

—commentBegin format
—-commentEnd format
—compi le scriptFile

Pass some arguments to the command line. The list of argu-
ments stops at the end of the command line or as soon as an
option is encountered. The arguments are stored in a global

array variable called _ARGS.
The file file-to-expand is explored for expanding code at

markups, executing a template-based script inserted just be-
low each markup. It is identical to execute the script function
autoexpand(file-to-expand, project).

To translate the leader script and all its dependencies in
C++ source code, once the execution of the leader script
has achieved (same job as compileToCpp () 4.3.20). The
CodeWorker-path is optional and gives the path through in-
cludes and libraries of the software. However, it is now recom-
mended to specify CodeWorker-path by the switch —home.

To translate the leader script and all its dependencies in C++
source code. Hence, the C++ is translated to a target language,
all that once the execution of the leader script has achieved.
Do not forget to give the path through includes and libraries of
CodeWorker, setting the switch —home.

A preprocessor definition called ''c++2target-path'' is auto-
matically created. It contains the path of the generated project.
Call getProperty ("c++2target—path") to retrieve
the path value.

target-language is optional if at least one script of the project
holds the target into its filename, just before the extension. Ex-
ample: "myscript.java.cwt" means that the target language of
this script is "java".

A property can follow the name of the target language,
separated by a ’=" symbol. The property is accessible
via getProperty ("c++2target-property"), and
its nature depends on the target. For instance, in Java, this
property represents the package the generated classes will be-

long to. Example: java=org.landscape.mountains.
To generate C++ source code for implementing all functions

declared as external into scripts.
To specify the format of a beginning of comment.

To specify the format of a comment’s end.
To compile a script file, just to check whether the syntax is
correct.

62

Chapter 4. The scripting language

Switch

Description

—commands commandFile

—console

—debug [remote]?

—define VAR=value
or -D

—expand pattern-script
file-to-expand

—-fast

—generate pattern-script
file-to-generate

—genheader text

—helpor?
~home CodeWorker-path
-1 path

—insert variable_expression

value

-nologo

To load all arguments processed ordinary on the command-
line. It must be the only switch or else passed on the command-

line.
To open a console session (default mode if no script to interpret

is specified via —script or —compile or ~generate or

—expand.
To debug a script in a console while executing it. The

optional argument remote defines parameters for a remote
socket control of the debugging session. remote looks like
<hostname>:<port>. If <hostname> is empty, CodeWorker
runs as a socket server.

To define some variables, as when using the C++ preprocessor
or when passing properties to the JAVA compiler. These
variables are similar to properties, insofar as they aren’t
exploited during the preprocessing of scripts to interpret. This
option conforms to the format ~define VAR when no value
has to be assigned ; in that case, "true"” is assigned by default
to variable VAR. The script function getProperty("VAR")
gives the value of variable VAR.

Script file pattern-script is executed to expand file file-to-
expand into markups. It is identical to execute script function
expand(pattern-script, project, file-to-expand).

To optimize speed. While processing generation, the output
file is built into memory, instead of into a temporary file.

Script file pattern-script is executed to generate file file-
to-generate. It is identical to execute script function
generate(pattern-script, project, file-to-generate).

Adds a header at the beginning of all generated files, fol-
lowed by a text (see procedure setGenerationHeader ()

4.3.183).

Help about the command line.

Specifies the path to the home directory of CodeWorker.
Specify a path to explore when trying to find a file while
invoking include or parseFree or parseAsBNF or
generate or expand or ... This option may be repeated

to specify more than one path.

Creates a new node in the main parse tree project and
assigns a constant value to it. It is identical to execute
the statement insert variable expression = "
value " ;.

The interpreter doesn’t write the copyright in the shell at the
beginning.

4.1. Command line of the interpreter

63

Switch

Description

—nowarn warnings

—-parseBNF BNF-parsing-script
source-file

-path path

—quantify [outputFile]?

—-report report-file
request-flag

—-script script-file
—-stack depth

—-stdin filename

—-stdout filename
—time

Specified warning types are ignored. They are separated by
pipe symbols. Today, the only recognized type is undeclvar,
which prevents the developer against the use of a undeclared
variable.

The script file BNF-parsing-script parses source-file from
an extended BNF grammar. It is identical to execute the
script function parseAsBNF(BNF-parsing-script, project,
source-file).

Output directory, returned by the script function getWorking-
Path(), and used ordinary to specify where to generate or copy

a file.
To execute scripts into quantify mode that consists of measur-

ing the coverage and the time consuming. Results are saved
to HTML file outputFile or displayed to the console if not
present.

To generate a report once the execution has achieved. The
report is saved to file report-file and nature of information de-
pends on the flag request-flag. This flag must be built by com-
puting a bitwise OR for one or several of the following integer
constants:

e 1: provides every output file written by a template-based
script (generate(), expand() or translate)

e 2: provides every input file scanned by a BNF parse
script (parseAsBNF() or translate())

e 4: provides details of coverage recording for every out-
put file using the #coverage directive

e 8: provides details of coverage recording for every input
file using the #matching directive

e 16: provides details of coverage recording for every out-
put file written by a template-based script

e 32: provides details of coverage recording for every in-
put file scanned by a BNF parse script

Notice that flags /6 and 32 may become highly time and mem-
ory consuming, depending both on how many input/output
files you have to process and on their size.

Defines the leader script, which will be executed first.
To limit the recursive call of functions, for avoiding an over-

flow stack memory. By default, the depth is set to 1000.
To change the standard input for reading from an existing file.

It may be useful for running a scenario.
To change the standard output for writing it to a file.

To display the execution time expressed in milliseconds, just
before exiting.

64

Chapter 4. The scripting language

Switch Description
—translate translation-script

source-file file-to-generate Script file translation-script processes a source-to-source
translation. It is identical to execute the script function trans-
late(translation-script, project, source-file, file-to-generate).

-varexist To trigger a warning when the value of a variable that doesn’t
exist is required into a script.

-verbose To display internal messages of the interpreter (information).

—version version-name To force interpreted scripts as written in a precedent version

given by version-name.

Note that the interpreter proposes a convenient way for running a common script with arguments:
codeworker <script-file> <argl> ... <argN> [<switch>]x*

This writing replaces the more verbose:
codeworker -script <script-file> -args <argl> ... <argN>
[<switch>]*

A console mode is launched when the command line is empty. The console only accepts scripts written
in the common syntax, with common functions and procedures. So, parsing and generation scripts aren’t
typed directly on the console.

4.2 Syntax generalities and statements

A script in CODEWORKER consists of a series of statements that are organized into blocks (also known
as compound statements). A statement is an instruction the interpreter has to execute.

A single statement must close with a semicolon (’;’). A compound statement is defined by enclosing
instructions between braces (’{}’). A block can be used everywhere you can use a single statement and
must never end with a semicolon after the trailing brace.

Comments are indicated either by surrounding the text with ’/*” and **/° or by preceding the rest of the
line to ignore with a double slash (*//°).

It exists three families of scripts here. To facilitate their syntax highlighting in editors, or to indicate
briefly the type of the script, we suggest to employ some file extensions, depending on the nature of the
script. The next table exposes the different extensions used commonly in CodeWorker.

Extension | Description

".cwt" a template-based script, for text generation
".cwp" a extended-BNF parse script, for parsing text
".cws" a common script, none of the precedent

The structure of the grammar is so rich that it is a challenge to find an editor, which offers a syntax
highlighting engine powerful enough. JEdit proposes the writing of production rules to describe it, so
it is possible to express the syntax highlighting of the scripting language.

You’ll find a package dedicated to JEdit on the Web site, for the inclusion of these new highlighting
modes. Many thanks to Patrick Brannan for this contribution.

4.2.1 preprocessor directives

A preprocessor directive always starts with a ’#” symbol and is followed by the name of the directive.

4.2. Syntax generalities and statements 65

Including a file

The #include filename directive tells the preprocessor to replace the directive at the point where
it appears by the contents of the file specified by the constant string filename. The preprocessor looks
for the file in the current directory and then searches along the path specified by the —I option on the
command line.

Extending the language via a package

A package is an extension of the scripting language that allows adding new functions in CODEW ORKER
at runtime. A package is implemented as an executable module, which exports all new functions the
developer wants to make available in the interpreter.

Loading of a package

The preprocessor directive #use tells the interpreter that it must extend itself with the functions exposed
by a package.

The syntax is: #use package-name
Loading a package more than once has no effect.

The name of the package must prefix the name of the function, when calling it:

package—name: :my—-function(parameters...)

Example:

##fuse PGSQL

PGSQL: :connect ("-U pilot -d emergencyDB");

local sRequest = "SELECT solution FROM average_adjustment WHERE
damage = ’'broken wing’";

local listOfSolutions;
PGSQL: :selectlList (sRequest, listOfSolutions);
if listOfSolutions.empty ()

tracelLine ("No solution. Suggestion: parachute jump?");
else {

tracelLine ("Solutions:");

foreach 1 in listOfSolutions

traceLine (" =" + 1i);

}
PGSQL: :disconnect (); // if the plane hasn’t crashed yet

The PGSQL package serves here for connecting to and querying a PostGreSQL database. For this exam-
ple, the package exports three functions: PGSQL::connect, PGSQL.::selectList and PGSQL::disconnect.

The executable module

CODEWORKER expects a dynamic library, whose name is deduced from the package name and from
the platform the interpreter is running to.

The short name of the dynamic library concatenates "cw" at the end of the package name. The extension
of the dynamic library must be " .d11" under Microsoft Windows, and " . so" under Linux.

You must put the dynamic library at a place where CODEWORKER will find it at runtime.
Microsoft Windows proceeds in the following order to locate the library:

e The directory where the executable module for the current process is located.

66 Chapter 4. The scripting language

The current directory.

The Windows system directory (not recommended - it concerns CODEW ORKER only).

The Windows directory (not recommended - same reason).

The directories listed in the PATH environment variable.

Under Unix, a relative path for the shared object refers to the current directory (according to the man
description of dlopen (3C)).

So, when CODEWORKER reads #use PGSQL, it searches a dynamic library called "PGSQLecw.d11"
under Windows or "PGSQLew. so" under Linux.

Building a package

This section is intended to those that want to build their own packages, for binding to a database or to a
graphical library ... or just for gluing with their own libraries.

When the interpreter find the preprocessor directive #use package-name in a script, it loads
the executable module and executes the exported C-like function CWADL_EXPORT_SYMBOL void
package—name_Init (CW4dl: :Interpreterx).

The preprocessor definition CW4DL,_EXPORT__SYMBOL and the namespace CW4d1 are both declared
in the C++ header file "CW4d1.h". This header file is located in the "include" directory if you
downloaded binaries, and at the root of the project if you downloaded sources.

The C-like function ’package—-name_Init ()’ MUST be present! C-like means that it is declared
extern "C" (done by CW4DL_EXPORT_SYMBOL).

Initializing the module that way is useful for registering new functions in the engine, via the function
createCommand () of the interpreter (see the header file "CW4d1.h" in the declaration of the class
Interpreter for learning more about it).

Every function to export must start its declaration with the preprocessor definition
CW4DL_EXPORT_SYMBOL (means ’extern "C"’, but a little more under Windows).

e Up to 4 parameters, the signature of such a function looks like:
CW4D1L_EXPORT_SYMBOL const charx*
selectList (CW4dl: :Interpreterx,
CW4dl: :Parameter pl, CW4dl::Parameter p2);

where selectList is a function expecting 2 parameters.

The initializer PGSQL_Init () in our example informs the engine about the existence of this
function selectList in the package:

createCommand ("selectList", VALUE_PARAMETER, NODE_PARAMETER) ;
which means that selectList expects a string followed by a tree.

In the body of the function ’selectList(...)’, the C++ binding is obtained easily by a cast of
CW4dl: :Parameter:
— (const charx) pl for the value parameter p/,
— (CW4dl::Treex) p2 for the node parameter p2,
e if a function contains strictly more than 4 parameter, its signature changes and requires a variable
number of parameters: CW4DL_EXPORT SYMBOL const charx

myFunction (CW4dl: : Interpreterx,
int nbParams, CW4dl::Parameterx tParams);

4.2. Syntax generalities and statements 67

where tParams is an array of parameter types, and where *nbParams’ gives the size.

The initializer PGSQL_Init () informs the engine about the existence of this function in the
package differently too: createCommand ("myFunction", 6, tParams);
which means that myFunction has 6 parameters whose types are provided in tParams.

Every function returns const char*. The CodeWorker’s keyword null designates an atypical tree
node. It doesn’t accept navigation and reference, only passing by parameter to a function. On the C++
side, this null tree node is seen as a null pointer of kind CW4dl::Tree*.

The interpreter CW4d1l: : Interpreter represents the runtime context of CodeWorker. It is the un-
avoidable intermediary between the module you are building and CodeWorker.
Use it for:

e registering new functions into the CodeWorker’s engine,
e throwing an error,

e handling parse trees,

The #1ine directive forces to another number the line counter of the script file being parsed. The line
just after the directive is supposed to be worth the number specified after #11ine.

Changing the syntax of the scripting language

The #syntax directive tells the preprocessor not to parse the following instructions as classical state-
ments of the scripting language, but as conforming to another syntax. It allows adapting the syntax to
what you are programming:

e If you are programming a kind of makefile logic, where you have to check whether a file has
been changed before another or not (using the function fileLastModification () 4.3.71
for example), it is clear that you would prefer to implement it in a makefile-like syntax rather than
in the scripting language’s syntax,

e If you are programming a kind of shell logic, where you have to copy files and directories, or
re/move them, you would prefer to implement it in a shell-like syntax rather than in the scripting
language’s syntax. For instance:
traceline ("Creating directory ’CodeWorker’...");
removeDirectory ("CodeWorker") ;
copyFile ("readme.txt", "CodeWorker/readme.txt");

might be written in a shell-like syntax, inlayed in the CODEW ORKER script:
#syntax shell:"TinyShell.cwp"

echo Creating directory ’CodeWorker’...

rmdir CodeWorker

copy readme.txt CodeWorker/readme.txt

#end syntax

The directive admits the following writing:
"#syntax" [parsing-mode [’:’ BNF-script-file]? | BNF-script-file]

How does it work? The piece of source code, which doesn’t conform to the syntax of the script language,
is put between the directives #syntax ... and #end syntax. If the trailing directive isn’t found,

68 Chapter 4. The scripting language

the remaining of the script is considered as written in a foreign syntax. Be careful that the trailing
directive must start at the beginning of the line necessary to be recognized and that no spaces are allowed
between # and end.

At runtime, the famous piece of source code is parsed and processed via the BNF script file.

Note that it is possible to attach an identifier (called parsing-mode above) to a script file, and to specify
later, in any other script, the parsing mode only; CODEWORKER will find the corresponding BNF script
file. It avoids to handle a physical name of the BNF parsing file, where a logical name of parsing mode
is more convenient.

Example:

// the first time, a parsing mode may be attached to the BNF
script file
#syntax shell:"TinyShell.cwp"

fend syntax

// at the second call, it isn’t recommended to use the path of
the parsing file

// it is better to use the parsing mode registered previously

#syntax shell

fend syntax

// here, I know that I’11 call it once only, so I don’t care
about a parsing mode
#syntax "MakeFile.cwp"

fend syntax
where the parsing script "TinyShell.cwp" might be worth:

// file "GettingStarted/TinyShell.cwp":
tinyShell ::=

#ignore (C++)

#continue

[
#readIdentifier:sCommand
#ignore (blanks) #continue
command<sCommand>

1 #empty;
[/=——mm e //
// commands of the tiny shell //
[/=——mm e //

command<"copy"> ::=
#continue parameter:sSource parameter:sDestination
=> {copyFile (sSource, sDestination);};

command<"rmdir"> ::=
#continue parameter:sDirectory
=> {removeDirectory (sDirectory);};

4.2. Syntax generalities and statements 69

command<"del"> ::=
fcontinue parameter:sFile
=> {deleteFile(sFile); };

parameter:value ::=
#readCString:parameter
\
#'!ignore #continue [~[7 7 | "\t’ | "\r’ |
"\n’]]+:parameter;

Of course, the parsing and the processing are implemented in the scripting language, so changing the
syntax will be slower than keeping the default one. However, it allows writing a code easy to support
and to understand.

Managing changes in a multi-language generation

The directives #reference and #attach serve to be notified when a change has been made into a
script for generating in a given language, but not taken back in another language. For example, you are
writing a framework both in C++ and JAVA. You are adding some new features in C++ or correcting
some mistakes. One day, you’ll be care not to forget to update the JAVA generation. In fact, thanks to
these directives, a warning will be produced up to changes will have been put in the other script.

How does it work? Directives must delimit the piece of script you have changed:
"#reference" key

"#end" key
The key is an identifier that allows putting more than one reference area into a script file. A #reference

area might cover one or more #reference directives, without confusing about boundaries. The directive
must be put at the beginning of the line.

Here are the directives delimiting the piece of script that should be updated later in another file:
"#attach" reference—-file ':' reference-key

"#end" reference-key

A #attach area might cover one or more #reference or #attach directives, as a #reference area. The
directive must be put at the beginning of the line.

The first time CODEWORKER will encounter the reference script file, it will compute a number that
depends on the content of the area. The first time CODEWORKER will encounter an attached script
file, it will get back the magic number of the reference area, found both by the file name and the key
of the reference. And then, at the beginning, the reference and attached areas are considered as similar.
CODEWORKER stores the magic number of the reference just behind the #attach directive:
"#attach" reference-file ':' reference-key ',’ reference—number

In fact, a script file that must be updated, so as to store the magic numbers for some attached areas, takes
into account the modifications at the end of the parsing, and only if no error was encountered. If the
writefileHook () function (see 4.2.6) is implemented, it is called and the script file doesn’t change
if it returns false. If the script file is read-only, the corresponding readonlyHook () function is
called (see 4.2.6). If it isn’t possible to save the script file, an error is thrown.

70 Chapter 4. The scripting language

When a change occurs in the reference area, the next time CODEWORKER will encounter it, the magic
number will be recomputed. When an attached piece of script is encountered after the change, the
old magic number of the reference is compared to the new one. If they aren’t the same, a warning is
displayed to notify that the attached area hasn’t been updated yet.

Once the changes have been taken back into the attached area, the magic number of the reference must
be cut (don’t forget the comma too!). And so, the next time this attached area will be encountered by the
interpreter, it will get back the magic number of the reference area. And then, the reference area and the
attached area are considered as similar once again.

Of course, the use of these directives is quite constraining. However, it is the only way in CODEWORKER
to assure that features and corrections have been taken back in all generated languages.

4.2.2 Constant literals

CODEWORKER handles all basic types as strings, and doesn’t distinguish a double from a boolean
or a date. A string literal is a sequence of characters from the source character set enclosed in
double quotation marks ("' '"). String literals are used to represent a sequence of characters which, taken
together, form a null-terminated string. The interpretation done of the data depends on the context:
function increment (index) expects that its argument index contains a number, but stored as a
string.

e Floating-point numbers are represented as they are commonly admitted into programming lan-
guages: 3.141592 or 5.5E+6.

e Integers are represented without the dot, 64 for instance.

e A character literal is represented between single quotes as in C or JAVA; it admits classical escape
characters.

e Bytes are represented as a couple of hexadecimal digits. The 4D byte is the ASCII of the letter N.

e About boolean types, an empty string "" means false, and any kind of sequence of characters
means true, such as "1" or "raspberries". Two constant literals are provided: keyword true is
worth "true” and f£alse is an empty string.

e dates are written according to a format that looks like 24sep2002, where:

— day takes 2 digits

— month is represented as the 3 first letters of the corresponding english word ; aug as august
and may as may, for instance

— year takes 4 digits: 2002 but never 02.

e the time representation conforms to the format:
HH:MM:S5S.millis

A constant tree describes a tree as a list of constant trees and expressions, intended to be assigned to a
variable. Example:

local aVariable = "a"{["yellow", "red":"or".alternative="orange"],
.vehicle="submarine"};

You’ll find more information in the sub section ?? below.

4.2. Syntax generalities and statements 71

4.2.3 Variables, declaration and assignment

Variables serve as containers for the data you use into scripts. Data type is a tree that may be reduced to
a leaf node, which contains a value and that’s all.

Declaring variables

It isn’t necessary to declare a variable before using if for the first time. A variable that is assigned
without being declared is understood as a new sub-node to be added to the current tree context. The
current context is obtained by the read-only variable called this. It corresponds to the main parse
tree whose root name is project when you are into the leader script, and to the variable passed by
parameter when calling a parsing or pattern script.

The next table exposes all pre-defined variable names (accessible from anywhere) and their meaning:

Variable Name | Description

project The main parse tree, always present.

this It points to the current context variable.

_ARGS An array of all custom command-line arguments. Custom arguments are following
the script file name or the switch —~args on the command-line.

_REQUEST If the interpreter works as a CGI program, it stores all parameters of the request in a
association table. The key is the parameter name, which associates the correspond-
ing value.

A variable that is read without being declared returns an empty string, but doesn’t cause the creation of
a sub-node. The danger is that you aren’t safe from a spelling mistake. To prevent it, put the option
-varexist on the command line and use the function existVariable () to check whether a
variable exists or not.

Scope

When you declare a local variable, it is valid for use within a specific area of code, called the scope.
When the flow of execution leaves the scope, the content of the variable, a subtree specially allocated
during its declaration, is deleted and disappears forever from the stack. A scope is delimited by a block.

To declare a variable to the stack, use the following declaration statement:

local-variable-statement ::= "local" local-variable-declaration ;'
local-variable-declaration ::= variable ['=' assignment-expression
17

assignment-expression ::= constant-tree | expression

constant-tree ::= [tree-valuel]? '{' I[tree-array-or-attribute [','
tree-array-or—-attributel* 1?2 '}’

tree-value ::= expression

tree-array-or—attribute ::= tree-array | tree-—attribute
tree—attribute ::= '.' attribute-name '=' assignment-expression
tree-array ::= '"|[' tree-array-item [',’ tree-array-item]lx ']’
tree—array—-item ::= expression ':' assignment-expression |

assignment-expression

An extension of the syntax allows the declaration of more than one variable in one shot. A comma
separates the variable declarations:

72 Chapter 4. The scripting language

local-variable-statement ::= "local" local-variable-declaration [

"," local-variable-declaration] ;'

The local variable points to a new empty tree, pushed into the stack.

e If an expression is present after the local declaration, it is evaluated and the string result is assigned
to the new local variable.

e If a constant tree is present after the local declaration, it is assigned to the new local variable.
Example:
local aVariable = {"a", {"yellow", "red"}, "submarine"};
is equivalent to:
local aVariable;

pushItem aVariable = "a";

pushItem aVariable;

pushItem aVariable#back = "yellow";
pushItem aVariable#back = "red";
pushItem aVariable = "submarine";

where pushItem means that a new item has to be added in the array owned by avariable,
and where #1ast means accessing to the last item of the array.

To assign a reference to another variable, instead of either the result of evaluating an expression or a
constant tree, use rather the following declaration statement:

local-ref-statement ::= "localref" local-ref-declaration [','
local-ref-declaration 1 ';'
local-ref-declaration ::= variable '=' reference

In the case of a CODEWORKER version strictly older than 1 .13, local variables that are declared in
the body of a script or in the scope of a function may be accessed further in the scope of functions during
their timelife. So a different behaviour may occur with a more recent CODEWORKER interpreter.

This stack management had historical reasons, but it is now obsolete and often reflects an implemen-
tation’s error. To preserve you from this kind of mistake, a warning may be displayed, so that scripts
strictly older than version 1 .13 may continue to run. Specify a version strictly older than 1. 13 to the
command line (option —version) for reclaiming that CODEWORKER checks and generates a warning.

To correct this kind of mistake in old scripts, the variable should be propagated in an argument for
functions that refer to it.

To declare a global variable, use the global statement. The declaration of a global variable can
be specified anywhere in scripts. The first time the declaration of a global variable is encountered,
the interpreter registers it as accessible from any point into scripts. The second time the interpreter
encounters a global declaration for the variable, the latter remains global but its content is cleared.
Note that if a local variable or an attribute of the current node (this) is identical to the name of an
existing global variable, the global variable remains hidden while the flow of control hasn’t left the
scope that contains the homonym.

the global declaration statement looks like:

global-variable-statement ::= "global" global-variable-declaration |
"," global-variable-declaration]x ';'

global-variable-declaration ::= variable ['=' assignment-expression
172

Navigating along branches

4.2. Syntax generalities and statements 73

It is possible to navigate along a branch of the subtree put into the variable. A branch points to a node
of the subtree. The syntax looks generally like:
branch ::= variable [’ .’ sub—-node] *

If the branch isn’t known before runtime, it may be build during the execution.

Example: while parsing an XML file, each time an XML attribute is encountered, one creates the
corresponding attribute into the parse tree. But the name of the attribute is discovered during the parsing.
The directive #evaluateVariable (expression) allows doing it. expression is evaluated at
runtime and provides a branch:

#evaluateVariable ("a.b.c") will resolve the path "a.b.c” at runtime and navigate from a to
textitc.

A node may contain an array of nodes, which are indexed by a key that is a constant string. A branch
allows navigating through arrays, and the definitive syntax of branches conforms to:

branch ::= "#evaluateVariable" ' (' expression ')’

::= variable [’ .’ sub-node | array-access]x
array-access ::= '"[' expression ']’

::= '#’ ["front" | "back" | "parent"] | "root"]

"#’ ' [’ integer-expression ']’

We see that there are some ways to access an item node of an array or to change how to navigate from
nodes to nodes:

e sub—node ' [’ expression ']’ means that we’ll access the node item associated to the
string key resulting of the expression’s evaluation,

e sub—-node ’'#’ "front" means that the first item node of the array is required. If the array
is empty, an error occurs.

e sub-node "#’ "back" means that the last item node of the array is required. If the array is
empty, an error occurs.

e sub-node '#’ "parent" means that one comes back up the parent’s node of sub-node.

e sub-node '#’ "root" means that one comes back up the root’s node of the tree sub-node
belongs to.

e sub—node '#’ ' [’ <integer-expression> ']’ means that we’ll access the node
item located at the position given by the evaluation of the expression. The position starts counting
to 0. An error is raised if the position is out of bounds.

Assignments

CODEWORKER provides some different ways to put a data into a variable or into the node pointed to by
a branch:

e set variable-branch ['=' | ’"+="] assignment-expression: the expression
is evaluated and the resulting string value is assigned to the variable, or concatenated if the operator
’+=" was required. Keyword set may be omitted. The node to assign is supposed existing yet. If
not, the assignment is done, but it causes a warning to prevent a spelling mistake on the variable’s
name.

e insert variable-branch [['=' | ’'+='] assignment—-expression]? : it
works like the set assignment, except that it is the preferred mode to add a new node when

74 Chapter 4. The scripting language

the variable doesn’t exist yet. If the node already exists, of course it isn’t added twice, and the
assignment if done as expected. If no assignment is specified after the variable’s name, nothing is
assigned to the node. So, if the node wasn’t existing yet, it contains an empty string. Otherwise,
the ancient value isn’t changed.

e ref variable '=' existing-variable-or-branch : the variable to assign will re-
fer to an existing node. Inspecting the variable will cause inspecting the referenced existing node.
If the referenced node doesn’t exist, an error occurs. If you apply the reference to a variable that
already refers a node, this link is broken instead of propagating the reference to the referred node.
This operator is very useful during the decoration of the parse tree, and leads to transform the tree
as a freely-oriented graph.

Be careful not to keep a reference to a local variable once the flow of execution has left its scope:
the local variable is deleted, and so, the reference points to a corrupted part of the memory.

If you intend to assign a reference to a variable into a function and that the variable is passed by
parameter, don’t forget to take the reference parameter mode:

function badFunction (myVar : node) {

// myVar will keep up a reference to aNode
// up to the end of the function:
ref myVar = aNode;

// myVar is passed as variable, so the
// reference is cancelled once the function is left!

}

// To keep the reference after leaving the function, change the
parameter // mode to reference: function goodFunction (myVar
reference) {

// myVar will keep up a reference to aNode
// up to the end of the function:
ref myVar = aNode;

// myVar is passed as reference, so the
// reference is kept once the function is left!

}

e setall variable-branch '=' existing-variable-or—-branch : value, at-
tributes and array of the variable to assign are purged, and the subtree, to which the existing
variable points, is copied integrally to the node to assign.

e merge variable-branch '=' existing-variable—-or-branch : the subtree, to
which the existing variable points, is copied integrally to the node to assign, preserving the at-
tributes and the arrays of the assigned node, which are updated or completed.

e pushItem variable-branch ['=' expression]? :anew item node is added at the
end of the variable’s array, whose key is worth its position, starting at 0. If the expression exists,
then after evaluating it, the result is assigned to the item node as a value. If no array was previously
existing, the item becomes its first component.

4.2.4 Expressions

4.2. Syntax generalities and statements 75

Presentation

The BNF representation of an expression looks like:

expression ::= boolean—-expr | ternary-expr
boolean—-expr ::= comparison—-expr [boolean—-op comparison—expr]
boolean-op ::= '&"' | '&&'" | "|" | "||\" | "o Y
ternary-expr ::= comparison-expr '?' expression ':' expression
comparison—-expr ::= concatenation-expr [comparison-op
concatenation-expr | "in" constant-set]
constant-set ::= "{’' constant-string [’,’ constant-stringlx* "}’
comparison—-op ::= '<’' | ’'<=’ | ’'==' | ’‘'=’' | ’"1="' | ’'<>" | ’'>' | ’!>='
concatenation-expr ::= stdliteral-expr ['+' stdliteral-expr]x*
stdliteral-expr ::= literal-expr

::= '8’ arithmetic-expr '$’'
literal-expr ::= constant-string | number

::= "true" | "false"

::= ' (" expression ")’
c:= 'V Jiteral-expr

preprocessor—-expr
function-call
variable—or—-branch

arithmetic-expr ::= comparith—-expr [boolean-op comparith-expr]x*
comparith—expr ::= sum-expr [comparison-op Sum—expr]

sum-expr ::= shift-expr [['+" | '='] shift-expr]x

shift-expr ::= factor—-expr [["«" | "»"] factor—-expr]x*
factor—-expr ::= literal-expr [['*" | '/' | '%$'] literal-expr]=*
unary-expr ::= literal-expr ["++" | "="]

literal-expr ::= string | variable-expr | number | unary-expr

::= ' ' literal-expr

preprocessor—expr ::= '#’ ["LINE" | "FILE"]
where:

The boolean operators & or && resolve the logical AND.
The boolean operators | or | | resolve the logical OR.

The comparison operators do the classical resolution, working on the lexicographical order. Note
that different of may be written ! = or <> and that the equality is written= or ==. If the comparison
succeeds, it returns "t rue", otherwise, it returns an empty string. See section 4.2.4 to discover
an escape mode for writing arithmetic comparisons.

A special comparison operator in checks whether the left-hand side member belongs to a set of
constant strings or not.

Example:

SHTMLTag in { ’i’, "kbd" }

returns true if sHTMLTag is worth * 1’ or "kbd" and false in all other cases.

The operator + serves to concatenate two string. Becareful not to use this operator to ask for an
arithmetic addition! See the function add () to do that or the section 4.2.4 to discover an escape
mode for writing arithmetic operators.

A constant string must be written between double quotes and escape characters are expected as in
C, starting with a back-slash.

76

Chapter 4. The scripting language

e The syntax of a number is the one admitted commonly. The number is then converted to a string.

e Constant true is worth the constant string "true", and false is worth the constant string
"false".

e expressions with parentheses are allowed.

e The unary ! operator resolves the logical NOT, such as an empty value gives "true" and any
kind of other value gives an empty string.

e Function calls are described into the section 4.2.5.

e The escape mode for arithmetic expression is set/unset via the ’$’ symbols and allows interpreting
arithmetic/comparison operators as usual (’ +/ as an addition, ’ <’ as a numerical comparison).
See section 4.2.4 for more information about this escape mode.

e some arithmetic operators enable to handles bits: the unary bitwise operator ~ and the shift oper-
ators « (left shifting) and » (right shifting).

e The preprocessor expressions give information about the source script:
— #FILE: returns the file name of the script, or an empty string if the source script wasn’t

coming from a file,

— #LINE: returns the line number where the directive is located into the source script,

Arithmetic expressions

The classical syntax of the interpreter forces expressions to work on sequences of characters. So, com-
parison operators apply the lexicographical order and the ” +’ operator concatenates two strings and the
’ %’ operator doesn’t exist.

Of course, it exists some functions to handle strings as number and to execute an arithmetic operation
(the "add ()" or "mult ()’ functions for instance) or a comparison (the isPositive ()’ or
"inf ()’ functions for instance).

However, it appears clearly more convenient to write arithmetic operations and comparisons in a natural
way, using operators instead of the corresponding functions. So, CODEWORKER provides an escape
mode that draws its inspiration from La7eX to express mathematical formulas: the arithmetic expression
are delimited by the symbol *$’.

Example:

local a = 11;

local b = 7;
tracelLine("Classical mode = ""
+ inf (add (mult (5, a), 3), sub(mult(a, a), mult(b, b))) + "’");
traceline ("Escape mode = '" + $5+a + 3 < axa — bxb$ + "' ");
Output:
Classical mode = ’"true’
Escape mode = ’true’

4.2. Syntax generalities and statements 77

4.2.5 Common statements
The ’if’ statement

The BNF representation of the while statement is:
if-statement ::= "if" expression then-statement ["else"
else-statement]?

The 1 f statement evaluates the expression following immediately. The expression must be of arithmetic,
text, variable or condition type. In both forms of the i f syntax, if the expression evaluates to a nonempty
string, the statement dependent on the evaluation is executed; otherwise, it is skipped.

Inthe 1 f£. . .else syntax, the second statement is executed if the result of evaluating the expression is
an empty string. The else clause of an 1f. . .else statement is associated with the closest previous
if statement that does not have a corresponding el se statement.

The 'while’/’do’ statements

The BNF representation of the while statement is:
while statement ::= "while" expression statement

The while statement lets you repeat a statement or compound statement as long as a specified expres-
sion becomes an empty string. The expression in a while statement is evaluated before the body of
the loop is executed. Therefore, the body of the loop may be never executed. If expression returns an
empty string, the while statement terminates and control passes to the next statement in the program.
If expression is non-empty, the process is repeated. The while statement can also terminate when
a break, or return statement is executed within the statement body. When a continue statement
is encountered, the control breaks the flow and jumps to the evaluation of the expression.

Note that the break and continue statements apply to the first loop statement
(foreach/forfile/select, do/while) they encounter while leaving instruction blocks.

The BNF representation of the do statement is:
do_statement ::= "do" statement "while" expression ';’

The do-while statement lets you repeat a statement or compound statement until a specified
expression becomes an empty string. The expression in a do—while statement is evaluated af-
ter the body of the loop is executed. Therefore, the body of the loop is always executed at least once. If
expression returns an empty string, the do—while statement terminates and control passes to the next
statement in the program. If expression is non-empty, the process is repeated. The do-while statement
can also terminate when a break, or return statement is executed within the statement body. When
a continue statement is encountered, control is transferred to the evaluation of the expression.

The ’switch’ statement

The BNF representation of this statement is:

switch statement ::= "switch" ' (' expression ')’ '{’

(label declaration) * ("default" ' :’ statement)? '}’

label _declaration ::= ["case" | "start"] constant_string ':’'
statement

The switch statement allows selection among multiple sections of code, depending on the value of an
expression. The expression enclosed in parentheses, the controlling expression, must be of string type.

The switch statement causes an unconditional jump to, into, or past the statement that is the switch

78 Chapter 4. The scripting language

body, depending on the value of the controlling expression, the constant string values of the case
or start labels, and the presence or absence of a default label. The switch body is normally a
compound statement (although this is not a syntactic requirement). Usually, some of the statements in
the switch body are labeled with case labels or with start labels or with the default label. The
default label can appear only once.

The constant-string in the case label is compared for equality with the controlling expression. The
constant-string in the start label is compared for equality with the first characters of the controlling
expression. In a given switch statement, no two constant strings in start or case statements can
evaluate to the same value.

The switch statement behaviour depends on how the controlling expression matches with labels. If
a case label exactly matches with the controlling expression, control is transferred to the statement
following that label. If failed, start labels are iterated into the lexicographical order, and the control
is transferred to the statement following the first label that matches with the beginning of the controlling
expression. If failed, control is transferred to the default statement or, if not present, an error is
thrown.

A switch statement can be nested. In such cases, case or start or default labels associate with
the most deeply nested switch statements that enclose them.

Control is not impeded by case or start or default labels. To stop execution at the end of a part
of the compound statement, insert a break statement. This transfers control to the statement after the
switch statement.

The ’foreach’ statement

The BNF representation of this statement is:

foreach_statement ::= "foreach" iterator "in" [direction]?
[sorted _declaration]? [cascading declaration]?

list—-node body_statement

direction ::= "reverse"

sorted_declaration ::= "sorted" ["no_case"]? ["by_value"]?

cascading_declaration ::= "cascading" ["first" | "last"]?

A foreach statement iterates all items of the list owned by node list-node. The iterator refers to the
current item of the list, and the body statement is executed on it.

Items are iterated either in the order of entrance, or in alphabetical order if option sorted is set. The
sort operates on keys, except if the option by_value is set. The order is inverted if option reverse
was chosen. To ignore the case, these options must be followed by no_case. If not, uppercase letters
are considered as smaller than any lowercase letter.

// file "Documentation/ForeachSampleSorted.cws":
local list;

insert list(["silverware"] = "tea spoon";

insert list["Mountain"] = "Everest";

insert list["SilverWare"] = "Tea Spoon";

insert list["Boat"] = "Titanic";

insert list["acrobat"] = "Circus";

tracelLine ("Sorted list in a classical order:");

foreach i in sorted list {
traceLine ("\t" + key(i));

4.2. Syntax generalities and statements 79

traceline ("Note that uppercases are listed before lowercases."
+ endl());

tracelLine ("Sorted list where the case is ignored:");
foreach i in sorted no_case list {
traceLine ("\t" + key(i));

tracelLine ("Reverse sorted list:");
foreach i in reverse sorted list {
traceLine ("\t" + key(i));

traceline ("Reverse sorted list where the case is ignored:");
foreach i in reverse sorted no_case list {

traceLine ("\t" + key(i));
}

Output:

Sorted list in a classical order:
Boat
Mountain
SilverWare
acrobat
silverware
Note that uppercases are listed before lowercases.

Sorted list where the case is ignored:
acrobat
Boat
Mountain
SilverWare
silverware
Reverse sorted list:
silverware
acrobat
SilverWare
Mountain
Boat
Reverse sorted list where the case is ignored:
silverware
SilverWare
Mountain
Boat
acrobat

Control may not be sequential into the body statement. break and return enable exiting definitely the
loop, and cont inue transfers the control to the head of the foreach statement for the next iteration.

Option cascading allows propagating foreach on item nodes. The way it works is illustrated by
an example:

foreach 1 in cascading myObjectModeling.packages

80 Chapter 4. The scripting language

At the beginning, i points to myObjectModeling.packages#front and the body is ex-
ecuted. Before iterating i to the next item, the foreach checks whether the item node
myObjectModeling.packages#front owns attribute packages or not. If yes, it applies re-
cursively foreach onmyObjectModeling.packages#front.packages.

Option cascading avoids writing the following code:

function propagateOnPackages (myPackage : node)
foreach i in myPackage

// my code to apply on this package

if existVariable (myPackages.packages)
propagateOnPackages (myPackages.packages) ;

propagateOnPackages (myObjectModeling.packages) ;

Option cascading offers two behaviours:

e first means that the item is cascaded before running the body,

// file "Documentation/ForeachSampleFirst.cws":
local myObjectModeling;
insert myObjectModeling.packages|["Massif"] = "...";
local myPackage;
ref myPackage = myObjectModeling.packages["Massif"];

insert myPackage.packages["Alps"] = "...";

insert myPackage.packages["Himalaya"] = "...";

insert myPackage.packages["Rock Mountains"] = "...";
insert myObjectModeling.packages|["Silverware"] = "...";
ref myPackage = myObjectModeling.packages["Silverware"];
insert myPackage.packages["Spoon"] = "...";

insert myPackage.packages["Fork"] = "...";

insert myPackage.packages["Knife"] = "...";

foreach i in cascading first myObjectModeling.packages ({
traceLine ("\t" + key(i));
}
Output:

Alps

Himalaya

Rock Mountains
Massif

Spoon

Fork

Knife
Silverware

e last is the default behaviour, as seen in previous examples, and

// file "Documentation/ForeachSampleLast.cws":
local myObjectModeling;
insert myObjectModeling.packages|["Massif"] = "...";
local myPackage;
ref myPackage = myObjectModeling.packages["Massif"];
insert myPackage.packages["Alps"] = "...";

4.2. Syntax generalities and statements 81

insert myPackage.packages["Himalaya"] = "...";

insert myPackage.packages["Rock Mountains"] = "...";
insert myObjectModeling.packages|["Silverware"] = "...";
ref myPackage = myObjectModeling.packages["Silverware"];
insert myPackage.packages["Spoon"] = "...";

insert myPackage.packages["Fork"] = "...";

insert myPackage.packages["Knife"] = "...";

foreach i in cascading last myObjectModeling.packages {
traceLine ("\t" + key(i));
}

Output:

Massif

Alps

Himalavya

Rock Mountains

Silverware

Spoon

Fork

Knife propagates the foreach on the current item after executing the body.

The ’forfile’ statement

The BNF representation of this statement is:

forfile statement ::= "forfile" iterator "in" [sorted declaration]?
[cascading declaration]? file-pattern body_statement

sorted _declaration ::= "sorted" ["no_case"]?

cascading _declaration ::= "cascading" ["first" | "last"]?

A forfile statement iterates the name of all files that verify the filter file-pattern. The iterator refers to
the current item of the list composed of retained file names, and the body statement is executed on it.
Note that the file pattern may begin with a path, which cannot contain jocker characters (x’ and ’ 2”).

Like for the foreach statement, items are iterated either in the order of entrance, or in alphabetical
order of keys if option sorted is set. To ignore the case, the option must be followed by no_case. If
not, uppercase letters are considered as smaller than any lowercase letter.

Control may not be sequential into the body statement. break and return enable exiting definitely the
loop, and cont inue transfers the control to the head of the forfile statement for the next iteration.

The option cascading allows propagating forfile on directories recursively. The way it works is
illustrated by an example:

// file "Documentation/ForfileSample.cws":

local iIndex = 0;
forfile i in cascading "*.html" {
if $findString (i, "manual_") < 0S$ &&

$findString (i, "Bugs") < 0S$ {
tracelLine (1) ;
}
// if too long, stop the iteration
if $iIndex > 15$ break;

82 Chapter 4. The scripting language

increment (iIndex) ;

}
Output:

cs/DOTNET.html

cs/tests/data/MatchingTest/example.csv.html
Documentation/LastChanges.html

java/JAVAAPT.html

java/data/MatchingTest/example.csv.html
Scripts/Tutorial/GettingStarted/defaultDocumentation.html
WebSite/AllDownloads.html
WebSite/examples/basicInformation.html
WebSite/highlighting/basicInformation.html
WebSite/repository/highlighting.html
WebSite/repository/JEdit/Entity. java.cwt.html
WebSite/serewin/ExempleIllustre.html
WebSite/tutorials/DesignSpecificModeling/tutorial.html
WebSite/tutorials/DesignSpecificModeling/highlighting/demo.cws.html
WebSite/tutorials/overview/tinyDSL_spec.html
WebSite/tutorials/overview/scripts2HTML/CodeWorker_grammar.html

At the beginning, i points to the first HTML file of the current directory and the body is executed.
Before iterating i to the next item, the forfile checks whether the directory of the current file owns
subfolders or not. If yes, it applies recursively forfile on subfolders.

Option cascading offers two behaviours:

e first means that the subfolders are visited before running the body,

e last is the default behaviour, as seen in previous examples, and propagates the forfile on the
subfolder after executing the body.

The ’select’ statement

The BNF representation of this statement is:

select_statement ::= "select" iterator "in" [sorted declaration]?
node-motif body_statement

sorted declaration ::= "sorted" first-key [, other-key]x
first—-key ::= branch

other—key ::= branch

A select statement iterates a list of nodes that match a motif expression. The iterator refers to the current
item of the list composed of retained nodes, and the body statement is executed on it.

// file "Documentation/SelectSample.cws":

local a;

pushlItem a.b;

pushItem a.b#back.c = "01";
pushItem a.b#back.c = "02";
pushItem a.b#back.c = "03";
pushItem a.b;

pushItem a.b#back.c = "11";
pushItem a.b#back.c = "12";

4.2. Syntax generalities and statements 83

pushItem a.b#back.c = "13";

pushItem a.b;

pushItem a.b#back.c = "21";

pushItem a.b#back.c = "22";

pushItem a.b#back.c = "23";

select 1 in a.b[]l.c[] {
tracelLine("i = "+ 1i);

}
Output:

= 01
02
03
= 11
12
13
=21
= 22
= 23

N O
|

Like for the foreach statement, items are iterated either in the order of entrance, or according to the
sorting result if the option sorted is set.

Control may not be sequential into the body statement. break and return enable exiting definitely the
loop, and cont inue transfers the control to the head of the select statement for the next iteration.

The ’try’/’catch’ statement

The BNF representation of this statement is:
try-catch-statement ::= "try" try-statement "catch"
"('error_message_variable’)’ catch-statement

Error handling is implemented by using the try, catch, and error keyword. With error handling,
your program can communicate unexpected events to a higher execution context that is better able to
recover from such abnormal events. These errors are handled by code that is outside the normal flow of
control.

The compound statement after the t ry clause is the guarded section of code. An error is thrown (or
raised) when command error (message-text) is called or when CODEW ORKER encounters an internal
error. The compound statement after the catch clause is the error handler, and catches (handles) the
error thrown. The catch clause statement indicates the name of the variable that must receive the error
message.

The ’exit’ statement

The BNF representation of this statement is:
exit_statement ::= "exit" integer-expression ";"

A exit statement leaves the application and returns an error code, given by the integer-expression.

Example:
exit -1;

84 Chapter 4. The scripting language

4.2.6 User-defined functions

The BNF representation of a user-defined function to implement is:

user—function ::= classical—-function—-definition |
template—-function—-definition
classical-function-definition ::= classical-function-prototype

compound-statement
classical-function-prototype
parameters ")’

"function" function-name ' ('

template—-function-definition ::= see the next section, 4.2.6, for
more information

parameters ::= parameter [',' parameter]x

parameter ::= argument [':' parameter-mode [':' default-value]?
172

parameter—-mode ::= "value" | "node" | "reference" | "index"
default-value ::= "project" | "this" | "null" | "true" | "false" |

constant-string

The scripting language allows the user implementing its own functions. Parameters may be passed to
the body of the function. A value may be returned by the function and, if so, the return type is necessary
a sequence of characters. Of course, functions manage their own stack, and so, accept recursive calls.

An argument may have a default value if the parameter is missing in a call. All following arguments
must then have default values too. A node argument can’t have a constant string as a default argument,
but it can be worth a global variable.

Parameters and return value
Arguments passed by parameter must be chosen among the following modes:

e value: if the mode of argument is omitted, this is the default mode ; it requires a sequence of
characters (a value of node, a constant string or the result of a expression),

e node: anode is passed and it may be changed or inspected in the body. The scope of a reference
assignment is limited to the scope of the function: once the function is left, the variable receives
the value of the referenced node. It is explained by the fact that the parameter is a new local
variable, which refers to the node passed as argument. So, a reference assignment is applied on
the local variable only.

e iterator: the iterator of a foreach statement is expected, for applying iterator functions on
the argument (first() for instance). Not really useful and node is now sufficient.

e reference: anode is passed and it may be changed or expected in the body. On the contrary
of variable mode, a reference assignment is propagated outside the scope of the function.

If you have omitted to return a value from a function, it returns an empty string ; in that case, you
expects to call this function as a procedure and the result isn’t exploited. The special procedure nop
takes a function call as parameter and allows executing the function and ignoring the result. It isn’t
compulsory to use nop for calling a function as a procedure. As in C or C++, you can type the function
call followed by a semi-colon and the result is lost.

It exists two possibilities for returning a value:

e to populate an internal local variable whose name is the same as the function name,

4.2. Syntax generalities and statements 85

e to use the return statement, followed by the expression to evaluate,
If you wish to execute a particular process in any case before leaving a function and:

e it exists more than one controlling sequence to leave,

e some errors may be raised,

The ‘finally’ statement

the statement finally warrants you that the block of instructions that follows the keyword will be
systematically executed before leaving. This declaration may be placed anywhere into the body of the
function. Its syntax conforms to:

finally-statement ::= "finally" compound-statement

Example:

// file "Documentation/FinallySample.cws":

1 function f(v : wvalue) {

2 tracelLine ("BEGIN f(v)");

3 finally {

4 traceLine ("END f(v)");

5 }

6 // the body of the function, with more than

7 // one way to exit the function, for example:
8 if !v return "empty";

9 if v == "1" return "first";

10 if v == "2" return "second";

11 if v == "3" return "third";

12 return "other";

13}

14

15 tracelLine("...f (1) has been executed and returned ’'" + f£(1) +

"I");

LINE 3: the finally statement is put anywhere in the body,
LINE 4: this statement will be executed while exiting the function, even if an exception was raised,

Output:

BEGIN f£f (v)
END £ (v)
.f(1) has been executed and returned ’first’

Unusual function declarations

It may arrive that a function prototype must be declared before being implemented, because of a cross-
reference with another function for instance. The scripting language offers the forward declaration
to answer this need. To do that, the prototype of the function is written, preceded by the declare
keyword:

forward-declaration ::= "declare" function-prototype ;'

86 Chapter 4. The scripting language

If the body of the function must be implemented in another library and into C++ for example, the
prototype of the function is preceded by the external keyword (see section 5.1):

external-declaration ::= "external" function-prototype ’';’

Template functions

CODEWORKER proposes a special category of functions called template functions. Because of CODE-
WORKER doesn’t provide a typed scripting language, template hasn’t to be understood as it is commonly
exploited in C++ for instance.

A template function represents a set of functions with the same prototype, except the dispatching con-
stant. The dispatching constant is a constant string that extends that name of the function. These func-
tions instantiate the template function for a particular dispatching constant. Each instantiated function
implements its own body.

The BNF representation of a template function to implement is:
template—-function-definition ::= instantiated-function-definition |
generic—function-definition

instantiated-function-definition ::= instantiated-function-prototype
compound-statement

instantiated-function-prototype ::= "function" function-name '<’
dispatching-constant '>" ' (' parameters ")’

dispatching-constant ::= a constant string between double quotes
generic—-function-definition ::= generic-function-prototype
[compound-statement | template-based-body]
generic—-function-prototype ::= "function" function-name ’'<’
generic-key '>' ' (' parameters ')’

generic-key ::= an identifier that matches any dispatching constant
with no attached prototype

template-based-body ::= "{{" template-based-script "}}"
template-based-script ::= a piece of template-based script
describing the generic implementation

A call to a template function requires to provide a dispatching expression to determine the dispatching
constant. The dispatching expression will be evaluated during the execution and CODEWORKER will
resolve what instantiated function of this template to call: the result of the dispatching expression must
match with the dispatching constant of the instantiated function. The BNF representation of a call to a
template function is:

instantiated-function-call ::= function-name '<’
dispatching-expression '>' ' (' parameters ')’
parameters ::= expression [',’ expression]x

Note that a dispatching constant may be empty and such an instantiated function can be called as a clas-
sical function. In fact, classical functions are considered as instantiated functions where the dispatching
constant is empty.

template functions bring generic programming in the language: let imagine that we need function
getType (myType : node), todecline for every language we could have to generate (C++, Java,
...). Normally, you’ll write the following lines to recover the type depending on the language for which
you are producing the source code:

4.2. Syntax generalities and statements 87

if doc_language == "C++" {

sType getCppType (myParameterType) ;

} else if doc_language == "JAVA" ({

sType = getJAVAType (myParameterType);

} else {

error ("unrecognized language ’'" + doc_language + "'");

}

Thanks to the template functions, you may replace the precedent lines by the next one:

sType = getType<doc_language> (myParameterType);

with:

function getType<"JAVA"> (myType : node) {

... // implementation for returning a Java type

}

function getType<"C++"> (myType : node) {

. // implementation for returning a C++ type

}
During the execution, the function getType<T> (myType : node) resolves on what in-
stantiated function it has to dispatch: either getType<"JAVA"> (myType : node) or
getType<"C++"> (myType : node), depending on what value is assigned to variable

doc_language.

Trying to call an instantiated function that doesn’t exist, raises an error at runtime. However, one might
imagine an implementation by default. For instance:

function getType<T> (myType : node) {
// common implementation for any unrecognized language

For those that know generic programming with C++ templates, here is a classical example of using
template functions:

function £<1>() { return 1; }
function f<N> () { return S$SN*f<SN - 1$>()$S; }
local f10 = £<10>();

if $£f10 !'= 3628800$ error("10! should be worth 3628800");
traceLine("10! = " + £10);

Output:

10! = 3628800

To provide more flexibility in the implementation of the template function, depending on the generic
key <T>, the body admits a femplate-based script to implement the source code of the function. The
specialization of the function for a given template instantiation key is then resolved at runtime.

Example:

The template function f inserts a new attribute in a tree node. The attribute has the name passed to
the generic key for instantiation, and the value of the instantiation key is assigned to the new attribute.
Then, the function calls itself recursively on the instantiation key without the last character.

88 Chapter 4. The scripting language

For instance, the source code of £<"field"> should be:
function f<"field"> (x : node) {

insert x.field = "field";

f<"fiel">(x); // cut the last character
}

Code:
//a synonym of f<"">(x : node), terminal condition for recusive
calls
function f(x : node) {/*does nothingx*/}
function f£<T>(x : node) {{
// "{{’ announces a template-based script, which
// will generate the correct implementation during the
instantiation
insert x.Q7TQ@ = "@TQ";
£f<"@T.rsubString(1)@">(x);
@

// "}} announces the end of the template-based script

H}
f<"field"> (project);
traceObject (project);

Output:
Tracing variable ’'project’:
field = "field"
fiel = "fiel"
fie = "fie"
fl — n f l "
f = "ft"

End of variable’s trace ’'project’.

Methods

For more readability, syntactical facilities are offered to call functions on a node as if this function was
a method of the node. For example, it is possible to call function 1eftString on the node a like this:
a.leftString (2), instead of the classical functional form: leftString(a, 2).

The rule is that every function (user-defined included) whose first argument is passed either by value
or by node or by index (but never by reference) can propose a method call.

In that case, the method call applies on the first argument, which has to be a node. The BNF representa-
tion of a method call is:

method-call ::= variable '.’ function—-name ' (' parameters ')’
parameters ::= expression [',’ expression]x

where parameters have missed the first argument of the function called function-name.

It exists some exceptions where the method doesn’t apply to the first argument:

e findElement applies on the second argument,

e replaceString applies on the third argument,
The following methods offer a synonym to the function name:

e empty is a synonym as a method of the function i sEmpty,

4.2. Syntax generalities and statements 89

e length is a synonym for the function lengthString,

e size is a synonym for the function getArraySize,

The ’readonly’ hook

The BNF representation of this statement is:
readonlyHook-statement ::= "readonlyHook" ' ('’ filename ")’
compound-statement

The token filename is the argument name that the user chooses for passing the name of the file to the
body of the hook.

This special function allows implementing a hook that will be called each time a read-only file will be
encountered while generating the output file through the generate or expand instruction.

Limitations: only one declaration of this hook is authorized, and it can’t be declared inside a parsing or
pattern script.

Example:

Common usage: file to generate has to be checked out from a source code control system (see system
command to run executables).

readonlyHook (sFilename) {

if !getProperty ("SSProjectFolder") || !'getProperty ("SSWorkingFolder")
| | 'getProperty ("SSExecutablePath") || !getProperty ("SSArchiveDir")
{

tracelLine ("WARNING: properties ’SSProjectFolder’ and

"SSWorkingFolder’ and ’SSExecutablePath’ and ’SSArchiveDir’ should
be passed to the command line for checking out read-only files from
Source Safe");

} else {
if startString(sFilename, getProperty ("SSWorkingFolder")) {
local sourceSafe;
insert sourceSafe.fileName = sFilename;
generate ("SourceSafe.cwt", sourceSafe, getEnv("TMP") +

"/SourceSafe.bat");
if sourceSafe.isOk {
putEnv ("SSDIR", getProperty ("SSArchiveDir"));
traceline ("checking out ’'" + sFilename + "’ from Source Safe
archive " + getProperty ("SSArchiveDir") + "'");
local sFailed = system(getEnv ("TMP") + "/SourceSafe.bat");
if sFailed {

traceline ("Check out failed: " + gFailed + "'™M);
}
}
} else {
traceline ("Unable to check out '" + sFilename + "’: working

folder starting with " + getProperty ("SSWorkingFolder") + "’/
expected") ;

}

90 Chapter 4. The scripting language

The "write file’ hook

This special function allows implementing a hook that will be called just before writing a file, after
ending a text generation process such as expanding or generating or translating text.

It is very important to notice that it returns a boolean value. A t rue value means that the generated text
must be written into the file. A false boolean value means that the generated text doesn’t have to be
written into the file.

CODEWORKER always interprets not returning a value explicitly of a function, as returning an empty
string. If you forget to return a value, the generated text will not be written into the file!

The BNF representation of this statement is:
writefileHook—-statement ::= "writefileHook" ' ('’ filename ',’
position ',’ creation ')’ compound-statement

Argument | Type Description
filename string | The argument name that the user chooses for passing the file
name to the body of the hook.

position int The argument name that the user chooses for passing a
position where a difference occurs between the new generated
version of the file and the precedent one.

If the files don’t have the same size, the position is worth —1.

creation boolean | The argument name that the user chooses for passing whether
the file is created or updated.
The argument is worth t rue if the file doesn’t exist yet.

Limitations: only one declaration of this hook is authorized, and it can’t be declared inside a parsing or
pattern script.

Example:

writefileHook (sFilename, iPosition, bCreation) {
if bCreation {
tracelLine ("Creating file '" + sFilename + "' !");
} else {
traceline ("Updating file ’'" + sFilename + "', difference at "
+ iPosition + "!");
}

return true;

The ’step into’ hook

This special function is automatically called before that the extended BNF engine resolves the production
rule of a BNF non-terminal. Combined with stepoutHook (), it is very useful for trace and debug
tasks.

This hook can be implemented in parse scripts only.

The BNF representation of this statement is:
stepintoHook—-statement ::= "stepintoHook" ' (' sClauseName ',’
localScope ')'" compound-statement

4.2. Syntax generalities and statements 91

Argument ‘ Type ‘ Description
sClauseName | string | The name of the non-terminal.

localScope tree The scope of parameters used into the production rule.

The ’step out’ hook

This special function is automatically called once the extended BNF engine has finished the resolution
of a BNF non-terminal. Combined with stepintoHook (), itis very useful for trace and debug tasks.

This hook can be implemented in parse scripts only.

The BNF representation of this statement is:
stepoutHook—-statement ::= "stepoutHook" ' (' sClauseName ','

localScope '," bSuccess ')’ compound-statement

Argument Type Description
sClauseName | string The name of the non-terminal.

localScope tree The scope of local variables and parameters used into the
production rule.

bSuccess boolean | Whether the resolution of the production rule has succeeded or
not.

4.2.7 Statement’s modifiers

A statement’s modifier is a directive that stands just before a statement, meaning an instruction or a
compound statement.

This directive operates some actions in the scope of the statement and then restores the behaviour as
being before.

This action may be:

e to measure the time that is consumed by the execution of the statement,

e to redirect into a variable all messages intended to the console during the execution of the state-
ment,

e to push a new project parse tree,
e to change the output file during the execution of the statement, while generating text,

e to redirect the output stream into a variable during the execution of the statement, while generating
text,

e to change the output file during the execution of the statement, while generating text, and to apply
an expansion mode on it,

92 Chapter 4. The scripting language

Statement’s modifier 'delay’

This keyword stands just before an instruction or a compound statement. It executes the statement and
then, it measures the time it has consumed.

Function getLastDelay (4.3.95) gives you the last measured duration.

Example:

local 1list;

local iIndex = 4;
delay while isPositive (decrement (iIndex)) {
pushItem list = "element " + iIndex;

traceline ("creating node ’'" + list#back + "' ");
}
Al

traceline ("time of execution = + getLastDelay () + "

seconds") ;

Output:

creating node ’"element 3’
creating node ’element 2’
creating node ’"element 1’
time of execution = 0.000041625402111162173 seconds

Statement modifier ‘quiet’

This keyword stands just before an instruction or a compound statement. It executes the statement and
all messages intended to the console are concatenated into a string, instead of being displayed. The
variable that receives the concatenation of messages is specified after the quiet keyword.

The BNF representation of the quiet statement modifier looks like:
quiet_modifier ::= "quiet" ' (' variable ')’ statement

Note that the variable must have been declared before, as a local one or as an attribute of the parse tree.
If this variable doesn’t exist while executing the statement, an error is raised.

Statement modifier ‘'new project’

This keyword stands just before an instruction or a compound statement. A new project parse tree
is created, which is empty and that replaces temporarily the current one. The statement is executed
and, once the controlling sequence leaves the statement, the temporary parse tree is removed, and the
precedent project comes back as the current one.

The BNF representation of the new_project statement modifier looks like:
new_project_modifier ::= "new_project" statement

This statement modifier is useful to handle a task that doesn’t have to interact with the main parse tree.

Statement modifier ‘file as standard input’

This keyword stands just before an instruction or a compound statement. A new standard input is opened
for reading data. Generally, the keyboard is the standard input, but here, it will be the content of a file that
is passed to the argument filename. Once the execution of the statement has completed, the precedent
standard input comes back.

4.2. Syntax generalities and statements 93

The BNF representation of the file_as_standard_input statement’s modifier looks like:
file as_standard _input_modifier ::= "file_ as_standard_input" ' ('
filename ")' statement

This statement modifier is useful to replay a sequence of commands for the debugger or to drive the
standard input from an external module that puts its instructions into a file for a batch mode or anything
else.

Statement modifier ‘string as standard input’

This keyword stands just before an instruction or a compound statement. A new standard input is opened
for reading data. Generally, the keyboard is the standard input, but here, it will be the content of the string
that is passed to argument. Once the execution of the statement has completed, the precedent standard
input comes back.

The BNF representation of the st ring_as_standard_input statement’s modifier looks like:
string_as_standard _input_modifier ::= "string_ as_standard input" '’ (’
expression ')’ statement

The standard input is the result of evaluating expression.

This statement modifier is useful to drive the standard input of CODEWORKER from an external module,
such as a JNI library or an external C++ application (see chapter 4.6.38).

Statement modifier 'parsed file’

This keyword stands just before an instruction or a compound statement that belongs to a pars-
ing/translation script exclusively. A new input file is opened for source scanning, and replaces tem-
porarily the precedent during the execution of the statement.The statement is executed and, once the
controlling sequence leaves the statement, the input file is closed properly and the precedent one comes
back.

The BNF representation of the parsed_file statement modifier looks like:
parsed_file modifier ::= "parsed_file" ' ('’ filename ')’ statement

The token filename is an expression that is evaluated to give the name of the input file.

This statement modifier is useful to handle a task that must redirect the text to parse into another input
file. An example could be to emulate the C++ preprocessing on #include directives.

Statement modifier ‘parsed string’

This keyword stands just before an instruction or a compound statement that belongs to a pars-
ing/translation script exclusively. The result of an expression is taken as the source to scan, and replaces
temporarily the precedent input during the execution of the statement.The statement is executed and,
once the controlling sequence leaves the statement the precedent input comes back.

The BNF representation of the parsed_string statement modifier looks like:
parsed_string modifier ::= "parsed_string" ' (' expression ')’
sStatement

The token fexpression is an expression that is evaluated to give the text to scan.

This statement modifier is useful to handle a task that must temporary parse a string.

94 Chapter 4. The scripting language

Statement modifier ‘generated file’

This keyword stands just before an instruction or a compound statement that belongs to a pattern script
exclusively. A new output file is opened for source code generation, preserving protected areas as
usually, and replaces temporarily the current one during the execution of the statement. The statement is
executed and, once the controlling sequence leaves the statement, the output file is closed properly and
the precedent one takes its place.

The BNF representation of the generated_file statement modifier looks like:
generated_file modifier ::= "generated file" ' (' filename ')’
statement

The token filename is an expression that is evaluated to give the name of the output file.

This statement modifier is useful to handle a task that must redirect the generated text into another output
file. An example could be to split an HTML text to generate into a few files for implementing a frame
set.

Statement modifier ‘generated string’

This keyword stands just before an instruction or a compound statement that belongs to a pattern script
exclusively. The output stream is redirected into a variable that replaces temporarily the current output
stream during the execution of the statement. The statement is executed and, once the controlling se-
quence leaves the statement, the variable is populated with the content of the output produced during
this scope and the precedent output stream takes its place.

The BNF representation of the generated_string statement modifier looks like:
generated_string modifier ::= "generated string" ' (' variable ")’
statement

The variable argument gives the name of the variable that will be populated with the generated text.
This variable must already exist, declared on the stack or referring a node of the current parse tree.

Statement modifier 'appended file’

This keyword stands just before an instruction or a compound statement that belongs to a pattern script
exclusively. A new output file is opened for appending source code generation at the end of the file
and replaces temporarily the current one during the execution of the statement. The statement is exe-
cuted and, once the controlling sequence leaves the statement, the output file is closed properly and the
precedent one takes its place.

The BNF representation of the appended_file statement modifier looks like:
appended_file_modifier ::= "appended file" ' (' filename ")’
statement

The token filename is an expression that is evaluated to give the name of the output file to append.

4.3 Common functions and procedures

All functions and procedures that are described below may be encountered in any kind of scripts :
parsing, source code generation and file expanding, process driving, included script files.

4.3. Common functions and procedures 95

Category interpreter

Function for running a CODEWORKER script

autoexpand Expands a file on markups, following the directives self-contained in the file.

executeString Executes a script given in a string.

executeStringQuiet Interprets a string as a script and returns all traces intended to the console.

expand Expands a file on markups, following the directives of a template-based script.

extendExecutedScript | Extend the current executed script dynamically with the content of the string.

generate Generates a file, following the directives of a template-based script.

generateString Generates a string, following the directives of a template-based script.

parseAsBNF Parses a file with a BNF script.

parseFree Parses a file with an imperative script.

parseFreeQuiet Parses a file with an imperative script, reroute all console messages and returns

them as a string.

parseStringAsBNF Parses a string with a BNF script.

traceEngine Displays the state of the interpreter.

translate Performs a source-to-source translation or a program transformation.

translateString Performs a source-to-source translation or a program transformation on strings.
96 Chapter 4. The scripting language

Category string

Functions for handling strings

charAt
completeLeftSpaces
completeRightSpaces
composeAdalikeString

composeCLikeString
composeHTMLLikeString
composeSQLLikeString

coreString
countStringOccurences
cutString
endString

endl
equalsIgnoreCase
executeString
executeStringQuiet
findFirstChar
findLastString
findNextString
findString
generateString
joinStrings
leftString
lengthString
midString
parseStringAsBNF
repeatString
replaceString
replaceTabulations
rightString
rsubString
startString
subString
tolLowerString
toUpperString
trim

trimLeft

trimRight
truncateAfterString
truncateBeforeString

Returns the characters present at a given position of a string.

Completes a string with spaces to the left so that it reaches a given size.
Completes a string with spaces to the right so that it reaches a given size.

Converts a sequence of characters to a Ada-like string without double quote delim-

iters.
Converts a sequence of characters to a C-like string without double quote delimiters.

Converts a sequence of characters to an HTML-like text
Converts a sequence of characters to a SQL-like string without single quote delim-

iters.
Extracts the core of a string, leaving the beginning and the end.

How many occurences of a string to another.

Cuts a string at each separator encountered.

Compares the end of the string.

Returns an end-of-line, depending on the operating system.
Compares two strings, ignoring the case.

Executes a script given in a string.

Interprets a string as a script and returns all traces intended to the console.
Returns the position of the first character amongst a set, encountered into a string.
Returns the position of the last occurence of a string to another.
Returns the next occurence of a string to another.

Returns the first occurence of a string to another.

Generates a string, following the directives of a template-based script.
Joins a list of strings, adding a separator between them.
Returns the beginning of a string.

Returns the length of a string.

Returns a substring starting at a point for a given length.

Parses a string with a BNF script.

Returns the concatenation of a string repeated a few times.
Replaces a substring with another.

Replaces tabulations with spaces.

Returns the end of a string.

Returns the left part of a string, ignoring last characters.
Checks the beginning of a string.

Returns a substring, ignoring the first characters.

Converts a string to lowercase.

Converts a string to uppercase.

Eliminates heading and trailing whitespaces.

Eliminates the leading whitespaces.

Eliminates the trailing whitespaces.

Special truncation of a string.

Special truncation of a string.

4.3. Common functions and procedures 97

Category array

Functions handling arrays

findElement

findFirstSubstringIntoKeys
findNextSubstringIntoKeys

getArraySize
insertElementAt
invertArray
isEmpty
removeAllElements
removeElement
removeFirstElement
removelLastElement

Checks the existence of an entry key in an array.

Returns the first entry key of an array, containing a given string.
Returns the next entry key of an array, containing a given string.
Returns the number of items in an array.

Inserts a new element to a list, at a given position.

Inverts the order of items in an array.

Checks whether a node has items or not.

Removes all items of the array.

Removes an item, given its entry key.

Removes the first item of the array.

Removes the last item of the array.

Category node Functions handling a node

clearVariable Removes the subtree and assigns an empty value.
equalTrees Compares two subtrees.

existVariable Checks the existence of a node.
getVariableAttributes | Extract all attribute names of a tree node.
removeRecursive Removes a given attribute from the subtree.
removeVariable Removes a given variable.
slideNodeContent Moves the subtree elsewhere on a branch.
sortArray Sort an array, considering the entry keys.

Category iterator

Functions handling an iterator

createlterator
createReverselterator
duplicateIterator
first

Creates an iterator pointing to the beginning of a list.
Creates a reverse iterator pointing to the end of a list.
Duplicates an iterator.

Returns t rue if the iterator points to the first item.

index Returns the position of an item in a list.
key Returns the entry key of the item pointed to by the iterator.
last Returns t rue if the iterator points to the last item.
next Move an iterator to the next item of a list.
prec Move an iterator to the precedent item of a list.
98 Chapter 4. The scripting language

Category file

Functions handling files

appendFile
canonizePath
changeFileTime
chmod

copyFile
copyGenerableFile

copySmartFile
createVirtualFile
createVirtualTemporaryFile
deleteFile

Writes the content of a string to the end of a file

Builds an absolute path, starting to the current directory.

Changes the access and modification times of a file.

Changes the permissions of a file.

Copies a file.

Copies a file with protected areas or expandable markups, only if the hand-

code differs between source and destination.
Copies a file only if the destination differs.

Creates a transient file in memory.
Creates a transient file in memory, CODEWORKER choosing its name.
Deletes a file on the disk.

deleteVirtualFile Deletes a transient file from memory.

existFile Checks the existence of a file.

existVirtualFile Checks the existence of a transient file, created in memory.

exploreDirectory Browses all files of a directory, recursively or not.

fileCreation Returns the creation date of a file.

fileLastAccess Returns the last access date of a file.

fileLastModification Returns the last modification date of a file.

filelLines Returns the number of lines in a file.

fileMode Returns the permissions of a file.

fileSize Returns the size of a file.

getGenerationHeader Returns the comment to put into the header of generated files.

getShortFilename Returns the short name of a file

indentFile Indents a file, depending on the target language.

loadBinaryFile Loads a binary file and stores each byte in a hexadecimal representation of 2

loadFile Returns the content of a file or raises an error if not found.

loadvirtualFile Returns the content of a transient file or raises an error if not found.

pathFromPackage Converts a package path to a directory path.

relativePath Returns the relative path, which allows going from a path to another.

resolveFilePath Gives the location of a file with no ambiguity.

saveBinaryToFile Saves binary data to a file.

saveToFile Saves the content of a string to a file

scanDirectories Explores a directory, filtering filenames.

scanFiles Returns a flat list of all filenames matching with a filter.

Category directory Functions handling directories

changeDirectory Changes the current directory (chdir () in C).

copySmartDirectory | Copies files of a directory recursively only when destination files differ from source
files.

createDirectory Creates a new directory.

existDirectory Check the existence of a directory.

exploreDirectory Browses all files of a directory, recursively or not.

getCurrentDirectory | Returns the current directory (getcwd () in C).

removeDirectory Removes a directory from the disk.

scanDirectories Explores a directory, filtering filenames.

scanFiles Returns a flat list of all filenames matching with a filter.

4.3. Common functions and procedures 99

Category URL

Functions working on URL transfers (HTTP,...)

decodeURL Decodes an HTTP URL.

encodeURL Encodes an URL to HTTP.

getHTTPRequest Sends an HTTP’s GET request.

postHTTPRequest | Sends an HTTP’s POST request.

sendHTTPRequest | Sends an HTTP request.

Category datetime Functions handling date-time

addToDate Change a date by shifting its internal fields days/months/years or time.
compareDate Compares two dates.

completeDate Extends an incomplete date with today characteristics.
fileCreation Returns the creation date of a file.
fileLastAccess Returns the last access date of a file.
fileLastModification | Returns the last modification date of a file.
formatDate Changes the format of a date.

getLastDelay Returns the time consumed to execute a statement.
getNow Returns the current date-time.

setNow Fixes the current date-time.

Category numeric | Functions handling numbers
add Equivalent admitted writing is $Sa + bS$.
ceil Returns the smallest integer greater that or equal to a number
decrement Equivalent admitted writing is set a = $a — 1$;.
div Equivalent admitted writing is a / DbS.
equal Equivalent admitted writing is $a == bS$.
exp Returns the exponential of a value.
floor Returns the largest integer less that or equal to a number
increment Equivalent admitted writing is set a = $a + 1$;.
inf Equivalent admitted writing is $a < DbS$.
isNegative Equivalent admitted writing is $a < 08$.
isPositive Equivalent admitted writing is $Sa > 08S.
log Returns the Neperian logarithm.
mod Equivalent admitted writing is $a %bs.
mult Equivalent admitted writing is $a * b$.
pow Raises a number to the power of another.
sqrt Calculates the square root.
sub Equivalent admitted writing is $a - DbS$.
sup Equivalent admitted writing is Sa > bS.
100 Chapter 4. The scripting language

Category standard

Classical functions of any standard library

UUID

error
inputKey
inputLine
isIdentifier
isNumeric
randomInteger
randomSeed
traceline
traceObject
traceStack
traceText

Category conversion

Generates an UUID.

Raises an error message

If any, returns the last key pressed on the standard input.
Wait for the standard input to the console.

Checks whether a string is a C-like identifier or not.
Checks whether a string is a floating-point number or not.
Generates a pseudorandom number.

Changes the seed of the pseudorandom generator.
Displays a message to the console, adding a carriage return.
Displays the content of a node to the console.

Displays the stack to the console.

Displays a message to the console.

Type conversion

byteToChar
bytesToLong

bytesToShort

charToByte
charTolInt
hexaToDecimal

Converts a byte (hexadecimal representation of 2 digits) to a character.
Converts a 4-bytes sequence to an unsigned long integer in its decimal representa-

tion.
Converts a 2-bytes sequence to an unsigned short integer in its decimal representa-

tion.
Converts a character to a byte (hexadecimal representation of 2 digits).

Converts a character to the integer value of the corresponding ASCII.
Converts an hexadecimal representation to an integer.

hostToNetworkLong | Converts a 4-bytes representation of a long integer to the network bytes order.
hostToNetworkShort | Converts a 2-bytes representation of a short integer to the network bytes order.

longToBytes

Converts an unsigned long integer in decimal base to its 4-bytes representation.

networkLongToHost Converts a 4-bytes representation of a long integer to the host bytes order.
networkShortToHost | Converts a 2-bytes representation of a short integer to the host bytes order.

octalToDecimal Converts an octal representation to a decimal integer.
shortToBytes Converts an unsigned short integer in decimal base to its 2-bytes representation.
Category system | Functions relative to the operating system

computeMD5 Computes the MDS5 of a string.

environTable | Equivalent of environ () inC

existEnv Checks the existence of an environment variable.

getEnv Returns an environment variable, or raises an error if not exist.
openLogFile | Opens a log file for logging every console trace.

putEnv Puts a value to an environment variable.

sleep Suspends the execution for mi11is milliseconds.

system Equivalent to the C function system ().

Category command

Relative to the command line

compileToCpp
getIncludePath
getProperty
getVersion
getWorkingPath
setIncludePath
setProperty
setVersion
setWorkingPath

Translates a script to C++.

Returns the include path passed via the option —1I.

Returns the value of a property passed via the option —D.
Returns the version of the interpreter.

Returns the output directory passed via option —path.

Changes the option —I while running.

Adds/changes a property (option —D) while running.

Gives the version of scripts currently interpreted by CodeWorker.

Does the job of the option —path.

4.3. Common functions and procedures 101

Category generation

Functions relative to generation

addGenerationTagsHandler
autoexpand

expand
extractGenerationHeader
generate

generateString
getCommentBegin
getCommentEnd
getGenerationHeader
getTextMode
getWriteMode
listAllGeneratedFiles

Adds your own CodeWorker’s tags handler

Expands a file on markups, following the directives self-contained in the fil
Expands a file on markups, following the directives of a template-based scr
Gives the generation header of a generated file, if any.

Generates a file, following the directives of a template-based script.
Generates a string, following the directives of a template-based script.
Returns the current format of a comment’s beginning.

Returns the current format of a comment’s end.

Returns the comment to put into the header of generated files.

Returns the text mode amongst ""DOS'', "UNIX" and "BINARY".
Returns how text is written during a generation (insert/overwrite).

Gives the list of all generated files.

removeGenerationTagsHandler | Removes a custom generation tags handler
selectGenerationTagsHandler | Selects your own CodeWorker’s tags handler for processing generation task

setCommentBegin Changes what a beginning of comment looks like, perhaps before expandin
setCommentEnd Changes what an end of comment looks like, perhaps before expanding a fi
setGenerationHeader Specifies a comment to put at the beginning of every generated file.
setTextMode "DOS", "UNIX" or "BINARY"

setWriteMode Selects how to write text during a generation (insert/overwrite).
translate Performs a source-to-source translation or a program transformation.
translateString Performs a source-to-source translation or a program transformation on st
Category parsing Functions relative to scanning/parsing

parseAsBNF Parses a file with a BNF script.

parseFree Parses a file with an imperative script.

parseFreeQuiet Parses a file with an imperative script, reroute all console messages and returns

them as a string.

parseStringAsBNF | Parses a string with a BNF script.
translate Performs a source-to-source translation or a program transformation.
translateString | Performs a source-to-source translation or a program transformation on strings.

Category socket Socket operations
acceptSocket Listens for a client connection and accepts it.
closeSocket Closes a socket descriptor.

createINETClientSocket
createINETServerSocket
receiveBinaryFromSocket
receiveFromSocket
receiveTextFromSocket
sendBinaryToSocket

Creates a stream socket connected to the specified port and IP address.
Creates a server stream socket bound to a specified port.

Reads binary data from the socket, knowing the size.

Reads text or binary data from a socket.

Reads text from a socket, knowing the size.

Writes binary data to a socket.

sendTextToSocket Writes text to a socket.

Category unknown Various types of function

loadProject Loads a parse tree previously saved thanks to saveProject().

not The boolean negation, equivalent to ! a.

produceHTML

saveProject Saves a parse tree to XML or to a particular text format.

saveProjectTypes | Factorizes nodes of the projects to distinguish implicit types for node and saves it
to XML.

102

Chapter 4. The scripting language

4.3.1

acceptSocket

function acceptSocket(serverSocket : inf) : int

Parameter ‘ Type ‘ Description
int a server socket previously created via
createINETServerSocket ()

serverSocket

This function blocks until a client connection arrives, and returns the corresponding socket de-
scriptor.

Once a connection has been established, use directly the send/receive functions or
attachInputToSocket ()/attachOutputToSocket for reading/writing to the socket
via a BNF-parsing/template-based script.

See also:

createINETClientSocket 4.3.36, createINETServerSocket
4.3.37, attachInputToSocket 4.5, detachInputFromSocket 4.5.3,
attachOutputToSocket 4.6.3, detachOutputFromSocket 4.6.7,
receiveBinaryFromSocket 4.3.153, receiveFromSocket 4.3.154,
receiveTextFromSocket 4.3.155, sendTextToSocket 4.3.180,

sendBinaryToSocket 4.3.178, closeSocket 4.3.18, flushOutputToSocket
4.6.10

43.2 add

function add(1left : double, right : double) : double

Parameter ‘ Type ‘ Description
left double | left arithmetic member
double | right arithmetic member

right

Returns the result of arithmetic addition 1eft + right. Members are converted from strings to
numbers, supposed being worth O if a parsing error occurs; then the addition is processed, and the
result is converted to a string, skipping fractional part if all digits after the dot are 0.

Remember that the symbol ’+’ means the concatenation of text. Using this operator instead of
function add will concatenate digits! However, it exists an escape mode that allows writing
arithmetic expressions between ’$’ symbols, as formula under LaTeX. So, $left + right$is
equivalentto add (left, right).

Example:

local a = 3.2;
traceline(a + " +
traceline (a + +
Output:

3.2 + 4.5 =
3.2 + 2.8 = 6 <- integer value

" + add(a, "4.5M));
" + add(a, 2.8) + " <- integer wvalue");

c O
I

~J
~J

See also:
sub 4.3.197, mult 4.3.134, div 4.3.47, exp 4.3.64, 10g 4.3.130, mod 4.3.133, pow 4.3.147

4.3. Common functions and procedures 103

4.3.3 addGenerationTagsHandler

e function addGenerationTagsHandler(key : string, reader : script,writer : script) : bool

Parameter | Type ‘ Description

key string designates the handler

reader script<BNF> extended-BNF script of the reader
writer script<pattern> | template-based script of the writer

Adds a new generation tags handler, designated by key.
Returns t rue if key isn’t reserved yet for another generation tags handler.
See also:

removeGenerationTagsHandler 4.3.161, selectGenerationTagsHandler
4.3.177

4.3.4 addToDate

e function addToDate(date : string, format : string, shifting : string) : string

Parameter | Type | Description

date string | the date to change
format string | the format to apply on the reading of the shifting argu-
ment

shifting | string | the offset values to apply on the date, whose meanings are
known by the of f set argument

Change a date by applying offset values on its internal representation. The internal representation
holds the year / month / day and hour / minute / second and millisecond fields. You choose what
fields to shift, giving a date format as the first argument, and an offset value for each fields seen in
the format as the second argument.

The field types have the same syntax as in the function formatDate, except that the field values
might be negative.

For instance, if the field type is "%m", the month must occupy 2 digits maximum for a positive
offset, and 3 characters for a negative offset, the first one being the sign.

The offsets are applied in the order they are read, from the left-hand side to the right.
The function returns the value of the date after applying the shift.
Example:

tracelLine ("Substract 2 months and add 20 hours to the current
date-time:");
local newDate = addToDate (getNow (), "%m,%H", "-2,20");

traceline ("one manner: " + getNow() + " —-> " + newDate);
newDate = addToDate (getNow (), "%m%H", "-0220");

traceline ("another manner: " + getNow() + " —-> " + newDate);
Output:

Substract 2 months and add 20 hours to the current date-time:
one manner: 28jul2008 20:42:00.500 -> 29may2008 16:42:00.500

104

Chapter 4. The scripting language

another manner: 287jul2008 20:42:00.500 —-> 29may2008
16:42:00.500

See also:

formatDate 4.3.84, compareDate 4.3.19, completeDate 4.3.21, getLastDelay
4.3.95, getNow 4.3.96, setNow 4.3.185

4.3.5 appendFile

e procedure appendFile(filename : string, content : string)

Parameter ‘ Type ‘ Description
filename name of the file to append
content sequence of characters to write at the end of the file

string
string

Werites the text content at the end of the file filename.
If the file doesn’t exist, the function creates it.
See also:

copyFile4.3.29, changeFileTime 4.3.12, chmod 4.3.16, copyGenerableFile 4.3.30,
copySmartFile 4.3.32, deleteFile 4.345, existFile 4.3.61, fileCreation
43.69, fileLastAccess 4.3.70, fileLastModification 4.3.71, fileLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.6 autoexpand

e procedure autoexpand(outputFileName : string, this : treeref)

Parameter | Type | Description
outputFileName | string | the existing file to expand
this treeref | the current node that will be accessed with this variable

Expands an existing file whose name is passed to the argument outputFileName, executing
template-based scripts located at each markup. The file contains its own scripts for expanding
code.

Expanding a file consists of generating code into marked out areas only, the rest of the file re-
maining the same. The markup is put into a comment, knowing that the syntax of the com-
ment must conform to the type of the expanded file outputFileName. So, an HTML file
expects <!- - and - ->, a JAVA file is waiting for // and "\n", ... The markup is announced by
##markup## followed by a string that represents the markup key. Don’t forget to configure cor-
rectly the syntax of comment boundaries with procedures set CommentBegin () (see 4.3.181)
and setCommentEnd () (see 4.3.182).

When the procedure is called, CODEWORKER jumps from a markup to another. To handle a
markup, it checks whether text was already generated, put between tags ##begin##' markup-
key'' and #tend##' ' markup-key'', added automatically the first time an expansion is required, to
demarquate the portion of code that doesn’t belong to the user. Then, it extracts all protected areas,
if any, and it generates code at the position of the markup, adding begin/end tags seen before.

4.3. Common functions and procedures 105

The interpreter reclaims the tags ##script## just after the markup. It extracts the embed-
ded text, considered as a template-based script, eventually put between comments, and the
interpreter executes this embedded script.

Note that some data might be put between tags ##data##, accessible in the template-based
script via the function getMarkupValue () (see 4.6.14). This block of custom data comes
after the ##script## tag, if present.

Be careful not to confuse this prodedure with generate () that doesn’t care about markups and
that overwrites the output file completely, except protected areas of course.

See also:

expand 4.3.65, generate 4.3.85, GgenerateString 4.3.86, translate
43208, parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143,
parseStringAsBNF 4.3.144, translateString 4.3.209

4.3.7 bytesTolLong

e function bytesToLong(bytes : string) : ulong

Parameter ‘ Type ‘ Description
string | a 4-bytes representation of an unsigned long integer (host
bytes order)

bytes

Converts a 4-bytes representation of an unsigned long integer to its decimal representation. Bytes
are ordered in the host order (memory storage).

If the argument by tes is malformed, the function raises an error.
Example:

tracelLine ("bytesToLong (' FFFFFFFF’) = '" + bytesToLong ("FFFFFFFE")
+ nwr ") ;

Output:
bytesToLong (' FFFFFFFF’) = 74294967295’
See also:

byteToChar 4.3.8, bytesToShort 4.3.7, charToByte 4.3.14, charToInt 4.3.15,
hexaToDecimal 4.3.104, longToBytes 4.3.131, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.8 bytesToShort

e function bytesToShort(bytes : string) : ushort

Parameter | Type | Description
bytes string | a 2-bytes representation of an unsigned short integer (host
bytes order)

Converts a 2-bytes representation of an unsigned short integer to its decimal representation. Bytes
are ordered in the host order (memory storage).

If the argument bytes is malformed, the function raises an error.

106

Chapter 4. The scripting language

Example:

traceline ("bytesToShort ('FFFF’) = ’" + bytesToShort ("FFFE") +
")

Output:

bytesToShort ("FFFF’) = 655357

See also:

byteToChar 4.3.8, bytesToLong 4.3.6, charToByte 4.3.14, charToInt 4.3.15,
hexaToDecimal 4.3.104, longToBytes 4.3.131, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.9 byteToChar

e function byteToChar(byte : string) : string

Parameter ‘ Type ‘ Description
byte ‘ string ‘ an hexadecimal number of 2 digits exactly

Converts a byte to a character. A byte is considered as an hexadecimal number of 2 digits exactly.

If the argument byte doesn’t contain an hexadecimal number of 2 digits, an error is raised. If
byte is worth *00’, the function returns an empty string.

Example:

tracelLine ("byteToChar ("20’) = " + byteToChar ("20") + "'");
traceline ("byteToChar("61’) = " + byteToChar ("61") + """);
Output:

byteToChar ('20") = " '

byteToChar (’61") = ’"a’

See also:

bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte 4.3.14, charTolInt
4.3.15, hexaToDecimal 4.3.104, longToBytes 4.3.131, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.10 canonizePath

e function canonizePath(path : string) : string

Parameter ‘ Type ‘ Description
path ‘ string ‘ the path to canonize

Returns the path passed to the argument path after having canonized it.

To canonize a path means that:

— 7/ .." and’ .’ directories are processed,
— backslashes are changed to forward slashes,

— if the path is relative, it is converted to a full path, starting at the current directory.

4.3. Common functions and procedures 107

Example:

traceline ("current directory = ’'" + getCurrentDirectory () +
"I"),.

local sPath = "WebSite/downloads/CodeWorker.zip";
traceLine (" path = " + sPath + "' ");

tracelLine (" result = """ + canonizePath (sPath) + "’ ");

local sCurrentDirectory = getCurrentDirectory();
changeDirectory (sCurrentDirectory + "Documentation");
tracelLine ("current directory = ’'" + getCurrentDirectory () +
"I"),.

set sPath = "../Scripts/Tutorial/GettingStarted/tiny.html";
tracelLine (" path = ’'" + sPath + "' ");

traceLine (" result = """ + canonizePath (sPath) + "’");
changeDirectory (sCurrentDirectory) ;

traceline ("current directory = ’'" + getCurrentDirectory() +
"I"),.

set sPath = ".";

traceLine (" path = " + sPath + "' ");

tracelLine (" result = ’'" + canonizePath (sPath) + "' ");
Output:

current directory = 'E:/projects/generator/’

path = 'WebSite/downloads/CodeWorker.zip’

result = ’'e:/projects/generator/WebSite/downloads/CodeWorker.zip’
current directory = 'E:/projects/generator/Documentation/’

path = ’../Scripts/Tutorial/GettingStarted/tiny.html’

result = ’'e:/projects/generator/Scripts/Tutorial/GettingStarted/tiny.htm

current directory = 'E:/projects/generator/’
path = 7.7’
result = ’'e:/projects/generator’

See also:

changeDirectory 4.3.11, copySmartDirectory 4.3.31, exploreDirectory 4.3.66,
getCurrentDirectory 4.3.90, relativePath 4.3.156, removeDirectory 4.3.158,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4311 cell

e function ceil(number : double) : int

Parameter ‘ Type ‘ Description
number ‘ double ‘ the floating-point number to ceil

Returns the smallest integer that is greater than or equal to number. If number isn’t a number,
the function returns 0.

Example:

tracelLine ("ceil (5.36%e+1l) = " 4+ ceil (5.369el));
Output:

ceil (5.369e+1l) = 54

108 Chapter 4. The scripting language

See also:

decrement 4.3.44, increment 4.3.107, £1loor 4.3.83

4.3.12 changeDirectory

e function changeDirectory(path : string) : bool

Parameter ‘ Type ‘ Description
path ‘ string ‘ path name of the directory

The function changes the current directory of CODEWORKER to the directory specified by the
path argument. The parameter must refer to an existing directory.

Example:

traceline ("current directory = ’'" + getCurrentDirectory() +

nwnrsrn) ,.

local sOldDirectory = getCurrentDirectory();

local sNewDirectory = sOldDirectory + "Documentation";
traceline ("call to changeDirectory(’" + sNewDirectory + "")");
changeDirectory (sNewDirectory) ;

traceline ("new current directory = ’'" + getCurrentDirectory () +

"I") .
4

changeDirectory(sOldDirectory);

Output:

current directory = ’"E:/projects/generator/’

call to changeDirectory(’'E:/projects/generator/Documentation’)
new current directory = ’'E:/projects/generator/Documentation/’
See also:

canonizePath 4.3.9, copySmartDirectory 4.3.31, exploreDirectory 4.3.66,
getCurrentDirectory 4.3.90, relativePath 4.3.156, removeDirectory 4.3.158,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4.3.13 changeFileTime

e function changeFileTime(filename : string, accessTime : string, modificationTime

s string) : int
Parameter ‘ Type ‘ Description
filename string | name of the file to set
accessTime string | date-time of the last access

modificationTime | string | date-time of the last modification

The function changes the access and modification times of the file filename. The user ID of
the process must be the owner of the file, or the process must have appropriate privileges.

In case of failure, the function returns a negative integer:

— -1: unknown error that shouldn’t appear,

4.3. Common functions and procedures 109

— -2: permission denied,
— -3: too many files have been opened,
— -4: file not found,

— -5: invalid times argument,

Example:

local oldAccessTime = filelastAccess ("readme.txt");

local oldModifTime = filelLastModification ("readme.txt");

traceline ("old modification time of ’'readme.txt’ = '" +

oldModifTime + "' ");

if $changeFileTime ("readme.txt", getNow (), getNow()) < 0$
error ("' changeFileTime ()’ has failed!");

local newModifTime = filelLastModification ("readme.txt");

tracelLine ("new modification time of ’'readme.txt’ = """ +

newModifTime + "' ");
// put the same times as before calling the example:

if S$changeFileTime ("readme.txt", oldAccessTime, oldModifTime) <
0s

error ("' changeFileTime ()’ has failed!");
Output:

0ld modification time of ’'readme.txt’ = '02may2008 04:51:36"'
new modification time of ’'readme.txt’ = 7283jul2008 20:42:00"

See also:

copyFile 4.3.29, appendFile 4.3.4, chmod 4.3.16, copyGenerableFile 4.3.30,
copySmartFile 4.3.32, deleteFile 4.3.45, existFile 4.3.61, fileCreation
4.3.69, fileLastAccess 4.3.70, fileLastModification 4.3.71, fileLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.14 charAt

e function charAt(text : string, index : int) : string

Parameter ‘ Type ‘ Description
text string | a sequence of characters
index int the index of the character to extract from text

Returns the character at the specified index. An index ranges from 0O to lengthString(text) -
1. The first character of the sequence is at index 0, the next at index /, and so on. If the index
argument is out of bounds (negative or not less than the length of text), it returns an empty
string.

Example:

local sText = "I have but one lamp by which my feet are guided,
and that is the lamp of experience. (P. Henry)";

tracelLine ("charAt (" + sText + "/, 2) = '" 4+ charAt (sText, 2) +
"/ <- index = 2 gives the third character of the string");
Output:

110

Chapter 4. The scripting language

charAt (I have but one lamp by which my feet are guided, and
that is the lamp of experience. (P. Henry)’, 2) = "h’ <- index
= 2 gives the third character of the string

See also:

coreString 4.3.33, cutString 4.3.42, joinStrings 4.3.120, leftString 4.3.123,
lengthString 4.3.124, midString 4.3.132, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

4.3.15 charToByte

e function charToByte(char : string) : string

Parameter ‘ Type ‘ Description
char ‘ string ‘ a character

Converts a character to its hexadecimal representation, taking 2 digits, even if less than 0x10.

If the argument char is empty, the function returns *00’. If it contains more than one character,
an error is raised.

Example:

traceline ("charToByte ("A’) = '" + charToByte ("A") + "' ™);
traceLine ("charToByte (‘\\n’) = ’" + charToByte ("\n") + "' ");
Output:

charToByte ("A’) = 741’

charToByte (\n’) = ’0A’

See also:

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToInt 4.3.15,
hexaToDecimal 4.3.104, 1longToBytes 4.3.131, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.16 charTolnt

e function charTolnt(char : string) : int

Parameter ‘ Type ‘ Description
char ‘ string ‘ a string containing just one char

Returns the conversion of char as an unsigned integer, corresponding to its ASCII form generally.
If char doesn’t contain just one char, it returns an empty string.

Example:

traceline ("charToInt ("A’) = " + charToInt ("A") 4+ " <— ASCII code
of "A'");

Output:

charToInt ('A") = 65 <- ASCII code of 'A’

See also:

4.3. Common functions and procedures 111

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte
4.3.14, hexaToDecimal 4.3.104, longToBytes 4.3.131, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.17 chmod

e function chmod(filename : string, mode : string) : bool

Parameter ‘ Type ‘ Description

filename | string | file to which change the permission setting

mode string | permission setting as a concatenation of 'R’ and/or "W’
and/or X’

The chmod function changes the permission setting of the file specified by filename. The
permission setting controls read and write and execute access to the file. The argument mode
holds the permission setting of the file as a concatenation of chars amongst the following:

— ’R’ for reading permitted,

— W’ for writing permitted,

— X for executing permitted (ignored on Windows platform),

The function fails when the file given by the argument £ilename is not found, and an error is
thrown when the argument mode contains an unexpected character.

Example:

local bSuccess = chmod("Documentation/CodeWorker.tex", "RW");

if !'bSuccess error ("file ’'Documentation/CodeWorker.tex’ not
found!");

tracelLine ("R + W permitted on file ’'Documentation/CodeWorker.tex’");
Output:

R + W permitted on file ’'Documentation/CodeWorker.tex’
See also:

copyFile 4.3.29, appendFile 4.3.4, changeFileTime 4.3.12, copyGenerableFile
4.3.30, copySmartFile 4.3.32, deleteFile4.345,existFile4.3.61,fileCreation
4.3.609, fileLastAccess 4.3.70, fileLastModification 4.3.71, fileLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.18 clearVariable

e procedure clearVariable(node : treeref)

Parameter ‘ Type ‘ Description
node ‘ treeref ‘ the node to clear

All attributes of the argument node are deleted, its array of nodes is cleared and its value becomes
an empty string. If the node was referring to another node, the link is cleared.

112 Chapter 4. The scripting language

Please note that the node isn’t removed; see removeVariable () for that.
Example:

local myNode = "the value";

insert myNode.al = "attribute 1";

insert myNode.a2 = "attribute 2";

insert myNode.array["1l"] = "node 1";

insert myNode.array["2"] = "node 2";

traceObject (myNode) ;

traceline ("- the variable "'myNode’ is cleared:");
clearVariable (myNode) ;

traceObject (myNode) ;

Output:

Tracing variable ’"myNode’ :
"the value"

al = "attribute 1"
a2 = "attribute 2"
array

array ["1l", "2"]
End of variable’s trace ’'myNode’.
— the variable 'myNode’ is cleared:
Tracing variable ’'myNode’:
End of variable’s trace ’'myNode’.

Deprecated form: clearNode has disappeared since version 3.8.7
See also:

existVariable 4.3.62, findFirstSubstringIntoKeys 4.3.77, findElement
4,375, findNextSubstringIntoKeys 4.3.80, getArraySize 4.3.87,
getVariableAttributes 4.3.100, invertArray 4.3.114, isEmpty 4.3.115,
removeVariable 4.3.164

4.3.19 closeSocket

e procedure closeSocket(socket : int)

Parameter ‘ Type ‘ Description
socket ‘ int ‘ a client/server socket descriptor

This procedure closes the socket descriptor specified to the argument socket.

See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket
4.6.7, receiveBinaryFromSocket 4.3.153, receiveFromSocket
4.3.154, receiveTextFromSocket 4.3.155, sendTextToSocket 4.3.180,
sendBinaryToSocket 4.3.178, flushOutputToSocket 4.6.10

4.3. Common functions and procedures 113

4.3.20 compareDate

e function compareDate(datel : string, date?2 : string) : int

Parameter ‘ Type ‘ Description

datel string

date? string

The function returns:

a date that conforms to the following format: "$d%b%Y

SH:$M:%$S.5L"
second date to compare to datel

— anegative value when datel < date2,

— zero when datel is equal to date2,

— apositive value when datel > dateZ.

If an argument doesn’t conform to the expected syntax for a date (meaning that it must match with
"$d%b%Y $H:%M:%S.%L"), an error is raised.

Example:

local datel = "19jan2003 20:12:00.000";
local date2 = "28dec2012 07:30:00.000";
local now = getNow ()

tracelLine ("getNow ()

Output:

" + now + "'"M);

traceline ("compareDate (" + datel + "', getNow()) = " +
compareDate (datel, now));
traceline ("compareDate ("
compareDate (date2, now));

+ date2 + "'/, getNow()) =" +

getNow () = 7283jul2008 20:42:00.500"
compareDate (" 193jan2003 20:12:00.000", getNow()) = -1

compareDate (" 28dec2012 07:30:00.000", getNow())

See also:

Il
’—l

formatDate 4.3.84, addToDate 4.3.3, completeDate 4.3.21, getLastDelay 4.3.95,
getNow 4.3.96, setNow 4.3.185

4.3.21 compileToCpp

e procedure compileToCpp(scriptFileName : string, projectDirectory : string,
CodeWorkerDirectory : string)

Parameter Type | Description

scriptFileName string | the name of a script file to compile to C++

projectDirectory string | the location where to put on the disk the scripts compiled
to C++

CodeWorkerDirectory | string | the root path of CODEWORKER either in development or

distributed state

114

Chapter 4. The scripting language

Compiles the leader script file called scriptFileName and all scripts that might be re-
claimed during the execution. The corresponding C++ files are stored into projectDirectory
with the makefile (a Visual C++’s DSP file). The path to libraries and the origin of
some important include files is determined thanks to the path to CODEWORKER put into
CodeWorkerDirectory.

The script file cannot be a pattern script or a parsing script.
If an error occurs, an error message is raised.
Example:

local sScriptFile = "GettingStarted/LeaderScript6.cws";
local sDirectory = getWorkingPath() +

"Scripts/Tutorial/GettingStarted/bin";
removeDirectory (sDirectory) ;

compileToCpp (sScriptFile, sDirectory, ".");

local theFiles;

if !scanFiles(theFiles, sDirectory, "", true) error("should have
worked!") ;

tracelLine ("generated files:");

foreach 1 in sorted theFiles traceLine("™ " + 1i);

Output:

generated files:
e:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CGExternalHand]
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CGRuntime.h
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CppObjectBody_c
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CppObjectBody_c
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CppObjectHeade:
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CppObjectHeade:
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/CppParsingTree.
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/DynPackage.h
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/HTML2LaTeX_cwp.
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/HTML2LaTeX_cwp.
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/HTMLDocumentat:
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/HTMLDocumentat i
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/JAVAObject_cwt.
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/JAVAObject_cwt.
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/LeaderScript6.c
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/LeaderScript6_c
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/LeaderScript6_c
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/Makefile
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/SimpleML-parsir
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/SimpleML-parsir
:\Projects\generator/Scripts/Tutorial/GettingStarted/bin/UtlException.h

0}

o o® o o o o o O O O O O O O O O O O 0

4.3.22 completeDate
e function completeDate(date : string, format : string) : string

Parameter ‘ Type ‘ Description
date
format

string
string

a date-time representation to complete
the format that the date argument conforms to

4.3. Common functions and procedures 115

Completes the date passed to the argument date, so as it conforms to the syntax of a date in
CODEWORKER meaning: "$d%$b%Y $H:%M:%S.%L".

Starting from today date with reset time (00 : 00: 00 . 0), it replaces date-time characteristics with
those of the parameter date and returns the result of the substitutions.

See 4.3.84 to reading the description of a date format. A format type was added for this function:
"% | " . Once the date has been iterated up to the end, if the format wasn’t applied on it completely,
an error occurs, except if / % |’ stands at the current position in the format.

Example:

tracelLine ("Today date with reset time = '" +

completeDate (getNow (), "%d$bsyY") + "'");

local dDateAsNumber = formatDate (getNow (), "%t");

traceline ("Today date (Excel-like) = """ + dDateAsNumber + "' ");
traceline ("Preceding day = " + completeDate ($SdDateAsNumber -
1$, "%t") + "l");

traceLine ("15th of the current month = ’'" + completeDate("15",
"%d") + "I"),.

traceline ("august of this year = '" + completeDate("08", "%m") +

"I");

traceLine ("15/04 = '" + completeDate("15/04", "%d/%m") + "'");
tracelLine ("december 31, 2003 = ’'" + completeDate ("december 31,
2003", "% %d, %Y") + "I");

Output:

Today date with reset time = "28jul2008’
Today date (Excel-like) = "39657.862506’
Preceding day = "27jul2008 20:42:00.518"
15th of the current month = "153ul2008’
august of this year = ’'28aug2008’

15/04 = "15apr2008’

december 31, 2003 = "31dec2003’

See also:

formatDate 4.3.84, addToDate 4.3.3, compareDate 4.3.19, getLastDelay 4.3.95,
getNow 4.3.96, setNow 4.3.185

4.3.23 completelLeftSpaces

e function completeLeftSpaces(text : string, length : int) : string

Parameter ‘ Type ‘ Description
text a sequence of characters
length the length to obtain for text

string
int

Completes the string given by argument text with spaces to the left, so that the resulting string
takes up 1ength characters long. If the argument text contains more than 1ength characters,
it returns text.

Example:

traceline ("completeleftSpaces(l, 3) = ’'" + completeleftSpaces (],
3) + mwr ") ;

116

Chapter 4. The scripting language

traceline ("completeLeftSpaces (123, 3) = " +
completelLeftSpaces (123, 3) + "'");

tracelLine ("completeleftSpaces (1234, 3) = '" +
completeLeftSpaces (1234, 3) + "'");

Output:

completeLeftSpaces (1, 3) = " 17

completelLeftSpaces (123, 3) = "123’
completelLeftSpaces (1234, 3) = 71234’

See also:

countStringOccurences 4.3.34, completeRightSpaces 4.3.23, repeatString
4.3.165, replaceString 4.3.166, replaceTabulations 4.3.167, toLowerString
4.3.201, toUpperString 4.3.202, trimLeft 4.3.211, trimRight 4.3.212, trim 4.3.210,
truncateAfterString4.3.213, truncateBeforeString4.3.214

4.3.24 completeRightSpaces

e function completeRightSpaces(text : string, length : inf) : string

Parameter ‘ Type ‘ Description
text a sequence of characters
length the length to obtain for text

string
int

Completes the string given by argument t ext with spaces to the right, so that the resulting string
takes up length characters long. If the argument t ext contains more than 1ength characters,
it returns text.

Example:

tracelLine ("completeRightSpaces (1, 3) = '" + completeRightSpaces (1,
3) _I_ nwr ") ,.

tracelLine ("completeRightSpaces (123, 3) = """ +
completeRightSpaces (123, 3) + """);

tracelLine ("completeRightSpaces (1234, 3) = '" +
completeRightSpaces (1234, 3) + "'");

Output:

completeRightSpaces (1, 3) = "1 7
completeRightSpaces (123, 3) = 123’
completeRightSpaces (1234, 3) = 71234’

See also:

countStringOccurences 4.3.34, completeLeftSpaces 4.3.22, repeatString
4.3.165, replaceString 4.3.166, replaceTabulations 4.3.167, toLowerString
4.3.201, toUpperString 4.3.202, trimLeft 4.3.211, trimRight 4.3.212, trim 4.3.210,
truncateAfterString4.3.213, truncateBeforeString 4.3.214

4.3.25 composeAdalikeString

e function composeAdaLikeString(text : string) : string

4.3. Common functions and procedures 117

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of character to convert to a Ada-like string

Returns the conversion of the sequence of characters given by argument t ext to a Ada-like string,
without double quote delimiters. If text contains a double-quote, it is repeated in the sequence.

Example:

local sText = "double—-quote \" inlayed in the sequence";
tracelLine ("composeAdalLikeString('" + sText + "’/) = '" +
composeAdalLikeString (sText) + "' ");

Output:

composeAdalLikeString (' double—-quote " inlayed in the sequence’) =
"double—quote "" inlayed in the sequence’

See also:

composeCLikeString 4.3.25, composeHTMLLikeString 4.3.26,

composeSQLLikeString 4.3.27

4.3.26 composeCLikeString

e function composeCLikeString(text : string) : string

Parameter | Type | Description
text ‘ string ‘ a sequence of character to convert to a C-like string

Returns the conversion of the sequence of characters given by argument text to a C-like string,
without double quote delimiters. It means that special characters of text are replaced by their
escape sequence, the rest remaining the same.

It recognizes the following escape sequences:

\\” as backslash (\), ASCII value 92,

- °\’ as single quotation mark (*), ASCII value 39,
— °\"" as double quotation mark ("), ASCII value 34,
- ’\a’ as alert (BEL), ASCII value 7,

— ’\b’ as backspace (BS), ASCII value 8,

- \f’ as formfeed (FF), ASCII value 12,

- ’\n’ as newline (LF), ASCII value 10,

- °\r’ as carriage return (CR), ASCII value 13,

— °\t’ as horizontal tab (HT), ASCII value 9,

- ’\Vv’ as vertical tab (VT), ASCII value 11,

Example:
local sText = "\t=tabulation,\n=newline";
traceline ("composeCLikeString(’'" + sText + ") = ’"" +

composeCLikeString (sText) + "' ");

Output:

118

Chapter 4. The scripting language

composeCLikeString(’ =tabulation,

=newline’) = ’\t=tabulation, \n=newline’
See also:
composeAdalLikeString 4.3.24, composeHTMLLikeString 4.3.26,

composeSQLLikeString 4.3.27

4.3.27 composeHTMLLikeString

e function composeHTMLLikeString(text : string) : string

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of character to convert to an HTML-like string

Returns the conversion of the sequence of characters given by argument tex to an HTML-like
string. It means that special characters of text are replaced by their HTML escape sequence
(&...3), the rest remaining the same.

Example:

local sText = "< & > aren’t admitted by HTML";

tracelLine ("composeHTMLLikeString (" + sText + "/) = ’'" +
composeHTMLLikeString (sText) + "' ");

Output:

composeHTMLLikeString (< & > aren’t admitted by HTML’) = ’<
& > aren't admitted by HTML'

See also:

composeCLikeString 4.3.25, composeAdaLikeString 4.3.24,

composeSQLLikeString 4.3.27

4.3.28 composeSQLLikeString

e function composeSQLLikeString(text : string) : string

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of character to convert to a SQL-like string

Returns the conversion of the sequence of characters given by argument text to a SQL-like
string, without single quote delimiters. It means that special characters of text are replaced by
their escape sequence, the rest remaining the same.

It recognizes the following escape sequences:

\\” as backslash (\), ASCII value 92,

- °\’ as single quotation mark (*), ASCII value 39,
- °\"" as double quotation mark ("), ASCII value 34,
- ’\a’ as alert (BEL), ASCII value 7,

— ’\b’ as backspace (BS), ASCII value 8,

4.3. Common functions and procedures 119

4.3

- \f’* as formfeed (FF), ASCII value 12,

- ’\m’ as newline (LF), ASCII value 10,

— ’\r’ as carriage return (CR), ASCII value 13,
- °\t’ as horizontal tab (HT), ASCII value 9,

— °\v’ as vertical tab (VT), ASCII value 11,

The function translates the single quote to an escape sequence ''\’'", instead of repeating twice
the single quote as in the SQL-standard. It presents the advantage of being more readable, but if
you encounters a drawback in using this translation, apply replaceString () to change '"\"
in ll”'l.

Example:

local sText = "\t=tabulation,\n=newline,’=single quote, \"=double
quote";

tracelLine ("composeSQLLikeString('" + sText + "’/) = '" +
composeSQLLikeString (sText) + "' ");

Output:

composeSQLLikeString (’ =tabulation,
=newline,’=single quote, "=double quote’) = ’\t=tabulation, \n=newline,”=singl
quote, \"=double quote’

See also:

composeCLikeString 4.3.25, composeAdalLikeString 4.3.24,
composeHTMLLikeString 4.3.26

.29 computeMD5

e function computeMDS5(text : string) : string

Parameter ‘ Type ‘ Description
text ‘ string ‘ the string to encrypt in MD5

Computes the MD5 of a string.

This optimized MDS5 implementation conforms to RFC 1321.
Source: http://www.crO.net:8040/code/crypto/mdS/
Copyright 2001-2004 Christophe Devine

Example:
local sSentence = "Garfield squashed 5 spiders yesterday";
local sCode = computeMD5 (sSentence) ;
if sCode != "B2D989FO0CO0501ESASD4A9F1B4AD0O6GE2CS" {
error ("bad result from ’computeMD5()"!");
}
tracelLine ("computeMD5 (" + sSentence + "’) = " + sCode);
Output:

computeMDS5 (! Garfield squashed 5 spiders yesterday’) =
B2D989F0C0501E9A9D4A9F 1B4D06GE2CS

120

Chapter 4. The scripting language

4.3.30 copyFile

e procedure copyFile(sourceFileName : string, destinationFileName : string)

Parameter ‘ Type ‘ Description

sourceFileName the name of the file to copy
destinationFileName the name of the copy

string
string

This procedure copies a file sourceFileName to another location destinationFileName.
It raises an error if something wrong has happened (either the source file doesn’t exist or permis-
sions are insufficient for copy).

Example:

deleteFile ("Documentation/readme.txt");

copyFile ("readme.txt", "Documentation/readme.txt");
tracelLine("file ’'readme.txt’ has been copied successfully!");
Output:

file "readme.txt’ has been copied successfully!

See also:

appendFile 4.3.4, changeFileTime 4.3.12, chmod 4.3.16, copyGenerableFile
4.3.30, copySmartFile 4.3.32, deleteFile4.345,existFile4.3.61, fileCreation
43.69, fileLastAccess 4.3.70, filelLastModification 4.3.71, filelLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.31 copyGenerableFile

e procedure copyGenerableFile(sourceFileName : string, destinationFileName :
String)
Parameter ‘ Type ‘ Description
sourceFileName string | the name of the file to copy

destinationFileName | string | the name of the copy

This procedure copies a generable file sourceFileName to another location
destinationFileName if the files have differences in the hand-typed text. It raises an
error if something wrong has happened (either the source file doesn’t exist or permissions are

insufficient for copy).
A generable file is any source file containing protected areas or expandable markups.

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copySmartFile 4.3.32, deleteFile 4.345, existFile 4.3.61, fileCreation
4.3.69, fileLastAccess 4.3.70, filelLastModification 4.3.71, filelLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3. Common functions and procedures 121

4.3.32 copySmartDirectory

e procedure copySmartDirectory(sourceDirectory : string, destinationPath : string)

Parameter ‘ Type ‘ Description
string | the name of the directory to copy
string | the path where to copy the directory

sourceDirectory
destinationPath

This procedure copies a directory sourceDirectory to another location
destinationPath recursively, checking for each file if it doesn’t exist yet or it the
content has changed. It avoids copying a file whereas it has no impact, and then modifying the
last changing date of the destination file.

It raises an error if something wrong has happened (the source directory must exist and permis-
sions must be sufficient to copy if required). Note that empty directories are ignored.

See also:

changeDirectory 4.3.11, canonizePath 4.3.9, exploreDirectory 4.3.66,
getCurrentDirectory 4.3.90, relativePath 4.3.156, removeDirectory 4.3.158,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4.3.33 copySmartFile

e function copySmartFile(sourceFileName : string, destinationFileName : string) :

bool
Parameter ‘ Type ‘ Description
sourceFileName string | the name of the file to copy
destinationFileName | string | the name of the copy

This function copies a file sourceFileName to another location destinationFileName
only if either file destinationFileName doesn’t exist yet or the content of file
destinationFileName is different of the content of file sourceFileName. It avoids
copying a file when it has no impact, and then modifying the last changing date of the desti-
nation file. It raises an error if something wrong has happened (either the file doesn’t exist or
permissions aren’t sufficient to copy when required).

If the function copies the file, and only in that case, it return t rue.
Example:

deleteFile ("Documentation/readme.txt") ;

traceline ("First call to the ’'copySmartFile()’: the file is
copied");

copySmartFile ("readme.txt", "Documentation/readme.txt");

tracelLine ("Second call to the ’copySmartFile()’: nothing is
done") ;

copySmartFile ("readme.txt", "Documentation/readme.txt");
Output:

First call to the ’'copySmartFile()’: the file is copied
Second call to the ’'copySmartFile()’: nothing is done

122

Chapter 4. The scripting language

See also:

copyFile 4.3.29, appendFile 4.34, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile 4.3.30, deleteFile 4345, existFile 4.3.61, fileCreation
4.3.69, fileLastAccess 4.3.70, fileLastModification 4.3.71, fileLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.34 coreString

e function coreString(text : string, pos : int, lastRemoved : inf) : string

Parameter ‘ Type ‘ Description

text string | the string to work on

pos int the beginning position, inclusive, starting at 0
lastRemoved | int the number of characters to ignore at the end of text

Returns a substring of argument text. The substring begins at the position specified by argument
pos and ignores the last characters, which number is specifier by argument 1astRemoved. The
first character starts at position 0, the next at position /, and so on.

Example:

local sSentence = "Do you believe in human being?";
tracelLine ("coreString(’" + sSentence + "/, 18, 7) = '"" +
coreString(sSentence, 18, 7) + "'M);

Output:

coreString (Do you believe in human being?’, 18, 7) = ’"human’
See also:

charAt 4.3.13, cutString 4.342, joinStrings 4.3.120, leftString 4.3.123,
lengthString 4.3.124, midString 4.3.132, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

4.3.35 countStringOccurences

e function countStringOccurences(st ring : string, text : string) : int

Parameter ‘ Type ‘ Description

string string | sequence of characters where occurrences of substring
text are to be counted
text string | substring to count

Returns the number of times the substring specified by argument text is found into the sequence
of characters held by argument string.

Example:

local sSentence = "Do you believe in human being?";

traceline ("countStringOccurences (’" + sSentence + "', 'in’) ="
+ countStringOccurences (sSentence, "in"));

4.3. Common functions and procedures 123

Output:

countStringOccurences (Do you believe in human being?’, ’"in’) =
2

See also:

completelLeftSpaces 4.3.22, completeRightSpaces 4.3.23, repeatString
4.3.165, replaceString 4.3.166, replaceTabulations 4.3.167, toLowerString
4.3.201, toUpperString 4.3.202, trimLeft 4.3.211, trimRight 4.3.212, trim 4.3.210,
truncateAfterString4.3.213, truncateBeforeString4.3.214

4.3.36 createDirectory

e function createDirectory(path : string) : bool

Parameter ‘ Type ‘ Description
path ‘ string ‘ the path of directories to create

This function creates a new directory and returns whether the operation has succeeded or not.

It fails if the complete path already exists, or if it is invalid.

4.3.37 createINETClientSocket

e function createINETClientSocket(remoteAddress : string, port : inf) : int

Parameter ‘ Type ‘ Description
remoteAddress
port

string
int

a remote [P address (Internet namespace)
a remote port number

This function creates a client socket and connects it to the specified remote port, at the specified
address IP remoteAddress, and returns a new socket descriptor. The socket is of type stream.

Once the creation has achieved, wuse directly the send/receive functions or
attachInputToSocket ()/attachOutputToSocket for reading/writing to the socket
via a BNF-parsing/template-based script.

See also:

createINETServerSocket 4.3.37, acceptSocket 4.3, attachInputToSocket

4.5, detachInputFromSocket 45.3, attachOutputToSocket 4.6.3,
detachOutputFromSocket 4.6.7, receiveBinaryFromSocket 4.3.153,
receiveFromSocket 4.3.154, receiveTextFromSocket 4.3.155,

sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

124

Chapter 4. The scripting language

4.3.38 createINETServerSocket

e function createINETServerSocket(port : int, backLog : inf) : int

Parameter ‘ Type ‘ Description
port int a local port number
backLog | int maximum queue length for incoming connection (1-5)

This function creates a server socket bound to port and returns a new socket descriptor. The
socket is of type stream.

The argument backLog specifies the size of the queue connection. A new connection is refused
when the queue is full.

Once the creation has achieved, use the function acceptSocket () to wait for a new client
connection (blocking call).

See also:

createINETClientSocket 4.3.36, acceptSocket 4.3, attachInputToSocket

4.5, detachInputFromSocket 45.3, attachOutputToSocket 4.6.3,
detachOutputFromSocket 4.6.7, receiveBinaryFromSocket 4.3.153,
receiveFromSocket 4.3.154, receiveTextFromSocket 4.3.155,

sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

4.3.39 createlterator

e function createlterator(i : iterator, 1ist : treeref) : bool

Parameter ‘ Type ‘ Description
i iterator | iterator to initialize
list treeref | the iterator will point to the beginning of this list

The variable 1 will become an iterator pointing to the first item of the list.
If the list is empty, there is no iterator created and the function returns false.

1 must have been declared before.

Example:

local list = {"parsing", "tool", "and", "code", "generation"};
local it;

if !createlterator(it, list) error ("shouldn’t be the case!");
do {

traceLine ("\t" + it);
} while next (it);
Output:

parsing

tool

and

code
generation

4.3. Common functions and procedures 125

See also:

createReverselterator 4.3.39, duplicateIterator 4.348, first 4.3.82, index
4.3.109, last 4.3.122, key 4.3.121, next 4.3.137, prec 4.3.148

4.3.40 createReverselterator

e function createReverselterator(i : iterator, 1ist : treeref) : bool

Parameter ‘ Type ‘ Description
iterator to initialize
the iterator will point to the end of this list

iterator
treeref

i
list

The variable 1 will become an iterator pointing to the last item of the list and will iterate in the
reverse order.

If the list is empty, there is no iterator created and the function returns false.
1 must have been declared before.
Example:

local list = {"parsing", "tool", "and", "code", "generation"};
local it;
if !createReverselterator (it, list) error ("shouldn’t be the
case!");
do {

traceLine ("\t" + it);
} while next (it);

Output:

generation
code

and

tool
parsing

See also:

createlIterator 4.3.38, duplicateIterator 4.3.48, first 4.3.82, index 4.3.109,
last 4.3.122, key 4.3.121, next 4.3.137, prec 4.3.148

4.3.41 createVirtualFile

e function createVirtualFile(handle : string, content : string) : bool

Parameter | Type | Description
handle the name of the virtual file to create
content the content to put into the virtual file

string
string

This function allows creating a virtual file. The handle parameter corresponds to the name given
to the virtual file, which may be any sequence of characters. The virtual file is populated with the
text assigned to the content argument.

126

Chapter 4. The scripting language

The function always returns t rue, but it may be changed in the future if some naming rules will
be imposed to the handles for instance. Calling the function to an existing virtual file causes the
content to be updated with the new one.

CODEWORKER manipulates the concept of file that isn’t persistent on a physical disk, but remains
stored in memory. These virtual files may be used everywhere a file is required so as to replace it:
copy, parsing or text generation. When CODEWORKER tries to open a file for reading or writing,
it starts looking for a virtual file that has the same name.

Once a virtual file doesn’t serve anymore, don’t forget to free the useless memory it takes up by
calling the deleteVirtualFile () function (see 4.3.46).

Example:

createVirtualFile("littleScript.cws",
"a protected area:" + endl () +
"@setProtectedArea (\"umbrella\");@finished!");
createVirtualFile ("littleText.txt", "");
generate ("littleScript.cws", project, "littleText.txt");
traceline ("generated (virtual) file:");
traceline (loadVirtualFile ("littleText.txt"));
deleteVirtualFile ("littleText.txt");
deleteVirtualFile("littleScript.cws");

Output:

generated (virtual) file:
a protected area:
//##protect##"umbrella"
//##protect##"umbrella"
finished!

See also:

createVirtualTemporaryFile 4.3.41, deleteVirtualFile 4.3.46,
existVirtualFile 4.3.63, loadVirtualFile 4.3.129

4.3.42 createVirtualTemporaryFile
e function createVirtualTemporaryFile(content : string) : string

Parameter ‘ Type ‘ Description
content ‘ string ‘ the content to put into the virtual file

This function allows creating a virtual file, for which the name of the virtual file must be chosen
by the routine. The virtual file is populated with the text assigned to the content argument.

The function returns the name that the routine has composed for this virtual file. The only differ-
ence with the function createVirtualFile () (see 4.3.40) lies in the way to choose of the
virtual file name. After creating the file, it behaves as any other virtual file.

Example:
local sScriptFile = createVirtualTemporaryFile (
"a protected area:" + endl () +
"@setProtectedArea(\"umbrella\");@finished!");
traceline ("Name of the (virtual) script file = " + sScriptFile
I nwrs :") ,.

4.3. Common functions and procedures 127

local sGeneratedFile = createVirtualTemporaryFile("");

generate (sScriptFile, project, sGeneratedFile);

traceline ("generated (virtual) file '" + sGeneratedFile + "’7:");
traceline (loadVirtualFile (sGeneratedFile));

deleteVirtualFile (sGeneratedFile);

deleteVirtualFile (sScriptFile);

Output:

Name of the (virtual) script file = ’.7#0':
generated (virtual) file ' . #1':

a protected area:

//##protect##"umbrella"
//##protect##"umbrella"

finished!

See also:

createVirtualFile 4.3.40, deleteVirtualFile 4.3.46, existVirtualFile
4.3.63, loadVirtualFile 4.3.129

4.3.43 cutString

e procedure cutString(text : string, separator : string, List : stringlist)

Parameter ‘ Type Description

text string the sequence of characters to split
separator | string the substring that separates slices
list stringlist | the list that will contain slices

This procedure looks for slices into the argument t ext, which are separated by the substring put
into argument separator. These slices are pushed into an array node as items called 1ist.

If the argument t ext doesn’t contain any occurrence of the argument separator, the argument
1ist will contain only one item that is text.

Example:

local sText = "a yellow submarine";

local 1listOfItems;

traceline ("cutString('" + sText + "', 7 7, listOfItems):");
cutString (sText, " ", listOfItems);

traceObject (1listOfItems);

Output:

cutString(’a yellow submarine’, '’ ', listOfItems):
Tracing variable ’"listOfItems’:

["0" —-> "a", "1" -> "yellow", "2" -> "submarine"]
End of variable’s trace ’'listOfItems’.

See also:

charaAt 4.3.13, coreString 4.3.33, joinStrings 4.3.120, leftString 4.3.123,
lengthString 4.3.124, midString 4.3.132, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

128 Chapter 4. The scripting language

4.3.44 decodeURL

o function decodeURL(URL : string) : string

Parameter ‘ Type ‘ Description
URL ‘ string ‘ readable URL to encode

Decode an URL from an HTTP request, meaning that the ’+’ character changes in a space and all
hexadecimal descriptions of bytes (2 digits preceded by ’ %) are converted to characters.

Note that conversions are transparent while doing HTTP requests.
Example:

local sURL = "Roger+Rabbit%26%25%24%3D%21%3F";
tracelLine ("URL before HTTP decoding = ’'" + sURL + "'");
traceline ("URL after HTTP decoding = ’'" + decodeURL (sURL) +

"I") .
4

Output:

URL before HTTP decoding = ’'Roger+Rabbit%26%25%24%3D%21%3F’
URL after HTTP decoding = 'Roger Rabbit&%s$=!7?’

See also:

encodeURL 4.3.49

4.3.45 decrement

e function decrement(number : doubleref) : double

Parameter | Type | Description
number ‘ doubleref ‘ variable to decrement

The result of decrement operation is the value of argument number minus one. While the
result is obtained, the variable number is decremented.

Example:

local iNumber = 32;

tracelLine ("iNumber = " + iNumber);

tracelLine ("decrement (iNumber) = " + decrement (iNumber)) ;
// the variable ’'number’ has been decremented:

tracelLine ("iNumber = " + iNumber);

Output:

iNumber = 32

decrement (iNumber) = 31

iNumber = 31
See also:

increment 4.3.107, floor 4.3.83, ceil 4.3.10

4.3. Common functions and procedures 129

4.3.46 deleteFile

e function deleteFile(filename : string) : bool

Parameter ‘ Type ‘ Description
filename ‘ string ‘ name of the file to delete

Deletes the file whose name is given by parameter £ilename. If the file cannot be found or if it
cannot be deleted, the function returns false.

Note that if the file name is a relative path, it is understood as being relative to the current directory
where the interpreter has been launched. So, the interpreter doesn’t search into include directories
passed to the command line (option —I), to offer a more secure use.

Example:

copyFile ("readme.txt", "Documentation/readme.txt");
tracelLine ("Result of deleting file ’'Documentation/readme.txt’ =

'" + deleteFile ("Documentation/readme.txt") + "' ");

Output:

Result of deleting file ’'Documentation/readme.txt’ = ’true’
See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile 4.3.30, copySmartFile 4.3.32, existFile 4.3.61,
fileCreation 4.3.69, filelastAccess 4.3.70, filelLastModification 4.3.71,
fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126,
loadFile 4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles
4.3.176

4.3.47 deleteVirtualFile

o function deleteVirtualFile(handle : string) : bool

Parameter ‘ Type ‘ Description
handle ‘ string ‘ the name of the virtual file to delete

This function removes from memory the virtual file whose name is given by the handle param-
eter.

It returns t rue if the virtual file was created before and has been removed successfully.
See also:

createVirtualFile 4.3.40, createVirtualTemporaryFile 4341,
existVirtualFile 4.3.63, loadvirtualFile 4.3.129

4.3.48 div

e function div(dividend : double, divisor : double) : double

130 Chapter 4. The scripting language

Parameter ‘ Type ‘ Description
dividend | double | the dividend
double | the divisor

divisor

Returns the result of arithmetic division dividend / divisor. Members are converted from
strings to numbers, supposed being worth 0 if a parsing error occurs; then the division is pro-
cessed, and the result is converted to a string, skipping fractional part if all digits after the dot are
0.

Remember that the symbol ’/> doesn’t mean anything in the standard syntax of the language, so
there is no way to confuse for expressing a division. However, it exists an escape mode that allows
writing arithmetic expressions between ’$’ symbols, as formula under LaTeX. So, $dividend
/ divisor$isequivalentto div (dividend, divisor).

Example:

local a = 3.2;

tracelLine(a + " / 2 =" 4 div(a, "2"));

tracelLine(a + " / 0.2 = " + div(a, 0.2) + " <- integer value");
Output:

3.2/ 2 =1.6

3.2 / 0.2 = 16 <- integer value

See also:

add 4.3.1, sub 4.3.197, mult 4.3.134, exp 4.3.64, 10g 4.3.130, mod 4.3.133, pow 4.3.147

4.3.49 duplicatelterator

o function duplicatelterator(o1dIt : iterator, newIt : treeref) : bool

Parameter | Type | Description
o0ldIt the original iterator to duplicate
newlt copy of the original iterator

iterator
treeref

Duplicates an iterator or returns false if oldlt isn’t an iterator.
Example:

local 1list = {"parsing", "tool", "and", "code", "generation"};
foreach i in list {
local it;

if !duplicatelterator (i, it) error ("shouldn’t be the case!");
traceText ("\t'" + it + "/ - ");
if prec(it) traceline ("precedent value = '"" + it + "' ");
else tracelLine ("no precedent value!");
}
Output:
"parsing’ - no precedent value!
"tool’ - precedent value = ’parsing’
"and’ - precedent value = ’'tool’
"code’ - precedent value = ’and’
"generation’ - precedent value = ’'code’

4.3. Common functions and procedures 131

See also:

createlIterator 4.3.38, createReverselterator 4.3.39, first 4.3.82, index
4.3.109, last 4.3.122, key 4.3.121, next 4.3.137, prec 4.3.148

4.3.50 encodeURL

o function encodeURL(URL : string) : string

Parameter ‘ Type ‘ Description
URL ‘ string ‘ readable URL to encode

Encode an URL for an HTTP request, meaning that the space character changes in ’+’ and all
non-alphanumeric characters are encoded in hexadecimal, preceded by *%”’.

Note that conversions are transparent while doing HTTP requests.
Example:

local sURL = "Roger Rabbit&%s=!?2";
traceline ("URL before HTTP encoding = ’'" + sURL + "' ");
traceline ("URL after HTTP encoding = " + encodeURL (sURL) +

"I") .
4

Output:

URL before HTTP encoding = ’"Roger Rabbit&%s=!7?’
URL after HTTP encoding = "Roger%20Rabbit%26%25%24%3D%21%3F’

See also:

decodeURL 4.3.43

4351 endl

e function endl() : string

Returns an end of line, value depending on the platform on which the script is executed. It returns
"\r\n" under Windows, and "\n" on any UNIX platform.

Example:
traceLine("endl() = rnm 4 endl() + "I"),.
traceline (" length = " + lengthString(endl()));
traceline (" first ASCII character = " + charTolInt (charAt (endl (),
0)));
Output:
endl () =71
length = 2

first ASCII character = 13

132 Chapter 4. The scripting language

4.3.52 endString

e function endString(text : string, end : string) : bool

Parameter ‘ Type ‘ Description
text
end

string
string

a sequence of characters to test
the postfix

"true" if the argument end is a postfix of the character sequence represented by text; ""
otherwise. Note also that "true" will be returned if end is an empty string or is equal to
argument text.

Example:

local sText = "airport";

traceline ("endString (" + sText + "', ’'port’) ='"" +
endString (sText, "port") + "'");

Output:

endString ('airport’, ’'port’) = ’"true’

See also:

equalsIgnoreCase 4.3.54, findFirstChar 4.3.76, findLastString 4.3.78,
findNextString4.3.79, findString 4.3.81, startString 4.3.196

4.3.53 environTable

e procedure environTable(table : tree)

Parameter ‘ Type ‘ Description
table ‘ tree ‘ will contain the list of all environment variable names

The procedure returns the array of all environment variable in the argument talble. The name of
the environment variable is assigned to the value of the item.

Example:

local theTable;
environTable (theTable);
foreach i in theTable {
if i.startString ("PROCESSOR") traceline(i);
}

Output:

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_IDENTIFIER=x86 Family 15 Model 2 Stepping 7,
GenuinelIntel

PROCESSOR_LEVEL=15

PROCESSOR_REVISION=0207

See also:

getEnv 4.3.91, existEnv 4.3.60, putEnv 4.3.150, system 4.3.200

4.3. Common functions and procedures 133

4.3.54 equal

e function equal(left : double, right : double) : bool

Parameter ‘ Type ‘ Description
left double

first number to compare

right double | second number to compare

Compares two numbers and returns t rue if they are identical.

Sometimes, the operator ==’ is suitable to compare numbers, in the case where their decimal

representation are strictly the same. But be careful that expression "7.0" == "7"is false!
However, it exists an escape mode that allows writing arithmetic comparisons between ’$’
symbols, as formula under LaTeX. So, $1eft == right$ is equivalent to equal (left,
right).

Example:

tracelLine("equal (7, "7.0") ='" + equal(7, "7.0") + "'™M);
traceLine ("7 == ’7.07 = '" + (7 == "7.0") + "'");

Output:

equal (7, "7.07) = "true’

7 ==77.0" ="

See also:

inf 4.3.110, sup 4.3.199

4.3.55 equalsignoreCase

e function equalsIgnoreCase(left : string, right : string) : bool

Parameter ‘ Type ‘ Description
left first string to compare
right second string to compare

string
string

Compares two strings, ignoring the case. It returns t rue when the comparison succeeds.

Example:

traceline ("equalsIgnoreCase (' BANANA’, ’'Banana’) = '" +
equalsIgnoreCase ("BANANA", "Banana") + "’'");

traceline ("equalsIgnoreCase (' BANANA’, ’'APPLE’) = ’"" +
equalsIgnoreCase ("BANANA", "APPLE") + "'");

Output:

equalsIgnoreCase (' BANANA’, ’'Banana’) = ’'true’
equalsIgnoreCase (' BANANA’, "APPLE’) ="

See also:

endString4.3.51

134

Chapter 4. The scripting language

4.3.56 equalTrees

e function equalTrees(firstTree : treeref, secondTree : treeref) : bool

Parameter ‘ Type ‘ Description
firstTree treeref | a parse tree
secondTree | treeref | another parse tree to compare with the first one

Compares two parse trees and returns t rue if they are identical (same sub-nodes, same values,
same entry keys on arrays of node, repeated recursively).

Example:

local myTreel = "monkey";

insert myTreel.hobbies = "to eat bretzel";
insert myTreel["Everest"] = "mountain";

insert myTreel["Tea spoon"] = "silverware";
local myTree2 = "monkey";

insert myTree2.hobbies = "to eat bretzel";
insert myTree2["Everest"] = "mountain";

insert myTree2["Tea spoon"] = "silverware";
traceline ("equalTrees (myTreel, myTree2) = '" +

equalTrees (myTreel, myTree2) + "’'");
Output:

equalTrees (myTreel, myTree2) = ’'true’
See also:

slideNodeContent 4.3.193

4.3.57 error

e procedure error(errorMessage : string)

Parameter | Type | Description
errorMessage ‘ string ‘ an error message to throw

It raises the argument errorMessage as an error that may be caught into a t ry/catch state-

ment 4.2.5.
Example:
try |

error ("I have forced an error!");

tracelLine ("I shouldn’t write this message...");
} catch(sError) {

tracelLine ("I caught the error: " + sError + "'");
}
Output:
I caught the error: 'I have forced an error!
TEX-manual.cwt (508) : main scope

writeFunctionDescription
14

4.3. Common functions and procedures 135

4.3.58 executeString

e procedure executeString(this : tree, command : string)

Parameter | Type | Description
this the current node that will be accessed via this variable
command some instructions of the scripting language to execute

tree
string

This procedure interprets the argument command as instructions to execute, written in the script-
ing language.

Example:

local myContext;
executeString (myContext,
"traceLine (\"Beginning of string execution:\");"

"insert this.name = \"execution\";"

"traceLine (\"End of string execution.\");");
traceline ("What we did during the string execution:");
traceObject (myContext) ;

Output:

Beginning of string execution:
End of string execution.
What we did during the string execution:
Tracing variable ’'myContext’:
name = "execution"
End of variable’s trace ’'myContext’.

See also:

executeStringQuiet 4.3.58

4.3.59 executeStringQuiet

e function executeStringQuiet(this : free, command : string) : string

Parameter ‘ Type ‘ Description
this the current node that will be accessed with this variable
command some instructions of the scripting language to execute

tree
string

This function interprets the argument command as instructions to execute, written in the scripting
language, but doesn’t display messages to the standard output stream. Messages are put into a
string that is returned by the function.

Example:

local myContext;

local sMessages = executeStringQuiet (myContext,
"traceLine (\"Beginning of string execution:\");"
"insert this.name = \"execution\";"
"traceLine (\"End of string execution.\");");
traceline ("What we did during the execution:");

traceObject (myContext) ;

136

Chapter 4. The scripting language

traceline ("What was intended to the console during the

execution:");
traceline (sMessages) ;
Output:

What we did during the execution:
Tracing variable ’'myContext’:
name = "execution"
End of variable’s trace ’'myContext’.
What was intended to the console during the execution:
Beginning of string execution:
End of string execution.

See also:

executeString4.3.57

4.3.60 existDirectory

e function existDirectory(path : string) : bool

Parameter ‘ Type ‘ Description
path ‘ string ‘ path name of the directory

The function checks the existence of a directory specified by the path argument.
See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, getCurrentDirectory 4.3.90, relativePath 4.3.156,
removeDirectory 4.3.158, resolveFilePath 4.3.168, scanDirectories 4.3.175

4.3.61 existEnv

e function existEnv(variable : string) : bool

Parameter ‘ Type ‘ Description
variable ‘ string ‘ the environment variable name

The function returns t rue if the environment table entry contains the variable.
Example:

traceline ("PATH="" + existEnv ("PATH")+ "' ");

Output:

PATH='true’

See also:

getEnv 4.391, environTable 4.3.52, putEnv 4.3.150, system 4.3.200

4.3. Common functions and procedures 137

4.3.62 existFile

e function existFile(fileName : string) : bool

Parameter ‘ Type ‘ Description
fileName ‘ string ‘ the name of a file to check for existence

Checks whether a file exists or not, looking for include directories passed on the command line.

This function doesn’t work to check the existence of a directory; use exploreDirectory ()
instead.

Example:

local sFilename = "Documentation/CodeWorker.pdf";

traceline ("Checks existence of file '" + sFilename + "/ = '"" +
existFile(sFilename) + "' ");

Output:

Checks existence of file ’'Documentation/CodeWorker.pdf’

"true’

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile 4330, copySmartFile 4.3.32, deleteFile 4.345,
fileCreation 4.3.69, filelLastAccess 4.3.70, filelLastModification 4.3.71,
fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126,
loadFile 4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles
4.3.176

4.3.63 existVariable

e function existVariable(variable : treeref) : bool

Parameter ‘ Type ‘ Description
variable ‘ treeref ‘ the name of a variable

Checks whether a variable exists or not.

Example:

local alice;

traceline ("The variable ’"alice’ exists: rmo4

existVariable (alice) + "' ™);

traceline ("The variable ’'wonderful’ doesn’t exist: o4
existVariable (wonderful) + "' ");

Output:

(3,80): warning! vyou haven’t declared the variable ’'wonderful’
before ; interpreted as 'this.wonderful’, but obsolete soon!
The variable 'alice’ exists: "true’

The variable 'wonderful’ doesn’t exist: "

See also:

clearVariable 4.3.17, findFirstSubstringIntoKeys 4.3.77, findElement
4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize 4.3.87,
getVariableAttributes 4.3.100, invertArray 4.3.114, isEmpty 4.3.115,
removeVariable 4.3.164

138

Chapter 4. The scripting language

4.3.64 existVirtualFile

e function existVirtualFile(handle : string) : bool

Parameter ‘ Type ‘ Description
handle ‘ string ‘ the name of the virtual file to check

Checks whether a virtual file exists or not, meaning that it has been created via the function
createVirtualFile ().

See also:

createVirtualFile 4.3.40, createVirtualTemporaryFile 4.3.41,
deleteVirtualFile 4.3.46, loadVirtualFile 4.3.129

4.3.65 exp

e function exp(x : double) : double

Parameter ‘ Type ‘ Description
b ‘ double ‘ the floating-point whose exponential is to compute

Returns the exponential of x.

On underflow, it returns 0.
On overflow, it returns infinite.

Example:

tracelLine ("exp (0.693147) = " + $exp(0.693147)93);
Output:

exp(0.693147) = 1.9999996388801418

See also:

add 4.3.1, sub 4.3.197, mult 4.3.134, div 4.3.47, 10g 4.3.130, mod 4.3.133, pow 4.3.147

4.3.66 expand

e procedure expand(patternFileName : script, this : treeref, outputFileName : string)

Parameter ‘ Type Description

patternFileName | script<pattern> | file name or block of instructions of the pattern script
this treeref the current node that will be accessed with this variable
outputFileName | string the existing file to expand

Expands an existing file whose name is passed to the argument out put Fi leName, by executing
the pattern script patternFileName on it.

Expanding a file consists of generating code into marked out areas only, the rest of the file re-
maining the same. The markup is put into a comment, knowing that the syntax of the com-
ment must conform to the type of the expanded file outputFileName. So, an HTML file

4.3. Common functions and procedures 139

expects <!- - and - ->, a JAVA file is waiting for // and '"\n", ... The markup is announced by
##markup## followed by a string that represents the markup key. Don’t forget to configure cor-
rectly the syntax of comment boundaries with procedures set CommentBegin () (see 4.3.181)
and setCommentEnd () (see 4.3.182).

When the procedure is called, CODEWORKER jumps from a markup to another. To handle a
markup, it checks whether text was already generated, put between tags ##begin##' markup-
key' and ##tend##' ' markup-key'', added automatically the first time an expansion is required, to
demarquate the portion of code that doesn’t belong to the user. Then, it extracts all protected areas,
if any, and it generates code at the position of the markup, adding begin/end tags seen before.

If the interpreter finds the tag ##script## just after the markup, it extracts the embedded text,
considered as a script, eventually put between comments. Otherwise, the interpreter executes the
pattern script.

Note that some data might be put between tags ##data##, accessible in the template-based
script via the function getMarkupValue () (see 4.6.14). This block of custom data comes
after the ##script## tag, if present.

The same pattern script is called for all markups, so, to distinguish them and not to gener-
ate always the same text, it controls the current markup key being processed via the function
getMarkupKey () (see 4.6.13).

Be careful not to confuse this prodedure with generate () that doesn’t care about markups and
that overwrites the output file completely, except protected areas of course.

See also:

autoexpand 4.3.5, generate 4.3.85, generateString 4.3.86, translate
43208, parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143,
parseStringAsBNF 4.3.144, translateString 4.3.209

4.3.67 exploreDirectory

e function exploreDirectory(directory : tree, path : string, subfolders : bool) : bool

Parameter ‘ Type ‘ Description
directory tree node that will contain the name of all files and folders
path string | the directory to explore

subfolders | bool | to explore sub directories recursively

Explores the directory whose name is passed to the argument path. The list of files is put
into the node’s array directory.files and the list of directories are put into the node’s
array directory.directories. Exploring sub directories is required by the argument
subfolders and each node of the node’s array directory.directories repeats the same
process recursively. The key of an array’s node is the short name of the file or the directory and
the value of a directory item is the relative path, whereas the value of a file item is also the short
name.

If the directory cannot be found, the variable directory doesn’t change and the function returns
false. If the directory doesn’t contain any file, the attribute directory. filesisn’t created.
If the directory doesn’t contain any subfolder, the attribute directory.directories isn’t
created.

Example:

140

Chapter 4. The scripting language

local theDirectory;

local sPathToExplore = project.winBinaries; // Windows package
of CodeWorker

if l!exploreDirectory(theDirectory, sPathToExplore, true)

error ("unable to find the directory");

// the complete path is too long: shorten it

traceline ("starting directory = ’'" + theDirectory.subString(sPathToExplore.]l
+ "l:ll);
foreach j in theDirectory.files {

traceLine(" '™ + 3 + "' ");

}

foreach i in cascading theDirectory.directories {
// the complete path is too long: shorten it
traceline ("- directory " + i.subString(sPathToExplore.length())
+ ")y
foreach j in i.directories {
tracelLine (" subfolder '" + key(j) + """);
// the complete path is too long: shorten it
tracelLine (" path " + j.subString(sPathToExplore.length())

| "I");
}
if key (i) == "GettingStarted" {
traceLine(" ... a lot of files!");
} else {
foreach j in i.files {
traceLine(" '™ + 3 + "'");
}
}
}
Output:
starting directory = '/’:

"GettingStarted.bat’
"readme.txt’

- directory ' /bin/’:
"CodeWorker.exe’

"libcurl.dl1l’

- directory ’/include/’:
"CGCompiler.h’
"CGExternalHandling.h’
"CGRuntime.h’
"CppParsingTree.h’

"CW4dl.h'
"DynPackage.h’
"ExternalValueNode.h’
"UtlException.h’

- directory ’/Scripts/’:
subfolder ’Tutorial’

path ’/Scripts/Tutorial/’

- directory ' /Scripts/Tutorial/’:
subfolder ’'GettingStarted’

path ’/Scripts/Tutorial/GettingStarted/’

4.3. Common functions and procedures 141

— directory ’/Scripts/Tutorial/GettingStarted/’ :
a lot of files!

See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
getCurrentDirectory 4.3.90, relativePath 4.3.156, removeDirectory 4.3.158,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4.3.68 extendExecutedScript

e procedure extendExecutedScript(scriptContent : string)

Parameter ‘ Type ‘ Description
scriptContent | string | A piece of CodeWorker’s script to compile at the end of
the currently executed script

Extend the currently executed CodeWorker’s script with new instructions. The argument
scriptContent is a piece of script to compile at the end of the executed script.

4.3.69 extractGenerationHeader

e function extractGenerationHeader(filename : string, generator : stringref, version :
stringref, date : stringref) : string

Parameter ‘ Type ‘ Description

filename | string generated file to check

generator | stringref | name of the application that has generated the file
version stringref | version of the generator

date stringref | date/time of the generation

Looks for a generation header into the file passed to the argument £ilename. It returns the
comment that was put into the header (see procedure setGenerationHeader () 4.3.183)
during the generation, after having assigned the output parameters:

— generator with the name of the application that have generated the file, "CodeWorker"
normally,

— version with the version of the generator, the version of CODEWORKER normally,

— date with the date and time of the generation, conforming to "$d%b%Y $H:%M:%S";

12dec2002 10:00:23 for example,

The generation header is inlayed in the comment delimeters and conforms to the format:

— if the comment holds on a single line:
begin-comment "##generation header##CodeWorkeri##"
version—-number "##" generation-date "##"
rmr comment '"' end-comment

142 Chapter 4. The scripting language

— if the comment holds on more than one line:
begin-comment "##generation header##CodeWorkeri#"
version—-number "##" generation-date "##" end-comment
begin-comment "##header start##" end-comment
begin-comment line: end-comment

begin—-comment linen end-comment
begin-comment "##header end##" end-comment

Example:

setGenerationHeader ("Popeye’s Village\nGozo and Comino");

local sScriptFile = "GettingStarted/Tiny-JAVA.cwt";

local sFileName = "Documentation/" + project.listOfClasses#back.name
+ ".java";

generate (sScriptFile, project.listOfClasses#back, sFileName);
local sGenerator;

local sVersion;

local sDateTime;

tracelLine ("comment of the generation header = '" +
extractGenerationHeader (sFileName, sGenerator, sVersion,
sDateTime) + "' ");

traceLine ("generator = ’'" + sGenerator + "’'");
traceLine ("version = '" + sVersion + "'");

traceLine ("date = '" + sDateTime + "' ");
setGenerationHeader ("");

Output:

comment of the generation header = ’'Popeye’s Village
Gozo and Comino’

generator = ’CodeWorker’

version = 3.10.4'

date = "30may2005 19:16:43’
See also:

setGenerationHeader 4.3.183, getGenerationHeader 4.3.92

4.3.70 fileCreation

e function fileCreation(filename : string) : string

Parameter ‘ Type ‘ Description
filename‘ ﬂﬁng‘rmnw(ﬁkheﬁbtoaﬂiﬁnimcnmﬁonﬁnw

Returns the date-time of creation of file whose name is passed to the argument £ilename.

If an error occurs, it returns one code among the following:

— "-1"": unknown error that shouldn’t appear,
— "-2'": permission denied,

— '"'-3"": too many files have been opened,

— "-4": file not found,

4.3. Common functions and procedures 143

Example:

local sFileName = "Documentation/CodeWorker.tex";

local sCreationTime = fileCreation(sFileName) ;

if startString(sCreationTime, "-") error ("error code = " +
sCreationTime + "!™);

traceline ("creation of " + sFileName + "/

" + sCreationTime) ;
Output:
creation of ’Documentation/CodeWorker.tex’ = 17mar2004 22:32:18
See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32, deleteFile4.345,existFile
43.61, fileLastAccess 4.3.70, filelLastModification 4.3.71, filelLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.71 fileLastAccess

e function fileLastAccess(filename : string) : string

Parameter | Type | Description
filename ‘ string ‘ name of the file to ask for its last access time

Returns the date-time of last access to file whose name is passed to the argument £ilename.

If an error occurs, it returns one code among the following:

— "-1'"": unknown error that shouldn’t appear,
— "-2'": permission denied,
— ''-3"": too many files have been opened,

— "-4": file not found,

Example:

local sFileName = "Documentation/CodeWorker.tex";

local sLastAccessTime = filelastAccess (sFileName) ;

if startString(sLastAccessTime, "-") error ("error code = " +
sLastAccessTime + "!");

traceline ("last access to " + sFileName + "/ =" +
sLastAccessTime) ;

Output:

last access to ’'Documentation/CodeWorker.tex’ = 283jul2008
00:44:32

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32, deleteFile4.3.45,existFile
43.61, fileCreation 4.3.69, fileLastModification 4.3.71, fileLines 4.3.72,
fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

144

Chapter 4. The scripting language

4.3.72 fileLastModification
o function fileLastModification(filename : string) : string

Parameter ‘ Type ‘ Description
filename ‘ string ‘ name of the file to ask for its last modification time

Returns the date-time of last modification to file whose name is passed to the argument
filename.

If an error occurs, it returns one code among the following:

— "-1"": unknown error that shouldn’t appear,
— '"-2'"": permission denied,
— '"'-3"": too many files have been opened,

— "-4": file not found,

Example:

local sFileName = "Documentation/CodeWorker.tex";

local sLastModificationTime = fileLastModification (sFileName) ;
if startString(sLastModificationTime, "-") error("error code = "
+ sLastModificationTime + "!");

tracelLine ("last modification of "™ + sFileName + "/ = " +
sLastModificationTime) ;

Output:

last modification of ’'Documentation/CodeWorker.tex’ = 28jul2008
00:42:07

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile 4.3.30, copySmartFile 4.3.32, deleteFile 4.345,
existFile 4.3.61, fileCreation 4.3.69, fileLastAccess 4.3.70, filelLines
4372, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile
4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.73 fileLines

e function fileLines(filename : string) : int

Parameter | Type | Description
filename ‘ string ‘ name of the file where to count lines

Returns the number of lines that the file passed to the argument £i1lename contains.
If the file cannot be found nor opened, the function returns —1.
Example:

local theFiles;

if !scanFiles(theFiles, "Generation", "*x.cw?", true)
error ("impossible to scan the directory");

local iLines = 0;

4.3. Common functions and procedures 145

foreach i in theFiles ilLines = $ilLines + filelLines (i) S$S;

tracelLine ("total of script lines to generate \"CodeWorker\" = " +
iLines) ;

Output:

total of script lines to generate "CodeWorker" = 8708

See also:

copyFile 4.3.29, appendFile 4.3.4, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345,existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile
4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.74 fileMode

e function fileMode(filename : string) : string

Parameter ‘ Type ‘ Description
filename ‘ string ‘ file to ask for its permission setting

The chmod function returns the permission setting of the file specified by filename. The
permission setting controls read and write and execute access to the file. The returned value holds
the permission setting of the file as a concatenation of chars amongst the following:

— ’R’ for reading permitted,

— "W’ for writing permitted,

— X for executing permitted (ignored on Windows platform),

If an error occurs, the function returns one code among the following:
— "-1"": unknown error that shouldn’t appear,
— "-2'": permission denied,

— "-3": too many files have been opened,
— "-4": file not found,

Example:
local sPermission = fileMode ("Documentation/CodeWorker.tex");
if startString(sPermission, "-") error("error code = " +

sPermission) ;
tracelLine ("permission on file ’'Documentation/CodeWorker.tex’ =
" + sPermission + "'");

Output:
permission on file ’Documentation/CodeWorker.tex’ = ’'RW’
See also:

copyFile 4.3.29, appendFile 4.3.4, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345, existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileSize 4.3.74, loadBinaryFile 4.3.126, loadFile
4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

146

Chapter 4. The scripting language

4.3.75 fileSize

e function fileSize(filename : string) : int

Parameter | Type | Description
filename ‘ string ‘ name of the file to ask for its size

Returns the size of the file whose name is passed to the argument £ilename.

If an error occurs, it returns one code among the following:

— -1: unknown error that shouldn’t appear,
— -2: permission denied,

— -3: too many files have been opened,

— -4: file not found,

Example:

local sFileName = "Documentation/CodeWorker.tex";

local iSize = fileSize (sFileName);

if isNegative (iSize) error("error code = " + iSize + "!");
traceline ("size of " + sFileName + "/ = " 4+ iSize + "
characters");

Output:

size of ’'Documentation/CodeWorker.tex’ 929422 characters

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345, existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, loadBinaryFile 4.3.126, loadFile
4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.76 findElement

e function findElement(value : string, variable : treeref) : bool

Parameter ‘ Type ‘ Description
value

string
treeref

a key as an array entry

variable a variable that contains an array of nodes

This function looks for a key, given by argument value, as an entry of the nodes array passed
to argument variable. If the key is found, the function returns t rue, and and empty string
otherwise.

Example:

local list;

insert list["everest"] = "everest";

insert list["karakorum"] = "karakorum";
insert list["kilimanjaro"] = "kilimanjaro";
insert list["twin peaks"] = "twin peaks";

4.3. Common functions and procedures 147

traceline ("findElement ('kilimanjaro’, list) = '"" +
findElement ("kilimanjaro", list) + "' ");

Output:

findElement ("kilimanjaro’, list) = ’'true’
Method: variable.f indElement(value)

See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4.3.77, findNextSubstringIntoKeys 4.3.80, getArraySize 4.3.87,
getVariableAttributes 4.3.100, invertArray 4.3.114, isEmpty 4.3.115,
removeVariable 4.3.164

4.3.77 findFirstChar

e function findFirstChar(text : string, someChars : string) : int

Parameter ‘ Type ‘ Description
text string | the string to explore
someChars | string | a set of individual characters

Returns the location into text of the first character encountered that belongs to the set of char-
acters passed to argument someChars. The position starts counting at 0. If no occurrence has
been found, the negative value -1 is returned.

Example:

local sText = "looking for a token: \"...\" f(a,b) {...}";
tracelLine ("sText = " + composeCLikeString(sText) + "' ");
tracelLine ("findFirstChar (sText, ' \" ({") =" +

findFirstChar (sText, "\"({"));

Output:

sText = ’looking for a token: \"...\" f(a,b) {...}’
findFirstChar (sText, ""({’) = 21

See also:

endString 4.3.51, findFirstChar 4.3.76, findLastString 4.3.78,

findNextString4.3.79, findString4.3.81, startString 4.3.196

4.3.78 findFirstSubstringintoKeys

e function findFirstSubstringIntoKeys(substring : string, array : treeref) : int

Parameter ‘ Type ‘ Description
substring | string | a sequence of characters to search into keys of a node’s

array
array treeref | a variable that contains an array of nodes

148 Chapter 4. The scripting language

This function returns the position of the first item, such as its corresponding entry key into the
list owned byvariable contains the substring passed to argument substring. The position
starts counting at O.

If no item is found, the negative value —1 is returned.
Example:

local list;

insert list["everest"] = 0;

insert list["karakorum"] = 1;

insert list["kilimanjaro"] = 2;

insert list["twin peaks"] = 3;

tracelLine ("findFirstSubstringIntoKeys (’'k’, list) = " +
findFirstSubstringIntoKeys ("k", list));

Output:
findFirstSubstringIntoKeys ("k’, list) = 1
See also:

existVariable 4.3.62, clearVariable 4.3.17, findElement
4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize 4.3.87,
getVariableAttributes 4.3.100, invertArray 4.3.114, isEmpty 4.3.115,
removeVariable 4.3.164

4.3.79 findLastString

e function findLastString(text : string, find : string) : int

Parameter ‘ Type ‘ Description
text
find

string
string

a sequence of characters to explore
a substring to find into text

Returns the position of the last occurrence of the substring £ind into the sequence of characters
passed to argument text. The position starts counting to O.

If the substring £ind doesn’t belong to text, the negative value —1 is returned.

Example:

local sText = "the lamp of experience";
traceline ("sText = '" + sText + "’'");
traceline ("findLastString(sText, 'p’) = '" +
findLastString (sText, "p") + "'");

Output:

sText = 'the lamp of experience’
findLastString (sText, ’'p’) = 14’

See also:

findFirstChar 4.3.76, endString 4.3.51, findNextString 4.3.79, findString
4381, startString 4.3.196

4.3. Common functions and procedures 149

4.3.80 findNextString

o function findNextString(text : string, find : string, position : int) : int

Parameter ‘ Type ‘ Description

text string | a sequence of characters to explore

find string | a substring to find into text

position | int the position in the string (starting at 0) the search must
begin

Returns the lowest beginning index of the substring £ ind that matches the sequence of characters

passed to argument text, starting the search at position included. The index starts counting
to 0.

If the substring £ind doesn’t belong to text (starting at position), the negative value —1 is
returned.

Example:

local sText = "the lamp of experience";
tracelLine ("sText = '" + sText + "' ");

traceline ("findNextString(sText, 'p’, 8) = '" +
findNextString (sText, "p", 8) + "'");

Output:

sText = 'the lamp of experience’

findNextString (sText, ’'p’, 8) = ’14'
See also:

findFirstChar 4.3.76, endString 4.3.51, findLastString 4.3.78, findString
4.3.81, startString 4.3.196

4.3.81 findNextSubstringintoKeys

e function findNextSubstringIntoKeys(substring : string, array : treeref, next : int) : int

Parameter ‘ Type ‘ Description
substring | string | a sequence of characters to search into keys of a node’s

array
array treeref | a variable that contains an array of nodes
next int the position after which looking for the next item

Returns the position of the next item of list passed to argument variable, whose entry key
contains the substring given by argument substring. The next item is searched after position
passed to argument next. The position starts counting at 0.

If no item is found, the negative value —1 is returned.
Example:

local list;

insert list["everest"] = 0;

insert list["karakorum"] = 1;

insert list["kilimanjaro"] = 2;
[

insert list["twin peaks"] = 3;

150

Chapter 4. The scripting language

traceline ("findNextSubstringIntoKeys('k’, 1list, 1) = " +
findNextSubstringIntoKeys ("k", list, 1));

Output:
findNextSubstringIntoKeys ('k’, list, 1) = 2
See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
43.77, findElement 4.3.75, getArraySize 4.3.87, getVariableAttributes
4.3.100, invertArray 4.3.114, isEmpty 4.3.115, removeVariable 4.3.164

4.3.82 findString

e function findString(text : string, £ind : string) : int

Parameter ‘ Type ‘ Description
text
find

string
string

a sequence of characters to explore
a substring to find into text

Returns the position of the first occurrence of the substring £ind into the sequence of characters
passed to argument text. The position starts counting to 0.

If the substring £ind doesn’t belong to text, the negative value —1 is returned.

Example:

local sText = "the lamp of experience";

tracelLine ("sText = '" + sText + "’'");

traceline ("findString(sText, 'of’) = '"" + findString(sText,
"of") + lII"),.

Output:

sText = 'the lamp of experience’

findString(sText, 'of’") = ’9/

See also:

findFirstChar 4.3.76, endString 4.3.51, findLastString 4.3.78,
findNextString4.3.79, startString 4.3.196

4.3.83 first

e function first(i : iterator) : bool

Parameter ‘ Type ‘ Description
i ‘ iterator ‘ iterator of a foreach statement or pointing to a list

Returns t rue if the iterator argument i points to the first item of the iterated list.
Example:

local myTree;
insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";

4.3. Common functions and procedures 151

foreach 1 in myTree {
if first (i) tracelLine("The first item key of the list is " +
key(i) _I,_ "I");
}
Output:
The first item key of the list is ’'Everest’
See also:

index 4.3.109, last 4.3.122, key 4.3.121, next 4.3.137, prec 4.3.148, createIterator
4.3.38, createReverselterator 4.3.39, duplicateIterator 4.3.48

4.3.84 floor

e function floor(number : double) : int

Parameter ‘ Type ‘ Description
number ‘ double ‘ the floating-point number to floor

Returns the largest integer that is less than or equal to number. If number isn’t a number, the
function returns 0.

Example:

tracelLine ("floor (5.369e+1) = " + floor(5.369el));
Output:

floor (5.36%9e+1) = 53

See also:

decrement 4.3.44, increment 4.3.107, ceil 4.3.10

4.3.85 formatDate

e function formatDate(date : string, format : string) : string

Parameter ‘ Type ‘ Description
date
format

string
string

a date-time representation to transform
the format that will be applied to the date argument

Converts a date to another format, or extracts just a part of the date. The date is passed to argument
date, and the format given by format.

Each field of the format specification is a single character or a format type signifying a particular
format option. A format option starts with a percent sign. If a percent sign is followed by a

character that has no meaning as a format type, an error is raised. To print a percent-sign character,
use % %°.

The format type determines how the associated argument, at the current location to the date, must
be interpreted:

— ’%d’ means that a 2-digits day of the month must be written,

152

Chapter 4. The scripting language

— ’%e’ means that a day of the month must be written, such as / but not 0/
— ’%}j’ means that the day of the year must be written,

— ’%m’ means that a 2-digits month must be written,

— ’%B’ means that the complete english name of the month must be written,

— ’%Db’ means that the truncated english name of the month must be written: only the 3 first
characters,

— ’%Y’ means that a 4-digits year must be written,

— ’%y’ means that a 2-digits year must be written,

— ’%¢t’ means that the number of days since 30dec1899 must be written (WingZ format),
— ’%w’ means that the weekday must be written as an integer (0—6; 0 is sunday),
— %W’ means that the weekday must be written as the complete english name,
— ’%H’ means that a 2-digits hour must be written,

— ’%]1’ means that a 2-digits hour (12 max) must be written,

— ’%p’ means that "AM" / "PM" must be written,

— ’%M’ means that a 2-digits minute must be written,

- %S’ means that a 2-digits second must be written,

— ’%L’ means that a 3-digits millisecond must be written,

- %D’ is equivalent to * $m/%d/%y’,

— %r’ is equivalentto ' $I:%M:%S %p’,

- "%T’ is equivalent to / $H:%M:%S’,

An error occurs if a temporal argument doesn’t belong to those listed above, or if the date to
format doesn’t conform to "$d%b%Y $H:$M:%S.%L".

Example:

traceline ("release of the documentation = ’'" + getNow() + """);
tracelLine ("a new format = '" + formatDate (getNow (), "%B %d, %Y")
+ nwrs ") ;

tracelLine ("the hour only = ’" + formatDate (getNow (), "%H") +

nwrs ") ;

Output:

release of the documentation = 728jul2008 20:42:00.500’
a new format = ’Jjuly 28, 2008’
the hour only = "20’

See also:

addToDate 4.3.3, compareDate 4.3.19, completeDate 4.3.21, getLastDelay 4.3.95,
getNow 4.3.96, setNow 4.3.185

4.3.86 generate

e procedure generate(patternFileName : script, this : treeref, outputFileName :
string)

4.3. Common functions and procedures 153

Parameter \ Type Description

patternFileName | script<pattern> | file name of the pattern script
this treeref the current node that will be accessed via this variable
outputFileName | string the output file to generate

Generates a file whose name is passed to the argument outputFileName, by executing the
pattern script patternFileName on it.

Up to version 2. 18, the pattern script was necessary passed as a script file name. Since version
2.19, the function admits to embed the script in the place of the corresponding argument
patternFileName, inlaying the script in brackets:
//generation of an HTML file, which shows the title and the
content
//of some financial market news previously extracted
generate (
{<html>
<body>
@
foreach i in this.news {
@@composeHTMLLikeString (i.title)@
@endl ()@@
@<table><tr><td>@endl () @Q
@dcomposeHTMLLikeString (i.body) + endl ()@@
@</td></tr></table>@endl () Q@
}
@ </body>
</html>
@}, project, "news.html");

— It avoids the writing of 2 files, as it was unavoidable before:
generate ("news2HTML.cwt", project, "news.html");

— such as "news2HTML. cwt ", which contains:
<html>
<body>

@

foreach i in this.news {
@@composeHTMLLikeString (i.title)@
@endl () QQ
Q<table><tr><td>Qendl () QQ

@@composeHTMLLikeString (i.body) + endl ()@@

@</td></tr></table>Qendl () QQ

}

@ </body>

</html>

Generating a file consists of extracting the protected areas from the output file, before overwriting
it with the text generated by the pattern script. It is possible to put a header of generation at
the beginning of the file that will specify some information such as the name of the generating
tool (CODEWORKER normally) and the version of the generator and the date of generation and a
custom field of data. This header of generation (see setGenerationHeader () 4.3.183) isn’t
taken into account while comparing the new generated text with the precedent version of the file
on disk.

154

Chapter 4. The scripting language

If the output file may contain some protected areas, don’t forget to configure correctly the
syntax of comment boundaries with procedures setCommentBegin () (see 4.3.181) and
setCommentEnd () (see 4.3.182).

Be careful not to use this prodedure instead of expand (). Expansion saves all text, except into
markups, while generation saves protected areas only and overwrites the rest!

See also:

expand 4.3.65, autocexpand 4.3.5, generateString 4.3.86, translate
43208, parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143,
parseStringAsBNF 4.3.144, translateString 4.3.209

4.3.87 generateString

e procedure generateString(patternFileName : script, this : treeref, outputString :

stringref)
Parameter ‘ Type ‘ Description
patternFileName | script<pattern> | file name of the pattern script
this treeref the current node that will be accessed via this variable
outputString stringref the output text to generate

Generates a sequence of characters, which is stored into the argument out put St ring, by exe-
cuting the pattern script patternFileName on it.

Generating a sequence of characters consists of extracting the protected areas from the
outputString string, before overwriting it with the text generated by the pattern script. It
is possible to put a header of generation at the beginning of the file that will specify some in-
formation such as the name of the generating tool (CODEWORKER normally) and the version of
the generator and the date of generation and a custom field of data. This header of generation
(see setGenerationHeader () 4.3.183) isn’t taken into account while comparing the new
generated text with the precedent version of the file on disk.

If the output string may contain some protected areas, don’t forget to configure correctly the
syntax of comment boundaries with procedures setCommentBegin () (see 4.3.181) and
setCommentEnd () (see 4.3.182).

See also:

expand 4.3.65, autoexpand 4.3.5, generate 4.3.85, translate 4.3.208, parseAsBNF
4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143, parseStringAsBNF 4.3.144,
translateString4.3.209

4.3.88 getArraySize

e function getArraySize(variable : treeref) : int

Parameter ‘ Type ‘ Description
variable ‘ treeref ‘ any node of a tree

4.3. Common functions and procedures 155

Returns the number of items the argument variable contains into its embedded array, or 0 if
the array doesn’t exist.

Example:

local myTree;

insert myTree["Everest"] = "mountain";

insert myTree["Tea spoon"] = "silverware";

tracelLine ("getArraySize (myTree) = ’'" + getArraySize (myTree) +
"I");

Output:

getArraySize (myTree) = '2'

Method: variable.size()
Deprecated form: getVariableSize has disappeared since version /.30
See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4.3.77, findElement 4.3.75, findNextSubstringIntoKeys 4.3.80,
getVariableAttributes 4.3.100, invertArray 4.3.114, isEmpty 4.3.115,
removeVariable 4.3.164

4.3.89 getCommentBegin

e function getCommentBegin() : string

Returns the value of a beginning of comment, which is exploited by the procedures taking in
charge the source code generation, such as expand or generate. CODEWORKER must know
the format of comments recognized by the output file, to be able to extract or put protected areas,
or to detect expansion markups.

The beginning of comment assigned by default is worth *//’. This is the symbol of C++ and
JAVA comments that are the most frequently files encountered for generation. Use the procedure
setCommentBegin to change it.

Some languages accept more than one format of comment. It is the case of C++ or JAVA or non-
standard HTML (Microsoft extended HTML with the non-recommended tag "< COMMENT’ that
the W3C hasn’t admitted). CODEWORKER can’t handle more than one beginning of comment for-
mat for an output file, but you’ll haven’t to suffer about it, because you have the control on writing
the markups into the output file, and so, to conform to a unique representation of comments.

Be careful that if the beginning and the end of comments haven’t been assigned correctly before
generating a file, the protected areas will not be extracted, and so, lost for ever!

Example:

traceline ("This example is running while processing the
documentation, so we are expecting a LaTeX comment: e+
getCommentBegin() + "' ");

Output:

This example is running while processing the documentation, so
we are expecting a LaTeX comment: '//’

See also:

getCommentEnd 4.3.89, setCommentBegin 4.3.181, setCommentEnd 4.3.182

156

Chapter 4. The scripting language

4.3.90 getCommentEnd

e function getCommentEnd() : string

Returns the value of an end of comment, which is exploited by the procedures taking in charge the
source code generation, such as expand or generate. CODEWORKER must know the format
of comments recognized by the output file, to be able to extract or put protected areas, or to detect
expansion markups.

The end of comment assigned by default is worth *\r\n’. This is the symbol of C++ and
JAVA comments that are the most frequently files encountered for generation. Use the procedure
setCommentEnd to change it.

Some languages accept more than one format of comment. It is the case of C++ or JAVA or non-
standard HTML (Microsoft extended HTML with the non-recommended tag /COMMENT>" that
the W3C hasn’t admitted). CODEWORKER can’t handle more than one end of comment format
for an output file, but you’ll haven’t to suffer about it, because you have the control on writing the
markups into the output file, and so, to conform to a unique representation of comments.

Be careful that if the beginning and the end of comments haven’t been assigned correctly before
generating a file, the protected areas will not be extracted, and so, lost for ever!

Example:

traceline ("This example is running while processing the

documentation, so we are expecting a LaTeX comment: '" +
composeCLikeString (getCommentEnd()) + "' ");

Output:

This example is running while processing the documentation, so
we are expecting a LaTeX comment: ’\n’

See also:

getCommentBegin 4.3.88, setCommentBegin 4.3.181, setCommentEnd 4.3.182

4.3.91 getCurrentDirectory

e function getCurrentDirectory() : string

Returns the current directorySs name as a fully qualified path, where separators are always forward
slashes / like in UNIX. Note that the current directory is closed by a separator.

The function returns an empty string if the path is longer than 1024 characters.

Example:

traceline ("current directory = ’'" + getCurrentDirectory() +
")

Output:

current directory = 'E:/projects/generator/’

See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, relativePath 4.3.156, removeDirectory 4.3.158,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4.3. Common functions and procedures 157

4.3.92 getEnv

e function getEnv(variable : string) : string

Parameter ‘ Type ‘ Description
variable ‘ string ‘ the environment variable name

The function returns the environment table entry containing the variable. An error message is
thrown if variable is not found in the environment table.

See function existEnv () to check the existence before getting.
Use the putenv function to modify the value of an environment variable.

Example:

traceline ("PATH="" + getEnv ("PATH")+ "’ ");

Output:

PATH='E:\Win32App\MikTeX\miktex\bin;C:\Perl\bin\; C:\WINNT\system32;C:\WINNT;C
Files\Fichiers communs\Adaptec Shared\System;C:\PROGRA™1\ATT\Graphviz\bin;C:\

See also:

environTable 4.3.52, existEnv 4.3.60, putEnv 4.3.150, system 4.3.200

4.3.93 getGenerationHeader

e function getGenerationHeader() : string

Returns the comment that is added automatically to each file generated with the procedure
generate. Defining a comment for the generation header may be required by passing the option
—genheader on the command line or by calling the procedure setGenerationHeader ().

The generation header is inlayed in the comment delimeters and conforms to the format:

— if the comment holds on a single line:
begin-comment "##generation header##CodeWorkeri##"
version—number "##" generation-date "##"
r"r comment '"' end-comment

— if the comment holds on more than one line:
begin-comment "##generation header##CodeWorkeri#"
version—-number "##" generation-date "##" end-comment
begin-comment "##header start##" end-comment
begin—-comment line: end-comment

begin-comment linen end-comment
begin-comment "##header end##" end-comment

Example:

if !getGenerationHeader () traceline ("no generation header
required for the moment");
setGenerationHeader ("Popeye’s Village\nKnights of Malta");

tracelLine ("new generation header = ’'" + getGenerationHeader () +
nwrs ") ,.

158 Chapter 4. The scripting language

local sFileName = "GettingStarted/Tiny-JAVA.cwt";
tracelLine ("script to execute:");
local sContent = replaceString("\r", "", loadFile (sFileName)) ;
local lines;
cutString(sContent, "\n", lines);
foreach i in lines if !startString(i, "//")
traceLine ("\t" + 1i);
tracelLine("class to generate = ’'" + project.listOfClasses#front.name
+ "y
local sOutputText;
generateString (sFileName, project.listOfClasses#front,
sOutputText) ;

tracelLine ("generated text:");
traceline (sOutputText) ;
setGenerationHeader ("");
Output:

no generation header required for the moment
new generation header = ’'Popeye’s Village
Knights of Malta’
script to execute:

package tiny;

public class @
this.name@ @
if existVariable(this.parent) {
@ extends @this.parent.name@ @

}

@
// attributes:
@
function getJAVAType (myAttribute : node) {

local sType = myAttribute.class.name;
if myAttribute.isArray {

set sType = "java.util.ArrayList/+<" + sType + ">x/";
}

return sType;

foreach i in this.listOfAttributes {
@ private @getJAVAType(i)@ _@i.name@ = null;

@
}
@
//constructor:
public Q@this.name@ () {
}
// accessors:
@

foreach i1 in this.listOfAttributes {
@ public QRgetJAVAType (i)@ get@toUpperString(i.name)@ () {

4.3. Common functions and procedures 159

return _Q@i.name@; }
public void set@toUpperString(i.name)Q (QgetJAVAType (1)@
@i.name@) { _Q@i.name@ = @i.name@; }
@
}
setProtectedArea ("Methods") ;
@}

class to generate = ’'Planet’

generated text:

//##generation header##CodeWorker##4.5.1##28jul2008 00:44:344#+#
//##header start##

//Popeye’s Village

//Knights of Malta

//##header end##

package tiny;

public class Planet {
// attributes:
private _diameter = null;

//constructor:
public Planet () {
}

// accessors:

public getDIAMETER () { return _diameter; }

public void setDIAMETER(diameter) { _diameter = diameter; }
//##protect##"Methods"
//##protect##"Methods"
}

See also:

setGenerationHeader 4.3.183, extractGenerationHeader 4.3.68

4.3.94 getHTTPRequest

o function getHTTPRequest(URL : string, H-TTPSession : tree, arguments : tree) : string

Parameter | Type | Description

URL string | URL of the HTTP server

HTTPSession | tree an object to describe the HTTP session

arguments tree list of the arguments to GET; the key contains the name of

the argument and the element gives the value

This function sends an HTTP’s GET request to the HTTP server pointed to by the parameter URL
with the list of arguments put into the the parameter arguments.

The function returns the document read from the HTTP server.

160

Chapter 4. The scripting language

The function sendHTTPRequest () (see 4.3.179) describes the structure of the HTTP session
object.

See also:

postHTTPRequest 4.3.146, sendHTTPRequest 4.3.179

4.3.95 getIncludePath

e function getIncludePath() : string

It returns the include path passed to the command line with one or more times the setting of option
-1, or the latest include path set via the procedure set IncludePath ().

The include path is a concatenation of paths separated by semi-commas (extbf’;’).
Example:

tracelLine ("getIncludePath():");

local list;

cutString (getIncludePath(), ’';’, list);
foreach i1 in list tracelLine (i) ;

Output:

getIncludePath() :
e:\Projects\generator\Generation/
e:\Projects\Generator/
e:\Projects\generator\Scripts\Tutorial/

See also:

getProperty 4.3.97, getVersion 4.3.101, getWorkingPath 4.3.102,
setIncludePath 4.3.184, setProperty 4.3.186, setVersion 4.3.188,
setWorkingPath 4.3.189

4.3.96 getlLastDelay

e function getLastDelay() : double

The function returns the last duration that was measured by a statement modifier delay (see
4.2.7). The duration is expressed in seconds, eventually with a floating point.

If the function is called during the execution while measuring the time consuming (controlling
sequence under a delay statement modifier), it returns the time elapsed since the beginning of
the time-keeping.

Example:

local list;

local iIndex = 4;
delay while isPositive (decrement (iIndex)) {
pushItem list = "element " + iIndex;

traceline ("creating node '" + list#back + "'");
}

tracelLine ("time of execution = " + getLastDelay() + " seconds");

Output:

4.3. Common functions and procedures 161

creating node ’element 3’
creating node ’'element 2
creating node ’'element 1’
time of execution = 0.000042184132340842205 seconds

See also:

formatDate 4.3.84, addToDate 4.3.3, compareDate 4.3.19, completeDate 4.3.21,
getNow 4.3.96, setNow 4.3.185

4.3.97 getNow

e function getNow() : string

Returns the current date-time, conforming to the format:
$d%b%Y SH:%M:%S.%L

For explanations about format types, see function formatDate at 4.3.84.
Example:

traceline ("now is " + getNow () + "'");

Output:

now is ’283jul2008 20:42:00.500"

Deprecated form: t oday has disappeared since version 2.09

See also:

formatDate 4.3.84, addToDate 4.3.3, compareDate 4.3.19, completeDate 4.3.21,
getLastDelay 4.3.95, setNow 4.3.185

4.3.98 getProperty

e function getProperty(define : string) : string

Parameter ‘ Type ‘ Description
define ‘ string ‘ name of a property

Returns the value of a property that:

— was passed to the command line via the option / -D’ or ' —define’,
— was built by the procedure setProperty (),

Example:

traceline ("getProperty (' documentation’) = " +
getProperty ("documentation") + "'");

Output:

getProperty (' documentation’) = "

Deprecated form: getDefineTarget has disappeared since version /.30
See also:

getIncludePath 4394, getVersion 4.3.101, getWorkingPath 4.3.102,
setIncludePath 4.3.184, setProperty 4.3.186, setVersion 4.3.188,
setWorkingPath 4.3.189

162 Chapter 4. The scripting language

4.3.99 getShortFilename

o function getShortFilename(pathFilename : string) : string

Parameter ‘ Type ‘ Description
pathFilename ‘ string ‘ a file name with its path

Returns the short name of a file, meaning without the path. It is composed of a radical + an

extension.

Example:

tracelLine ("getShortFilename (' src/steakhouse\\chicken.cpp’) = \""
+ getShortFilename ("src/steakhouse\\chicken.cpp") + "\"");
Output:

getShortFilename (' src/steakhouse\chicken.cpp’) = "chicken.cpp"

4.3.100 getTextMode

e function getTextMode() : string

Returns the mode of text that has been retained for parsing and source code generation:

— "DOS": the default value if the interpreter is running under a Windows platform,
— "UNIX": the default value if the interpreter isn’t running under a Windows platform,
— "BINARY"": not exploited yet, but intended to specify later that the parsing and the source

code generation are applied on binary files,

The impact of having samp"DOS" instead of any other mode is that special comments, which
announce markup keys and protected areas, will finish by "\r\n" when the end of comment is a
newline "\n’.

Example:

traceline ("This documentation is generated under ’'" +
getTextMode () + "’ text mode");

Output:
This documentation is generated under ’'DOS’ text mode
See also:

setTextMode 4.3.187

4.3.101 getVariableAttributes

e function getVariableAttributes(variable : treeref, 1ist : tree) : int

Parameter ‘ Type ‘ Description

variable | treeref | the variable to explore

list tree will contain the name and type (reference to another node
or not) of each attribute

4.3. Common functions and procedures 163

Populates a list with all attribute names of a tree node. The name of branches just below the node
variable are putinto 1ist.

The attribute’s name is a key in the list and there is no value assigned to the item, except for
attributes that point to another node (a reference). In that case, the item is worth the complete
name of the referenced node.

The function returns the number of attributes found, or a negative value (-1) if the tree node
variable doesn’t exist.

Note: use #evaluatevVariable () to navigate along a tree node, where the complete name is
determined at runtime.

Example:

local videostores;

insert videostores["Italia"].names["Video Coliseum"].town =
"Roma";

local movies;

insert movies["Lock, Stock & Two Smoking Barrels"].director =
"Guy Ritchie";

ref movies#front.shop = videostores["Italia"].names["Video
Coliseum"];

local attributeNames;

getVariableAttributes (movies#front, attributeNames) ;
foreach i in attributeNames {

if i traceline ("movies#front." + key(i) + " -> " + 1i);
else tracelLine ("movies#front." + key (i) + " = \"" +
composeCLikeString (#evaluateVariable ("movies#front." + key(i)))

+ "\n u) ;
}

Output:

movies#front.director = "Guy Ritchie"

movies#front.shop —-> videostores(["Italia"].names["Video
Coliseum"]

See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4.3.77, findElement 4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize
43.87, invertArray 4.3.114, isEmpty 4.3.115, removeVariable 4.3.164

4.3.102 getVersion

e function getVersion() : string

Returns the version number of the CODEWORKER interpreter or, if a version name has been
passed to the command line via the option —version, the version of old scripts being executed.

Example:

traceline ("The version of the interpreter is ’'" + getVersion() +

"I") .
4

Output:

The version of the interpreter is "4.5.1'

164 Chapter 4. The scripting language

See also:

getProperty 4.3.97, getIncludePath 4.3.94, getWorkingPath 4.3.102,
setIncludePath 4.3.184, setProperty 4.3.186, setVersion 4.3.188,
setWorkingPath 4.3.189

4.3.103 getWorkingPath

e function getWorkingPath() : string
Returns the output directory that has been assigned to the option -path on the command line.
Example:
tracelLine ("’ -path’ = ’'" + getWorkingPath() + "’'");
Output:
’-path’ = ’e:\Projects\generator/’
See also:

getProperty 4.3.97, getIncludePath 4.3.94, getVersion 4.3.101,
setIncludePath 4.3.184, setProperty 4.3.186, setVersion 4.3.188,
setWorkingPath 4.3.189

4.3.104 getWriteMode

e function getWriteMode() : string

Returns how text is written during a generation or during an implicit copy while translating:
"insert" or "overwrite" mode (default mode).

See also:

setWriteMode 4.3.190

4.3.105 hexaToDecimal

e function hexaToDecimal(hexaNumber : string) : int

Parameter ‘ Type ‘ Description
hexaNumber ‘ string ‘ an hexadecimal integer to convert to a decimal number

Converts an hexadecimal integer, passed to the argument hexaNumber, to a signed decimal
integer and returns the result. If hexaNumber doesn’t conform to the syntax of an hexadec-
imal number (hexaNumber ::= #!ignore ['0’..’9’ | #noCase 'A’'..'F']+),
the function raises an error.

Example:

traceline ("hexaToDecimal ("FE8’) = " + hexaToDecimal ("FE8"));
Output:

hexaToDecimal ('FE8’) = 4072

See also:

4.3. Common functions and procedures 165

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte 4.3.14,
charToInt 4.3.15, longToBytes 4.3.131, octalToDecimal 4.3.139, shortToBytes
4.3.191

4.3.106 hostToNetworkLong

e function hostToNetworkLong(bytes : string) : string

Parameter ‘ Type ‘ Description
bytes a 4-bytes representation of a long integer sorted in the host
bytes order

string

Converts a 4-bytes representation of a long integer to the network bytes order. CODEW ORKER
stores a byte as a 2-hexadecimal digits; the function raises an error if the argument bytes is
malformed.

Use longToBytes () and bytesToLong () to swap between decimal and host binary repre-
sentation of a long integer.

Example:

tracelLine ("hostToNetworkLong (' 89ABCDEF’) = '" +

hostToNetworkLong ("89ABCDEEF") + "' ");

Output:

hostToNetworkLong (89ABCDEF’) = ’"EFCDAB89’

See also:

networkLongToHost 4.3.135, hostToNetworkShort 4.3.106,

networkShortToHost 4.3.136

4.3.107 hostToNetworkShort

o function hostToNetworkShort(bytes : string) : string

Parameter ‘ Type ‘ Description
bytes a 2-bytes representation of a short integer sorted in the host
bytes order

string

Converts a 2-bytes representation of a short integer to the network bytes order. CODEW ORKER
stores a byte as a 2-hexadecimal digits; the function raises an error if the argument bytes is
malformed.

Use shortToBytes () and bytesToShort () to swap between decimal and host binary rep-
resentation of a short integer.

Example:

traceline ("hostToNetworkShort ("12EF’) = '" +
hostToNetworkShort ("12EF") + "’ ");

Output:

hostToNetworkShort ("12EF’) = 'EF12’

See also:

hostToNetworkLong 4.3.105, networkLongToHost 4.3.135, networkShortToHost
4.3.136

166

Chapter 4. The scripting language

4.3.108 increment

e function increment(number : doubleref) : double

Parameter ‘ Type ‘ Description
number ‘ doubleref ‘ variable to increment

The result of increment operation is the value of argument number minus one. While the
result is obtained, the variable number is incremented.

Example:

local iNumber = 32;

tracelLine ("iNumber = " + iNumber);

traceline ("increment (iNumber) = " + increment (iNumber));

// the variable ’"number’ has been incremented:
traceline ("iNumber "

Output:

iNumber = 32
increment (1Number)
iNumber = 33

+ iNumber) ;

33

See also:
decrement 4.3.44, floor 4.3.83, cei11 4.3.10

4.3.109 indentFile

e function indentFile(file : string, mode : string) : bool

Parameter ‘ Type ‘ Description
file string | name of a file to indent
mode string | default value: "”

type of text to indent

Indents the file passed to parameter £1i1e, forcing the indentation mode via the argument mode.
If the argument is empty or omited, the file extension drives the indentation mode:
— ¢pp, cxx, h, hxx: will indent as expected for a C++ format,

— java: will indent as expected for a JAVA format,

More format will be recognized in the future.

The function returns true if the file needed to be indented, meaning that it has changed after
processing the indentation.

Example:

tracelLine ("We’1ll indent file ’Documentation/IndentSample.cpp’

containing:");

copyFile ("Documentation/IndentSample.txt", "Documentation/IndentSample.cpp")
traceline (loadFile ("Documentation/IndentSample.cpp"));

traceline ("File changed after indenting = ’'" +

indentFile ("Documentation/IndentSample.cpp") + "'");

4.3. Common functions and procedures 167

traceLine ("File ’'Documentation/IndentSample.cpp’ after
indentation:");
traceline (loadFile ("Documentation/IndentSample.cpp"));

Output:

We’1ll indent file ’'Documentation/IndentSample.cpp’ containing:
int f(int 1) {
switch (i) {
case 2:
case 3:
if (1 == 2) {
h();
}
g(i - 1);
break;

}

File changed after indenting = ’true’
File 'Documentation/IndentSample.cpp’ after indentation:
int f£(int i) {

switch (i) {

case 2:
case 3:
if (1 == 2) |
h();
}
g(i - 1);
break;

See also:

indentText 4.6.20

43110 index

e function index(i : iterator) : int

Parameter ‘ Type ‘ Description
i ‘ﬁaumr‘iRRMKofaforeachsmwnwm

Returns the position of the item the iterator points to. The position in the list begins counting at O.
Example:

local myTree;
insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";
foreach i1 in myTree {
tracelLine ("The item ’'" + key (i) + "’/ is at position " +

168

Chapter 4. The scripting language

index (i) + "");
}
Output:

The item ’"Everest’ is at position 0
The item ’'Tea spoon’ is at position 1

See also:

first 4.3.82, last 4.3.122, key 4.3.121, next 4.3.137, prec 4.3.148, createIterator
4.3.38, createReverselterator 4.3.39, duplicateIterator 4.3.48

4.3.111 inf

e function inf(left : double, right : double) : bool

Parameter ‘ Type ‘ Description
left double | the first member
right double | the second member

Compares two numbers and returns t rue if the first member given by argument 1eft is strictly
smaller than the second member passed to argument right.

Don’t use the operator ’ <’ to compare numbers in the classical syntax of the interpreter: it only
checks the lexicographical order. So, '/2 < 3’ is true. However, it exists an escape mode that
allows writing arithmetic comparisons between ’$’ symbols, as formula under LaTeX. So, $left
< right$isequivalentto inf (left, right).

Example:

traceline("inf (3, 12) = '" + inf (3, 12) + "'");
traceline ("3 < 12 = '" + (3 < 12) + "'");

Output:

inf (3, 12) = "true’
3 <12 ="

See also:
equal 4.3.53, sup 4.3.199

4.3.112 inputKey

e function inputKey(echo : bool) : string

Parameter ‘ Type ‘ Description
echo ‘ bool ‘ asks for echoing the standard input on the console

Returns a character extracted from the standard input, the keyboard generally. If no key was
pressed, it returns an empty string.

See statement modifiers file_as_standard_input 4.2.7) and
string_as_standard_input (4.2.7) to change the source of the standard input.

If the source of the standard input is the keyboard, the argument echo has no effects. Otherwise,
the input text is displayed into the console only if echo is worth t rue.

4.3. Common functions and procedures 169

4.3.113 inputLine

e function inputLine(echo : bool, prompt : string) : string

Parameter ‘ Type ‘ Description
echo bool | asks for echoing the standard input on the console
prompt string | default value: "”

text to prompt at the beginning of the line

Returns a line that was extracted from the standard input, the keyboard generally. See state-
ment modifiers file_as_standard_input (4.2.7) and string_as_standard_input
(4.2.7) to change the source of the standard input.

If the prompt argument is populated and different of an empty string, the corresponding text is
displayed at the beginning of the line.

If the source of the standard input is the keyboard, the argument echo has no effects. Otherwise,
the input text is displayed into the console only if echo is worth t rue.

Example:

traceText ("Please enter something> ");

local sKeyboardText = inputLine (true);
traceline ("The user said: '" + sKeyboardText + "'");

Output:
Please enter something> These characters were typed by hand on
the keyboard!

The user said: 'These characters were typed by hand on the
keyboard!’

4.3.114 insertElementAt

e procedure insertElementAt(1ist : treeref, key : string, position : inf)

Parameter | Type | Description

list treeref | an array of nodes
key string | the entry key of the element to insert
position | int where to insert the new element, starting at 0

Insert a new element to 1ist, at a position given by the argument position. The argument
key indicates the key of this element, which is built empty.

If the key is an empty string, then the key is supposed to be worth the size of the list automatically.

You can access the new element by writing either:
list#[position]

or

list[key]

Example:

local list;

insert list["twin peaks"] = "twin peaks";
insert list["everest"] = "everest";

traceline ("before inserting the kilimanjaro:");

170

Chapter 4. The scripting language

foreach i in list traceLine("\t" + i);

insertElementAt (list, "kilimanjaro", 1);

list#[1] = "kilimanjaro"; // assign a value to the new element
tracelLine ("after inserting the kilimanjaro at the second
place:");

foreach i in list traceLine("\t" + 1),

Output:

before inserting the kilimanjaro:
twin peaks
everest
after inserting the kilimanjaro at the second place:
twin peaks
kilimanjaro
everest

4.3.115 invertArray

e procedure invertArray(array : treeref)

Parameter ‘ Type ‘ Description
array ‘ neenj"theanaytohandk

Inverts the elements of the array passed to the well-named argument array, such as the first item
becomes the last one, and the last item the first one.

Example:

local list;

insert list["twin peaks"] = "twin peaks";
insert list["karakorum"] = "karakorum";
insert list["everest"] = "everest";

insert list["kilimanjaro"] = "kilimanjaro";
tracelLine ("before inverting the array:");

foreach i in list traceLine("\t" + i);
invertArray (list);

traceline ("after inverting the array:");
foreach i in list traceLine("\t" + 1i);
Output:

before inverting the array:
twin peaks
karakorum
everest
kilimanjaro
after inverting the array:
kilimanjaro
everest
karakorum
twin peaks

See also:

4.3. Common functions and procedures 171

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4377, findElement 4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize
43.87, getVariableAttributes 4.3.100, isEmpty 4.3.115, removeVariable 4.3.164

4.3.116 isEmpty

e function isEmpty(array : treeref) : bool

Parameter ‘ Type ‘ Description
array ‘ treeref ‘ any node of a tree

Returns true if the argument array embeds an array of trees, and false otherwise.
Example:

local myTree;

insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";
tracelLine ("isEmpty (myTree) = '" + isEmpty (myTree) + "' ");

Output:

”

isEmpty (myTree) =
Method: array.empty()
See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4377, findElement 4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize
43.87, getVariableAttributes 4.3.100, invertArray 4.3.114, removeVariable
4.3.164

4.3.117 isldentifier

e function isldentifier(identifier : string) : bool

Parameter ‘ Type ‘ Description
identifier an identifier is a string composed of letters and underscores
; digits are admitted too, except at the first place

string

This predicate checks whether the string passed by parameter is an identifier or not.

Example:

tracelLine ("isIdentifier ("atom’) = """ + isIdentifier ("atom") +
nwrs "),.

traceline ("isIdentifier (/' Smoney’) = " + isIdentifier ("Smoney")
+ mwrs ");

Output:

isIdentifier ("atom’) = ’'true’

isIdentifier (’ Smoney’) = "

172

Chapter 4. The scripting language

4.3.118 isNegative

e function isNegative(number : double) : bool

Parameter ‘ Type ‘ Description
number ‘ double ‘ a number to check

This predicate checks whether the number passed by parameter is strictly negative or not.

If the argument isn’t recognized as a number, the number is supposed to be worth 0, so the function
returns false.

Be careful if you choose the expression ’ < 0’ to compare numbers in the classical syntax of
the interpreter: it only checks the lexicographical order. So, "+0.0 <= 0’ is false! However, it
exists an escape mode that allows writing arithmetic comparisons between *$’ symbols, as formula
under LaTeX. So, $Snumber <= 0$ is equivalent to isNegative (number).

Example:

tracelLine ("isNegative (0) = '" + isNegative(0) + "'");
traceline ("isNegative (-1) = '" + isNegative(-1) + "' ");

Output:

isNegative (0) ="
isNegative (-=1) = "true’

See also:

isPositive 4.3.119

4.3.119 isNumeric

e function isNumeric(number : string) : bool

Parameter ‘ Type ‘ Description
number ‘ string ‘ a floating-point number in text representation

This predicate checks whether the string passed by parameter is a floating-point or not.

Example:
traceline ("isNumeric ("atom’) = " + isNumeric ("atom") + "' ");
tracelLine ("isNumeric (’3.14") = '" + isNumeric("3.14") + "'");

Output:

4

isNumeric (’atom’)
isNumeric(’3.14’) = ’'true’

4.3.120 isPositive

e function isPositive(number : double) : bool

Parameter ‘ Type ‘ Description
number ‘ double ‘ a number to check

4.3. Common functions and procedures 173

This predicate checks whether the number passed by parameter is strictly positive or not.

If the argument isn’t recognized as a number, the number is supposed to be worth 0, so the function
returns false.

Be careful if you choose the expression / > 0’ to compare numbers in the classical syntax of the
interpreter: it only checks the lexicographical order. So, ’-0.0 >= 0’ is false! However, it exists
an escape mode that allows writing arithmetic comparisons between *$’ symbols, as formula under
LaTeX. So, $number >= 0S$ isequivalentto isPositive (number).

Example:

tracelLine ("isPositive (0) = '" 4+ isPositive (0) + "’ ");
tracelLine ("isPositive (1) = '" + isPositive(l) + "'");
Output:

isPositive (0) = "

isPositive(l) = ’'true’

See also:

isNegative 4.3.117

4.3.121 joinStrings
e function joinStrings(1ist : tree, separator : string) : string
Parameter ‘ Type ‘ Description

list
separator

tree
string

the list that contains the strings to join
the sequence of chars that separates the strings

This function returns the concatenation of all strings put into 1ist, putting a separator between
each of them.

If the list is empty, the function will return an empty string.

Example:

local 1listOfItems = {"a", "yellow", "submarine"};

tracelLine ("joinStrings ({’a’, ’'yellow’, ’submarine’}, "./.7):");
traceline (joinStrings (listOfItems, "./."));

Output:

joinStrings ({’a’, ’yellow’, ’'submarine’}, ’'./."):
a./.yellow./.submarine

See also:

charat 4.3.13, coreString 4.3.33, cutString 4.342, leftString 4.3.123,
lengthString 4.3.124, midString 4.3.132, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

43122 key

e function key(i : iterator) : string

174 Chapter 4. The scripting language

Parameter ‘ Type ‘ Description
i ‘ iterator ‘ iterator of a foreach statement or pointing to a list

Returns the key that allows accessing the current item of the iterated list.
Example:

local myTree;

insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";
foreach 1 in myTree {
tracelLine("key = '" + key (i) + "' wvalue ="'" + i + "'");
}
Output:
key = ’"Everest’ value = "mountain’
key = "Tea spoon’ value = ’'silverware’
See also:

first 4.3.82, index 4.3.109, last 4.3.122, next 4.3.137, prec 4.3.148,
createIterator 4.3.38, createReverselterator 4.3.39, duplicatelIterator

4.3.48

4.3.123 last

e function last(i : iterator) : bool

Parameter | Type | Description
i ‘ iterator ‘ iterator of a foreach statement or pointing to a list

Returns t rue if the iterator argument i points to the last item of the iterated list.
Example:

local myTree;
insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";
foreach 1 in myTree {
if last (i) tracelLine("The last item key of the list is ’'" +
key(l) + ns ") ;
}
Output:
The last item key of the list is ’'Tea spoon’
See also:

first 4.3.82, index 4.3.109, key 4.3.121, next 4.3.137, prec 4.3.148, createIterator
4.3.38, createReverselterator 4.3.39, duplicateIterator 4.3.48

4.3. Common functions and procedures 175

4.3.124 leftString

o function leftString(text : string, length : int) : string

Parameter ‘ Type ‘ Description
text
length

string
int

a sequence of characters
a positive number

Returns the first characters that belong to the string passed to the argument text. The number
of characters to take is given by argument length. If the string contains less than length
characters, the function returns all of them.

Example:

tracelLine ("leftString(’airport’, 3) = '" + leftString("airport",
3) _I_ mwr ");
tracelLine ("leftString(’airport’, 8)
8) _I_ nwr ");

rm

+ leftString("airport",

Output:

leftString ('airport’, 3) "air’

leftString ('airport’, 8)

"airport’
See also:

charat 4.3.13, coreString 4.3.33, cutString 4.342, joinStrings 4.3.120,
lengthString 4.3.124, midString 4.3.132, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

4.3.125 lengthString

e function lengthString(text : string) : int

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of characters

Returns the length of the sequence of characters represented by argument text.

Example:

local sText = "A rabbit ran in the garden"; // size of this
string is 26 characters

tracelLine ("lengthString (\"" + sText + "\") = " +
lengthString (sText));

Output:

lengthString ("A rabbit ran in the garden") = 26

Method: fext.1ength()
See also:

charat 4.3.13, coreString 4.3.33, cutString 4.342, joinStrings 4.3.120,
leftString4.3.123, midString 4.3.132, rightString 4.3.169, rsubString 4.3.170,
subString 4.3.198

176

Chapter 4. The scripting language

4.3.126 listAllGeneratedFiles
e procedure listAllGeneratedFiles(files : treeref)
Parameter ‘ Type ‘ Description

treeref | populated with the names of all files generated since the
interpreter has launched

files

Populates the parameter £i1es with the list of all output files generated since the interpreter has
launched.

The array £iles indexes each node with the name of the generated output file, and each node
owns a branch called scripts.

This branch gives the list of all template-based scripts that have contributed to the generation of
the output file (often one script only, but could be more).

The key index and the value of the nodes in the array scripts are worth the script file names.

The procedure raises an error if the tree parameter £iles doesn’t exist.
Example:

local allOutputFiles;

listAllGeneratedFiles (allOutputFiles);

traceline ("List of all generated files:");

foreach i1 in allOutputFiles {
// A lot of output files are generated before building
// this document, such as C++ sources of CodeWorker:
// they are ignored

if i.endString(".cpp") || i.endString(".h") continue;
// Other files are displayed:
traceLine (" x " + i.key() + "'");
traceText (" —-> {");
foreach j in i.scripts {
if !'j.first () traceText (", ");

traceText (\"/ + J + "\"");
}
tracelLine("}’);

}
Output:

List of all generated files:
x I #f2

-> {"e:/Projects/generator/Generation/LaTeX2HTML.cwp"}
"e:/Projects/generator/Documentation/GeneratingExamples.cwt’

-> {"e:/Projects/Generator/Documentation/GeneratingExamplesBuilder.cw
"e:/Projects/generator/Documentation/ParsingExamples.cws’

-> {"e:/Projects/Generator/Documentation/ParsingExamplesBuilder.cwt"}
"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVA/solarsystel

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVAObject
"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVA/solarsyste

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVAObject
"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVA/solarsyste

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/JAVAObject
"e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSystem.tex

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/HTML2LaTeX

*

*

*

*

*

*

4.3. Common functions and procedures 177

*

"e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSystemO.ht:

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/HTMLDocume
"e:/Projects/generator/Scripts/Tutorial/GettingStarted/SolarSysteml.ht:

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/HTMLDocume
"e:/Projects/generator/WebSite/ScriptsRepository.html’

-> {"e:/Projects/generator/Generation/WebSite.cwt"}
"e:/Projects/generator/WebSite/repository/CodeWorker_grammar.cwp’

-> {"e:/Projects/generator/Generation/CWgrammar_expander.cwt"}
"e:/projects/generator/Documentation/SolarSystem. java’

-> {"e:/Projects/generator/Scripts/Tutorial/GettingStarted/Tiny—-JAVA.
"e:/projects/generator/Scripts/Tutorial/GettingStarted/Tiny0.html’

-> {"e:/Projects/Generator/Scripts/Tutorial/GettingStarted/Tiny—-HTML.
"e:/projects/generator/Scripts/Tutorial/GettingStarted/tiny/A. java’

-> {"e:/Projects/Generator/Scripts/Tutorial/GettingStarted/Tiny—-JAVA.
"e:/projects/generator/Scripts/Tutorial/GettingStarted/tiny/B. java’

-> {"e:/Projects/Generator/Scripts/Tutorial/GettingStarted/Tiny—-JAVA.
"e:/projects/generator/Scripts/Tutorial/GettingStarted/tiny/C. java’

-> {"e:/Projects/Generator/Scripts/Tutorial/GettingStarted/Tiny-JAVA.
"e:/projects/generator/Scripts/Tutorial/GettingStarted/tiny/D. java’

-> {"e:/Projects/Generator/Scripts/Tutorial/GettingStarted/Tiny-JAVA.
"e:/projects/generator/WebSite/examples/cdcatalog.cwt’

-> {"e:/projects/generator/WebSite/repository/GenBeautifier.cwp",
"e:/projects/generator/WebSite/repository/XSLtoCodeWorker.cwt"}

* "e:/projects/generator/WebSite/examples/cdcatalog.html’

-> {"e:/projects/generator/WebSite/examples/cdcatalog.cwt"}
"e:/projects/generator/WebSite/examples/ejb-jar_2_0-parser.cwp’

-> {"e:/projects/generator/WebSite/repository/DTDtoBNF.cwt"}
"e:/projects/generator/WebSite/highlighting/CWML.html"’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/CWscript2HTML.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp" }
"e:/projects/generator/WebSite/highlighting/CodeWorker_grammar.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/DTDparser.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/DTDtoBNF-examplel.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/DTDtoBNF.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/RawProfiling-examplel.html

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/RawProfilingCpp.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp" }
"e:/projects/generator/WebSite/highlighting/RawProfilingCppTransformat

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/RawProfilingHpp.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/RawProfilinglLeader.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/XMLparser—examplel.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

178 Chapter 4. The scripting language

*

"e:/projects/generator/WebSite/highlighting/XMLparser.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/XSLparser.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/XSLtoBNF-examplel.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/XSLtoCodeWorker.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/basicInformation.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/classDiagram.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/classDiagramGraphViz.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/hitCounter.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/hitCounterParser.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}
"e:/projects/generator/WebSite/highlighting/hitCounterUpdate.html’

-> {"e:/Projects/Generator/WebSite/repository/CWscript2HTML.cwp"}

*

*

*

*

*

*

*

*

*

4.3.127 loadBinaryFile

e function loadBinaryFile(file : string, length : int) : string

Parameter ‘ Type ‘ Description
file string | name of the binary file to load
length int default value: -/

number of bytes to read

Returns the binary content of the file whose name is passed to argument £ile, or the length
first bytes only if this facultative argument isn’t negative. The content concatenates a sequence of
hexadecimal digits, so a byte is stored in 2 characters:

binary—-content ::= [byte]x;

byte ::= ['0"..79" | 'A"..'F’ | 'a'.."£']2;

If the file doesn’t exist or can’t be read with success, an error occurs.

Example:

local sContent = loadBinaryFile ("readme.txt");
local sFormatedContent;
local ilLine = 0;
while sContent && S$iLine < 10$ {
sFormatedContent += leftString(sContent, 40) + endl();
sContent = sContent.subString (40);
increment (iLine) ;
}
traceline ("the first 200 bytes of ’"readme.txt’ are:" + endl() +
sFormatedContent) ;

Output:

4.3. Common functions and procedures 179

the first 200 bytes of ’"readme.txt’ are:
2F2F2F2F 2F2F2F2F2F2F2F2F 2F 2F 2F 2F 2F 2F 2F 2F
2F2F2F2F 2F 2F 2F 2F 2F2F2F 2F 2F 2F 2F 2F 2F 2F 2F 2F
2F2F2F2F2F2F2F2F2F2F0D0A2F2F202020202020
20202020202020202020202020436F6465576F72
6B65722020202020202020202020202020202020
2F2F0DO0A2F2F2020202020202020202020202020
20202020202D2D2D2D2D2D2D2D2D2D2020202020
2020202020202020202020202F2F0D0A2F 2F2F2F
2F2F2F2F 2F 2F 2F 2F 2F2F2F 2F 2F 2F 2F 2F 2F 2F 2F 2F
2F2F2F2F 2F2F2F2F2F2F2F2F 2F 2F 2F 2F 2F 2F 2F 2F

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile 4.3.45,existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadFile 4.3.127,
saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

4.3.128 loadFile

e function loadFile(file : string, length : int) : string

Parameter ‘ Type ‘ Description
file string | name of the file to load
length int default value: -/

number of characters to read

Returns the content of the file whose name is passed to argument £ile, or the length first char-
acters only if this facultative argument isn’t negative.

If the file doesn’t exist or couldn’t be read with success, an error occurs.
Example:

local sText = loadFile ("readme.txt");

sText = sText.leftString(200);

tracelLine ("the 200 first characters of 'readme.txt’ are:" +
endl () + sText);

Output:

the 200 first characters of ’'readme.txt’ are:

[777777777777777777777777777777777777/7777777777777
// CodeWorker //

/] == //
L7777 7777777777777777777777/777777/77777777777
See also:

copyFile 4.3.29, appendFile 4.3.4, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345,existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile
4.3.126, saveBinaryToFile 4.3.171, saveToFile 4.3.174, scanFiles 4.3.176

180 Chapter 4. The scripting language

4.3.129 loadProject

e procedure loadProject(XMLorTXTF1ileName : string, nodeToLoad : tree)

Parameter ‘ Type ‘ Description
XMLorTXTFileName | string | an input file whose content describes a node
nodeToLoad tree default value: project

the node to populate from the file; if omitted, it is defaulted
to the global variable project

Loads a parse tree previously saved thanks to saveProject().
See also:

saveProject 4.3.172, saveProjectTypes 4.3.173

4.3.130 loadVirtualFile
e function loadVirtualFile(handle : string) : string

Parameter ‘ Type ‘ Description
handle ‘ string ‘ the name of the virtual file to load

Returns the content of the virtual file whose name is passed to argument £ile.
If the virtual file doesn’t exist or couldn’t be read with success, an error occurs.
See also:

createVirtualFile 4.3.40, createVirtualTemporaryFile 4341,
deleteVirtualFile 4.3.46, existVirtualFile 4.3.63

4.3.131 log
e function log(x : double) : double

Parameter ‘ Type ‘ Description
X ‘ double ‘ the floating-point whose logarithm is to compute

Returns the logarithm of x.

If x is negative, it throws an error.
If x is 0, it returns infinite.

Example:

traceLine ("log(5.369e+14)/1log(10) = " 4+ $1og(5.369%9e+14)/1og(10)S3);
traceline ("log(0) =" + log(0));

Output:

log(5.369e+14) /1og(10) = 14.729893403963237

log(0) = -1.#INF00000000e+000

See also:

add 4.3.1, sub 4.3.197, mult 4.3.134, div 4.3.47, exp 4.3.64, mod 4.3.133, pow 4.3.147

4.3. Common functions and procedures 181

4.3.132 longToBytes

e function longToBytes(1ong : ulong) : string

Parameter ‘ Type ‘ Description
long ‘ ulong ‘ an unsigned long integer using the decimal base

Converts an unsigned long integer in decimal base to its 4-bytes representation. Bytes are ordered
in the host order (memory storage).

Example:

tracelLine ("longToBytes (65535) = ’'" + longToBytes (65535) + "' ");
Output:

longToBytes (65535) = "FFEFF0000”

See also:

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte
4.3.14, charToInt 4.3.15, hexaToDecimal 4.3.104, octalToDecimal 4.3.139,
shortToBytes 4.3.191

4.3.133 midString

e function midString(text : string, pos : int, Length : int) : string

Parameter ‘ Type ‘ Description

text string | a sequence of characters
pos int a position into argument text
length int the number of characters to extract

Returns a substring located into the string text to the position passed to the argument pos.
The position starts counting at 0. The substring will be extracted for a size given by parameter
length, or less if it has reached the end of the string.

If the argument pos is greater than the length of text, the function returns an empty string.

Example:

local sText = "Banks offer weapons without bullets";
traceline ("midString (" + sText + "', 12, 7) ="'" +
midString (sText, 12, 7) + "'");

Output:

midString (’Banks offer weapons without bullets’, 12, 7) =
"weapons’

See also:

charat 4.3.13, coreString 4.3.33, cutString 4.342, joinStrings 4.3.120,
leftString 4.3.123, lengthString 4.3.124, rightString 4.3.169, rsubString
4.3.170, subString 4.3.198

182

Chapter 4. The scripting language

4.3.134 mod
e function mod(dividend: int, divisor : int) : int
Parameter ‘ Type ‘ Description

dividend the first operand
divisor the second operand

int
int

Returns the remainder when the first operand is divided by the second. It applies the modulus
operator. Members are converted from strings to integers, supposed being worth 0 if a parsing
error occurs; then the modulus is processed, and the result is converted to a string.

Remember that the symbol %’ doesn’t mean anything in the standard syntax of the language,
so there is no way to confuse for expressing a modulus operator. However, it exists an escape
mode that allows writing arithmetic expressions between ’$’ symbols, as formulae under LaTeX.
So, $dividend % divisor$ isequivalentto mod (dividend, divisor).

Example:

tracelLine ("mod (5, 2) = '" + mod(5, 2) + "'");
Output:

mod (5, 2) = "1/

See also:

add 4.3.1, sub 4.3.197, mult 4.3.134, div 4.3.47, exp 4.3.64, 10g 4.3.130, pow 4.3.147

4.3.135 mult

e function mult(left : double, right : double) : double

Parameter ‘ Type ‘ Description
left double | the first operand

right double | the second operand

Returns the result of arithmetic multiplication 1eft * right. Members are converted from
strings to numbers, supposed being worth 0 if a parsing error occurs; then the multiplication is
processed, and the result is converted to a string, skipping fractional part if all digits after the dot
are 0.

Remember that the symbol **’ doesn’t mean anything in the standard syntax of the language, so
there is no way to confuse for expressing a multiplication. However, it exists an escape mode that
allows writing arithmetic expressions between ’$’ symbols, as formulae under LaTeX. So, $ left
* right$isequivalenttomult (left, right).

Example:

traceline ("mult (5.5, 2) ='" + mult(5.5, 2) + "'");

Output:

mult (5.5, 2) = 11’

See also:

add 4.3.1, sub 4.3.197, div 4.3.47, exp 4.3.64, 10g 4.3.130, mod 4.3.133, pow 4.3.147

4.3. Common functions and procedures 183

4.3.136 networkLongToHost

e function networkLongToHost(bytes : string) : string

Parameter ‘ Type ‘ Description
bytes a 4-bytes representation of a long integer sorted in the net-
work bytes order

string

Converts a 4-bytes representation of a long integer to the host bytes order. CODEW ORKER stores
a byte as a 2-hexadecimal digits; the function raises an error if the argument by tes is malformed.

Use longToBytes () and bytesToLong () to swap between decimal and host binary repre-
sentation of a long integer.

Example:

tracelLine ("networkLongToHost (' EFCDAB89’) = '" +

networkLongToHost ("EFCDAB89") + "' ");

Output:

networkLongToHost (' EFCDAB89’) = ’'89ABCDEF’

See also:

hostToNetworkLong 4.3.105, hostToNetworkShort 4.3.106,

networkShortToHost 4.3.136

4.3.137 networkShortToHost

e function networkShortToHost(bytes : string) : string

Parameter ‘ Type ‘ Description
bytes a 2-bytes representation of a short integer sorted in the net-
work bytes order

string

Converts a 2-bytes representation of a short integer to the host bytes order. CODEW ORKER stores
a byte as a 2-hexadecimal digits; the function raises an error if the argument by tes is malformed.

Use shortToBytes () and bytesToShort () to swap between decimal and host binary rep-
resentation of a short integer.

Example:

traceline ("networkShortToHost ('EF12’) = "" +
networkShortToHost ("EF12") + "’ ");

Output:

networkShortToHost (EF12’) = "12EF’

See also:

hostToNetworkLong 4.3.105, networkLongToHost 4.3.135, hostToNetworkShort
4.3.106

184

Chapter 4. The scripting language

4.3.138 next

e function next(i : iterator) : bool

Parameter ‘ Type ‘ Description
iterator

i iterator of a foreach statement or pointing to items of a

list

The iterator will now point to the next item of the list and returns t rue if exists.
See also:

first 4.3.82,index4.3.109, last 4.3.122, key 4.3.121, prec 4.3.148, createlterator
4.3.38, createReverselterator 4.3.39, duplicateIterator 4.3.48

4.3.139 not

e function not(expression : bool) : bool

Parameter | Type | Description
expression ‘ bool ‘ any kind of expression

This function does the same work as the unary operator ’!’: it returns t rue if the evaluation of
the expression is an empty string, and false otherwise.

Example:

local myVariable;

tracelLine ("not (existVariable (myVariable)) = " +
not (existVariable (myVariable)) + "7 ");

Output:

”

not (existVariable (myVariable)) =

4.3.140 octalToDecimal

e function octalToDecimal(octalNumber : string) : int

Parameter | Type | Description
octalNumber ‘ string ‘ an octal integer to convert to a decimal number

Converts an octal integer, passed to the argument octalNumber, to a signed decimal integer
and returns the result. If octalNumber doesn’t conform to the syntax of an octal number

(octalNumber ::= #!ignore [’0’..’8’]+),the function raises an error.
Example:

tracelLine ("octalToDecimal (" 765’) = " + octalToDecimal ("765"));
Output:

octalToDecimal (" 7657) = 501

See also:

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte 4.3.14,
charToInt 4.3.15, hexaToDecimal 4.3.104, longToBytes 4.3.131, shortToBytes
4.3.191

4.3. Common functions and procedures 185

4.3.141 openlLogFile

e procedure openlLogFile(filename : string)

Parameter ‘ Type ‘ Description
filename ‘ string ‘ name of the file where log information will be put

Creates (or erases if already exists) a log file, which remains valid upto the end of the execution.
Each trace function (traceLine (), traceText (), traceStack ()) will write in the log
file.

This function is very convenient for debugging a CGI script, where the standard output is devoted
to the result page.

Note that passing an empty filename stops the log mechanism.

4.3.142 parseAsBNF

e procedure parseAsBNF(BNFFileName : scriptf, this : tree, inputFileName : string)

Parameter ‘ Type Description

BNFFileName script<BNF> | the name of the BNF-driven parsing script

this tree the current node that will be accessed with this variable
inputFileName | string the file to parse

Parses an input file whose name is given by the argument inputFileName. It executes the
BNF-driven script called BNFFileName; see section 4.3.216 for more information.

See also:

parseFree 4.3.142, parseFreeQuiet 4.3.143, parseStringAsBNF 4.3.144,
translate 4.3.208, translateString 4.3.209, expand 4.3.65, autoexpand 4.3.5,
generate 4.3.85, generateString 4.3.86

4.3.143 parseFree

e procedure parseFree(designFileName : script, this : tree, inputFileName : string)

Parameter | Type | Description

designFileName | script<free> | the name of the parsing script that reads tokens in a proce-
dural way

this tree the current node that will be accessed with this variable

inputFileName | string the file to parse

Parses an input file whose name is given by the argument inputFileName. It executes the
procedural-driven script called designFileName; see section 4.4.6 for more informa-
tion.

Deprecated form: 1 0adDesign has disappeared since version 1.6
See also:

parseAsBNF 4.3.141, parseFreeQuiet 4.3.143, parseStringAsBNF 4.3.144,
translate 4.3.208, translateString 4.3.209, expand 4.3.65, autoexpand 4.3.5,
generate 4.3.85, generateString 4.3.86

186

Chapter 4. The scripting language

4.3.144 parseFreeQuiet

o function parseFreeQuiet(designFileName : string, this : tree, inputFileName :
string) : string

Parameter ‘ Type ‘ Description

designFileName | string | the name of the parsing script that reads tokens in a proce-
dural way

this tree the current node that will be accessed with this variable

inputFileName | string | the file to parse

This function parses the file passed to argument inputFileName, following the instructions of
the procedure-driven parsing script given by parameter designFileName, but doesn’t display
messages to the standard output stream. Messages are put into a string that is returned by the

function.

Example:

local sScript = "GettingStarted/SimpleML-token-reading.cws";
local sDesign = "GettingStarted/SolarSystemO.sml";

tracelLine ("sScript = " + sScript + "'");

traceLine ("sDesign = '" + sDesign + "' ");

tracelLine ("messages of parseFreeQuiet (sScript, project,
sDesign) :");
traceline (parseFreeQuiet (sScript, project, sDesign));

Output:

sScript = ’GettingStarted/SimpleML-token-reading.cws’
sDesign = ’'GettingStarted/SolarSystemO.sml’

messages of parseFreeQuiet (sScript, project, sDesign):
the file has been read successfully

See also:

parseAsBNF 4.3.141, parseFree 4.3.142, parseStringAsBNF 4.3.144, translate
4.3.208, translateString 4.3.209, expand 4.3.65, autoexpand 4.3.5, generate
4.3.85, generateString 4.3.86

4.3.145 parseStringAsBNF

e procedure parseStringAsBNF(BNFFileName : script, this : tree, content : string)

Parameter ‘ Type ‘ Description

BNFFileName | script<BNF> | the name of the BNF-driven parsing script

this tree the current node that will be accessed with this variable
content string the text to parse

Parses a text, which is given by the argument content as a sequence of characters. It executes
the BNF-driven script called BNFFileName; see section 4.3.216 for more information.

See also:

parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143, translate
4.3.208, translateString 4.3.209, expand 4.3.65, autoexpand 4.3.5, generate
4.3.85, generateString 4.3.86

4.3. Common functions and procedures 187

4.3.146 pathFromPackage

o function pathFromPackage(package : string) : string

Parameter ‘ Type ‘ Description
package ‘ string ‘ a package path

Converts a package path to a directory path. A package path is a sequence of identifiers separated
by dots. All dots (*.”) encountered are replaced by a path separator (*\\ under Windows and */” on
UNIX platforms). A path separator is added at the end.

Example:

tracelLine ("pathFromPackage (’ java.solarsystem’) = " +
pathFromPackage ("java.solarsystem") + "' ");

Output:

pathFromPackage (’ java.solarsystem’) = ’java/solarsystem/’

4.3.147 postHTTPRequest

e function postHTTPRequest(URL : string, HTTPSession : treeref, arguments : treeref) :

string
Parameter ‘ Type ‘ Description
URL string | URL of the HTTP server
HTTPSession | treeref | an object to describe the HTTP session
arguments treeref | list of the arguments to POST; the key contains the name

of the argument and the element gives the value

This function sends an HTTP’s POST request to the HTTP server pointed to by the parameter
URL with the list of arguments put into the the parameter arguments.

The function returns the document read from the HTTP server.

The function sendHTTPRequest () (see 4.3.179) describes the structure of the HTTP session
object.

See also:

getHTTPRequest 4.3.93, sendHTTPRequest 4.3.179

4.3.148 pow

e function pow(x : double, v : double) : double

Parameter ‘ Type ‘ Description
b double | the base
v double | the exponent

188 Chapter 4. The scripting language

Returns value of the argument x raised to the power of the second argument y. The arguments are
converted to numerics, being worth 0 when a conversion fails. The power is then processed, and
the result is converted to a string, skipping fractional part if all digits after the dot are 0.

Example:

traceline ("pow (3, 4) =" + pow (3, 4));
Output:

pow (3, 4) = 81

See also:

add 4.3.1, sub 4.3.197, mult 4.3.134, div 4.3.47, exp 4.3.64, 10g 4.3.130, mod 4.3.133

4.3.149 prec
e function prec(i : iterator) : bool
Parameter ‘ Type ‘ Description

iterator of a foreach statement or pointing to items of a
list

i iterator

The iterator will now point to the precedent item of the list and returns t rue if exists.
See also:

first 4.3.82,index4.3.109, last 4.3.122, key 4.3.121, next 4.3.137, createIterator
4.3.38, createReverselterator 4.3.39, duplicateIterator 4.3.48

4.3.150 produceHTML
e procedure produceHTML(scriptFileName : string, HTMLF1ileName : string)
Parameter ‘ Type ‘ Description

string | a script file of CODEWORKER to highlight
string | the HTML file that represents the highlighted script

scriptFileName
HTMLFileName

This procedure proposes to highlight a script written for CODEWORKER and to provide the re-
sulting colored script into an HTML file. Only @’ and the text to put into the ouput stream are
highlighted.

Example:

produceHTML ("Scripts/Tutorial/GettingStarted/Tiny-JAVA.cwt",

getWorkingPath () + "Scripts/Tutorial/GettingStarted/Tiny-JAVAhighlight.html"
traceline ("the script file has been highlighted into
"Tiny—-JAVAhighlight.html’");

Output:
the script file has been highlighted into ’'Tiny-JAVAhighlight.html’
Known bugs:

The procedure needs to be improved, so as to highlight tokens and keywords of the language too.
It doesn’t work yet on BNF-driven scripts intended to a translation.

4.3. Common functions and procedures 189

4.3.151 putEnv

e procedure putEnv(name : string, value : string)

Parameter ‘ Type ‘ Description
name string
string

name of the variable environment

value new value to assign to the variable environment

If variable name is already part of the environment, its value is replaced by value; otherwise,
the new variable and its value are added to the environment. You can remove a variable from the
environment by specifying an empty string.

This procedure affects only the environment that is local to the current process; you cannot use
them to modify the command-level environment. That is, these functions operate only on data
structures accessible to the run-time library and not on the environment "segment " created for
a process by the operating system. When the current process terminates, the environment reverts to
the level of the calling process (in most cases, the operating-system level). However, the modified
environment can be passed to any new processes created by the instruction system, and these
new processes get any new items added by putEnv.

Example:

putEnv ("JUST_FOR_FUN", "I’'d like to finish reading my
newspaper") ;

traceline ("getEnv (" JUST_FOR_FUN’) = '" + getEnv ("JUST_FOR_FUN")
I "l");

Output:

getEnv (' JUST_FOR_FUN’) = ’I'd like to finish reading my
newspaper’

See also:

getEnv 4.3.91, environTable 4.3.52, existEnv 4.3.60, system 4.3.200

4.3.152 randomlinteger

e function randomlInteger() : int
Generates a pseudorandom number.
See also:

randomSeed 4.3.152

4.3.153 randomSeed

e procedure randomSeed(seed : int)

Parameter ‘ Type ‘ Description
seed ‘ int ‘ a new seed for generating pseudorandom integers

190 Chapter 4. The scripting language

Sets the seed for generating a series of pseudorandom integers. To change the seed to a given start-
ing point, choose any positive value different of 1 as the seed argument. A value of 1 reinitializes
the generator. Any negative value let CODEWORKER choose a random seed for you.

See also:

randomInteger 4.3.151

4.3.154 receiveBinaryFromSocket
e function receiveBinaryFromSocket(socket : int, Length : int) : string
Parameter ‘ Type ‘ Description

socket
length

int
int

a client socket descriptor
number of bytes to read

This function waits for 1ength bytes to read from socket, and returns a sequence of bytes
(CODEWORKER represents a byte with 2 hexadecimal digits).

If an error occurs, the function returns an empty string.

See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket
4.6.7, receiveFromSocket 4.3.154, receiveTextFromSocket 4.3.155,

sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

4.3.155 receiveFromSocket

e function receiveFromSocket(socket : int, isText : boolref) : string

Parameter ‘ Type ‘ Description
socket int a client socket descriptor
isText boolref | the function will populate this parameter with t rue if read

bytes designate a string and false if they are binary data

This function waits for bytes to read from socket and returns them. If an error occurs, the
function returns an empty string.

The function sets 1 sText to:

— true if it has received a text,
— false if it has received binary data: the returned string is then a sequence of bytes (CODE-
WORKER represents a byte with 2 hexadecimal digits),

See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket 4.6.7,

4.3. Common functions and procedures 191

receiveBinaryFromSocket 4.3.153, receiveTextFromSocket 4.3.155,
sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

4.3.156 receiveTextFromSocket
e function receiveTextFromSocket(socket : int, Length : int) : string
Parameter ‘ Type ‘ Description

socket a client socket descriptor
length size of the text to read

int
int

This function waits for 1ength bytes to read from socket, and returns a string.
If an error occurs, the function returns an empty string.
See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket 4.6.7,
receiveBinaryFromSocket 4.3.153, receiveFromSocket 4.3.154,
sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

4.3.157 relativePath

e function relativePath(path : string, reference : string) : string

Parameter ‘ Type ‘ Description

path string | the path to give as relative to reference
reference | string | a path that serves as the reference to determine the relative
path

Returns the relative path that allow going to the well-named path, considering the reference
path as the starting point (like a current directory). Under the Windows platform, if the two
arguments don’t hold on the same drive, the absolute path of the first argument is returned.

Note that the arguments are converted to canonical paths (see canonicalPath ()
canonicalPath () for more information).

Example:

local sPath = getCurrentDirectory() + "Documentation/CodeWorker.pdf";
tracelLine ("path = " + sPath + "'");

local sReference = "WebSite/downloads";

traceline ("reference = " + sReference + "' ");

tracelLine ("result = ’'" + relativePath(sPath, sReference) + "'");
Output:

path = 'E:/projects/generator/Documentation/CodeWorker.pdf’
reference = 'WebSite/downloads’
result = ’../../Documentation/CodeWorker.pdf’

192 Chapter 4. The scripting language

See also:

changeDirectory 4.3.11, canonizePath 4.39, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, getCurrentDirectory 4.3.90, removeDirectory
4.3.158, resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory
4.3.59

4.3.158 removeAllElements
e procedure removeAllElements(variable : treeref)

Parameter ‘ Type ‘ Description
variable ‘ treeref ‘ an array of nodes

Removes all elements of the array pointed to by variable.
Example:

local myTree = "monkey";

pushItem myTree["Everest"];

pushItem myTree["Tea spoon"];

tracelLine ("the array 'myTree’ has " + myTree.size() + "
elements");

traceline ("all elements are removed");
removeAllElements (myTree) ;

tracelLine ("Is the array 'myTree’ empty now? = '" +
myTree.empty () + "' ");
Output:

the array 'myTree’ has 2 elements
all elements are removed
Is the array 'myTree’ empty now? = 'true’

See also:

removeElement 4.3.159, removeFirstElement 4.3.160, removelastElement

4.3.162

4.3.159 removeDirectory
e function removeDirectory(path : string) : bool

Parameter | Type ‘ Description

path ‘ string ‘ the directory to remove

The function removes the directory specified by path. The directory must not be the current
working directory or the root directory.

The function returns false if the path is invalid or cannot be deleted.
Example:

local sDirectory = getWorkingPath() + "Scripts/Tutorial/GettingStarted/bin";
if !removeDirectory(sDirectory) error ("impossible to remove " +
sDirectory + "'");

4.3. Common functions and procedures 193

See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, getCurrentDirectory 4.3.90, relativePath 4.3.156,
resolveFilePath 4.3.168, scanDirectories 4.3.175, existDirectory 4.3.59

4.3.160 removeElement

e procedure removeElement(variable : treeref, key : string)

Parameter | Type | Description
treeref | an array of nodes
string | the entry key of the element to remove

variable

key

Removes the element whose entry key is passed to the argument key from the array of nodes
called variable.

Example:

local myTree = "monkey";

pushItem myTree["Everest"];

pushItem myTree["Tea spoon"];

traceline ("the array 'myTree’ has " + myTree.size() + "
elements");

traceline ("element ’'Tea spoon’ is removed");

removeElement (myTree, "Tea spoon");

traceline ("the array 'myTree’ has " + myTree.size() + " elements
now") ;

Output:

the array 'myTree’ has 2 elements
element ’'Tea spoon’ is removed
the array 'myTree’ has 1 elements now

See also:

removeAllElements 4.3.157, removeFirstElement 4.3.160, removelLastElement
4.3.162

4.3.161 removeFirstElement

e procedure removeFirstElement(1ist : freeref)

Parameter ‘ Type ‘ Description
list ‘ treeref ‘ an array of nodes

Removes the first element from the array of nodes called 11 st.
Nothing occurs if 11 st doesn’t exist or is empty.
Example:

local myTree = "monkey";
pushItem myTree["Everest"];

194

Chapter 4. The scripting language

pushItem myTree["Tea spoon"];

tracelLine ("the array 'myTree’ has " + myTree.size() + "
elements");

traceline ("the first element is removed:");
removeFirstElement (myTree);

traceObject (myTree) ;

Output:

the array 'myTree’ has 2 elements
the first element is removed:
Tracing variable 'myTree’:
"monkey"
["Tea spoon"]
End of variable’s trace 'myTree’.

See also:

removeAllElements 4.3.157, removeElement 4.3.159, removeLastElement 4.3.162

4.3.162 removeGenerationTagsHandler

e function removeGenerationTagsHandler(key : string) : bool

Parameter ‘ Type ‘ Description
key ‘ string ‘ designates the handler to remove

Removes the current generation tags handler amongst those previously registered thanks to the
function addGenerationTagsHandler (). If the current generation tags handler is worth
this one, no custom handler is selected.

Returns t rue if key designates a registered handler.
See also:

addGenerationTagsHandler 4.3.2, selectGenerationTagsHandler 4.3.177

4.3.163 removelLastElement

e procedure removeLastElement(1ist : treeref)

Parameter ‘ Type ‘ Description
list ‘ treeref ‘ an array of nodes

Removes the last element from the array of nodes called 1ist.
Nothing occurs if 11 st doesn’t exist or is empty.
Example:

local myTree = "monkey";

pushItem myTree["Everest"];

pushItem myTree["Tea spoon"];

traceline ("the array 'myTree’ has " + myTree.size() + "
elements");

4.3. Common functions and procedures 195

tracelLine ("the last element is removed:");
removelLastElement (myTree) ;
traceObject (myTree);

Output:

the array 'myTree’ has 2 elements
the last element is removed:
Tracing variable 'myTree’:
"monkey"
["Everest"]
End of variable’s trace 'myTree’.

See also:

removeAllElements 4.3.157, removeElement 4.3.159, removeFirstElement
4.3.160

4.3.164 removeRecursive

e procedure removeRecursive(variable : treeref, attribute : string)

Parameter ‘ Type ‘ Description
variable | treeref | points to a node of a parse tree
attribute | string | the name of an attribute to remove

Removes recursively the attribute called att ribute from a parse tree given by variable. It
checks also recursively the nodes put into arrays.

Example:

local myTree = "to keep";

insert myTree.toKeep = "to keep";

insert myTree.toRemove = "to remove";

insert myTree.toKeep.toRemove = "to remove";

insert myTree.list["keep"].toKeep = "to keep";
insert myTree.list["remove"].toRemove = "to remove";
removeRecursive (myTree, "toRemove");

local theGoal = "to keep";

insert theGoal.toKeep = "to keep";

insert theGoal.list["remove"] = "";

insert theGoal.list["keep"].toKeep = "to keep";

if !equalTrees (myTree, theGoal) error ("removeRecursive () doesn’t
work!"™);

tracelLine ("the attribute ’toRemove’ has been removed from
"myTree’ recursively");

Output:

the attribute ’'toRemove’ has been removed from 'myTree’
recursively

196 Chapter 4. The scripting language

4.3.165 removeVariable

e procedure removeVariable(node : treeref)

Parameter ‘ Type ‘ Description

node ‘ treeref ‘ the node to remove from the tree

All attributes of the argument node are deleted, its array of nodes is cleared and its value becomes
an empty string. If the node was referring to another node, the link is cleared. Once these task
are completed, the variable node is removed from the tree it belongs to (as an attribute or an

element).
Note that trying to remove a local variable throws an error.
Example:

local myTree;

insert myTree.nodeToRemove = "the value";
localref myNode = myTree.nodeToRemove;

insert myNode.al = "attribute 1";

insert myNode.a2 "attribute 2";

insert myNode.array["1"] = "node 1";

insert myNode.array["2"] = "node 2";
traceObject (myNode) ;

traceline ("- the variable "'myNode’ 1is removed:

removeVariable (myNode) ;
traceObject (myTree) ;

Output:

Tracing variable 'myTree.nodeToRemove’ :
"the value"

al = "attribute 1"
a2 = "attribute 2"
array

array[ﬂlll, "2"]

End of variable’s trace 'myTree.nodeToRemove’ .

— the variable ’'myNode’ is removed:
Tracing variable 'myTree’:
End of variable’s trace 'myTree’.

See also:

existVariable 4.3.62, clearVariable 4.3.17, findFirstSubstringIntoKeys
4.3.77, findElement 4.3.75, findNextSubstringIntoKeys 4.3.80, getArraySize
4387, getVariableAttributes 4.3.100, invertArray 4.3.114, i sEmpty 4.3.115

4.3.166 repeatString

e function repeatString(t ext : string, occurrences : int) : string

Parameter ‘ Type ‘ Description
text string | the string to repeat
occurrences | int number of times the string must be repeated

4.3. Common functions and procedures

197

Returns the result of repeating the sequence of characters passed to argument text a number of
times given by the parameter occurrences.

Example:

traceline ("repeatString (' Hungry!’, 37) = """ +

repeatString ("Hungry!", 3) + "' ");

Output:

repeatString (' Hungry!’, 3’) = ’'Hungry!Hungry!Hungry!’

See also:

countStringOccurences 4.3.34, completeleftSpaces 4.3.22,

completeRightSpaces 4.3.23, replaceString 4.3.166, replaceTabulations
4.3.167, toLowerString 4.3.201, toUpperString 4.3.202, trimLeft
43211, trimRight 4.3.212, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.167 replaceString

e function replaceString(o1d : string, new : string, text : string) : string

Parameter ‘ Type ‘ Description

old string | the substring to be replaced
new string | the string replacing the old one
text string | the sequence of characters to handle

Returns the result of replacing all occurrences of substring passed to argument o1d by the sub-
string new, when found into text.

Example:

local sText = "first in, first out";

tracelLine ("replaceString (/' fir’, 'la’, '™ + sText + "’) = '" +
replaceString ("fir", "la", sText) + "'");

Output:

replaceString ("’ fir’, ’'la’, ’"first in, first out’) = ’last in,

last out’
Method: text.replaceString(old, new)
See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceTabulations
4.3.167, toLowerString 4.3.201, toUpperString 4.3.202, trimLeft
43211, trimRight 4.3.212, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.168 replaceTabulations

e function replaceTabulations(text : string, tab : int) : string

198 Chapter 4. The scripting language

Parameter ‘ Type ‘ Description

text string | a sequence of characters where spaces must be inserted in-
stead of tabulations
tab int size of a tabulation

Returns the result of replacing all tabulations (character *\t’) of the string passed to argument
text by spaces. The maximum of spaces to insert instead of tabulation is given by the parameter
tab.

Notice that spaces to insert are determined according to the position of the tabulation in the string
and the beginning of the /ine (it means that *\n’ characters are taken into account) and the tabula-
tion size. So, this function isn’t equivalent to replaceString () 4.3.166.

Example:

local sText = " a little joke";

traceline ("replaceTabulations (sText, 4) = '"" +
replaceTabulations (sText, 4) + "' ");
traceLine("replaceString(’\t’, """, sText) = '" +
replaceString ("\t", " ", sText) + "’'");

Output:

replaceTabulations (sText, 4) = ' a little joke’
replaceString(’ ', , sText) = ' a little Jjoke’
See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,

completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
toLowerString 4.3.201, toUpperString 4.3.202, trimLeft 4.3.211, trimRight
43212, trim 4.3.210, truncateAfterString 4.3.213, truncateBeforeString
43.214

4.3.169 resolveFilePath
o function resolveFilePath(filename : string) : string

Parameter ‘ Type ‘ Description
filename ‘ string ‘ the path of the file to resolve

Searches the file filename in the current directory and, if fails, it continues searching it in the
include directories (* —I’ switch on the command line).

It returns the location of the file in directories, removing any ambiguity.
If the file doesn’t exist, the function returns an empty string.
If £ilename points to a virtual file, the function returns £ilename.

Example:

local sIncludePath = getIncludePath();
setIncludePath (sIncludePath + ";Documentation");
tracelLine ("resolveFilePath (' CodeWorker.tex’) = """ +
resolveFilePath ("CodeWorker.tex") + "7 ");
setIncludePath (sIncludePath);

Output:

4.3. Common functions and procedures 199

resolveFilePath (' CodeWorker.tex’) = ’'Documentation/CodeWorker.tex’
See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, getCurrentDirectory 4.3.90, relativePath 4.3.156,
removeDirectory 4.3.158, scanDirectories 4.3.175, existDirectory 4.3.59

4.3.170 rightString

e function rightString(text : string, length : inf) : string

Parameter ‘ Type ‘ Description
text
length

string
int

a sequence of characters
a positive number

Returns the last characters that belong to the string passed to the argument text. The number
of characters to take is given by argument length. If the string contains less than length
characters, the function returns all of them.

Example:

tracelLine ("rightString (’airport’, 4)
4) _I_ nwr ") ,.
tracelLine ("rightString (’airport’, 8)
8) _I_ nwr ") ,.

" + rightString("airport",

rm

+ rightString ("airport",

Output:

rightString(’airport’, 4) = ’'port’
rightString(’airport’, 8) = ’'airport’
See also:

charat 43.13, coreString 4.3.33, cutString 4.342, joinStrings 4.3.120,
leftString 4.3.123, lengthString 4.3.124, midString 4.3.132, rsubString
4.3.170, subString 4.3.198

4.3.171 rsubString

e function rsubString(text : string, pos : int) : string

Parameter ‘ Type ‘ Description

text string | a sequence of characters
pos int a position starting at 0, and relative to the end of the text
string

Returns the sequence of characters passed to argument text after skipping the last pos charac-
ters. It is a reverse subString().

Example:
local sText = "The lamp of experience";
tracelLine ("sText = '" + sText + "' ");

200

Chapter 4. The scripting language

traceline ("rsubString(sText, 5) = " + rsubString(sText, 5) +

"I") .
4

Output:

sText = ’'The lamp of experience’
rsubString (sText, 5) = "The lamp of exper’
See also:

charat 4.3.13, coreString 4.3.33, cutString 4.342, joinStrings 4.3.120,
leftString 4.3.123, lengthString 4.3.124, midString 4.3.132, rightString
4.3.169, subString 4.3.198

4.3.172 saveBinaryToFile

e procedure saveBinaryToFile(filename : string, content : string)

Parameter ‘ Type ‘ Description

filename | string | name of the binary file to write into

content string | sequence of bytes (2 hexadecimal digits) to write into the
file

Saves the binary content to the file filename. The parameter content concatenates a
sequence of hexadecimal digits, so a byte is stored in 2 characters:

binary-content ::= [byte]x;

byte ::= ['0"..79" | 'A' . .'F' | 'a'.."£']12;

The hexadecimal pairs of digit are converted to binary (8 bits) before writing the content.

If the file cannot be created, an error is raised. If the file already exists, its content is replaced by
the new binary content.

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32, deleteFile 4.3.45,existFile
43.61, fileCreation 4.3.69, filelLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile
4.3.126, loadFile 4.3.127, saveToFile 4.3.174, scanFiles 4.3.176

4.3.173 saveProject

e procedure saveProject(XMLorTXTF1ileName : string, nodeToSave : tree)

Parameter Type | Description

XMLorTXTFileName | string | an output file that will contain the description of the node
to save

nodeToSave tree default value: project
the node to save; if omitted, it is defaulted to the global
variable project

Saves the parse tree of the project as a XML or a text file (".xml" or ".txt" extension).

4.3.

Common functions and procedures 201

— If XML, each element of the XML hierarchy takes the name of the corresponding attribute
in the parse tree. When a value is assigned to an attribute, it is reported into an XML
attribute called __ VALUE. When an attribute represents an array of nodes, all nodes are
inlayed in the body of the XML element like it: each node is put into an XML element
called __ ARRAY_ENTRY where the XML attribute ___KEY contains the entry key.

— if text file, the format is the same as for a constant tree declaration (see section ?7?).

Example:

parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp",

project, "Scripts/Tutorial/GettingStarted/Tiny.tml");

saveProject (getWorkingPath () +
"Scripts/Tutorial/GettingStarted/Tiny-tree.xml");

traceline (loadFile ("Scripts/Tutorial/GettingStarted/Tiny-tree.xml"));

Output:

this file has been parsed successfully
<project>
<listOfClasses>
<__ARRAY_ENTRY _ KEY="A">
<name __VALUE="A" />
</__ARRAY_ENTRY>
<__ARRAY_ENTRY _ KEY="B">
<name __ VALUE="B" />
<parent _ REFERENCE="project.listOfClasses["A"]"
/>
</__ARRAY_ ENTRY>
<__ARRAY ENTRY __ KEY="C">
<name __VALUE="C" />
<listOfAttributes>
<__ARRAY_ENTRY _ KEY="0">
<class __REFERENCE="project.listOfClasses["B"]"
/>
<isArray __VALUE="true" />
<name __ VALUE="b" />
</__ARRAY_ENTRY>
</listOfAttributes>
</__ARRAY_ENTRY>
<__ARRAY ENTRY __ KEY="D">
<name __VALUE="D" />
<listOfAttributes>
<__ARRAY_ENTRY __ KEY="0">
<class __REFERENCE="project.listOfClasses["A"]"
/>
<name __ VALUE="a" />
</__ARRAY ENTRY>
<__ARRAY_ENTRY _ KEY="1">
<class __REFERENCE="project.listOfClasses["C"]"
/>
<isArray __VALUE="true" />
<name __VALUE="c¢" />
</__ARRAY_ENTRY>
</listOfAttributes>

202 Chapter 4. The scripting language

</__ARRAY ENTRY>
</listOfClasses>
</project>

See also:

loadProject 4.3.128, saveProjectTypes 4.3.173

4.3.174 saveProjectTypes

e procedure saveProjectTypes(XMLF ileName : string)

Parameter ‘ Type ‘ Description
XMLFileName an output file that will contain the XML description of the
structure of the main parse tree called project

string

Factorizes nodes of the parse tree of the project to distinguish an implicit type for nodes, depending
on their locations into the graph. The typed tree is saved as an XML file.

Example:

parseAsBNF ("Scripts/Tutorial/GettingStarted/Tiny-BNFparsingl.cwp",

project, "Scripts/Tutorial/GettingStarted/Tiny.tml");

saveProjectTypes (getWorkingPath () +
"Scripts/Tutorial/GettingStarted/Tiny-types.xml");

traceline (loadFile ("Scripts/Tutorial/GettingStarted/Tiny-types.xml"));

Output:

this file has been parsed successfully
<project>
<listOfClasses>
<__ARRAY_TYPE name="compulsory" parent="optional[25%]">
<listOfAttributes>
<__ARRAY_TYPE class="compulsory"
isArray="optional[66%]" name="compulsory">
</__ARRAY_ TYPE>
</listOfAttributes>
</__ARRAY TYPE>
</listOfClasses>
</project>

Known bugs:

Sometimes, when a type is encountered twice in very different locations of the parse tree, a mistake
on the proportion of presence may occur. It will be corrected later.

See also:

loadProject 4.3.128, saveProject 4.3.172

4.3. Common functions and procedures 203

4.3.175 saveToFile
e procedure saveToFile(filename : string, content : string)
Parameter ‘ Type ‘ Description

name of the text file to write into
sequence of characters to write into the file

filename | string

string

content

Saves the text content to the file filename.

If the file cannot be created, an error is raised. If the file already exists, its content is replaced by
the new text content.

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345,existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile
4.3.126, 1oadFile 4.3.127, saveBinaryToFile 4.3.171, scanFiles 4.3.176

4.3.176 scanDirectories

e function scanDirectories(directory : tree, path : string, pattern : string) : bool

Parameter ‘ Type ‘ Description

directory | tree node that will contain the name of filtered files and folders
path string | the directory from where to start the exploration
pattern string | the filter to apply on files to keep

Explores the directory whose name is passed to the argument path and filters all files that
validate the pattern. The list of files is put into the node’s array directory.files
and the list of directories are put into the node’s array directory.directories. The
argument subfolders requires exploring sub-directories and each node of the node’s array
directory.directories repeats the same process recursively. The key of an array’s node
is the short name of the file or the directory and the value of a directory item is the relative path,
whereas the value of a file item is also the short name.

If the directory cannot be found, the variable directory doesn’t change and the function returns
false. If the directory doesn’t contain any file, the attribute directory. files isn’t created.
If the directory doesn’t contain any subfolder, the attribute directory.directories isn’t
created.

Example:

local theDirectory;

local sPathToExplore = project.winBinaries; // Windows package

of CodeWorker

if !scanDirectories(theDirectory, sPathToExplore, "Leaderx.cws")

error ("unable to find the directory");

// the complete path is too long: shorten it

tracelLine ("starting directory = '" + theDirectory.subString(sPathToExplore.]l
+ ")y

foreach 7 in theDirectory.files {

204 Chapter 4. The scripting language

tracelLine(" '™ + 3 + "' ");
}
foreach 1 in cascading theDirectory.directories {
// the complete path is too long: shorten it
traceline ("- directory " + i.subString(sPathToExplore.length())
+ ")y
foreach j in i.directories {
tracelLine (" subfolder '" + key(j) + """);
// the complete path is too long: shorten it
traceline (" path " + j.subString(sPathToExplore.length())
+ "y
}
foreach j in i.files {
tracelLine(" " + 3 + "'");

}
Output:

starting directory = '/’:
— directory ’/bin/’:
directory ’/include/’:
directory ' /Scripts/’:
subfolder ’Tutorial’
path ’/Scripts/Tutorial/’
directory ’/Scripts/Tutorial/’:
subfolder ’"GettingStarted’
path ’/Scripts/Tutorial/GettingStarted/’
directory ' /Scripts/Tutorial/GettingStarted/’ :
"LeaderScriptO.cws’
"LeaderScriptl.cws’
"LeaderScript2.cws’
"LeaderScript3.cws’
"LeaderScript4.cws’
"LeaderScript5.cws’
"LeaderScript6.cws’

See also:

changeDirectory 4.3.11, canonizePath 4.3.9, copySmartDirectory 4.3.31,
exploreDirectory 4.3.66, getCurrentDirectory 4.3.90, relativePath 4.3.156,
removeDirectory 4.3.158, resolveFilePath 4.3.168, existDirectory 4.3.59

43177 scanFiles

e function scanFiles(files : tree, path : string, pattern : string, subfolders : bool) :

bool
Parameter | Type | Description
files tree node that will contain files that validate the pattern
path string | the directory where to scan files
pattern string | the filter to apply on files to keep

subfolders | bool | to scan sub directories recursively

4.3. Common functions and procedures 205

Explores the directory path and filters all files that validate the pattern given by parameter.
Files are put into the node’s array called £i1les with their relative path, which is assigned to the
value of the item. The scan is applied on subfolders if the argument subfolders passes true.

The pattern argument accepts the standard jocker characters (**” and ’?”). If empty, pattern
is considered as being worth "*".

The function returns t rue if the directory to scan exists.
Example:

local files;
local sDirectory = "Scripts/Tutorial/GettingStarted";
if !scanFiles(files, sDirectory, "Leaderx*.cws", true)
error ("impossible to find the directory");
traceline ("filtering recursively all files that conform to
"Leader*x.cws’");
foreach 1 in files {
tracelLine (" " + subString (i, lengthString(sDirectory)));
}

Output:

filtering recursively all files that conform to ’'Leaderx*.cws’
/LeaderScript0.cws
/LeaderScriptl.cws
/LeaderScript2.cws
/LeaderScript3.cws
/LeaderScript4.cws
/LeaderScript5.cws
/LeaderScript6.cws

See also:

copyFile 4.3.29, appendFile 434, changeFileTime 4.3.12, chmod 4.3.16,
copyGenerableFile4.3.30, copySmartFile4.3.32,deleteFile4.345,existFile
43.61, fileCreation 4.3.69, fileLastAccess 4.3.70, fileLastModification
4371, fileLines 4.3.72, fileMode 4.3.73, fileSize 4.3.74, loadBinaryFile
4.3.126, 1oadFile 4.3.127, saveBinaryToFile 4.3.171, saveToFile 4.3.174

4.3.178 selectGenerationTagsHandler

e function selectGenerationTagsHandler(key : string) : bool

Parameter ‘ Type ‘ Description
key ‘ string ‘ designates the handler to take

Selects the current generation tags handler amongst those previously registered thanks to the func-
tion addGenerationTagsHandler (). If the parameter key is worth false (empty string),
the default generation tags handler is used.

Returns t rue if key designates a registered handler.
See also:

addGenerationTagsHandler 4.3.2, removeGenerationTagsHandler 4.3.161

206

Chapter 4. The scripting language

4.3.179 sendBinaryToSocket

e function sendBinaryToSocket(socket : int,bytes : string) : bool

Parameter ‘ Type ‘ Description
socket
bytes

int
string

a client socket descriptor
a sequence of bytes to write

This function writes binary data to a socket and returns t rue if it has achieved successfully.

The function raises an error if a byte passed to bytes is malformed: CODEWORKER expects 2
hexadecimal digits to represent a byte.

See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket 4.6.7,
receiveBinaryFromSocket 4.3.153, receiveFromSocket 4.3.154,
receiveTextFromSocket 4.3.155, sendTextToSocket 4.3.180, closeSocket
4.3.18, flushOutputToSocket 4.6.10

4.3.180 sendHTTPRequest

o function sendHTTPRequest(URL : string, H-TTPSession : treeref) : string

Parameter ‘ Type ‘ Description
URL string | URL of the HTTP server
HTTPSession | treeref | an object to describe the HTTP session

This function sends an HTTP request to the HTTP server pointed to by the argument URL, and
returns the document read from the HTTP server.

If the request fails, an error message is thrown.

The well-named argument HTTPSession specifies some information into devoted attributes:

agent (optional) is the browser name, "CODEWORKERby default,

referer (optional),

proxy (optional):
+ proxy.host (compulsory),
* proxy.port (compulsory),

* proxy.userpwd (optional) is worth "user:password",

cookies (optional) is a list of nodes such as:
* name (compulsory),
value (optional) is worth """ by default,
path (optional), populated from the HTTP header (see below)
domain (optional), populated from the HTTP header (see below)
expires (optional) for a permanent cookie, populated from the HTTP header (see below)

*

*

*

*

4.3. Common functions and procedures 207

After processing the request successfully, you’ll find information about the returned data.

If the data is a binary format, such as an archive or an image, the field
HTTPSession.binary data is worth true.

If the data is a textual format, the detail of the received header lines are filled in
the array HTTPSession.header_lines. The array HTTPSession.cookies
is updated with the cookies extracted from the header. The entry nodes of the array
HTTPSession.header_lines are indexed with the name of the header directive. These
entry nodes just contain the list of all header values attached to such a directive.

Example:

HTTP/1.1 200 OK

Cache-Control: private

Date: Wed, 10 Mar 2004 13:41:03 GMT

Server: Microsoft-IIS/6.0

Set-Cookie: SESSIONID=Garfield; expires=Wed, 10-Mar-2004
15:03:19 GMT; path=/

Set-Cookie’ PREFERENCES=yellow; domain=jupiter; path=/
Content-Type: text/html

Content-Length: 4469

These fields are then injected in the array HTTPSession.header_lines. The
header directive Set-Cookie appears twice, but gives rise to only one entry node:
HTTPSession.header_lines["Set—Cookie"]. This entry node is a list contain-
ing two elements. The first one defines all characteristics of SESSIONID and the second one
provides the characteristics of the cookie PREFERENCES.
Here, a piece of code that displays the header lines:
foreach i in theSession.header lines

foreach j in 1

tracelLine("'" + i.key() + "/ ='"" 4+ 5 4+ "My,
Output:
"HTTP/1.1 200 OK’' ="
"Cache-Control’ = ’'private’

"Date’ = 'Wed, 10 Mar 2004 13:41:03 GMT’

"Server’ = 'Microsoft-IIS/6.0’

"Set-Cookie’ = "SESSIONID=Garfield; expires=Wed, 10-Mar-2004
15:03:19 GMT; path=/’

"Set-Cookie’ = 'PREFERENCES=yellow; domain=jupiter; path=/’
"Content-Type’ = ’'text/html’

"Content-Length’ = 74469’

See also:
getHTTPRequest 4.3.93, postHTTPRequest 4.3.146

4.3.181 sendTextToSocket
e function sendTextToSocket(socket : int, text : string) : bool
Parameter ‘ Type ‘ Description

socket
text

int
string

a client socket descriptor
the text to write

208 Chapter 4. The scripting language

This function writes a text to a socket and returns t rue if it has achieved successfully.
See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, detachInputFromSocket
4.5.3, attachOutputToSocket 4.6.3, detachOutputFromSocket 4.6.7,
receiveBinaryFromSocket 4.3.153, receiveFromSocket 4.3.154,
receiveTextFromSocket 4.3.155, sendBinaryToSocket 4.3.178, closeSocket
4.3.18, flushOutputToSocket 4.6.10

4.3.182 setCommentBegin

e procedure setCommentBegin(commentBegin : string)

Parameter ‘ Type ‘ Description
commentBegin a sequence of characters that represents the beginning of a
comment for an output file to handle

string

Sets the value of a beginning of comment, which is exploited by the procedures taking in charge
the source code generation, such as expand or generate. CODEWORKER must know the
format of comments recognized by the output file, to be able to extract or put protected areas, or
to detect expansion markups. This procedure should be called before calling the source code
generation, otherwise the new value is ignored by the preprocessing of output files that looks for
protected areas and markups.

The beginning of comment assigned by default is worth *//°. This is the symbol of C++ and JAVA
comments that are the most frequently files encountered for generation. However, depending on
the output file to generate, you’ll change the beginning of comment to:

’/** to work on a C file,

— ’- - to work on a ADA file,

— ’<!- 2% to work on a HTML or XML file,

- 2%’ to work on a LaTeX file,
Note that if the beginning of comments is set to an empty string, protected areas aren’t extracted
and the expand mode does nothing.

The function get CommentBegin allows asking for the last assigned value.

Example:

setCommentBegin ("<!=-");

tracelLine ("An HTML-XML comment: " + getCommentBegin() + "' ");
setCommentBegin ("$") ;

tracelLine ("A LaTeX comment: '" + getCommentBegin() + "'");
Output:

An HTML-XML comment: r<t=r

A LaTeX comment: s’

See also:

getCommentBegin 4.3.88, getCommentEnd 4.3.89, setCommentEnd 4.3.182

4.3. Common functions and procedures 209

4.3.183 setCommentEnd

e procedure setCommentEnd(commentEnd : string)

Parameter ‘ Type ‘ Description
string | a sequence of characters that represents the end of a com-
ment for an output file to handle

commentEnd

Sets the value of an end of comment, which is exploited by the procedures taking in charge the
source code generation, such as expand or generate. CODEWORKER must know the format
of comments recognized by the output file, to be able to extract or put protected areas, or to detect
expansion markups. This procedure should be called be fore calling the source code generation,
otherwise the new value is ignored by the preprocessing of output files that looks for protected
areas and markups.

The end of comment assigned by default is worth *\r\n’. This is the symbol of C++ and JAVA
comments that are the most frequently files encountered for generation. However, depending on
the output file to generate, you’ll change the end of comment to:

— ’*/> to work on a C file,

— ’—>’ to work on a HTML or XML file,

The function get CommentEnd allows asking for the last assigned value.

Example:

setCommentEnd ("->") ;

traceline ("An HTML-XML comment ends with: " + getCommentEnd ()
I nwrs ") ,.

setCommentEnd ("\n") ;

traceline ("A LaTeX comment ends with: " + composeCLikeString (getCommentEnc
I nwrs ") ;

Output:

An HTML-XML comment ends with: ’7—->'

A LaTeX comment ends with: ’\n’

See also:

getCommentBegin 4.3.88, getCommentEnd 4.3.89, setCommentBegin 4.3.181

4.3.184 setGenerationHeader

e procedure setGenerationHeader(comment : string)

Parameter ‘ Type ‘ Description
comment ‘ string ‘ comment to put into the header

If the text passed to the argument comment isn’t empty, a comment is added automatically to
each file generated with the procedure generate. Passing the option —genheader on the
command line may require the functionality.

This generation header is inlayed in the comment delimeters and conforms to the format:

210 Chapter 4. The scripting language

— if the comment holds on a single line:
begin-comment "##generation header##CodeWorkeri#"
version—-number "##" generation-date "##"
rmwr comment '"' end-comment

— if the comment holds on more than one line:
begin-comment "##generation header##iCodeWorker##"
version—number "##" generation-date "##" end-comment
begin-comment "##header start##" end-comment
begin-comment line: end-comment

begin-comment linen end-comment
begin-comment "##header end##" end-comment

Changing the generation header doesn’t lead to modify the generated file necessary: the header is
ignored while comparing two files.
Example:

setGenerationHeader ("Popeye’s Village\nOlive hates spinash");

traceline ("new generation header = ’'" + getGenerationHeader () +
"I");

local sFileName = "GettingStarted/Tiny-JAVA.cwt";

traceline ("script to execute:");

local sContent = replaceString("\r", """, loadFile (sFileName));

local lines;
cutString (sContent, "\n", lines);
foreach i in lines if !startString(i, "//")
traceLine ("\t" + 1);
traceline ("class to generate = ’'" + project.listOfClasses#[1].name
+ "y
local sOutputText;
generateString (sFileName, project.listOfClasses#[1],
sOutputText) ;

traceline ("generated text:");

traceline (sOutputText) ;
setGenerationHeader ("");

Output:

new generation header = ’'Popeye’s Village

Olive hates spinash’
script to execute:
package tiny;

public class @
this.name@ @
if existVariable(this.parent) {
@ extends @this.parent.name@ @

}

@
// attributes:
@
function getJAVAType (myAttribute : node) {

local sType = myAttribute.class.name;

4.3. Common functions and procedures 211

if myAttribute.isArray {
set sType = "Java.util.ArrayList/*<" + sType + ">=*/";

}

return sType;

foreach i in this.listOfAttributes {
@ private @getJAVAType(i)@ _@i.name@ = null;

@
}
@
//constructor:
public Q@this.name@ () {
}
// accessors:
@

foreach i1 in this.listOfAttributes {
@ public QRgetJAVAType (i)@ get@toUpperString(i.name)@ () {
return _Qi.name@; }
public void set@toUpperString(i.name) @ (@getJAVAType (1)@
@i.name@) { _@i.name@ = @i.name@; }
@
}
setProtectedArea ("Methods") ;
@}

class to generate = ’'Earth’

generated text:

//##generation header##CodeWorker##4.5.1##285ul2008 00:44:344#
//##header start##

//Popeye’s Village

//0live hates spinash

//##header end##

package tiny;

public class Earth extends Planet {
// attributes:
private _countryNames = null;

//constructor:
public Earth() {
}

// accessors:

public getCOUNTRYNAMES () { return _countryNames; }

public void setCOUNTRYNAMES (countryNames) { _countryNames =
countryNames; }
//##protect##"Methods"
//##protect##"Methods"

}

212 Chapter 4. The scripting language

See also:

extractGenerationHeader 4.3.68, getGenerationHeader 4.3.92

4.3.185 setlncludePath

e procedure setIncludePath(path : string)

Parameter ‘ Type ‘ Description
path ‘ string ‘ a concatenation of paths separated by ’;’

It changes the include path passed to the command line with one or more times the setting of the
option —1I.

The include path expects a concatenation of paths separated by semi-commas (’;’).
Example:

local sOldPath = getIncludePath();
setIncludePath ("Here/is;better/than;before");

tracelLine ("one changes the path: ’'" + getIncludePath() + "'");
setIncludePath (sOldPath) ;
Output:

one changes the path: 'Here/is/;better/than/;before/’
See also:

getProperty 4.3.97, getIncludePath 4.3.94, getVersion 4.3.101,
getWorkingPath 4.3.102, setProperty 4.3.186, setVersion 4.3.188,
setWorkingPath 4.3.189

43186 setNow

e procedure setNow(constantDateTime : string)

Parameter ‘ Type ‘ Description
constantDateTime ‘ string ‘ the current date-time is fixed to this value

Fixes the current date-time to the value passed to argument constantDateTime, conforming
to the format:
%d%b%Y $H:%M:%S.5%L

The procedure doesn’t change the system time. now is just frozen for the scripting language when
calling getNow () . One passes an empty date-time to unfreeze the time.

For explanations about format types, see function formatDate at 4.3.84.

Example:

// the time is already frozen for building the documentation
local sOldFrozenTime = getNow () ;

traceline ("now = " + getNow());

tracelLine ("one freezes the time to ’193an2003 06:30:00.100"");

4.3. Common functions and procedures 213

setNow ("19jan2003 06:30:00.100") ;

tracelLine("now = " + getNow() + "’ is frozen to this value");
setNow (sOldFrozenTime) ;
Output:

now = 28jul2008 20:42:00.500
one freezes the time to ’1937an2003 06:30:00.100"
now = ’199an2003 06:30:00.100" is frozen to this wvalue

See also:

formatDate 4.3.84, addToDate 4.3.3, compareDate 4.3.19, completeDate 4.3.21,
getLastDelay 4.3.95, getNow 4.3.96

4.3.187 setProperty

e procedure setProperty(define : string, value : string)

Parameter ‘ Type ‘ Description
name of a property
value to assign to the property

define string

string

value

It assigns the value held by the argument value to a property whose name is given by parameter
define. Itis equivalent of writing * -D define=value’ on the command line.

An error is raised if the define argument is an empty string.
Example:

setProperty ("JUST_FOR_FUN", "Monty Python");

traceline ("getProperty (' JUST_FOR_FUN’) = '" +
getProperty ("JUST_FOR_FUN") + "’/ ");

Output:

getProperty (' JUST_FOR_FUN’) = ’'Monty Python’

Deprecated form: setDefineTarget has disappeared since version /.30
See also:

getProperty 4.3.97, getIncludePath 4.3.94, getVersion 4.3.101,
getWorkingPath 4.3.102, setIncludePath 4.3.184, setVersion 4.3.188,
setWorkingPath 4.3.189

4.3.188 setTextMode

e procedure setTextMode(textMode : string)

Parameter ‘ Type ‘ Description
textMode ‘ string ‘ text mode (binary or not)

Sets the mode of text that must be retained for parsing and source code generation. The argument
textMode is worth one of the following values:

— "DOS": the default value if the interpreter is running under a Windows platform,

214 Chapter 4. The scripting language

— "UNIX": the default value if the interpreter isn’t running under a Windows platform,
— "BINARY": not exploited yet, but intended to specify later that the parsing and the source
code generation are applied on binary files,
An exception is raised if the argument textMode passes a bad value.

The impact of choosing samp"DOS" instead of any other mode is that special comments, which
announce markup keys and protected areas, will finish by "\r\n" when the end of comment is a
newline *\n’.

Example:

local sTextMode = getTextMode () ;

tracelLine ("This documentation is generated under ’'" + sTextMode
+ "’ text mode");

setTextMode ("BINARY") ;

traceline ("Now, it is generated under ’'" + getTextMode() +
nwrs !") ;

setTextMode (sTextMode) ;
Output:

This documentation is generated under ’'DOS’ text mode
Now, it is generated under ’'BINARY’!

See also:
getTextMode 4.3.99

4.3.189 setVersion

e procedure setVersion(version : string)

Parameter ‘ Type ‘ Description
version ‘ string ‘ version number of scripts

Indicates to the CODEWORKER interpreter that scripts must be considered as written in an older
version of the scripting language, given by the parameter version.

It allows CODEWORKER to behave as if it was an ancient interpreter and eventually, to adapt
deprecated forms.

Example:

local sVersion = getVersion();
traceline ("The version of scripts is ’'" + sVersion + "’'");
setVersion("1.5.2");

tracelLine ("Now, the version of scripts is ’'" + getVersion() +
nrs ");

setVersion (sVersion);
Output:

The version of scripts is "4.5.17
Now, the version of scripts is "1.5.27

See also:

getProperty 4.3.97, getIncludePath 4.3.94, getVersion 4.3.101,
getWorkingPath 4.3.102, setIncludePath 4.3.184, setProperty 4.3.186,
setWorkingPath 4.3.189

4.3. Common functions and procedures 215

4.3.190 setWorkingPath

e procedure setWorkingPath(path : string)

Parameter ‘ Type ‘ Description

path ‘ string ‘ the new working path

Changes the output directory that was assigned to the option -path on the command line.

Example:

local sOldWorkingPath = getWorkingPath();
setWorkingPath ("WebSite/") ;
traceline ("' old path’ = ’'" + sOldWorkingPath + """);

tracelLine ("' new path’ = ’'" + getWorkingPath() + "'");
setWorkingPath (sOldWorkingPath) ;
Output:

"old path’ = ’e:\Projects\generator/’
"new path’ = ’'WebSite/’

See also:

getProperty 4.3.97, getIncludePath 4.3.94, getVersion
getWorkingPath 4.3.102, setIncludePath 4.3.184, setProperty

setVersion 4.3.188

4.3.191 setWriteMode

e procedure setWriteMode(mode : string)

Parameter ‘ Type ‘ Description

4.3.101,
4.3.186,

mode ‘ string ‘ isworth "insert" or "overwrite"

Selects how to write text during a generation and how to apply an implicit copy during a transla-

tion.

By default, a text is written in overwrite mode (mode = "overwrite"): if the file cursor doesn’t
point to the end of the current output file, the new text overwrites the old one and the remaining,

if any, is inserted at the end.

The insert mode (mode = "insert™") causes a shift of the old text, so as to preserve it.

See also:

getWriteMode 4.3.103

4.3.192 shortToBytes

e function shortToBytes(short : ushort) : string

Parameter ‘ Type ‘ Description

short ‘ ushort ‘ an unsigned short integer using the decimal base

216 Chapter 4. The scripting language

Converts an unsigned short integer in decimal base to its 2-bytes representation. Bytes are ordered
in the host order (memory storage).

Example:

traceline ("shortToBytes (255) = " + shortToBytes (255) + "' ");
Output:

shortToBytes (255) = "FF00’

See also:

byteToChar 4.3.8, bytesToLong 4.3.6, bytesToShort 4.3.7, charToByte 4.3.14,
charToInt 4.3.15, hexaToDecimal 4.3.104, longToBytes 4.3.131, octalToDecimal
4.3.139

4.3.193 sleep

e procedure sleep(millis : int)

Parameter ‘ Type ‘ Description
millis |int | how many milliseconds the execution must be suspended

The procedure suspends the execution for mi111s milliseconds.

4.3.194 slideNodeContent

e procedure slideNodeContent(orgNode : treeref, destNode : treexpr)

Parameter ‘ Type ‘ Description
orgNode
destNode

treeref
treexpr

points to a node of a parse tree
a branch starting at the orgNode node

Moves the entire content (both attributes and array nodes) of the node passed to the argument
orgNode, so as to put it at the extremity of a new branch, added to the original node orgNode
once its content has been taken off.

For instance, slideNodeContent (pExpr, left) means that the content of pExpr slides
to pExpr.left.

Example:

local pExpr;
// a given parsing leads to populate an expression:

insert pExpr.operator = "x";
insert pExpr.left = 3.141592;
insert pExpr.right = "X";

tracelLine ("' pExpr’ represents 73.141592 x X'");

// the parsing continues and reveals that the precedent

// expression was the left part of a bigger arithmetic

// expression:

traceline ("After moving, the content of ’'pExpr’ becomes the left
hand:") ;

4.3. Common functions and procedures 217

slideNodeContent (pExpr, left);

tracelLine ("’ - ’'pExpr’ contains only the sub-node ’left’");
tracelLine ("’ - ’'pExpr.left’ represents ’3.141592 * X'");
insert pExpr.operator = "+";

insert pExpr.right = "Y";

traceLine ("' pExpr’ describes now ’ (3.141592 % X) + Y'");
Output:

"pExpr’ represents 73.141592 x X’

After moving, the content of ’'pExpr’ becomes the left hand:
" - 'pExpr’ contains only the sub-node ’'left’

" — 'pExpr.left’ represents "3.141592 x X’

"pExpr’ describes now ’ (3.141592 x X) + Y’/

See also:

equalTrees 4.3.55

4.3.195 sortArray

e procedure sortArray(array : tree)

Parameter ‘ Type ‘ Description
array ‘ tree ‘theanaynodetosoﬂ

Sort an array in the lexicographical order of the entry keys.
Example:

local myArray;
insert myArray["Garfield"];
insert myArray|["Tea spoon"];
insert myArray["Everest"];
traceline ("Sort the array 'myArray’:");
sortArray (myArray) ;
foreach i in myArray {
traceLine ("\t\"" + i.key () + "\"");
}

Output:

Sort the array 'myArray’:
"Everest"
"Garfield"
"Tea spoon"

4.3.196 sqrt

e function sqrt(x : double) : double

Parameter | Type | Description
X ‘ double ‘ the number we want to calculate the square root

218 Chapter 4. The scripting language

Calculates the square root of x.

An invalid number causes the function to throw an error.
Example:

traceline ("sqrt (25) = " + sqrt(25));
Output:

sgrt (25) = 5

4.3.197 startString

e function startString(text : string, start : string) : bool

Parameter ‘ Type ‘ Description
text
start

string
string

a sequence of characters to test
the prefix

"true" if the argument start is a prefix of the character sequence represented by text; ""
otherwise. Note also that "true" will be returned if start is an empty string or is equal to
argument text.

Example:

local sText = "airport";

tracelLine ("startString(’'" + sText + "/, 'air’) = "" +
startString (sText, "air™) + "'");

Output:

startString ("airport’, ’'air’) = "true’

See also:

findFirstChar 4.3.76, endString 4.3.51, findLastString 4.3.78,

findNextString4.3.79, findString 4.3.81

4.3.198 sub
e function sub(left : double, right : double) : double
Parameter ‘ Type ‘ Description

left double | first arithmetic member
right double | second arithmetic member

Returns the result of arithmetic subtraction 1left - right. Members are converted from strings
to numbers, supposed being worth 0 if a parsing error occurs; then the subtraction is processed,
and the result is converted to a string, skipping fractional part if all digits after the dot are 0.

Remember that the symbol ’-’ doesn’t mean anything in the standard syntax of the language, so
there is no way to confuse for expressing a subtraction. However, it exists an escape mode that
allows writing arithmetic expressions between *$’ symbols, as formula under LaTeX. So, S left
- right$isequivalentto sub (left, right).

Example:

4.3. Common functions and procedures 219

local a = 4.5;

tracelLine(a + " - 2.8 = " + sub(a, "2.8"));
traceline(a + " - 2.5 =" + sub(a, 2.5) + " <- integer value");
Output:

4.5 - 2.8 = 1.7
4.5 - 2.5 = 2 <- integer value

See also:
add 4.3.1, mult 4.3.134, div 4.3.47, exp 4.3.64, 1og 4.3.130, mod 4.3.133, pow 4.3.147

4.3.199 subString

e function subString(text : string, pos : int) : string

Parameter ‘ Type ‘ Description

text string | a sequence of characters

pos int a position starting at 0, and relative to the beginning of the
text string

Returns the sequence of characters passed to argument text after skipping the first pos charac-

ters.

Example:

local sText = "The lamp of experience";

tracelLine ("sText = '" + sText + "' ");

traceline ("subString(sText, 4) = """ + subString(sText, 4) +
nwrs ") ,.

Output:

sText = ’'The lamp of experience’

subString(sText, 4) = ’'lamp of experience’

See also:

charAt 4.3.13, coreString 4.3.33, cutString 4.3.42, joinStrings 4.3.120,
leftString 4.3.123, lengthString 4.3.124, midString 4.3.132, rightString
4.3.169, rsubString 4.3.170

4.3.200 sup
e function sup(left : double, right : double) : bool
Parameter ‘ Type ‘ Description

left double | the first member
double | the second member

right

Compares two numbers and returns t rue if the first member given by argument left is strictly
greater than the second member passed to argument right.

Don’t use the operator / >’ to compare numbers in the classical syntax of the interpreter: it only
checks the lexicographical order. So, '3 > 12’ is t rue. However, it exists an escape mode that

220 Chapter 4. The scripting language

allows writing arithmetic comparisons between ’$’ symbols, as formula under LaTeX. So, $ left

> right$isequivalentto inf (left, right).
Example:

traceLine ("sup (12, 3) ='" + sup(l2, 3)
traceline("12 > 3 ="'" + (12 > 3) +
Output:

sup (12, 3) = "true’

12 > 3 ="

See also:

equal 4.3.53, inf 4.3.110

4.3.201 system
e function system(command : string) : string

Parameter ‘ Type ‘ Description

+

"I") .
4

"I");

command ‘sﬁMg‘

the command interpreter will execute it

This function passes command to the command interpreter, which executes the string as an
operating-system command. If command is empty, the function simply checks to see whether
the command interpreter exists and returns an empty string. If an error occurs, it returns the

corresponding error message.

Example:

local sScript
local sCommand;
if existFile ("CodeWorker.exe")

getWorkingPath ()

set sCommand =

+ "Documentation/System.cws";

"CodeWorker.exe";

else set sCommand = "Release\\CodeWorker";
set sCommand += " —-script " + sScript;
local sOutput = getWorkingPath ()

+ "Documentation/System.out";

traceLine ("another \"CodeWorker\" is launched from here,");

local sError = system(sCommand + " > " + sOutput);
if sError error (sError);
traceline ("and executes the following script:");
tracelLine (loadFile (sScript));
traceline ("the trace was put into a file:");

(

traceline (loadFile (sOutput));
Output:

"CodeWorker"
and executes the following script:

another

is launched from here,

traceline ("This text comes from an external \"CodeWorker\"");

the trace was put into a file:

CodeWorker v4.5.1 (LGPL),
easily;
Copyright (C) 1996-2008 Cedric Lemaire;

This text comes from an external

parses and generates source code

see ’'http://www.codeworker.org’.

"CodeWorker"

4.3. Common functions and procedures

221

See also:

getEnv 4.3.91, environTable 4.3.52, existEnv 4.3.60, putEnv 4.3.150

4.3.202 tolLowerString

e function toLowerString(text : string) : string

Parameter ‘ Type ‘ Description
text ‘ string ‘ string to make in lower case

Converts each uppercase letter in text to lowercase, and returns the result. Other characters are
not affected

Example:

local sText = "BE AFRAID ABROUT the \"WORLD COMPANY\"";

traceline ("toLowerString (" + sText + "') = ’'" +

toLowerString (sText) + "' ");

Output:

toLowerString (' BE AFRAID ABOUT the "WORLD COMPANY"’) = ’'be
afraid about the "world company"’

See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,

completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString
4.3.166, replaceTabulations 4.3.167, toUpperString 4.3.202, trimLeft
43211, trimRight 4.3.212, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.203 toUpperString

e function toUpperString(text : string) : string

Parameter ‘ Type ‘ Description
text ‘ string ‘ string to capitalize

Converts each lowercase letter in text to uppercase, and returns the result. Other characters are
not affected.

Example:

local sText = "THINK different, LEARN about other
civilizations";

traceline ("toUpperString (" + sText + ") = '"" +
toUpperString (sText) + "' M);

Output:

toUpperString (' THINK different, LEARN about other
civilizations’) = 'THINK DIFFERENT, LEARN ABOUT OTHER
CIVILIZATIONS'

222

Chapter 4. The scripting language

See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString
43.166, replaceTabulations 4.3.167, tolLowerString 4.3.201, trimLeft
43211, trimRight 4.3.212, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.204 traceEngine

e procedure traceEngine()
Traces some states about the interpreter and the current script.
See also:

traceLine 4.3.204, traceObject 4.3.205, traceStack 4.3.206, traceText 4.3.207

4.3.205 traceline

e procedure traceLine(1line : string)

Parameter ‘ Type ‘ Description
line ‘ string ‘ a string expression to display to the console

Evaluates the expression passed to argument 1ine, and displays the resulting string to the con-
sole. An end of line is added automatically.

In case of quiet execution, there is no output to the console, but the line will be kept:
— for processing if used through the JNI interface, to raise all messages to the JAVA application
that exploit the CODEWORKER library,
— for concatenating it into a string that collects all messages and that returns it after calling
function executeStringQuiet (see 4.3.58),
Example:

traceline ("A text to display, and then");
traceLine ("I go to the next line");

Output:

A text to display, and then
I go to the next line

See also:

traceEngine 4.3.203, traceObject 4.3.205, traceStack 4.3.206, t raceText 4.3.207

4.3. Common functions and procedures 223

4.3.206 traceObject

e procedure traceObject(object : tree, depth : inf)

Parameter ‘ Type ‘ Description
object tree | atree node, means any kind of variable
depth int default value: 0

display depth of the tree

Displays all sub-nodes (called attributes) and the node item’s array, if any, belonging to an object
passed to argument object.

The value assigned to the object is displayed too, when it isn’t an empty string. If an array of
nodes exists, then all entry keys are display, followed by the value assigned to the item node if not
empty.

Example:

local myTree = "monkey";

insert myTree.hobbies = "to eat bretzel";
insert myTree["Everest"] = "mountain";
insert myTree["Tea spoon"] = "silverware";

traceObject (myTree) ;

Output:
Tracing variable 'myTree’:
"monkey"
hobbies = "to eat bretzel"
["Everest" —-> "mountain", "Tea spoon" -> "silverware"]

End of variable’s trace 'myTree’.
See also:

traceLine 4.3.204, traceEngine 4.3.203, traceStack 4.3.206, traceText 4.3.207

4.3.207 traceStack

e procedure traceStack()

Displays the stack of local variables recursively.
In case of quiet execution, there is no output to the console, but the entire call stack description
will be kept:
— for processing if used through the JNI interface, raising all messages to the JAVA application
that exploit the CODEWORKER library,
— for concatenating it into a string that collects all messages and that returns it after calling
function executeStringQuiet (see 4.3.58),
Example:
traceStack () ;
Output:

##stack## script:
##stack## block:

224

Chapter 4. The scripting language

theDocumentation

theDocumentation:
iNotDocumentedCounter = "QO"
iNotDocumentedParameter = "Q"
iNoExampleCounter = "44"
iNoSeeAlsoCounter = "21"
iFunctionCounter = "207"
listOfCommands

llStOfCOIﬂmandS["O", "1", "2", "3", "4", "5", "6", "7", "8",
n 9"]
##stack## script:
See also:

traceLine 4.3.204, traceEngine 4.3.203, traceObject 4.3.205, traceText 4.3.207

4.3.208 traceText

e procedure traceText(text : string)

Parameter | Type | Description
text ‘ string ‘ a string expression to display to the console

Evaluates the expression passed to argument 1ine, and displays the resulting string to the con-
sole. On the contrary of t raceLine, there is no carriage return at the end.

In case of quiet execution, there is no output to the console, but the text will be kept:
— for processing if used through the JNI interface, to raise all messages to the JAVA application
that exploit the CODEWORKER library,
— for concatenating it into a string that collects all messages and that returns it after calling
function executeStringQuiet (see 4.3.58),
Example:

traceText ("A text to display, ");

traceText ("but I refuse to go to line!");
traceLine("");
Output:

A text to display, but I refuse to go to line!
See also:

tracelLine 4.3.204, traceEngine 4.3.203, traceObject 4.3.205, traceStack 4.3.206

4.3.209 translate

e procedure translate(patternFileName : script, this : tree, inputFileName : string,
outputFileName : string)

4.3. Common functions and procedures 225

Parameter Type Description

patternFileName | script<translate> | file name of the pattern script, which merges both the BNF
syntax and the source code generation tags

this tree the current node that will be accessed via this variable
inputFileName string the input file to parse
outputFileName | string the output file to generate

Parses an input file whose name is given by the argument inputFileName and generates a
translated file given by the argument out putFileName, following the instructions of the pat-
tern script called patternFileName.

The pattern script merges the BNF syntax presented section 4.3.216 with the source code genera-
tion syntax described section 4.5.35.

See also:

expand 4.3.65, autoexpand 4.3.5, generate 4.3.85, generateString
43.86, parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143,
parseStringAsBNF 4.3.144, translateString 4.3.209

4.3.210 translateString

e function translateString(patternFileName : script, this : tree, inputString : string)
: string

Parameter Type Description

patternFileName | script<translate> | file name of the pattern script, which merges both the BNF

syntax and the source code generation tags
this tree the current node that will be accessed via this variable

inputString string the input string to parse

Parses the input string given by the argument input St ring and returns the output string result-
ing of the translation, following the instructions of the pattern script called patternFileName.

The pattern script merges the BNF syntax presented section 4.3.216 with the source code genera-
tion syntax described section 4.5.35.

See also:

parseAsBNF 4.3.141, parseFree 4.3.142, parseFreeQuiet 4.3.143,
parseStringAsBNF 4.3.144, translate 4.3.208, expand 4.3.65, autoexpand
4.3.5, generate 4.3.85, generateString 4.3.86

4.3.211 trim
e function trim(string : stringref) : int

Parameter | Type | Description
string ‘ stringref ‘ variable that contains the characters to be trimmed

226 Chapter 4. The scripting language

This function trims heading and trailing whitespace characters from the referenced argument
string and returns the number of characters that were removed. It removes newline, space,
and tab characters.

Example:

local sText = " Spaces for sale! ",

tracelLine ("trim(sText) = " + trim(sText) + "' ");
Output:

trim(sText) = '8’

Deprecated form: t rimString has disappeared since version /.40
See also:

countStringOccurences 4.3.34, completeLeftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
replaceTabulations 4.3.167, toLowerString 4.3.201, toUpperString
43202, trimLeft 4.3.211, trimRight 4.3.212, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.212 trimLeft
e function trimLeft(st ring : stringref) : int

Parameter ‘ Type ‘ Description
string ‘ stringref ‘ variable that contains the characters to be trimmed

This function trims leading whitespace characters from the argument string and returns the
number of characters that were removed. It removes newline, space, and tab characters.

Example:

local sText = " Spaces for sale! ",

tracelLine ("trimLeft (sText) = " + trimLeft (sText) + "' ");
Output:

trimLeft (sText) = "4’

Deprecated form: t rimLeftString has disappeared since version /.40
See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
replaceTabulations 4.3.167, toLowerString 4.3.201, toUpperString
43202, trimRight 4.3.212, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.213 trimRight
e function trimRight(string : stringref) : int

Parameter ‘ Type ‘ Description
string ‘ stringref ‘ variable that contains the characters to be trimmed

4.3. Common functions and procedures 227

This function trims trailing whitespace characters from the referenced argument string and
returns the number of characters that were removed. It removes newline, space, and tab characters.

Example:

local sText = " Spaces for sale! ";

traceline ("trimRight (sText) = " + trimRight (sText) + "' ");
Output:

trimRight (sText) = ’4'

Deprecated form: t rimRight St ring has disappeared since version /.40
See also:

countStringOccurences 4.3.34, completeleftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
replaceTabulations 4.3.167, toLowerString 4.3.201, toUpperString
43202, trimLeft 4.3.211, trim 4.3.210, truncateAfterString 4.3.213,
truncateBeforeString4.3.214

4.3.214 truncateAfterString

e function truncateAfterString(variable : treeref, text : string) : string

Parameter ‘ Type ‘ Description
variable | treeref | this parameter passes a string to handle and receives its

truncation _
text string | a sequence of characters to find into the value held by

variable

This function:
— searches the sequence of characters passed to the argument text into the string given by
the parameter variable,

— assigns the substring standing on the right of text (so, text is excluded) to the parameter
variable,

— returns the left part of the substring that hasn’t been assigned.

If the sequence of characters text isn’t found into the value of variable, the function returns
an empty string, and the variable doesn’t change.

Example:

local sVariable = "my tongue fell out with my teeth";
tracelLine ("sentence = ’'" + sVariable + "' ");

local sResult = truncateAfterString(sVariable, "out");
tracelLine ("Now, the wvariable is worth " + sVariable + "’'");
tracelLine ("And the result = ’'" + sResult + "’'");
Output:

sentence = 'my tongue fell out with my teeth’

Now, the variable is worth ’ with my teeth’

And the result = 'my tongue fell out’

See also:

228

Chapter 4. The scripting language

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,
completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
replaceTabulations 4.3.167, toLowerString 4.3.201, toUpperString 4.3.202,
trimLeft 4.3.211, trimRight 4.3.212, trim4.3.210, t runcateBeforeString4.3.214

4.3.215 truncateBeforeString
e function truncateBeforeString(variable : treeref, text : string) : string

Parameter ‘ Type ‘ Description
variable | treeref | this parameter passes a string to handle and receives its

truncation)
text string | a sequence of characters to find into the value held by

variable

This function:

— searches the sequence of characters passed to the argument text into the string given by
the parameter variable,

— assigns the substring standing on the left of text (so, text is excluded) to the parameter
variable,

— returns the right part of the substring that hasn’t been assigned.

If the sequence of characters text isn’t found into the value of variable, the function returns
an empty string, and the variable doesn’t change.

Example:

local sVariable = "my tongue fell out with my teeth";
tracelLine ("sentence = '" + sVariable + "'");

local sResult = truncateBeforeString(sVariable, "out");
tracelLine ("Now, the variable is worth ’'" + sVariable + "' ");
tracelLine ("And the result = " + sResult + "'");

Output:

sentence = 'my tongue fell out with my teeth’

Now, the variable is worth 'my tongue fell '

And the result = ’"out with my teeth’

See also:

countStringOccurences 4.3.34, completelLeftSpaces 4.3.22,

completeRightSpaces 4.3.23, repeatString 4.3.165, replaceString 4.3.166,
replaceTabulations 4.3.167, toLowerString 4.3.201, toUpperString 4.3.202,
trimLeft 4.3.211, trimRight 4.3.212, trim4.3.210, truncateAfterString 4.3.213

4.3.216 UUID

e function UUID() : string

This function generates an UUID and returns it as a string. An UUID is a 128-bit universally
unique id, used by Microsoft and being proposed as an internet standard.

Example:

4.3. Common functions and procedures 229

traceline ("generation of an UUID = ’'" + UUID() + "'");
tracelLine ("generation of another one = '" + UUID() + "'");

Output:

generation of an UUID = ’'120e8620-0c66-4808-9a48-4122d403a8ba’
generation of another one = '02159b61-5f8c-4alb-bel2-a886464f94el’

4.4 The extended BNF syntax for parsing

A BNF description of a grammar is more flexible and more synthetic than a procedural description of
parsing. CODEWORKER accepts parsing scripts that conform to a BNF.

BNF is the acronym of Backus-Naur Form, and consists of describing a grammar with production rules.
The first production rule that is encountered into the script and that isn’t a special one (beginning with
a ’#’ like the #empty clause), is chosen as the main non-terminal to match with the input stream, when
the BNF-driven script is executed.

A non-terminal (often called a clause in the documentation) breaks down into terminals and other non-
terminals. Defining how to break down a non-terminal is called a production rule. A clause is valid as
soon as the production rule matches its part of the input stream.

The syntax of a clause looks like:
["#overload"]? <clause specifier> <preprocessing> "::=" <sequence>

["|" <sequence>]x ';'

where:

<preprocessing> ::= "#lignore" | "#ignore" [’ (' <ignore-mode> ')']?
o

<ignore-mode> ::= "blanks" | "C++" | "JAVA" | "HTML" | "LaTeX";
<sequence> ::= non-terminal | terminal; <terminal> ::= symbol of the
language: a constant character or string

A sequence is a set of terminals and non-terminals that must match the input stream, starting at the
current position. A production rule may propose alternatives: if a sequence doesn’t match, the engine
tries the next one (the alternation symbol ’I” separates the sequences).

A regular expression asks for reading tokens into the input stream. If tokens are put in sequence, one
behind the other, they are evaluated from the left to the right and all of them must match the input stream.
For example, "class" ' {’ is asequence of 2 non-terminals, which requires that the input stream first
matches with "class"” and then is followed by ’{’.

Putting #overload just before the declaration of a production rule means that the non-terminal was
already defined and that it must be replaced by this new rule when called. Example:
nonterminal ::= "bye";

#overload nonterminal ::= "bye" | "quit" | "exit";

Now, calling nonterminal executes the second production rule. Use the directive #super to call the
overloaded clause. The precedent overloading might be written:

#overload nonterminal ::= #super::nonterminal | "quit" | "exit";

230 Chapter 4. The scripting language

#overload takes an important place in the reuse of BNF scripts. A parser might be built as reusing a
scanner, where some non-terminals only have to be extended, for populating a parse tree for instance.

The statement #transformRules provides also a convenient way to reuse a BNF script.

It defines a rule that describes how to transform the header (left member) and the production rule (right
member) of a non-terminal declaration.

Example:
INTEGER ::= #ignore [0’ ..79"]1%;

INTEGER is the header and #ignore [’0°..’9’]* is the production rule.

During the compilation of a BNF parse script, before processing the declaration of a non-terminal, the
compiler checks whether a transforming rule validates the name of the non-terminal. If so, both the
header of the declaration and the production rule are translated, following the directives of the rule.

The #transformRules statement must be put in the BNF script, before the production rules to transform.

The syntax the statement #t ransformRules looks like:

transform-rules ::= "#transformRules" filter header—-transformation
prod-rule—-transformation

filter ::= expression

header-transformation ::= '' translation-script '’
prod-rule-transformation ::= '' translation-script '’

The filter is a boolean expression, applied on the name of the production rule. The variable x contains
the name of the production rule.

header-transformation consists on a translation script, which describes how to transform the header. If
the block remains empty, the header doesn’t change.

prod-rule-transformation consists on a translation script, which describes how to transform the produc-
tion rule. If the block remains empty, the header doesn’t change.

Example:

This example describes how to transform each production rule, whose name ends with "expr".

or_expr ::= and_expr ["&&" and_expr]x*;
becomes
or_expr (myExpr : node) ::= and_expr (myExpr.left)

["&&" :myExpr.operator and_expr (myExpr.right)] x;

The original production rules are just scanning the input, and the example shows how to transform them
for populating a node of the parse tree.

#itransformRules
// The filter accepts production rules that have a name
// ending with "expr" only.
// Note that the variable x holds the name
// of the production rule.
x.endString ("expr")

A script for transforming the header of the production rule:
{
// By default, copies the input to the output
#implicitCopy
// Writes the declaration of the parameter myExpr

4.4. The extended BNF syntax for parsing 231

// after the non-terminal and copies the rest.

header ::= #readIdentifier
=> {Q@ (myExpr : node)@}
—->#empty;

A script for transforming the production rule itself:

{

#implicitCopy

// — Pass the left member of the expression to populate,
// to the first non-terminal,

// — assign the operator to the expression,

// — Pass the right member of the expression to populate,

// to the first non-terminal.
// In any case, the rest of the production rule remains
// invariant.

prodrule ::= [
#readIdentifier
=>{Q@ (myExpr.left)@}
_>[
" o g#readChar "’'" => {@:myExpr.operator@}
|
#readCString => {@:myExpr.operator@}
]
#readIdentifier

=>{@Q@ (myExpr.right)@}
12

]->#empty;

4.4.1 BNF tokens
Below are described all BNF tokens that CODEW ORKER recognizes:

® a constant string:

Heading Description
Syntax A C-like string, written between double quotes and that admits escape
sequences:

"C-like string"

Matching The token "C-like_string" is valid if it matches the sequence of
characters that starts at the current position of the input stream. And then, the
position moves just after the string.

Procedural way | This BNF token is equivalent to:
readIfEqualTo ("C-1ike string")

Example "bottle" means that the sequence of 6 characters that starts at the current
position of the input stream must match with bottle.

232 Chapter 4. The scripting language

e a constant character:

Heading Description

Syntax A C-like character, written between single quotes and that admits escape
sequences:
"C-1like char’

Matching The token "C-1ike char" is valid if it matches the character that stands

Procedural way

Example

at the current position of the input stream. And then, the position moves to
the next character.

This BNF token is equivalent to:
readIfEqualTo ("C-1ike char")

’ (’ means that the current character of the input stream must be an opening
parenthesis.

e an range of characters:

Heading Description

Syntax Two C-like characters, written between single quotes, which admit escape
sequences, and separated by ..:
" lower_char_boundary’ ..’ upper_char._boundary’

Matching The token ' Iower._char_boundary’ ..’ upper_char._boundary’

Procedural way

Example

is valid if the character that stands at the current position of the input stream
is comprise between the two boundaries (included). And then, the position
moves to the next character.

Note that '’ Iower_ char _boundary’ must be smaller than
"upper_char_boundary’ considering the ASCII order.

This BNF token is equivalent to the boolean expression:
(peekChar () >= "lower_char_boundary") &&
(peekChar () <= "upper_char_boundary") && readChar ()

"a’ ..’ z’ means that the current character of the input stream must be a
lower case letter with no accent.

e the complementary of an expression:

4.4. The extended BNF syntax for parsing 233

Heading Description
Syntax An expression preceded by the symbol “or ~:
‘expressionor ~expression
Matching The token is valid when the expression failed to match the input stream at

Procedural way

Example

the current position. And then, position of the input stream moves to the next
character.

This BNF token is equivalent to the function:
function validateThisSpecialComplementary () {
local iLocation = getInputLocation();
if /xevaluate the expression=*/ {
setInputLocation (iLocation);
return false;
} else readChar();
return true;

}

~"bottle" means that the 6 next characters of the input stream must be
different from bottle. If so, the position of the input stream moves to the next
character.

e the negation of an expression:

Heading Description
Syntax An expression preceded by the symbol *!”:
lexpression
Matching The token is valid when the expression failed to match the input stream at the

Procedural way

Example

e reading a character:

current position. On the contrary of the complementary, the position of the
input stream doesn’t move to the next character.

This BNF token is equivalent to the function:
function validateThisSpecialNegation () {
local ilocation = getInputLocation();
if /*evaluate the expressionx/ {
setInputLocation(iLocation);
return false;
}
return true;

}

!'"bottle" means that the 6 next characters of the input stream must be
different from bottle.

234

Chapter 4. The scripting language

Heading Description
Syntax Keyword readChar preceded by the symbol *#’:
#readChar
Matching If the end of the input stream hasn’t been reached yet, the token is valid and

Procedural way

Example

e reading a byte:

the position of the input stream points to the next character.

This BNF token is equivalent to:
readChar ()

#readChar means that the position points to the next character if the end of
the input stream hasn’t been reached yet.

Heading Description
Syntax Keyword readByte preceded by the symbol *#’:
#readByte
Matching If the end of the input stream hasn’t been reached yet, the token is valid and

Procedural way

Example

the position of the input stream points to the next character/byte. It scans a
byte, which is converted to a 2-hexadecimal digits.

This BNF token is equivalent to:
readByte ()

#readByte:sByte means that the position points to the next character if the
end of the input stream hasn’t been reached yet and, if the byte OxOF was at
the current position, the variable sByfe is worth "OF".

e reading a sequence of bytes:

Heading Description

Syntax Keyword readBytes preceded by the symbol *#’,
and followed by an expression, whose result is a positive integer that specifies
how many bytes have to be scanned:
#readBytes (integer—expression)

Matching If the end of the input stream hasn’t been reached yet, the token is valid and

Procedural way

Example

the position of the input stream points after the next integer-expression bytes.
It scans N bytes (N resulting of the evaluation of integer—-expression),
which are converted to a sequence of 2-hexadecimal digits.

This BNF token is equivalent to:
readBytes (N)

#readBytes (4) : sBytes means that the position points to the next four
bytes if the end of the input stream hasn’t been reached yet. If the sequence
of bytes OxOFOEODOC was at the current position, the variable sBytes is worth
"OFOEODOC".

e reading a sequence of characters:

4.4. The extended BNF syntax for parsing

235

Heading

Description

Syntax

Matching

Procedural way

Example

Keyword readChars preceded by the symbol #,

and followed by an expression, whose result is a positive integer that specifies
how many characters have to be scanned:

#readChars (integer—expression)

If the end of the input stream hasn’t been reached yet, the token is
valid and the position of the input stream points after the next integer-
expression characters. It scans N characters, N resulting of the evaluation of
integer—-expression).

This BNF token is equivalent to:
readChars (N)

#readChars (4) : sChars means that the position points to the next four
characters if the end of the input stream hasn’t been reached yet. If the se-
quence of characters "cats and dogs" was at the current position, the variable
sChars is worth "cats".

e reading a C-like constant character:

Heading | Description

Syntax Keyword readCChar preceded by the symbol *#’:

#readCChar

Matching

Example

The non-terminal BNF symbol #readCChar reads a C-like constant
character. In case of assignement of the scanned value to a variable, only the
constant character is returned, without the single quotes. A C-like character
stands between single quotes and admits the escape character \.

#readCChar:sValuel #readCChar:sValueZ2appliedto ’A”\n’ will
move the position of the input stream after the second trailing single quote.
The variable sValuel will contain the letter A and sValue2 will contain the

newline characters.

e reading a C-like string:

Heading Description
Syntax Keyword readCString preceded by the symbol *#’:
#readCString
Matching The token is valid if the character that stands at the current position of

Procedural way

Example

the input stream is a double quote (') and that if all following charac-
ters up to the trailing double quote are recognized as C-like characters
(meaning also that the escape sequences are as presented for the function
composeCLikeString () 4.3.25).

This BNF token is equivalent to:
readString (sString)

#readCString:sValue applied to "Popeye’s village\nOlive hates
spinash” will move the position of the input stream after the trailing double
quote. The variable sValue will contain the string without double quotes and
such as the escape sequences are converted to their ASCII representation.

236

Chapter 4. The scripting language

e reading an identifier:

Heading Description

Syntax Keyword readIdentifier preceded by the symbol *#:
#readIdentifier

Matching The token is valid if the characters that stand starting at the current position of

Procedural way

Example

the input stream match the following BNF sequence:
#lignore [’a’..'z'|'A".."Z2"|'_"]
[fa’ ..lz" |["A .72 |0 L 9 T
This BNF token is equivalent to:
readIdentifier ()

#readIdentifier applied to mushroomli2,carpet will move the position
of the input stream on the comma after reading mushroomi2.

e reading insignificant characters:
Heading Description
Syntax "#skipIgnore" [’ (' <ignore-mode> ')’']?
where <ignore-mode> specifies what is an insignificant character (see
#ignore).
Matching It reads insignificant characters, such as blanks and comments, as specified via

Procedural way

Example

the BNF directive #ignore (.. .). this BNF directive is always valid, even
if the parsing has already reached the end of file or if there are no insignificant

characters.//
This BNF token is equivalent to:

skipIgnore ()

#skipIgnore applied to /*mushroomi2,carpet™/.fish will move the position
of the input stream on the dot before fish (if #ignore (C++) was set
before, for instance).

e reading up to the first insignificant characters:

Heading | Description

Syntax "#readUptoIgnore" [’ (' <ignore-mode> ')']?

where <ignore-mode> specifies what is an insignificant character (see
#ignore).

Matching | It reads all significant characters, up to encountering a whitespace or a com-

ment, which style was specified via the BNF directive #ignore (.. .). this
BNF directive is valid if it reads at least one significant character.//

Example | #readUptoIgnore #readUptoIgnore applied to mush-

and

e reading an integer:

rooml12/*comment*/carpet fish will read "mushrooml2" (first directive)

"carpet” (second call) before moving the position of the input stream

on the whitespace that stands before fish (if #ignore (C++) was set
before, for instance).

4.4. The extended BNF

syntax for parsing 237

e reading a numeric:

Heading Description
Syntax Keyword readInteger preceded by the symbol *#:
#freadInteger
Matching The token is valid if the characters that stand starting at the current position of

Procedural way

Example

the input stream match the following BNF sequence:
#!ignore ['-"17 (70" .."9" 1+//

This BNF token is equivalent to:

readInteger (sInteger)

#readInteger applied to /2.34 will move the position of the input stream
on the dot after reading /2.

Heading Description
Syntax Keyword readNumeric preceded by the symbol *#:
#readNumeric
Matching The token is valid if the characters that stand starting at the current position of

Procedural way

Example

the input stream match the following BNF sequence:
#!ignore [#readInteger [’.’ [707..797 117 |
ror [IOI..I9I]*] [[/e/ ‘ IEI] [/_|_r]?
[707..7971+12/

This BNF token is equivalent to:

readNumber (sNumber)

| r _

#readNumeric applied to 12.34E+3mushrooms will move the position of
the input stream at the beginning of mushrooms.

e matching the result of a classical string expression:

Heading Description

Syntax Keyword readText preceded by the symbol ’#°, and followed by the
classical string expression to match, between parenthesis:
#readText (classical—-expression)

Matching The token is valid if the classical expression matches the input stream at

Procedural way

Example

the current position. If so, the position moves just after the expression that
matched.

This BNF token is equivalent to:
readIfEqualTo(classical-expression)

#readText (sName) where sName = "horse” means that the next 5 charac-
ters encountered to the input stream at the current position must match "horse”,
which is the result of the evaluation of the expression.

Classical string expression is seen in opposite of expressions of tokens, as being a classical ex-
pression of the scripting language (concatenation, call of functions, reference to variables, ...) and
not a combination of tokens.

e checking the validity of a classical string expression:

238

Chapter 4. The scripting language

Heading

Description

Syntax

Matching

Procedural way

Example

Keyword check preceded by the symbol *#°, and followed by the classical
string expression to check, between parenthesis:
#check (classical-expression)

The token is valid if the classical expression returns a populated string. The
position of the input stream is never impacted by this clause.

This BNF token is equivalent to:
if classical-expression // call the rest of the

sequence
#icheck (sID == "struct") ’'{’ [attribute]=* '}’ means that

if sID is equal to "struct”, we try to match the reading of attributes embedded
between braces. The checking has no effect on the current position of the input
stream.

Classical string expression is seen in opposite of expressions of tokens, as being a classical ex-
pression of the scripting language (concatenation, call of functions, reference to variables, ...) and
not a combination of tokens.

e checking whether the end of the stream has been reached or not:

Heading Description
Syntax Keyword empty preceded by the symbol *#’:
#empty
Matching The token is valid if the position of the input stream points to the end.

Procedural way

Example

This BNF token is equivalent to the function:
function validateEndOfFile () {
if readChar () {
goBack () ;
return false;
}
return true;

}

#empty is valid if the end of the input stream has been reached.

e repeating an expression:

4.4. The extended BNF syntax for parsing 239

Heading Description

Syntax/matching | The expression is put between brackets and followed by symbols that deter-
mine the multiplicity:

— [expression]: the expression must match the input stream once
(and perhaps more, but it isn’t checked); in fact, it is used to impose
the priority of token evaluation (for adding the ’ | operator to ask for
a’'OR’),

— [expression] ?: the expression may be absent or present once (and
perhaps more, but it isn’t checked); this token is always true,

— [expression]*: the expression may be absent or matches as long
as possible; this token is always t rue,

— [expression]+: the expression must match at least once and as
long as possible; it is equivalent to the sequence [expression]
[expression] *

- [expression] iterations: the expression must be repeated iter-
ations times (and perhaps more, but it isn’t checked),

— [expressionlbegin. .end: the expression must be repeated a
number of times included in the range [begin, end] (and perhaps more
than end, but it isn’t checked); boundaries are constant integers,

— [expression]lbegin. .*: the expression must be repeated at least
begin times and as long as possible, begin being a constant integer; note
that the star might be replaced by ’n’,

— [expression]#repeat (begin—expr): the expression must be
repeated begin-expr times exactly; begin-expr is an arithmetic expres-
sion evaluated just before processing the regular expression, and return-
ing a positive integer,

— [expression] #repeat (begin-expr, end-expr): the ex-
pression must be repeated at least begin-expr times but not more than
end-expr times (could be more, but not checked); begin-expr and end-
expr are arithmetic expressions evaluated just before processing the reg-

ular expression; they both return a positive integer,
Procedural way | This BNF token is equivalent to do a loop, controlling the iterations according

to the required multiplicity, and returning t rue or false.

e finding the next occurrence of a given BNF expression:

Common syntax: —>BNF-expression

Matching: The token is valid if the BNF expression is found somewhere into the input stream.
The, the cursor jumps to the end of the sub sentence scanned by the BNF expression.

The BNF operator ’ —>’ admits a syntax extension, for the adjustment of its internal mechanism.

—>A jumps just after the the first matching of A in the sentence. It processes the equivalent piece

of extended-BNF script:
=> local iLocation;
TA => iLocation = getInputLocation();]*

240

Chapter 4. The scripting language

=> setInputLocation(ilLocation);

To intervene on the boundaries of the repeated sequence [A . ..]=*, an extension was added
to the syntax: —>boundaries A, where boundaries gives the multiplicity of the bracketed
sequence (" ?/,'+",72..x', #repeat (iBegin, 1iEnd) ...).

Note: the boundaries must be declared just after the arrow.

The text covered by —>A includes the unmatched characters plus the sub sentence scanned by A,
so —>A: v assigns the complete covered text to the variable v. This is sometimes a drawback:
perhaps do you want to take the unmatched character or the sub sentence scanned by A.

So now, you can specify the variables intended to receive these intermediate values:

->(:varBefore —:varAfter)A:varTotal

Note: the intermediate variables are declared just before the BNF symbol A, after the boundaries
if any.

Example:

We will apply [->(:varBefore —:varAfter) #readNumeric]:varTotal on the

sentence "Garfield.laziness 99.99 percent™:

— varBefore = "Garfield.laziness "
— varAfter = "99.99"
— varTotal = "Garfield.laziness 99.99"

The last extension brought to the jump operator —>A is to allow the execution of a BNF sequence
at the beginning of the sub sequence matched by A. This BNF sequence is declared into the
parenthesis used for the intermediate variables, behind these variables, if any:
—>(:varBefore —:varAfter B)A

The advantage of infiltrating the BNF sequence B is that the intermediate variables are populated,
and that the cursor doesn’t point after the matching of A yet, but at the beginning of the sub
sentence matched by A.

Procedural way: This BNF token is equivalent to the function:
function validateFindToken () {
local bSuccess;
do {
set bSuccess = // expression is expanded here;
} while !bSuccess && readChar();
return bSuccess;

}

Example: —>"C" matches the stream "ABCD" and the cursor in the input stream points to 'D’.

e repeats the execution of a BNF sequence by iterating all items of an array.

The BNF representation of this statement is:
BNF_foreach statement ::= "#foreach" ' (' iterator "in"
[direction]? ')’ BNF-sequence

[sorted _declaration]? [cascading _declaration]?
list—-node body_statement

direction ::= "reverse"
sorted declaration ::= "sorted" ["no _case"]? ["by_value"]?
cascading_declaration ::= "cascading" ["first" | "last"]?

A foreach BNF directive iterates all items of the list owned by node list-node. The iterator refers
to the current item of the list, and the following BNF sequence is executed on it.

4.4. The extended BNF syntax for parsing 241

e restricting the scan to a sub sentence.

The sequence A |> B is understood as considering the sub sentence scanned by A, which de-
limits the portion of text left visible to B. B starts scanning at the beginning of the sub sentence
covered by A and cannot go beyond.

Once the operator has achieved with success, the cursor points to the end of the sub sentence
covered by A.

You’ll find below the different steps processed by the operator:

— the BNF literal A is executed,
— if success, the cursor comes back to the beginning of the sub sentence covered by A

— then, B is executed, knowing that the operator forces the end of the sub sentence where A
had finished,

— if success, the cursor points to the end of A, even if B hadn’t scan up to the end of the
sentence.

Example:

We want to recognize all colons present on a line. The sub sentence we would like to scan is a
line: =>"\n’. Recognizing colons is like: [=>’ :’] %, which asks for jumping from a colon to
another, without considering the end of line.

=>’\n’ |> [=>’:’]x* restricts the colon recognition to the line.

e calling a clause to match its rules:

Heading Description

Syntax The name of the clause to match and, if any, the expected parameters between
parenthesis separated by commas:
clause—-nameor clause-name(P1, ...Pn)

Matching The token is valid if the clause matches at the current position of the input
stream.

Procedural way | This BNF token is equivalent to the function:
function validateClause () {
return /*matching of rules of the clausex/;

}

Example INTEGER ' .’ INTEGER with INTEGER ::= [’0’..79’]+ means
that the clause must match at least one digit into the input stream, and be
followed by a dot and then by another positive integer.

e offering a choice between 2 sequences of BNF tokens:

242

Chapter 4. The scripting language

Heading Description

Syntax The 2 expressions are separated by the symbol °I’:
sequencel | sequencel
Matching The token is valid if the clause matches one of the two sequences at the

current position of the input stream.

Procedural way | This BNF token is equivalent to:

/+evaluate sequencel*/ || /xevaluate sequencelx*/
Example "eclass" IDENT ’'{’ | "interface" IDENT ';' with IDENT
= [ra’.."z" | 'A’.."7Z’]1+ means that the clause must match at

least one digit into the input stream, and be followed by a dot and then by
another positive integer.

4.4.2 Preprocessing of a clause

If no processing has been specified to a clause, characters will be ignored into the input stream, following
the instruction of the ignore mode (determined by the predefined clause # ignore), just before running
the clause.

Sometimes, it arrives that the ignore mode should change before calling the clause. Let’s imagine
that C++ comments and blanks are ignored, except at some places where a line-comment is expected,
holding a description. If the clause that matches the line-comment is called description, each time
a description has to be read, the following sequence must be written:

#ignore (blanks) description:sDescription #ignore (C++)

Thanks to the preprocessing of clause, it is possible to require a specific ignore mode while calling a
clause. For example:

description #ignore(blanks) ::= "//" #!ignore [~ ['\r’ |
"\n’]]1x:description;

On our example, each time a description has to be read, calling the clause description is naturally reduced
to:
description:sDescription

4.4.3 Inserting instructions of the scripting language

Instruction of the scripting language may be inserted into a sequence of tokens, and are considered as
valid, except when the controlling sequence is interrupted by the break statement. These instructions
doesn’t apply a matching on the input stream, but they serve generally to check the consistence of data
and to populate the parse tree. They are announced by the symbol ’=>":

"=>" instruction ';’' or

"=>" compound-statement where a compound-statement is a block of instructions between
braces.

Example:
class_declaration (myClass : node) ::=
"class" IDENT:myClass.name
=> traceLine ("name = ’" + myClass.name + "7");

[
rer IDENT:sParent
=> {

4.4. The extended BNF syntax for parsing 243

if !findElement (sParent, 1listOfClasses)
error("class ’" + sParent + "’/ hasn’t been declared yet!");
ref myClass.parent = listOfClasses[sParent];

4 { 4
The first swapping to the scripting language is just an instruction to trace, which must end with a semi-

colon and that isn’t the end of the clause! The second swapping to the script language implements a
little more work that is put between braces.

Be careful about declaration of local variables. If you declare a variable into a compound statement, it
disappears once the controlling sequence leaves the scope. To declare a variable local to the clause, you
can do:

=> local myVariable;

In some particular cases, you may have to execute a BNF sequence from within from such a piece of
common script. The only way is to use the directive #applyBNFRule followed by a non-terminal call.

4.4.4 Common properties of BNF tokens

The sequence of characters that a BNF token has matched may be assigned to a variable. Then the
variable may follow the token, separated by a colon:

token " :’ variable_name
Example:
IDENT : sName (where IDENT ::= ['a’..’z’ | "A’..’Z"1+) means that if the clause

IDENT is valid, the identifier matching the BNF token is assigned to sName. Be careful that if the
variable doesn’t exist, it is pushed into the stack, on the contrary of a classic CODEWORKER script that
asks for declaring explicitly a local variable.

You can also specify to concatenate the text covered by the BNF token, to the ancient value of the
variable:
B:+v.

Example:

If v is worth fiebula: = and if the sentence starts with Orion.”, then v becomes fiebula:Orion”
after the resolution of:

#readIdentifier:+v

The sequence of characters that a BNF token has matched may be worth a constant or may belong to a
set of values. Then, the constant or the set of values is following the token, separated by a colon, as for
variables:

token " :’ constant_value [':’ variable name] or

token " :’ "{" values_of the set "}’'":’ variable name where

values_of_the set ::= constant_value [',' constant_value]=*
Examples:
e IDENT : "class", "interface" (where IDENT ::= ["a’".."z" |
"A’"..’7Z'1+) means that the identifier must be worth "class" or "interface". It
isn’t equivalent to ["class" | "interface"], because this new clause matches the

beginning of "classify" or "interfaces" and that’s not what is expected.

244 Chapter 4. The scripting language

e #readString : "tea spoon", "fork" : sSilverware means that the string
must be worth "tea spoon" or "fork" and that the parsed value will be assigned to the
variable called sSilverware.

4.4.5 BNF directives
Some directives are available:

e #appendedFile (classical-expression): this directive is valid only for pattern and
translation scripts. The directive is put into a sequence of tokens and will be applied on the rest
of the sequence: the classical-expression is evaluated and gives the name of an output file, which
becomes the new output stream where code generation will be processed, such as text is appended
to the output file.

e #break: this directive is put in a repeat token, ending a sequence of tokens. It leaves successfully
the closer repeat token into which the directive was put.

Example:
["-—-" #break | attribute]2, *

Here, the engine reads at least one attribute, and leaves with success when it encounters the string
"——"_To succeed, the #break interruption cannot occur before the second iteration of this BNF
sequence. Otherwise, the minus boundary isn’t reached.

Note that brackets with a multiplicity of 1 (brackets used as parenthesis for changing the priority
of BNF sequencelalternation resolutions) propagate the #break interruption to the closer repeat
token it is inlayed in.

Sometimes, the action of leaving a repeat token depends on a condition. A conditional break
looks like:
#break " (" conditional-expression ")'" Example:

[

=> local bCond;

["a” | "b’ :bCond]

#break (bCond) // force leaving only once ’'b’ is consumed

1*

e #continue: this directive is put into a sequence of tokens, and means that the rest of the token’s
sequence must match with the input stream. If not, an error is raised, giving the call stack and the
position of the input stream where the mistake has occurred.

Example:

The following sentence is passed to the interpreter for scanning:
a —> b // we have forgotten the semi-comma!
b -—> c¢;

something that looks like state transitions for an automaton.

Now, we write the corresponding BNF-parsing script:

TRANSITIONS ::= [TRANSITION]+* #empty => tracelLine ("OK!");;
TRANSITION ::= STATE "-=->" STATE ';';
STATE ::= ffreadIldentifier;

You notice that the syntax reclaims a semi-comma to close a transition. So, the sentence shows

4.4. The extended BNF syntax for parsing 245

a syntax error at the first line. The BNF script will fail applying the non-terminal TRANSITION,
so the scanning will stop before running the t raceLine () procedure. It fails silently: the head
of the grammar doesn’t match the sentence and that’s all. The interpreter cannot guess that the
failure is due to a semi-comma: the non-terminal TRANSITION doesn’t match, that’s right, but
perhaps that the caller (the non-terminal TRANSITIONS here) proposes an alternative?

To constraint the interpreter to raise a syntax error automatically, you have to employ the
#continue keyword:

TRANSITION ::= STATE "=>" #continue STATE ';’;

means that once the antecedent of a state transistion is detected, the rest of the production rule
must be valid in any case. If the sequence following #continue (STATE ’;’ here) fails, a
detailed syntax error is thrown. Considering our sentence, the BNF script will raise a syntax error
about the lacking semi-comma at the first line.

Not using the directive #continue obliges you to write something like:

TRANSITION ::= STATE "—->" /xsyntax checking made by hand from
herex/

[STATE | => error("syntax error: STATE token
expected");]

[";" | => error("syntax error: ;' expected");1;

However, the BNF engine composes automatically the syntax in a way that may not be very
expressive on a end-user point of view. Notably, it displays the BNF literal that failed. Hope-
fully, you can specify a custom error message, available for the BNF sequence following the
#continue directive:

#continue " (" syntax—-error-variable "," custom—-error-message ")"

— syntax-error-variable: name of a previously declared variable, assigned with the default
error message that the BNF engine had originally composed;

— custom-error-message: expression allowing the concatenation of previouly declared vari-
ables; this expression now defines the format of the error message.

Example:

=> local sWord;
#continue (syntaxError, "unknown instruction " + sWord + "’ encountered;\nthe

[
#readIdentifier:sWord
instruction<sWord>

1+

o #fexplicitCopy: this directive is available in a source-to-source translation script and may be
put:

— inside a sequence of tokens, meaning that the text scanned by the rest of the sequence won’t
be copied into the output stream automatically,

— outside the clauses, at the same level as their declaration, meaning that the entire input stream
will be parsed without copying the scanned text into the output stream ; this is the default
behavior,

If source code has to be put into the output stream, the developer must specify it explicitly between
’@’ symbols in a compound statement announced by =>. See #implicitCopy to put the
scanned text to the output stream automatically.

246 Chapter 4. The scripting language

e #fgeneratedFile (classical-expression): this directive is valid only for pattern and
translation scripts. The directive is put into a sequence of tokens and will be applied on the rest
of the sequence: the classical-expression is evaluated and gives the name of an output file, which
becomes the new output stream where code generation will be processed. It allows changing the
output file during the translation, to split it into a few files for example.

e #generatedString (variable): this directive is valid only for template-based and trans-
lation scripts. The directive is put into a sequence of tokens and will be applied on the rest of
the sequence: the output file is redirected into the string variable passed to the argument variable,
which becomes the new output stream where code generation will be processed. If you don’t care
about the result, you can pass null instead of a string variable.

e #ignore: this directive is put into a sequence of tokens, and means that the rest of the token’s
sequence must ignore blanks and comments before evaluating tokens. It exists some different
formats available:

— #ignore: it calls a clause implemented by the user, which is also named #ignore (see
section 4.4.6),

— #ignore ("constant-string"): it also calls a clause implemented by the user,
but known as attached to a specific identifier. This custom ignore clause is named
#ignore["constant—-string"] (see section 4.4.6),

— #ignore (blanks): it ignores blank characters (spaces, new lines, tabulations, carriage
returns, ...), considered as having an ASCII code smaller than 32 but not null,

— #ignore (spaces): it ignores spaces and tabulations only,

— #ignore (C++): it ignores blank characters and C comments (°/* ... */°) and line com-
ments (°// ... up to the end of the line),

— #ignore (HTML) : it ignores blank characters and SGML comments (’<!- - ... - ->%),

— #ignore (JAVA): it ignores blank characters and C comments (*/* ... */°) and line com-
ments (’// ... up to the end of the line),

— #ignore (LaTeX) : it ignores line comments that are start with the %’ character, but not
spaces or empty lines that have a signification,

e #!ignore: this directive is put into a sequence of tokens, and means that the rest of the token’s
sequence will not ignore blanks or comments between tokens. It works recursively when evaluat-
ing a clause call. It is useful for reading a number literal for instance, where digits must be glued
together.

e #implicitCopy: this directive is available in a source-to-source translation script and may be
put:

— inside a sequence of tokens, meaning that the text scanned by the rest of the sequence is
copied into the output stream automatically,

— outside the clauses, at the same level as their declaration, meaning that the entire input stream
will be parsed and the scanned text will be copied into the output stream,

#implicitCopy means that the scanned text is copied to the output stream as long as the pattern
matching succeeds. If a rule fails, the scanned text is removed from the output stream, up to the
last valid token. This isn’t the default behavior of a translation mode. See #explicitCopy to
switch this mode off.

e #finsert (variable) sequence-of-BNF-instructions: the directive creates a new
node variable (if it doesn’t exist yet) and executes the sequence of BNF instructions that follow.

4.4. The extended BNF syntax for parsing 247

If the sequence fails and if the node was created by the directive, the variable is removed.

This directive is very useful while populating the parse tree, when some choices are proposed:
either populate this node or another, or a branch...

To write:

#insert (myNode) tryNewNode (myNode)

is equivalent to:

=> local bCreated = !existVariable (myNode) ;
=> if bCreated insert myNode;

[
tryNewItem (myNode)

=> if bCreated removeVariable (myNode) ;
#check (false)

#matching (variable): this directive is put outside the production rules. It informs the BNF
engine to record the coverage of the input text by the production rules. Concretely, the BNF engine
stores into a variable the list of all production rules of the grammar and all areas they match in the
input text, once the execution has finished. The BNF engine populates the variable specified by
the directive.
// file "Documentation/MatchingStructure.txt":
Tree structure of the variable populated by the BNF engine
for #matching(variable):

* variable

+— rules[]: 1list of production rules (signatures only),
|
+- areas([]: table of positions in the input text, the

| key is worth the position P; no item value

+- beginl]: (optional) table for every rule starting

| | at the position P, the key being worth the

| | ending position Pf (decreasing order)

| +— []: 1list of all rules matching [P, Pf] exactly,

|

+- end][]: (facultative) table for every rule ending at
| the position P, the key being worth the
| starting position Pi (increasing order)
+— []: list of all rules matching [Pi, P] exactly,

e #moveAhead: Located into a BNF sequence, it means that after a valid matching of the rest of

the sequence, at least one character must have been consumed.

Example:
#moveAhead [A]? [B]?

If A doesn’t match the input file, then B must match so that the scan has read at least one character.

248

Chapter 4. The scripting language

e #nextStep: this directive is put into BNF sequences inlayed in a BNF jump operator (=>) or
in a BNF complementary operator (or ~). Normally, these operators move the cursor of the input
stream one position further, in case of failure while applying the BNF sequence.

Using #nextStep allows changing the shift of the cursor to more than one character. It is very
useful when you encounter to quoted strings or identifiers. For instance, if you are looking for
constant strings and then number or identifiers, the following code is incorrect:
->[#readCString #readInteger | #readIdentifier]

Why is it incorrect? If the constant string matches but not the integer, the next iteration will put
the cursor just after the quote and will perhaps point to an identifier, embedded into the constant
string. Then, the operator will match during the second iteration.

In fact, if the constant string matches but not the rest of the BNF sequence, we want to force the
next jump just after the constant string:
->[#readCString #nextStep #readInteger | #readIdentifier]

e #noCase: this directive is put:

— inside a sequence of tokens, meaning that the rest of the sequence must match without taking
into account the case of the letters,

— outside the clauses, at the same level of their declaration, meaning that the entire input stream
will be parsed without taking into account the case of letters,

e #parsedFile (filename): this directive is valid only for parsing and translation scripts.
The directive is put into a sequence of tokens and will be applied on the rest of the sequence: the
input file is redirected into the file passed to the argument filename, which becomes the new input
stream where scanning and parsing will be processed.

e #parsedString (expression): this directive is valid only for parsing and translation
scripts. The directive is put into a sequence of tokens and will be applied on the rest of the
sequence: the input stream is redirected to the text resulting of the evaluation of the argument
expression, which becomes the new input stream where scanning and parsing will be processed.

o #pushlitem(variable) sequence-of-BNF-instructions: the directive pushes a
new item into the array of the node variable and executes the sequence of BNF instructions that
follow. If the sequence fails, the last element of the array variable is removed.

This directive is very useful while populating the parse tree, when some choices are proposed:
either populate this array or another, or a branch...
To write:

[#pushItem(list) tryNewlItem(list#last)]+

is equivalent to:

4.4. The extended BNF syntax for parsing 249

=> local bCreated = !existVariable(list);

[

=> pushItem(list);
tryNewItem(list#last)
1+

=>{
if bCreated removeVariable(list);
else removelastElement (list);

#ratchet: When encountered in a production rule, the BNF engine memorizes what is the
current position in the input stream, and then controls that the scan will never come back before
this position.

#super "::" clause_name: this directive applies to a non-terminal call, which was over-
loaded via the #overload keyword. The directive means that the underlying non-terminal must
be called in place of the overloadee clause. If the non-terminal wasn’t overloaded, an error is
thrown.

#trace: this directive traces the resolution steps of the grammar. Hit a key to interrupt the
display of trace information and to pause the controlling sequence.

#try sequence-of-BNF-instructions #catch(variable) sequence-of-BNF-
instructions: The try/catch statement catches all error messages thrown from the embedded
sequence. The error message is available in the variable passed to the carch statement. If no error
occurs, the flow of control continues on the sequence following the cafch. In case of error raising,
the sequence breaks at the catch statement in failure after populating the variable with the error
message.

Example:

#try

non_terminal_call

#catch (sError)

=> tracelLine ("No trouble! There was no error thrown.");
|

=> traceline ("Error! Message = '" + sError + "’'");

4.4.6 Declaring a clause

We have seen that a clause may expect some arguments. Such a kind of clause conforms to the syntax:

clause _specifier ::= clause_name [parameters]? [r:r return_typel?
"::=" clause_body

clause _name ::= identifier [template resolution]?;
template_resolution ::= '<’ [identifier | constant_string] '>';
parameters ::= ' (' parameter [’',' parameter]x ')’

parameter ::= argument_name ':' argument_mode

argument_mode ::= "value" | ["node" | "variable"] | "reference"

250 Chapter 4. The scripting language

return_type ::= "list" | "node" | "value"

clause _body ::= rule expression ';’

where the argument mode means:

Mode Description

value the parameter is passed by value to the clause, as for user-defined functions

node or variable | the parameter expects a tree node, as for user-defined functions

reference the parameter expects a reference to a variable, which allows changing the node

pointed to by the variable, as for user-defined functions

Example:

attribute_declaration (myAttribute : node, sClassName : value)
type_specifier (myAttribute.type) IDENT:myAttribute.name;

While reusing production rules from a scanner to build a parser, for example, the non-terminal symbols
of the parser need to pass a node intended to be fulfilled with parsing information, or to contain some
data about the context.

It exists a special clause the user may have to define, named #ignore. It allows the implementation of
its own production rule for processing empty characters between tokens.

This clause doesn’t expect any parameter:
#ignore ::= ... /xthe production rule of how to skip charactersx/;

To activate it in a production rule, type #ignore with no parameter.

In some cases, you might have to define more than one customized #ignore clause. It is possible too,
assigning a key to each new special clause while their implementation:

#ignore["the key"] ::= ... /+the production rule of how to skip
characters«*/;

To activate it in a production rule, type #ignore ("the key") with no parameter, as you could have
written #ignore (C++) for activating a predefined ignore mode.

Note that these special clauses must figure at the beginning of the extended-BNF script, before the first
appearance for activation in a production rule.

4.5 Reading tokens for parsing

The functions and procedures described below are available in a kind of parsing scripts: those which
read tokens in a procedural way, proposing a set of appropriate functions and procedures. All examples
that illustrate how to exploit them are applied on the floowing text to parse:

// file "Documentation/ParsingSample.txt":
identifier: _potatoesdls$
numbers: 42 23.45e6
string: "a C-like string that accepts backslash-escape
sequences"
word: 1\’ecurie_lstable
blanks:
"blanks are ignored"
spaces: "spaces are ignored"
C++: /*commentx/

4.5. Reading tokens for parsing 251

// other comment

"blanks and C++ comments are ignored"
HTML: <!-comment->

"blanks and HTML comments are ignored"
LaTeX: % comment
"blanks must be skipped explicitly"

"only comments were ignored"

There is no syntax extension provided for this mode of parsing, so it is really considered as procedure-
driven, in the opposite of the BNF-driven mode that has been seen in the precedent section.

451 attachinputToSocket

e procedure attachInputToSocket(socket : int)

Parameter ‘ Type ‘ Description
socket ‘ int ‘ a client socket descriptor

Joins the input stream of a parsing script to a socket stream: each time that the input stream pointer
reaches the end, the interpreter waits for bytes coming from the socket.

Waiting for bytes is a blocking process, so once you don’t expect for other bytes anymore, don’t
forget to detach the socket via the procedure detachInputFromSocket () before reaching
the end of the stream.

See also:

detachInputFromSocket 4.5.3, createINETClientSocket 4.3.36,
createINETServerSocket 4.3.37, acceptSocket 4.3, attachOutputToSocket
4.6.3, detachOutputFromSocket 4.6.7, receiveBinaryFromSocket

4.3.153, receiveFromSocket 4.3.154, receiveTextFromSocket 4.3.155,
sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

4.5.2 countlnputCols

e function countInputCols() : int

Determines the column number in the line where the parse cursor points to.
See also:

countInputLines 4.5.2

4.5.3 countlnputLines

e function countInputLines() : int

Determines the current line number where the parse cursor points to.
See also:

countInputCols 4.5.1

252

Chapter 4. The scripting language

4.5.4 detachlnputFromSocket
e procedure detachInputFromSocket(socket : inf)

Parameter ‘ Type ‘ Description
socket ‘ int ‘ a client socket descriptor

Disconnects the input stream of a parsing script from a socket stream. You should have join the
socket to the input stream before, via the procedure attachInputToSocket ().

See also:

createINETClientSocket 4.3.36, createINETServerSocket 4.3.37,
acceptSocket 4.3, attachInputToSocket 4.5, attachOutputToSocket
4.6.3, detachOutputFromSocket 4.6.7, receiveBinaryFromSocket

4.3.153, receiveFromSocket 4.3.154, receiveTextFromSocket 4.3.155,
sendTextToSocket 4.3.180, sendBinaryToSocket 4.3.178, closeSocket 4.3.18,
flushOutputToSocket 4.6.10

455 getlnputFilename

o function getInputFilename() : string

Returns the path of the input file being parsed.

4.5.6 getlnputLocation

e function getInputLocation() : int
Returns the current file position for reading the input stream.

Example:

// we move further into the input file, Jjust after the ’$’

character

readNextText ("$");

traceline ("The character following ’'$’ is put at position " +
getInputLocation() + ", starting at 0");

Output:

The character following ’$’ is put at position 24, starting at 0
Deprecated form: getLocat ion has disappeared since version 3.7.1

See also:

setInputLocation 4.5.28, goBack 4.5.7

4.5.7 getLastReadChars
e function getLastReadChars(length : int) : string

Parameter ‘ Type ‘ Description
length ‘ int ‘ number of characters to read

4.5. Reading tokens for parsing 253

Returns the last 1ength characters that have been read: it takes up to the number of characters
passed to the argument length, characters that are preceding the current position of the input
file.

Example:

// we move further into the input file
readNextText ("$");

traceline ("getLastReadChars (12) = ’'" + getLastReadChars (12) +
nwrs ") ,.

Output:

getLastReadChars (12) = ’'_potatoesdl$’

Deprecated form: readLastChars has disappeared since version /.30
See also:

peekChar 4.5.9, readByte 4.5.11, readBytes 4.5.12, readChar 4.5.14, readChars
4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

45.8 goBack

e procedure goBack()
Moves back the position of the input stream, pointing to the character just before. If the current
position was pointing to the beginning of the input stream, the function has no effect.
Example:
tracelLine ("we move further into the input file, just after
14 $/ ") ,.
readNextText ("$") ;
tracelLine ("and now, we go back to it");

goBack () ;
if !readIfEqualTo("$") error("’'$’ expected");
Output:

we move further into the input file, just after ’$’
and now, we go back to it

See also:

setInputLocation 4.5.28, getInputLocation 4.5.5

459 lookAhead

e function lookAhead(text : string) : bool

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of characters to match

254 Chapter 4. The scripting language

Checks whether the next characters of the input stream match with the string passed to argument
text. If so, the function returns t rue and the position of the input stream hasn’t moved.

Example:

// we move further into the input file,
// just after ’'C++: '/

readNextText ("C++: ")

local iPosition = getInputLocation();

tracelLine ("lookAhead (' /*x’) = '" 4+ lookAhead("/*") + "’");

if iPosition != getInputLocation() error ("What did I say? The
file position shouldn’t have moved!");

Output:

lookAhead (' /+") = 'true’

See also:

readIfEqualTo 4.5.18, readIfEqualToIgnoreCase 4.5.20,

readIfEqualToIdentifier 4.5.19

4.5.10 peekChar

e function peekChar() : string

Returns the character found at the current input stream position, or an empty string if the end
of file has been reached. If succeeded, the position of the input file doesn’t move to the next
character.

Example:

setInputLocation (10);

traceline ("at position 10, peekChar() = '" + peekChar() + """);
if lequal (getInputLocation(), 10) error ("the position of the
input stream shouldn’t have moved!");

tracelLine ("the position didn’t change, peekChar() = """ +
peekChar () + "’ again");

Output:

at position 10, peekChar() = '":’

the position didn’t change, peekChar() = ’:’ again

See also:

getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12, readChar 4.5.14,
readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4.5.11 readAdaString
e function readAdaString(text : stringref) : bool
Parameter | Type | Description

text a variable that will contain the string literal extracted from
the input stream

stringref

4.5. Reading tokens for parsing 255

Reads a string literal surrounded by double quotes, and where the double-quote character has to
be repeated.

If succeeded, the position moves just after the trailing double quote and the function returns t rue.
See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readLine 4.5.21, readNumber 4.5.23, readPythonString4.5.24, readString4.5.25,
readWord 4.5.27

4512 readByte

e function readByte() : string

Returns the byte read at the current file position, or an empty string if the end of file has been
reached. If succeeded, the position of the input file moves to the next character.

The byte is returned as a 2-hexadecimal digit.

Example:

while !lookAhead(":") traceText ("0Ox" + readByte() + " ");
Output:

0x69 0x64 0x65 O0x6E 0x74 0x69 0x66 0x69 0x65 0x72

See also:

peekChar 4.59, getLastReadChars 4.5.6, readBytes 4.5.12, readChar 4.5.14,
readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4.5.13 readBytes

e function readBytes(length : int) : string

Parameter ‘ Type ‘ Description
length ‘ int ‘ number of bytes to read

Returns the sequence of 1ength bytes read at the current file position, or an empty string if the
end of file has been reached. If succeeded, the position of the input file moves just after.

The sequence of bytes is returned as a concatenation of 2-hexadecimal digits.
Example:

traceline ("6 first bytes = 0x" + readBytes(6));
Output:

6 first bytes = 0x6964656E7469

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readChar 4.5.14,
readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier4.5.17, readlLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

256

Chapter 4. The scripting language

4514 readCChar

e function readCChar() : string

Returns the C-like constant character read at the current file position. A C-like character stands
between single quotes and admits the escape character \r. If succeeded, the position of the input
file moves to the trailing single quote.

4515 readChar

e function readChar() : string

Returns the character read at the current file position, or an empty string if the end of file has been
reached. If succeeded, the position of the input file moves to the next character.

Example:

while !lookAhead (":") traceText (readChar());
Output:

identifier

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4516 readCharAsint

e function readCharAsInt() : int

Returns the ASCII value of character read at the current file position, or a negative number —1
if the end of file has been reached. If succeeded, the position of the input file moves to the next
character.

Example:

tracelLine ("we move to the end of a line,");
readNextText ("$");

tracelLine ("so carriage return or newline is " +
readCharAsInt ());
Output:

we move to the end of a line,
so carriage return or newline is 13

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readIdentifier 4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4.5. Reading tokens for parsing 257

4.5.17 readChars
e function readChars(length : int) : string

Parameter ‘ Type ‘ Description
length ‘ int ‘ number of characters to read

Returns the sequence of 1ength characters read at the current file position, or an empty string if
the end of file has been reached. If succeeded, the position of the input file moves just after.

Example:

tracelLine ("6 first characters = ’'" + readChars(6) + "'");
Output:

6 first characters = ’identi’

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readCharAsInt 4.5.15, readIdentifier 4.5.17, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4518 readldentifier

o function readldentifier() : string

Returns the identifier token read at the position of the input file, or an empty string if it doesn’t
match.

An identifier begins with an alphabetical character (letter without accent) or an underscore and
may be followed by any of them or by digits.

Example:

traceline ("we jump just before the identifier:");
readNextText ("identifier: ");

traceline ("identifier = ’'" + readIdentifier() + "'");
Output:

we Jjump just before the identifier:

identifier = ’'_potatoesdl’

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readLine 4.5.21,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4519 readlfEqualTo
e function readIfEqualTo(text : string) : bool

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of characters to match

258 Chapter 4. The scripting language

Checks whether the next characters of the input stream match with the string passed to argument
text. If so, the function returns t rue and the position of the input stream moves just after.

Example:

// we move further into the input file,

// just after 'C++: '

readNextText ("C++: ");

local iPosition = getInputLocation();

traceline ("readIfEqualTo (' /+") = '" + readIfEqualTo("/+") +

"l") .
4

if iPosition == getInputLocation() error ("The file position
should have moved after ’'/*’'!");

Output:
readIfEqualTo (' /+") = ’'true’
See also:

lookAhead4.5.8, readIfEqualToIgnoreCase 4.5.20, readIfEqualToIdentifier
4.5.19

4.5.20 readlfEqualToldentifier

e function readIfEqualToldentifier(identifier : string) : bool

Parameter ‘ Type ‘ Description
identifier

string | an identifier is a string composed of letters and underscores

; digits are admitted too, except at the first place

Checks whether the next characters of the input stream match with the identifier passed to argu-
ment. If so, the function returns t rue and the position of the input stream moves just after.

This function warrants that the character just before the beginning of the identifier into the input
stream is neither a letter nor a digit nor an underscore, to assure that the identifier really starts at
the current position of the input stream.

Example:

traceline ("readIfEqualTo(’ident’) = '" + readIfEqualTo("ident")
+ mwrs ") ;

traceline ("readIfEqualTo ('’ identifier’) = "" +

readIfEqualTo ("identifiexr™) + "' ");

Output:

readIfEqualTo (' ident’) = ’true’

readIfEqualTo (' identifier’) ="

See also:

lookAhead 4.5.8, readIfEqualTo 4.5.18, readIfEqualToIgnoreCase 4.5.20

4.5. Reading tokens for parsing 259

4.5.21 readlfEqualTolgnoreCase

o function readIfEqualTolgnoreCase(text : string) : bool

Parameter ‘ Type ‘ Description
text ‘ string ‘ a sequence of characters to match

Checks whether the next characters of the input stream match with the string passed to argument
text, ignoring the case. If so, the function returns t rue and the position of the input stream
moves just after.

Example:

traceline ("readIfEqualToIgnoreCase (' IDENTIFIER’) = '" +
readIfEqualToIgnoreCase ("IDENTIFIER") + "' ");

if !'readIfEqualTo(":") error("':’ expected after matching with
"IDENTIFIER’!M™);

Output:

readIfEqualToIgnoreCase (' IDENTIFIER’) = ’'true’

See also:

lookAhead 4.5.8, readIfEqualTo 4.5.18, readIfEqualToIdentifier 4.5.19

4522 readLine

e function readLine(text : stringref) : bool

Parameter ‘ Type ‘ Description
text ‘ stringref ‘ a variable that will contain the line

Reads the next line, starting at the current position of the input file, and puts it into parameter
text. Characters *\r’ or *\n are ignored, and the position points to the beginning of the next line
or at the end of file if reached.

If succeeded, the function returns t rue.
Example:

tracelLine ("Reads the 2 first lines:");

local sLine;

if !readLine(sLine) error("line 1 expected, instead of end of
file");

traceLine ("\t" + sLine);

if !readLine(sLine) error ("line 2 expected, instead of end of
file");

traceLine ("\t" + sLine);

Output:
Reads the 2 first lines:
identifier: _potatoesdls

numbers: 42 23.45e6

See also:

260

Chapter 4. The scripting language

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readAdaString4.5.10, readNumber 4.5.23, readPythonString4.5.24, readString
4.5.25, readWord 4.5.27

4523 readNextText

e function readNextText(text : string) : bool

Parameter | Type | Description
text ‘ string ‘ a sequence of characters to find

Looks for the next occurrence of the expression given by argument text, starting at the current
position of the input file.

If succeeded, the position moves just after the expression given by text and the function returns
true.

Example:

tracelLine ("position of the input stream = " +
getInputLocation());
if !readNextText ("word:") error ("where is ’'word:’"?");

traceline ("we Jjump to ’"word:’, and the new position is " +
getInputLocation());
Output:

position of the input stream = 0
we jump to ’‘word:’, and the new position is 119

See also:

readUptoJustOneChar 4.5.26

4524 readNumber

e function readNumber(number : doubleref) : bool

Parameter ‘ Type ‘ Description
number doubleref | a variable that will contain the number read into the input
stream

Reads a number at the current position of the input stream, and puts it into the variable number.
A number is either an integer or a floating-point representation as encountered ordinary.

If succeded, the position moves just after the token and the function returns t rue.

Example:

tracelLine ("we jump just before the numbers:");
readNextText ("numbers: ");

local dNumber;

if !readNumber (dNumber) error ("integer expected!");
traceline ("integer = " + dNumber);

4.5. Reading tokens for parsing 261

skipBlanks () ;

if !readNumber (dNumber) error ("double expected!");
tracelLine ("double = " + dNumber);
Output:

we jump just before the numbers:
integer = 42
double = 23450000

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readLine 4.5.21, readAdaString 4.5.10, readPythonString 4.5.24, readString
4.5.25, readWord 4.5.27

4.5.25 readPythonString

e function readPythonString(text : stringref) : bool

Parameter ‘ Type ‘ Description
text stringref | a variable that will contain the string literal extracted from
the input stream

Reads a string literal as defined in Python, a scripting language. Notably, it accepts triple-quoted
strings.

If succeeded, the position moves just after the trailing double quote and the function returns t rue.
See also:

peekChar 4.59, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readLine 4.5.21, readAdaString 4.5.10, readNumber 4.5.23, readString 4.5.25,
readWord 4.5.27

4.5.26 readString

e function readString(text : stringref) : bool

Parameter ‘ Type ‘ Description
text a variable that will contain the string literal extracted from
the input stream

stringref

Reads a string literal surrounded by double quotes, and where escape sequences are written as
presented in function composeCLikeString () (4.3.25). The token is then put into the vari-
able passed to argument text, without double quotes and after converting the escape sequences
into their ASCII representation.

If succeeded, the position moves just after the trailing double quote and the function returns t rue.

Example:
traceline ("we Jjump just before the string:");
readNextText ("string: ");

262

Chapter 4. The scripting language

local sText;

if !readString(sText) error ("constant string expected!");
traceline("string = " + sText + "' ");

Output:

we Jjump just before the string:

string = "a C-like string that accepts backslash-escape
sequences’

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readLine 4.5.21, readAdaString 4.5.10, readNumber 4.5.23, readPythonString
4.5.24, readWord 4.5.27

4.5.27 readUptodustOneChar

e function readUptoJustOneChar(oneAmongChars : string) : string

Parameter ‘ Type ‘ Description
oneAmongChars ‘ string ‘ a set of characters

Reads the input stream up to encountering a character that belongs to the parameter
oneAmongChars, and returns the sequence of characters read.

The position of the input stream points to the first character that belongs to the parameter
oneAmongChars. Calling readChar () or readIfEqualTo () just after allows determin-
ing what character, amongst those put into oneAmongChars, was encountered first.

Example:

traceline ("readUptoJdustOneChar (' $_:") =" 4
readUptoJustOneChar ("$_:") + "' ");

Output:

readUptoJustOneChar ('$_:’) = ’"identifier’
See also:

readNextText 4.5.22

4528 readWord

e function readWord() : string
Returns the word token read at the position of the input file, or an empty string if it doesn’t match.

CODEWORKER understands a word token as a sequence of alphabetical characters, including
letters with an accent as existing in French or Germany, or underscores or digits.

Example:

tracelLine ("we jump just before the word:");
readNextText ("word: ");

traceline ("readWord() = '" + readWord() + "'");

4.5. Reading tokens for parsing 263

Output:

we Jjump just before the word:
readWord() = "1’

See also:

peekChar 4.5.9, getLastReadChars 4.5.6, readByte 4.5.11, readBytes 4.5.12,
readChar 4.5.14, readChars 4.5.16, readCharAsInt 4.5.15, readIdentifier 4.5.17,
readLine 4.5.21, readAdaString 4.5.10, readNumber 4.5.23, readPythonString
4.5.24, readString 4.5.25

4.5.29 setlnputLocation

e procedure setinputLocation(1location : inf)

Parameter ‘ Type ‘ Description
location ‘ int ‘ points to a position of the input stream

This procedure moves the position of the input stream elsewhere. The position starts at 0.

Example:

traceline ("we Jjump to identifier ’potatoes’ at position 12");
setInputLocation(12);

if !readIfEqualTolIdentifier ("_potatoesd4l") error("identifier
' _potatoesdl’ expected");
Output:

we jump to identifier ’potatoes’ at position 12
Deprecated form: setLocat ion has disappeared since version 3.7.1
See also:

goBack 4.5.7, getInputLocation 4.5.5

4.5.30 skipBlanks

e function skipBlanks() : bool

Ignores all blank characters (ASCII codes between 0x00 and 0x20 both included, range that com-

prises newline, carriage-return, tabulations and spaces). The current file position moves to the first
character that isn’t a blank.

Example:

readNextText ("blanks: ");

tracelLine ("we skip blank characters");
skipBlanks () ;

traceText ("now, we read the string token: ");
local sText;

if !readString(sText) error ("constant string expected");
tracelLine("’" + sText + "' ");

Output:

264

Chapter 4. The scripting language

we skip blank characters
now, we read the string token: ’'blanks are ignored’

See also:

skipSpaces 4.5.34, skipEmptyCpp 4.5.30, skipEmptyCppExceptDoxygen 4.5.31,
skipEmptyHTML 4.5.32, skipEmptyLaTeX 4.5.33

4.5.31 skipEmptyCpp

e function skipEmptyCpp() : bool

Ignores all blank characters and all C++/JAVA-like comments. The current fi