
A Gentle Introduction to the
Spring Framework

The Spring Framework is an open source application framework written in Java, which supports
Java 1.3 and later. It makes building business applications with Java much easier compared with
using the classic Java frameworks and application programming interfaces (APIs), such as Java
Database Connectivity (JDBC) and JavaServer Pages (JSP). Since its introduction, the Spring Frame-
work has significantly improved the way people design and implement business applications by
incorporating best-practice methodologies and simplifying development.

As an introduction to the Spring Framework, this chapter will cover the following topics:

• The process of developing a typical business application and the role the Spring Framework
can play

• An overview of the modules that make up the Spring Framework

• An introduction to the sample application that you’ll be working with in this book

• An example that demonstrates one of the Spring Framework’s core features: managing
dependencies

• How the Spring Framework integrates with Java Enterprise Edition (Java EE)

• How to set up the Spring Framework in your applications

Building a Business Application
A modern business application typically consists of the following components:

• Relational database: Stores the data related to the problem domain. The database is not nec-
essarily part of the application, but the data-access classes have been written for the specific
schema of the database, so that the application is closely coupled with the database schema.

• Graphical user interface (GUI): Lets users interact with the business processes that are imple-
mented by the application. Since the days of the web revolution, many business applications
are web-based.

• Business logic: Controls and monitors the execution of business processes. The business
logic must work with the database and is called by the GUI.

Unfortunately, as tens of thousands of Java developers worldwide can testify, developing
business applications in Java can be very hard and frustrating. This is especially, although not exclu-
sively, true at the join points, where the business logic meets the database and the GUI meets the
business logic. 1

C H A P T E R 1

9187ch01.qxd 8/2/07 10:05 AM Page 1

Java Platform Hurdles
Java is one of the most powerful and easy-to-use programming languages for developing business
applications, so it might seem strange to suggest that developing business applications in Java is
difficult. The main hurdles involve its extensive set of libraries and frameworks, each of which adds
a wide range of capabilities to Java.

The parts of the Java platform that are crucial for building typical business applications are as
follows:

• The JDBC API allows Java applications to connect to a wide range of relational databases.

• The Servlet and JSP specifications are crucial for web-based business applications.

• Desktop applications rely heavily on the Swing or Standard Widget Toolkit (SWT) APIs.

Each of these APIs offers useful capabilities for developing business applications, but most of
them are very difficult to use. For example, it’s hard to use the JDBC API correctly for very basic
queries on a database (see Chapter 5 for an example). JDBC is an intrusive API—it influences the
design of an application in such a way that the focus of the design shifts away from its original goals
toward trying to use the API in the application. In fact, because the JDBC API is so intrusive, appli-
cation developers should not spend their time trying to use it correctly. The same can be said for
many other APIs in the Java platform. This is where the Spring Framework steps in.

Enter the Spring Framework
A new open source application framework for Java was released on the first day of spring 2003. This
release was based on the source code introduced in Rod Johnson’s best-selling book, Expert One-
on-One J2EE Design and Development (Wrox, 2002).

This 1.0 release offered the building blocks for business application development. Common
tasks, such as connecting to and querying a database, managing transactions, and configuring
applications, were made more accessible and easier to accomplish. These building blocks used the
standard Java APIs behind the scenes and spared the developer from handling their complexity. The
1.1 and 1.2 releases consistently improved existing features and added new features and capabili-
ties. The most recent release (2.0) takes the efficiency of the Spring Framework one step further by
offering unparalleled improvements to ease of use and functionality.

The Spring Framework has started a revolution in the world of enterprise Java application
development and set in motion a series of events that have forever changed the way applications
are developed and deployed. A quick look at the modules that make up the framework should give
you an idea of its scope.

Introducing the Spring Framework Modules
The Spring Framework is a collection of subframeworks that solve specific problems and are
grouped together in modules. You are free to use any of these frameworks separately. Unless other-
wise mentioned, these modules are part of the Spring Framework distribution.

Inversion of Control (IoC) Container: Also called the Core Container, creates and configures
application objects and wires them together. This means that resources and collaborating
objects are provided to objects, so the objects do not need to look them up. This moves an
important responsibility out of your code and makes it easier to write and test code. Chapter 2
introduces the Core Container.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK2

9187ch01.qxd 8/2/07 10:05 AM Page 2

Aspect-Oriented Programming (AOP) framework: Works with cross-cutting concerns—one solu-
tion to a problem that’s used in multiple places. The Spring AOP framework links cross-cutting
concerns to the invocation of specific methods on specific objects (not classes) in such a way
that your code is unaware of their presence. The Spring Framework uses cross-cutting con-
cerns and AOP to let your application deal with transactions without having a single line of
transaction management code in your code base. AOP and cross-cutting concerns are covered
in Chapters 3 and 4.

Data Access framework: Hides the complexity of using persistence APIs such as JDBC,
Hibernate, and many others. Spring solves problems that have been haunting data-access
developers for years: how to get hold of a database connection, how to make sure that the con-
nection is closed, how to deal with exceptions, and how to do transaction management. When
using the Spring Framework, all these issues are taken care of by the framework. Chapters 5
and 6 cover data access with the Spring Framework.

Transaction Management framework: Provides a very efficient way to add transaction manage-
ment to your applications without affecting your code base. Adding transaction management
is a matter of configuration, and it makes the lives of application developers much easier.
Transaction management is quite a complex subject, and in Chapter 7, you’ll see how the
Spring Framework simplifies it dramatically.

Resource Abstraction framework: Offers a wonderful feature for conveniently locating files
when configuring your applications. Chapter 2 discusses resource abstraction.

Validation framework: Hides the details of validating objects in web applications or rich client
applications. It also deals with internationalization (i18n) and localization (l10n). Chapter 8
discusses validation.

Spring Web MVC: Provides a Model-View-Controller (MVC) framework that lets you build pow-
erful web applications with ease. It handles the mapping of requests to controllers and
of controllers to views. It has excellent form-handling and form-validation capabilities, and
integrates with all popular view technologies, including JSP, Velocity, FreeMarker, XSLT,
JasperReports, Excel, and PDFs. Chapters 8 and 9 cover the Spring Web MVC and the view
technologies.

Spring Web Flow: Makes implementing web-based wizards and complex workflow processes
very easy and straightforward. Spring Web Flow is a conversation-based MVC framework. Your
web applications will look much smarter once you learn how to use this framework. Spring
Web Flow is distributed separately and can be downloaded via the Spring Framework website.
Expert Spring MVC and Spring Web Flow (Apress, 2006) covers Spring Web Flow in detail.

Acegi Security System: Adds authentication and authorization to objects in your application
using AOP. Acegi can secure any web application, even those that do not use the Spring Frame-
work. It offers a wide range of authentication and authorization options that will fit your most
exotic security needs. Adding security checks to your application is straightforward and a
matter of configuration; you don’t need to write any code, except in some special use cases.
Acegi is distributed separately and can be downloaded from http://acegisecurity.org/
downloads.html.

Remote Access framework: Adds client-server capabilities to applications through configura-
tion. Objects on the server can be exported as remotely available services. On the client, you
can call these services transparently, also through configuration. Remotely accessing services
over the network thus becomes very easy. Spring’s Remote Access framework supports HTTP-
based protocols and remote method invocation (RMI), and can access Enterprise JavaBeans as
a client. Pro Spring (Apress, 2005) covers Spring Remoting in detail.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 3

9187ch01.qxd 8/2/07 10:05 AM Page 3

Spring Web Services: Takes the complexity out of web services and separates the concerns into
manageable units. Most web service frameworks generate web service end points and defini-
tions based on Java classes, which get you going really fast, but become very hard to manage as
your project evolves. To solve this problem, Spring Web Services takes a layered approach and
separates the transport from the actual web service implementation by looking at web services
as a messaging mechanism. Handling the XML message, executing business logic, and generat-
ing an XML response are all separate concerns that can be conveniently managed. Spring Web
Services is distributed separately and can be downloaded via the Spring Framework website
(http://www.springframework.org/download).

Spring JMX: Exports objects via Java Management Extensions (JMX) through configuration.
Spring JMX is closely related to Spring’s Remote Access framework. These objects can then be
managed via JMX clients to change the value of properties, execute methods, or report statis-
tics. JMX allows you to reconfigure application objects remotely and without needing to restart
the application.

Introducing the Sample Application
The sample application that comes with this book is a complex business application that tracks the
course of tennis tournaments and matches. The application consists of three modules that perform
the following functions:

Manage tennis tournaments and players: The application creates tournaments and players in
the database and handles player registration for tournaments. The application will automati-
cally place players in tournament pools based on their Association of Tennis Professionals
(ATP) ranking and will draw the matches for each pool. The application will also automatically
create a calendar for each court that’s available during the course of the tournament and man-
age the many other variables of a tournament.

Track the course of tennis matches played during tournaments: The application has a user inter-
face that records each point and error during the course of a tennis match. The application
knows when a set is over, who won it, and when the match is over. The business logic behind
this can be easily ported to mobile devices such as cell phones to conveniently track the course
of a match from the audience.

Report on historic data: Reports show the tournament history of individual players, the results
of individual matches and pools, the consistency of the tennis game of individual players, a
consistency comparison between players, and many other interesting pieces of data related to
tennis matches.

One of the core functions of the sample application is to track the course of a tennis match.
To better understand the domain of this application, you should have a basic understanding of the
game of tennis. Tennis has many rules and statistics, but for the sample application, we’ll keep the
basic rules for the game as follows:

• A player is either the server of a game or the receiver. The application will automatically
rotate the service when a game ends.

• A service that scores a point without the receiver being able to touch the ball is called an ace.
The number of aces scored by each player in the course of a match is an important statistic
to track.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK4

9187ch01.qxd 8/2/07 10:05 AM Page 4

• A server that makes an error during the service gets another chance. If the server fails at the
second attempt, the point goes to the receiver. The number of single and double service
errors is another important statistic.

• When the receiver handles the ball and returns the service, a rally begins. The point goes to
the player who can force the opponent to make an error. Some errors cannot be attributed
to any factor other than poor judgment by a player or lack of concentration and are called
unforced errors. This is another important statistic.

To summarize, the application needs to track the following statistics:

• Who scores each point

• The number of aces per player

• The number of single and double service errors per player

• The number of unforced errors per player

The application will use the scores to calculate when a game is over, when a set is over, and
when the match is over. The other statistics are stored for each player per each set.

The sample application is web-based and uses the Spring Framework throughout. Its imple-
mentation proves that the Spring Framework reduces the indirect costs of development projects by
providing solutions to common problems out of the box. In other words, you don’t have to reinvent
the wheel. This book will use code from the sample application to illustrate how to use the different
parts of the Spring Framework. By studying the implementation, you will be able to familiarize
yourself with the most efficient usage of the Spring Framework in typical business applications. The
sample application comes with extensive documentation that explains the design choices and the
usage of the Spring Framework. You can download the sample application and all the examples
used throughout the book from the Source Code/Download section of the Apress website
(http://www.apress.com).

Now that you’ve seen the application we are going to build, let’s look at an important compo-
nent of application development—managing dependencies—and how the Spring Framework
removes a lot of the complexity.

Managing Dependencies in Applications
To demonstrate how the Spring Framework manages dependencies, let’s take a look at a use case
from the sample application that needs a data-access object that is configured to connect to the
database. We’ll see how a plain Java application deals with this situation and contrast this with how
Spring does it.

A Use Case That Has Dependencies
One of the requirements of the sample application is to start recording the course of a match during
a tournament. Before a tournament starts, all players who have registered are divided into pools,
depending on their ranking, age, and gender. For each pool, matches are created in the database.
If a pool consists of 32 players, 5 rounds are created: 16 matches in the sixteenth final, 8 matches in
the eighth final, 4 matches in the quarter final, 2 matches in the semifinal, and 1 final match. The
matches of the sixteenth final are drawn at the start of the tournament.

When any match in the pool is started, the application will check in the database for the follow-
ing information:

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 5

9187ch01.qxd 8/2/07 10:05 AM Page 5

• Whether the match exists

• If the match hasn’t finished yet

• If there are any previous matches

• If both previous matches have finished and who the winners are

Some matches are not played because one or both players don’t show up, give up before they
start, or are injured.

The TournamentMatchManager interface has a startMatch() method that takes the identifier of
the match to start, as shown in Listing 1-1.

Listing 1-1. The TournamentMatchManager Interface

package com.apress.springbook.chapter01;

public interface TournamentMatchManager {
Match startMatch(long matchId) throws
UnknownMatchException,
MatchIsFinishedException,
PreviousMatchesNotFinishedException,
MatchCannotBePlayedException;

}

This interface defines the contract of TournamentMatchManager. Classes that implement this
interface must go through all the steps in the process of starting a tennis match, as shown in
Listing 1-2.

Listing 1-2. The DefaultTournamentMatchManager Class, Which Implements
TournamentMatchManager

package com.apress.springbook.chapter01;

public class DefaultTournamentMatchManager implements
TournamentMatchManager {

private MatchDao matchDao;

public void setMatchDao(MatchDao matchDao) {
this.matchDao = matchDao;

}

protected void verifyMatchExists(long matchId) throws
UnknownMatchException {

if (!this.matchDao.doesMatchExist(matchId)) {
throw new UnknownMatchException();

}
}

protected void verifyMatchIsNotFinished(long matchId) throws
MatchIsFinishedException {

if (this.matchDao.isMatchFinished(matchId)) {
throw new MatchIsFinishedException();

}
}

/* other methods omitted for brevity */

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK6

9187ch01.qxd 8/2/07 10:05 AM Page 6

public Match startMatch(long matchId) throws
UnknownMatchException, MatchIsFinishedException,
PreviousMatchesNotFinishedException, MatchCannotBePlayedException {

verifyMatchExists(matchId);
verifyMatchIsNotFinished(matchId);
Players players = null;
if (doesMatchDependOnPreviousMatches(matchId)) {
players = findWinnersFromPreviousMatchesElseHandle(matchId);

} else {
players = findPlayersForMatch(matchId);

}
return new Match(players.getPlayer1(), players.getPlayer2());

}
}

Let’s walk through what the startMatch() method in Listing 1-2 does:

1. The database is checked for a match with the given identifier (verifyMatchExists()).

2. The database is queried to verify that the match hasn’t been played already
(verifyMatchIsNotFinished()).

3. The database is queried again to check if the match that is about to start depends on the
outcome of two previous matches (doesMatchDependOnPreviousMatches()).

• If the match depends on previous matches, the winners are loaded from the database
(findWinnersFromPreviousMatchesElseHandle()) if those matches have ended. If one or
both previous matches have not been played, the match is not started and is marked in
the database as over.

• If the match is played in the first round of the tournament, the players who are drawn to
play this match are loaded from the database (findPlayersForMatch()).

4. When two players have been found and no exceptions have occurred, a Match object is
returned to the caller. The Match object is used to track the course of this game, and when
the match is over, the statistics are saved to the database.

The startMatch() method needs an implementation of the MatchDao interface that defines
the contract for working with the database. Implementation classes of the MatchDao interface are
responsible for informing the business logic about the current state of the match information in the
database. This information is vital to let the business process work correctly. (We use an interface
here to loosely couple the business logic to the data-access code, as explained in later sections.) The
MatchDao interface is shown in Listing 1-3.

Listing 1-3. The MatchDao Interface That’s Responsible for Querying the Database

package com.apress.springbook.chapter01;

public interface MatchDao {
boolean doesMatchExist(long matchId);

boolean isMatchFinished(long matchId);

boolean isMatchDependantOnPreviousMatches(long matchId);

boolean arePreviousMatchesFinished(long matchId);

Player findWinnerFromFirstPreviousMatch(long matchId);

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 7

9187ch01.qxd 8/2/07 10:05 AM Page 7

Player findWinnerFromSecondPreviousMatch(long matchId);

void cancelMatchWithWinner(long matchId, Player player, String comment);

void cancelMatchNoWinner(long matchId, String comment);

Player findFirstPlayerForMatch(long matchId);

Player findSecondPlayerForMatch(long matchId);
}

If you look at the course of a tournament as a workflow, you’ll see that there’s a start and an
end. The methods that return Boolean values in Listing 1-3 provide the business logic with informa-
tion about the current state of the tournament.

The methods that return Player objects use the information in the database to determine who
won previous matches. The cancelMatchWithWinner() and cancelMatchNoWinner() methods update
the state of the matches in the database.

Classes that implement the MatchDao interface need a connection to the database. For this pur-
pose, a data source is used (the javax.sql.DataSource interface) that creates a connection to the
database on demand. Data sources are discussed in more detail in Chapter 5; for now, you only
need to know that the javax.sql.DataSource interface is used to create connections to the database.

Let’s round up the dependencies in this use case. DefaultTournamentMatchManager objects
need a collaborating object that implements the MatchDao interface to access the database. For
the remainder of this chapter, we’ll use the JdbcMatchDao class as an implementation class. The
JdbcMatchDao class has a dependency on the javax.sql.DataSource interface, as shown in Listing 1-4.
JdbcMatchDao objects need a DataSource object to get a connection to the database.

Listing 1-4. JdbcMatchDao, Which Implements the MatchDao Interface and Queries the Database

package com.apress.springbook.chapter01.jdbc;

import javax.sql.DataSource;

import com.apress.springbook.chapter01.MatchDao;

import org.springframework.jdbc.core.JdbcTemplate;

public class JdbcMatchDao implements MatchDao {
private JdbcTemplate jdbcTemplate;

public void setDataSource(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

public boolean doesMatchExist(long matchId) {
return 1 == jdbcTemplate.queryForInt(
"SELECT COUNT(0) FROM T_MATCHES WHERE MATCH_ID = ?",
new Object[] { new Long(matchId) }

);
}
/* other methods omitted for brevity */

}

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK8

9187ch01.qxd 8/2/07 10:05 AM Page 8

The code in Listing 1-4 uses JdbcTemplate from the Spring Framework. Chapter 6 covers this
class in much more detail. For now, you only need to know that it’s a convenient way to query the
database. The example shows a SELECT statement that counts how many matches are found in
the database with a given identifier. If exactly one match is found, the match exists in the database.
In this use case, it’s also possible that zero matches are found.

The next sections will discuss how the dependencies of this use case can be satisfied in typical
Java applications.

Dealing with the Dependencies in Plain Java
If DefaultTournamentMatchManager was used in a regular Java application—for example, in a Swing
application—the objects would probably be created inside the application, as shown in Listing 1-5.

Listing 1-5. Creating the DefaultTournamentMatchManager and Dependencies in Java

package com.apress.springbook.chapter01.swing_application;

import org.apache.commons.dbcp.BasicDataSource;

import com.apress.springbook.chapter01.Match;
import com.apress.springbook.chapter01.jdbc.JdbcMatchDao;
import com.apress.springbook.chapter01.TournamentMatchManager;
import com.apress.springbook.chapter01.DefaultTournamentMatchManager;

public class SwingApplication {
private DefaultTournamentMatchManager tournamentMatchManager;

public SwingApplication(DefaultTournamentMatchManager tournamentMatchManager) {
this.tournamentMatchManager = tournamentMatchManager;

/* other code is omitted for brevity */
}

public static void main(String[] args) throws Exception {
BasicDataSource dataSource = new BasicDataSource();
/* Setting the properties of the data source. */
dataSource.setDriverClassName(System.getProperty("jdbc.driverClassName"));
dataSource.setUrl(System.getProperty("jdbc.url"));
dataSource.setUsername(System.getProperty("jdbc.username"));
dataSource.setPassword("pass");

JdbcMatchDao matchDao = new JdbcMatchDao();
matchDao.setDataSource(dataSource);

DefaultTournamentMatchManager tournamentMatchManager =
new DefaultTournamentMatchManager();

tournamentMatchManager.setMatchDao(matchDao);

new SwingApplication(tournamentMatchManager);
}

}

The class shown in Listing 1-5 uses the Swing API to create a GUI. To launch the Swing appli-
cation, you need to pass the property values for the data source as command-line parameters, as
follows:

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 9

9187ch01.qxd 8/2/07 10:05 AM Page 9

java –classpath %CLASSPATH% ➥
com.apress.springbook.chapter01.swing_application.SwingApplication ➥
-Djdbc.driverClassName=org.hsqldb.jdbcDriver ➥
–Djdbc.url=jdbc:hsqldb:hsql://localhost/ ➥
-Djdbc.username=sa –Djdbc.password=pass

The highlighted lines in Listing 1-5 show where collaborating objects are passed to satisfy the
dependencies in the application. The objects are created and configured by means of glue code.

This use case is reasonably complex, but small compared with the entire sample application.
The glue code that sets up the application can be kept in one place because the client application,
the business logic class, and the data-access class are loosely coupled via interfaces. But if we added
more glue code here, things would start to get out of hand.

Configuring the application via glue code is not consistent, which is best illustrated by how the
properties of the data source are configured. The property values are copied from the system prop-
erties. An alternative is to load properties from a file. There’s no consistent way to set property
values, which means the complexity will grow rapidly without persistent efforts on the part of the
developers.

The use of glue code to set up the configuration of an application causes another, subtler
problem that becomes apparent when we want to run the Swing application with another imple-
mentation of the TournamentMatchManager. When we test the Swing application, we don’t want to
depend on the state and availability of the database, the data-access code, or the full business logic
implementation in DefaultTournamentMatchManager. Instead, we create a dummy or stub imple-
mentation that just returns a Match object. This implementation takes five minutes to write and is
ideal for testing the user interface components. The stub implementation is shown in Listing 1-6.

Listing 1-6. A Stub Implementation of the TournamentMatchManager Interface for Testing Purposes

package com.apress.springbook.chapter01.test;

import com.apress.springbook.chapter01.TournamentMatchManager;
import com.apress.springbook.chapter01.Match;
import com.apress.springbook.chapter01.Player;
import com.apress.springbook.chapter01.UnknownMatchException;
import com.apress.springbook.chapter01.MatchIsFinishedException;
import com.apress.springbook.chapter01.PreviousMatchesNotFinishedException;
import com.apress.springbook.chapter01.MatchCannotBePlayedException;

public class StubTournamentMatchManager implements TournamentMachtManager {
public Match startMatch(long matchId) throws

UnknownMatchException, MatchIsFinishedException,
PreviousMatchesNotFinishedException, MatchCannotBePlayedException {

Player player1 = Player.femalePlayer ();
player1.setName("Kim Clijsters");

Player player2 = Player.femalePlayer();
player2.setName("Justine Henin-Hardenne");

return new Match(player1, player2);
}

}

When we want to use this stub implementation, we cannot start the client with its own main()
method. Instead, we need to create a new class to launch the client in test mode, as shown in
Listing 1-7. Because SwingApplication and TournamentMatchManager are loosely coupled, we can
start the application with different dependencies, but again the lack of a consistent approach is
apparent.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK10

9187ch01.qxd 8/2/07 10:05 AM Page 10

Listing 1-7. A Separate Class That Launches SwingApplication with StubTournamentMatchManager

package com.apress.springbook.chapter01.test;

import com.apress.springbook.chapter01.swing_application.SwingApplication;

public class LaunchTheSwingApplication {
public static void main(String[] args) {
new SwingApplication(new StubTournamentMatchManager());

}
}

Looking Up Dependencies with JNDI
The previous example highlights the lack of consistency in the way the application is configured as
the biggest problem. We can try to solve part of this problem by using the Java Naming and Direc-
tory Interface (JNDI). JNDI is the standard Java way of looking up objects from an application
server. The configuration of the objects happens on the application server and clients can look
them up.

When we start our application server, we can look up the data source named env:jdbc/
myDataSource, as shown in Listing 1-8.

Listing 1-8. Looking Up a Data Source Using JNDI

package com.apress.springbook.chapter01.swing_application;

import javax.sql.DataSource;

import javax.naming.Context;
import javax.naming.InitialContext;

import java.util.Hashtable;

import com.apress.springbook.chapter01.Match;
import com.apress.springbook.chapter01.jdbc.JdbcMatchDao;
import com.apress.springbook.chapter01.TournamentMatchManager;
import com.apress.springbook.chapter01.DefaultTournamentMatchManager;

public class SwingApplication {
private TournamentMatchManager tournamentMatchManager;

public SwingApplication(TournamentMatchManager tournamentMatchManager) {
this.tournamentMatchManager = tournamentMatchManager;

/* other code is omitted for brevity */
}

public static void main(String[] args) throws Exception {
Hashtable properties = new Hashtable();
properties.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL,

"t3://localhost:7001");
Context ctx = new InitialContext(properties);
DataSource dataSource = (DataSource)ctx.lookup("env:jdbc/myDataSource");

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 11

9187ch01.qxd 8/2/07 10:05 AM Page 11

JdbcMatchDao matchDao = new JdbcMatchDao();
matchDao.setDataSource(dataSource);

DefaultTournamentMatchManager tournamentMatchManager =
new DefaultTournamentMatchManager();

tournamentMatchManager.setMatchDao(matchDao);

new SwingApplication(tournamentMatchManager);
}

}

The problem of setting the data source property values is solved in Listing 1-8, but it’s fair to
say some difficulties remain:

• We’ve coupled our Swing application to an application server to get the data source. This
seriously limits the deployment options of the application; it now requires a running appli-
cation server for the application to start.

• The main consistency problem hasn’t been solved yet. There’s just as much glue code as in
Listing 1-5.

• We still need the TestingTheSwingApplication class in Listing 1-6 to launch the Swing appli-
cation in test mode.

■Note If you’re not familiar with JNDI and application servers, you only need to remember that clients can ask a
special Java server process for objects by name. Don’t worry if you can’t follow the discussion on JNDI in this sec-
tion. You only need to realize that using the standard Java way of locating objects doesn’t solve the inconsistency
issue.

Overall, JNDI hasn’t added much value to the application compared to the previous solution. In
fact, it’s hard to say which of the two approaches is preferable, as it’s a choice between two evils.

Using JNDI adds a dependency to an application server to the application and does nothing to
reduce the glue code. JNDI adds a bit of consistency because we can now change the connection
settings of the data source in the application server without affecting our application. Compare this
to Listing 1-5 and the command line for launching the Swing application, where we need to pass in
the database connection setting via command-line parameters.

Using the Spring Framework to Provide Dependencies
The complex setup of the two previous code examples and the lack of consistency are caused by the
fact that we, as developers, are responsible for obtaining the collaborating objects for our applica-
tion. We need to write code to create objects and look up a data source, which bothers us, because it
adds no value to our application. The business logic and data-access code are finished, and the
Swing application is ready to use, but before we can use both together, we must write glue code to
tell our application how to assemble itself.

The solution is to move the configuration code out of our application and use the Spring
Framework to create and assemble the application components. This will free us from writing glue
code and gives us a consistent way of configuring our application. The key is to use dependency
injection.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK12

9187ch01.qxd 8/2/07 10:05 AM Page 12

Introducing Dependency Injection
Dependency injection (DI) is the core feature of the Spring Framework Core Container. It provides a
mechanism to pass, or inject, dependencies to objects. Dependency injection is a method of inver-
sion of control (IoC). Figure 1-1 shows how IoC and dependency injection relate to each other.

Figure 1-1. The relationship between IoC and dependency injection

As shown in Figure 1-1, IoC provides two ways to resolve dependencies: dependency lookup
and dependency injection. Dependency lookup places the responsibility of resolving dependencies
in the hands of the application. The example in Listing 1-8 uses JNDI to obtain a data source, which
is a form of dependency lookup. Dependency lookup has been the standard way of resolving
dependencies in Java for many years but will always require glue code. The Spring Framework
supports dependency lookup, as will be discussed in Chapter 2.

In contrast, dependency injection places the responsibility of resolving dependencies in the
hands of an IoC container such as the Spring Framework. A configuration file defines how the
dependencies of an application can be resolved. The configuration file is read by the container,
which will create the objects that are defined in this file and inject these objects in other application
components. The Spring Framework Core Container supports two types of dependency injection to
inject collaborating objects: setter injection and container injection.

Setter injection uses set*() methods—also called setter methods, or setters for short—to inject
collaboration objects. set*() and get*() methods together form a JavaBean property, as defined in
the JavaBean specifications. To use setter injection, the Spring Framework Core Container must first
create an object and then call the setter methods that are defined in the configuration file. Listing 1-9
shows a class with setter methods and a configuration file (you’ll see a fuller example of a configura-
tion file in Listing 1-13, later in this chapter). The setter method and the corresponding
configuration have been highlighted.

Listing 1-9. An Example of Setter Injection

package com.apress.springbook.chapter01;

public class DemonstratingBean {
private String name;

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 13

9187ch01.qxd 8/2/07 10:05 AM Page 13

public void setName(String name) {
this.name = name;

}

public String getName() {
return this.name;

}
}

<!-- Spring Framework configuration file -->
<beans>

<!-- Injecting Steven in the name property -->
<bean id="bean" class="com.apress.springbook.chapter01.DemonstratingBean">
<property name="name" value="Steven"/>

</bean>
</beans>

Constructor injection calls a constructor to inject collaborating objects. The Spring Framework
Core Container creates objects and injects collaborating objects at the same time. Listing 1-10
shows a class with a constructor and a configuration file.

Listing 1-10. An Example of Constructor Injection

package com.apress.springbook.chapter01;

public class DemonstratingBean {
private String name;
public DemonstratingBean(String name) {
this.name = name;

}

public String getName() {
return this.name;

}
}

<!-- Spring Framework configuration file -->
<beans>

<!-- Injecting Steven in the constructor -->
<bean id="bean" class="com.apress.springbook.chapter01.DemonstratingBean">
<constructor-arg value="Steven"/>

</bean>
</beans>

Both of these techniques lead to the same results from the following piece of code, where we
load the configuration file and the injected dependencies with an XmlBeanFactory and obtain an
instance of the bean:

XmlBeanFactory factory = new XmlBeanFactory(new FileSystemResource("config.xml"));

DemonstratingBean demoBean = (DemonstratingBean)factory.getBean("bean");

System.out.println("Bean property value: " + demoBean.getName());

Dependency injection is clearly the preferred way of resolving dependencies, as it enables
developers to loosely couple the layers of an application and removes glue code. The result is a

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK14

9187ch01.qxd 8/2/07 10:05 AM Page 14

cleanly designed application and configuration in one place in a readable and easy-to-change for-
mat. In fact, the dependency injection model of the Spring Framework Core Container is a very
powerful deployment model. As you create configuration files, you are configuring your application
for deployment. Dependency injection is a very important mechanism in the Spring Framework,
and the next chapter discusses it in much more detail.

Now, let’s continue with the sample use case and see how to handle it with the Spring
Framework.

Handling the Use Case with the Spring Framework
The Spring Framework will look at a configuration file (which we need to create) and will automati-
cally create and assemble all objects that are defined in that file. This leaves us with only one task: to
bootstrap the Spring Framework and instruct it to read the configuration file and perform the work
at hand.

But first, we’ll remove all the glue code in our application, as shown in Listing 1-11.

Listing 1-11. The SwingApplication Class Without Glue Code, Reduced to Its Essence

package com.apress.springbook.chapter01.swing_application;

import com.apress.springbook.chapter01.Match;
import com.apress.springbook.chapter01.TournamentMatchManager;

public class SwingApplication {
private TournamentMatchManager tournamentMatchManager;

public SwingApplication(TournamentMatchManager tournamentMatchManager) {
this.tournamentMatchManager = tournamentMatchManager;

/* other code is omitted for brevity */
}

}

We’ve removed the main() method as well as the glue code. By looking at the import statements
of the SwingApplication class, we can tell that this class has minimal dependencies on the inter-
faces of the business logic and the domain classes of the application (SwingApplication uses the
Match class internally). We will come back to this point later in this section, but for now, keep in
mind that the DefaultTournamentMatchManager and JdbcMatchDao classes are not imported anywhere
in the application.

Next, we create a skeleton bootstrap class, as shown in Listing 1-12, which will call the API of
the Spring Framework. We don’t add any implementation to this class for now, but we want to give
you a mental hook to where the Spring Framework will fit in the picture.

Listing 1-12. A Bootstrap Class That Will Launch the Application

package com.apress.springbook.chapter01.spring;

public class SpringBootstrap {
public static void main(String[] args) throws Exception {

/* Call the Spring Framework API here! */

}
}

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 15

9187ch01.qxd 8/2/07 10:05 AM Page 15

Now we need to create the configuration file that tells Spring which objects to create and how
to assemble them. We will use an XML file to hold the configuration instructions. The notation
used in this file is defined by the Spring Framework and is consistent for all applications that use it.
Listing 1-13 shows the configuration file that will be loaded by the Spring Framework.

Listing 1-13. The Configuration File That Will Be Loaded by the Spring Framework

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="swingApplication"

class="com.apress.springbook.chapter01.swing_application. ➥
SwingApplication">

<constructor-arg ref="tournamentMatchManager"/>
</bean>

<bean id="tournamentMatchManager"
class="com.apress.springbook.chapter01.DefaultTournamentMatchManager">

<property name="matchDao" value="matchDao"/>
</bean>

<bean id="matchDao"
class="com.apress.springbook.chapter01.jdbc.JdbcMatchDao">

<property name="dataSource" ref="dataSource"/>
</bean>

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">
<property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
<property name="url" value="jdbc:hsqldb:hsql://localhost"/>
<property name="username" value="sa"/>
<property name="password" value=""/>

</bean>
</beans>

This configuration file instructs the Spring Framework to create four objects and assemble
them. We will discuss this file in detail in the next chapter.

The only thing that remains to be done is to implement the main() method of the
SpringBootstrap class to call the Spring Framework and instruct it to load the configuration file,
as shown in Listing 1-14.

Listing 1-14. The SpringBootstrap Class Uses the Spring Framework to Load a Configuration File

package com.apress.springbook.chapter01.spring;

import java.io.FileInputStream;
import java.util.Properties;

import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.FileSystemResource;

public class SpringBootstrap {
public static void main(String[] args) throws Exception {

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK16

9187ch01.qxd 8/2/07 10:05 AM Page 16

/* Check if the location of the configuration file has been passed
* as an argument.
*/
if (args.length == 0) {
throw new IllegalArgumentException("Please provide the location of a " +
"Spring configuration file as argument!");

}

/* Call the Spring Framework API here! */
XmlBeanFactory factory =
new XmlBeanFactory(new FileSystemResource(args[0]));

/* Pause the application until a key is pressed */
System.out.println("Press any key to close the application");
System.in.read();

/* Key has been pressed; close the application and exit */
}

}

We’ve modified the SpringBootstrap class to first check if the location of the configuration file
has been passed as a command-line argument. Next, we create the Spring Framework Core Con-
tainer and tell it to load the configuration file that has been passed as an argument. These are the
lines highlighted in Listing 1-14. The next chapter details how to configure the Spring Framework.

When we launch the application, we need to pass the location of the configuration file as a
command-line argument, as follows:

java –classpath %CLASSPATH% ➥
com.apress.springbook.chapter01.SpringBootStrap ➥
./src/java/com/apress/springbook/chapter01/spring/➥
swingApplicationConfiguration.xml

Testing the Application
Because we’ve configured the application components in a Spring configuration file, we can easily
use StubTournamentMatchManager by creating a new configuration file, as shown in Listing 1-15.

Listing 1-15. A Configuration File for Testing the Swing Application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
<!-- configuring StubTournamentMatchManager (it doesn't have dependencies) -->
<bean id="tournamentMatchManager"

class= "com.apress.springbook.chapter01.test.StubTournamentMatchManager">
</bean>

<!-- configuring SwingApplication -->
<bean id="swingApplication"

class="com.apress.springbook.chapter01.swing_application.SwingApplication">
<property name="tournamentMatchManager" ref="tournamentMatchManager"/>

</bean>
</beans>

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 17

9187ch01.qxd 8/2/07 10:05 AM Page 17

Next, we can launch the SpringBootstrap class with the test configuration file, as follows:

java –classpath %CLASSPATH% ➥
com.apress.springbook.chapter01.spring.SpringBootstrap ➥
./src/java/com/apress/springbook/chapter01/spring/test/➥
swingApplicationTestConfiguration.xml

We can change the configuration of the application by modifying the configuration file because
we use the Spring Framework. The code of our application is not affected.

Reviewing Loosely Coupled Application Layers
This brings the example full circle. As we’ve stated before, the DefaultTournamentMatchManager and
JdbcMatchDao classes are not imported anywhere in the application. This means the layers of the
application are loosely coupled:

• The SwingApplication class is part of the presentation layer (it creates the GUI) and has a
dependency on the TournamentMatchManager interface. This dependency is received through
the constructor, as shown in Listing 1-11. The configuration file in Listing 1-13 defines which
object will be passed in the constructor.

• The DefaultTournamentMatchManager class implements the TournamentMatchManager interface
and is part of the business logic layer. It has a dependency on the MatchDao interface, which
is received through the setMatchDao() method as shown in Listing 1-2. This type of method
is called a setter or setter method, and its purpose is to receive a collaborating object, as
demonstrated in Listings 1-5 and 1-8. The configuration file in Listing 1-13 defines which
object will be passed to the setMatchDao() method.

• The JdbcMatchDao class implements the MatchDao interface and is part of the data-access
layer (it queries the database). It has a dependency on the javax.sql.DataSource interface,
which is received through the setDataSource() method. This is again a setter method that
receives a collaborating object. The configuration file in Listing 1-13 defines which object
will be passed to the setDataSource() method.

One set of classes doesn’t fit in any of these layers: the classes of the domain model, such as the
Match class. These classes do not implement interfaces and are not controlled by the Spring Frame-
work. Domain model classes encapsulate the business rules of the application. If you look back at
Listing 1-2, you will notice DefaultTournamentMatchClass has a supporting role in the overall appli-
cation by loading players from the database and creating a Match object. Domain model classes are
typically used in each layer of the application.

Extending the Application
As other use cases are added to this application, new classes will be added to each layer. However,
because we will continue to use clearly defined interfaces comparable to TournamentMatchManager
and MatchDao, the layers of the application will remain loosely coupled.

No implementation classes will be imported anywhere in my application, and the Spring
Framework will take care of creating objects and managing the dependencies. As the application
grows bigger, the size of the configuration file in Listing 1-13 will also increase. The SpringBootstrap
class will remain unchanged, no matter how big the application becomes.

However, the clean separation of responsibilities in the application design will remain intact as
the configuration grows and the configuration will remain consistent. Compare this with the incon-
sistent approaches in Listings 1-5 and 1-9. Again, the principle that brings this level of consistency
to our application and that’s implemented by the Spring Framework is dependency injection.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK18

9187ch01.qxd 8/2/07 10:05 AM Page 18

Integrating the Spring Framework with Java EE
Java EE (formerly J2EE), is an addition to Java Standard Edition that provides APIs that integrate
enterprise services in the Java platform. Each enterprise service is a standard defined in specifica-
tions that are grouped together under the umbrella of Java EE. Table 1-1 summarizes the enterprise
services that are part of Java EE 1.4. Other technologies include accessing mail providers, XML
parsing, web services, security, and remote access.

Table 1-1. Java EE 1.4 Services

Service Description

Web application development The Servlet specifications, under the
javax.servlet.* package

JavaServer Pages (JSP) Template technology for rendering X/HTML
pages, under the javax.servlet.jsp.* and
javax.servlet.jsp.tagext.* packages

Java Naming and Directory Interface (JNDI) Directory lookup technology, under the
javax.naming.* package

Java Transaction API (JTA) Transaction management abstraction technology
supporting distributed transactions, under the
javax.transaction.* package

Java Messaging Service (JMS) Message sending and consuming technology,
integrating with message queue products, under
the javax.jms.* package

Enterprise JavaBeans (EJB) An application model for deploying application
components in an environment that transparently
configures other parts of the Java EE specifications

The most popular Java EE technologies are servlets, JSP, and EJB. Because Java EE provides a
standard way of using enterprise services, developers need to learn only one API.

Spring Framework Integration with Java EE Technologies
The Spring Framework adds one or more extra layers of abstraction on top of the Java EE standards
and APIs, either to hide the APIs completely from the developers when it makes sense or to make
them easier to use. Some APIs can be completely replaced by alternative solutions, like the EJB
specifications, as discussed in the next section.

The following is an overview of how the Spring Framework integrates the most important Java
EE APIs to make them less painful to use and more powerful:

JNDI: The Spring Framework has very good JNDI integration in the Core Container. As will be
demonstrated in the next chapter, JNDI dependency lookups can be configured in configura-
tion files. The object that’s returned by the lookup can then be injected by the Core Container
as a collaborating object. Moving dependency lookups out of the application code and into a
configuration file helps make existing applications more consistent and easier to maintain.

JTA: Spring’s Transaction Management framework fully integrates with the JTA API to support
transactions that are orchestrated by an application server. Working with the JTA API is too
complicated to allow its usage in application code, so the abstraction offered by the Spring
Framework is very useful. Chapter 7 will discuss the JTA API integration in more detail.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 19

9187ch01.qxd 8/2/07 10:05 AM Page 19

JMS: The Spring Framework has excellent integration with the JMS API, which makes it much
easier to send and receive messages. Sending messages with JMS requires JNDI lookups that
are trivial with the Spring Framework. Sending a message is made very easy by using a helper
class that’s provided by the Spring Framework. With Spring Framework 2.0, it’s now possible to
receive messages outside an EJB container with full transactional support. See http://java.
sun.com/products/jms/ for more information about JMS.

Web application development: The Spring Web MVC framework integration with the Servlet API
makes it very easy to handle web requests in a consistent way. This framework adds many
extensions to the Servlet API that are based on best practices. The Spring Web MVC layer is
meant to be very thin and to seamlessly integrate with view technologies. The view abstraction
offered by Spring Web MVC and integration with view technologies is unparalleled and uses
the Servlet API to hide view rendering details from the developer. Chapter 8 discusses using the
Spring Web MVC.

Spring and EJB
EJB integrates with JNDI, JTA, JMS, and other Java EE standards. At the time the Spring Framework
was introduced (March 2003), EJB was still the deployment model of choice for many business
applications, although its popularity was already declining. At the time of this writing, the EJB
specifications are all but dead and buried. The new EJB3 specifications have failed to convince
application developers. EJB3 has a very limited dependency injection model and does little to
bring consistency to your applications.

EJB and the Spring Framework are often compared because they promise the same thing: an
application deployment model with transparent enterprise service like transaction management,
security, messaging, and remote access.

The Spring Framework matches all the features of EJB3 and goes much further. The Spring
Framework is agile and powerful, and reaches out to every kind of application. EJB—including
EJB3—caters only to one type of application: centrally deployed business logic running on an appli-
cation server.

The market has shifted away from intrusive deployment models toward open, flexible, nonin-
trusive deployment models. That being said, the Spring Framework has excellent integration with
EJB3.

The EJB3 specifications consist of two parts: the deployment model and the persistence model.
The deployment model manages application components in an EJB container. These components
are available via JNDI. The Spring Framework has excellent integration with JNDI, so it is easy to
acquire references to these objects from within the Spring Framework Core Container and inject
these as collaborating objects. Therefore, it is easy to integrate with applications that are deployed
in an EJB3 environment. Furthermore, Spring’s Transaction Management framework can let objects
participate in transactions that are controlled by an application server. This ensures applications
deployed with the Spring Framework will work with EJB3 without affecting the business logic code.
The Spring Framework also offers integration code for the EJB3 persistence specifications. Chapter
5 discusses this integration in detail.

The Spring Framework also provides excellent integration with older versions of the EJB speci-
fications in the same manner.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK20

9187ch01.qxd 8/2/07 10:05 AM Page 20

Setting Up the Spring Framework in Your
Applications
You can download the latest version of the Spring Framework from http://www.springframework.
org. Make sure you download the distribution archive ending with with-dependencies, which con-
tains all the JAR files required by the Spring Framework. This version of the Spring Framework
distribution will help you find the JAR files you need to set up your application.

■Note Spring 2.0 was first announced at the first edition of The Spring Experience in Miami, Florida, in Decem-
ber 2005. At that time Rod Johnson, founder of the Spring Framework and CEO of Interface21, announced that
Spring 2.0 remains fully backward-compatible with Spring 1.2. Furthermore, Spring 2.0 works with Java 1.3 and
beyond and with J2EE 1.2 and beyond. This means you are able to drop the Spring 2.0 JAR in your existing proj-
ects, and you won’t have a single broken dependency.

The Spring distribution contains the following:

• The Spring JARs for the Core Container, the AOP framework, the Data Access framework, the
Transaction Management framework, the Remote Access framework, the JMX framework,
and the Spring Web MVC framework

• The complete source code of the Spring Framework

• If you’ve downloaded the distribution with dependencies, all libraries required by the Spring
Framework (available in the lib folder)

• Reference documentation in HTML and PDF formats

• Sample applications, including JPetStore, PetClinic, and ImageDb

Of the JAR files, two are most important: spring.jar and spring-mock.jar. spring.jar includes
the entire Spring Framework and can be found in the dist folder of the Spring distribution, and
spring-mock.jar includes all classes for writing and running tests and can be found in the dist/
modules folder.

Add the spring.jar archive to the classpath of your application to use the Spring Framework
in your application. spring.jar has a dependency on the commons-logging.jar archive, the Jakarta
Common Logging API. This file can be found in the lib/jakarta-commons folder of the Spring
Framework distribution. If you use Spring 2.0, note that the spring.jar archive no longer includes
the packages with the integration code for the object-relational mapping (ORM) tools Hibernate 2
and 3, JDO, and Oracle TopLink. These packages are moved to their respective JAR archives in the
dist/extmodules folder of the Spring 2.0 distribution.

■Tip When setting up the spring.jar archive in your application, we encourage you to attach the Spring source
in your integrated development environment (IDE). This allows you to easily look inside the classes of the Spring
Framework. Our understanding of the Spring Framework has significantly improved by regularly looking inside the
framework’s source code. Attaching the source code is simply a matter of pointing your IDE to the src folder of the
Spring Framework distribution.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK 21

9187ch01.qxd 8/2/07 10:05 AM Page 21

If you add the spring-mock.jar archive to the classpath of your application, make sure you also
add the junit.jar archive, the JUnit test framework. This file can be found in the lib/junit folder of
the Spring Framework distribution.

Furthermore, you need to add the JAR files for the other frameworks you want use in your
application. The lib/readme.txt file that is included in the Spring Framework distribution lists the
JAR files you need to include, depending on how you use the Spring Framework in your application.

SPRING SAMPLE APPLICATIONS

The Spring Framework distribution comes with three sample applications:

• JPetStore: Based on the original Java Pet Store application, this sample application uses the Spring Frame-
work to demonstrate how a nontrivial web application can be built. For data access, iBatis is used, and two
web layers configurations are available: one with Spring Web MVC and one with Struts. This sample also
demonstrates the use of Spring Remoting.

• PetClinic: This application demonstrates the use of a data-access layer and has implementations using
JDBC, Hibernate, Apache OJB, and Oracle TopLink. It uses Spring Web MVC in the web layer and also
demonstrates the use of JMX.

• ImageDb: This application demonstrates the use of binary large object (BLOB) handling, file upload with
Spring Web MVC, and Velocity as a template technology.

The sample applications are useful examples that demonstrate popular usage patterns of various features of
the Spring Framework. Each sample application has a readme.txt file with a motivation for the sample applica-
tion and a list of the features demonstrated in the sample.

Summary
In this chapter, you’ve learned about dependency injection, a straightforward mechanism to
acquired dependent objects. This technique will be further examined in the next chapter where the
Spring Framework Core Container is introduced.

You’ve been introduced to the different modules of the Spring Framework and the concepts
behind IoC and dependency injection. The remaining chapters of this book discuss many of the
modules in further detail. Now is a good time to download the latest distribution of the Spring
Framework.

CHAPTER 1 ■ A GENTLE INTRODUCTION TO THE SPRING FRAMEWORK22

9187ch01.qxd 8/2/07 10:05 AM Page 22

