
91

■ ■ ■

C H A P T E R 5

Making Things Move

In the real world, objects move in a variety of different ways, depending on what they are
doing, and a game must approximate those motions to create a convincing virtual representa-
tion. A few games can get away with unrealistic motion—Pac-Man, for example, moves in a
straight line with a constant speed and can change direction in an instant, but if you applied
that kind of motion to a car in a driving game it would destroy the illusion. After all, in a driving
game you would expect the car to take some time to reach full speed and it definitely shouldn’t
be able to turn 180 degrees in an instant!

For games with a touch of realism, the game programmer has to take into account what is
making things move. Let’s look at a typical driving game. Regardless of whether the vehicle is a
bike, a rally car, or a semitruck, there is a force from the engine driving it forward. There are
also other forces acting on it. Resistance from the wheels will vary depending on the surface
you are driving on, so a vehicle will handle differently on mud than it will on tarmac. And of
course there is gravity, which is constantly pulling the car toward the earth (something that the
player may not notice until he tries to jump a canyon)! In actual fact there are probably hun-
dreds of other forces that combine to create the motion of a vehicle.

Fortunately for us game programmers, we only have to simulate a few of these forces in
order to create the convincing illusion of movement. And once our simulation code is written,
we can apply it to many objects in the game. Gravity, for example, will affect everything (unless
the game is set in space), so we can apply the gravity-related code to any object, whether it is a
tossed hand grenade, a tank falling from a cliff, or an axe flying through the air.

This chapter describes how to move objects about the screen in a predictable fashion, and
how to make that movement consistent on other people’s computers.

Understanding Frame Rate
The first thing we need to know about movement in a computer game is that nothing really
moves—at least not in any physical sense. A computer screen or television set presents us with
a sequence of images, and when the time between the images is short enough, our brain blends
the images together to create the illusion of fluid motion. The number of images, or frames,
required to produce smooth motion can vary from person to person. Movies use 24 frames per
second, but computer games tend to require a faster frame rate. Thirty frames per second is a
good rate to aim for, but generally speaking the higher the frame rate, the smoother the motion
will look—although after about 70 frames per second, few people can detect any improvement,
even if they claim they can!

8725.book Page 91 Sunday, September 23, 2007 8:57 PM

92 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

The frame rate for a game is also limited by the number of times per second that the dis-
play device (such as your monitor) can refresh. For instance, my LCD monitor has a refresh rate
of 60 hertz, which means it refreshes the display 60 times every second. Generating frames
faster than the refresh rate can lead to what is known as “tearing,” where part of the next frame
is combined with a previous frame.

Obtaining a good frame rate generally means compromising on visual effects, because the
more work your computer is doing, the slower the frame rate will be. The good news is that the
computer on your desktop is probably more than fast enough to generate the visuals you want.

Moving in a Straight Line
Let’s start out by examining simple straight-line movement. If we move an image by a fixed
amount each frame, then it will appear to move. To move it horizontally, we would add to the
x coordinate, and to move it vertically we would add to the y coordinate. Listing 5-1 demon-
strates how to move an image horizontally. It draws an image at a specified x coordinate and
then adds the value of 10.0 to each frame, so that on the next frame it will have shifted a little to
the right. When the x coordinate passes over the right edge of the screen, it is set back to 0 so
that it doesn’t disappear completely. Moving 2D images are often referred to as sprites.

Listing 5-1. Simple Straight-Line Movement (simplemove.py)

background_image_filename = 'sushiplate.jpg'
sprite_image_filename = 'fugu.png'

import pygame
from pygame.locals import *
from sys import exit

pygame.init()

screen = pygame.display.set_mode((640, 480), 0, 32)

background = pygame.image.load(background_image_filename).convert()
sprite = pygame.image.load(sprite_image_filename)

The x coordinate of our sprite
x = 0.

while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 exit()

8725.book Page 92 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 93

 screen.blit(background, (0,0))
 screen.blit(sprite, (x, 100))
 x+= 10.

 # If the image goes off the end of the screen, move it back
 if x > 640.:
 x –= 640.

 pygame.display.update()

If you run Listing 5-1, you will see the fugu image sliding from left to right. This is exactly
the effect we were looking for, but there is a flaw in the design for Listing 5-1. The problem is
that we can’t know exactly how long it will take to draw the image to the screen. It looks reason-
ably smooth because we are creating an extremely simple frame, but in a game the time to
draw a frame will vary depending on how much activity there is on screen. And we don’t want
a game that slows down just as it is getting interesting. Another problem is that the sprite in
Listing 5-1 will move more slowly on less powerful computers and more quickly on more capa-
ble machines.

It’s About Time
The trick to solving this problem is to make the motion time-based. We need to know how
much time has passed since the previous frame so we can position everything on the screen
accordingly. The pygame.time module contains a Clock object that we can use to keep track of
time. To create a clock object, call its constructor pygame.time.Clock:

clock = pygame.time.Clock()

Once you have a clock object, you should call its member function tick once per frame,
which returns the time passed since the previous call in milliseconds (there are 1,000 millisec-
onds in a second):

time_passed = clock.tick()

The tick function also takes an optional parameter for the maximum frame rate. You may
want to set this parameter if the game is running on the desktop so that it doesn’t use all the
computer’s processing power:

Game will run at a maximum 30 frames per second
time_passed = clock.tick(30)

Milliseconds are often used to time events in games because it can be easier to deal with
integer values rather than fractional times, and 1,000 clock ticks per second is generally accu-
rate enough for most game tasks. That said, I often prefer to work in seconds when dealing with
things such as speeds, because 250 pixels per second makes more sense to me than .25 pixels
per millisecond. Converting from milliseconds to seconds is as simple as dividing by 1,000:

time_passed_seconds = time_passed / 1000.0

8725.book Page 93 Sunday, September 23, 2007 8:57 PM

94 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

■Caution Be sure to divide by a floating-point value of 1000.0. If you don’t include the floating point, the
result will be rounded down to the nearest integer!

So how do we use time_passed_seconds to move a sprite? The first thing we need to do is
choose a speed for the sprite. Let’s say that our sprite moves at 250 pixels per second. At that
speed, the sprite will cover the width of a 640-pixel screen in 2.56 seconds (640 divided by 250).
Next we need to work out how far the sprite has moved in the short amount of time since the
last frame, and add that value to the x coordinate. The math for this is quite simple: just multi-
ply the speed of the sprite by time_passed_seconds. Listing 5-2 builds on Listing 5-1 by adding
time-based movement, and will move the sprite at the same speed regardless of the speed of
the computer you run it on.

Listing 5-2. Time-Based Movement (timebasedmovement.py)

background_image_filename = 'sushiplate.jpg'
sprite_image_filename = 'fugu.png'

import pygame
from pygame.locals import *
from sys import exit

pygame.init()

screen = pygame.display.set_mode((640, 480), 0, 32)

background = pygame.image.load(background_image_filename).convert()
sprite = pygame.image.load(sprite_image_filename)

Our clock object
clock = pygame.time.Clock()

X coordinate of our sprite
x = 0.
Speed in pixels per second
speed = 250.

while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 exit()

8725.book Page 94 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 95

 screen.blit(background, (0,0))
 screen.blit(sprite, (x, 100))

 time_passed = clock.tick()
 time_passed_seconds = time_passed / 1000.0

 distance_moved = time_passed_seconds * speed
 x += distance_moved

 if x > 640.:
 x –= 640.

 pygame.display.update()

It is important to understand the difference between the frame rate and the speed of a
sprite in the game. If you were to run Listing 5-2 side by side on a slow computer and a fast
computer, then the fugu would be in about the same position on each screen, but the move-
ment on the slow computer would be jerky compared to the fast computer. Rather than run the
script on two different machines, let’s write a script to simulate the difference (Listing 5-3).

Listing 5-3. Frame Rate and Speed Comparison (frameratecompare.py)

background_image_filename = 'sushiplate.jpg'
sprite_image_filename = 'fugu.png'

import pygame
from pygame.locals import *
from sys import exit

pygame.init()

screen = pygame.display.set_mode((640, 480), 0, 32)

background = pygame.image.load(background_image_filename).convert()
sprite = pygame.image.load(sprite_image_filename)

Our clock object
clock = pygame.time.Clock()

x1 = 0.
x2 = 0.
Speed in pixels per second
speed = 250.

frame_no = 0

8725.book Page 95 Sunday, September 23, 2007 8:57 PM

96 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 exit()

 screen.blit(background, (0,0))
 screen.blit(sprite, (x1, 50))
 screen.blit(sprite, (x2, 250))

 time_passed = clock.tick(30)
 time_passed_seconds = time_passed / 1000.0

 distance_moved = time_passed_seconds * speed
 x1 += distance_moved

 if (frame_no % 5) == 0:
 distance_moved = time_passed_seconds * speed
 x2 += distance_moved * 5.

 # If the image goes off the end of the screen, move it back
 if x1 > 640.:
 x1 –= 640.
 if x2 > 640.:
 x2 –= 640.

 pygame.display.update()
 frame_no += 1

If you run Listing 5-3, you will see two sprites moving on the screen. The top one moves at
30 frames per second or as smoothly as your computer will allow; the other simulates a slow
computer by updating only every five frames. You should see that although the movement is
very jerky for the second sprite, it does actually move at the same average speed. So for games
that use time-based motion, a slow frame rate will result in a less pleasant viewing experience
but won’t actually slow down the action.

■Note Although well-written games should still be playable at slow frame rates, people will be put off play-
ing it if the motion is too jerky. Personally I wouldn’t want to play a game that ran much under 15 frames per
second.

8725.book Page 96 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 97

Diagonal Movement
Straight-line motion is useful, but a game would likely get pretty dull if everything moved hor-
izontally or vertically. We need to be able to move a sprite in any direction we choose, which we
can do by adjusting both the x and the y coordinate for each frame. Listing 5-4 sets a sprite
moving in diagonal direction by adding time-based movement to both coordinates. This list-
ing also adds some trivial “collision detection.” Rather than push the sprite back to an initial
position when it goes over the edge, the sprite bounces in the opposite direction.

Listing 5-4. Simple Diagonal Movement (diagonalmovement.py)

background_image_filename = 'sushiplate.jpg'
sprite_image_filename = 'fugu.png'

import pygame
from pygame.locals import *
from sys import exit

pygame.init()

screen = pygame.display.set_mode((640, 480), 0, 32)

background = pygame.image.load(background_image_filename).convert()
sprite = pygame.image.load(sprite_image_filename).convert_alpha()

clock = pygame.time.Clock()

x, y = 100., 100.
speed_x, speed_y = 133., 170.

while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 exit()

 screen.blit(background, (0,0))
 screen.blit(sprite, (x, y))

 time_passed = clock.tick(30)
 time_passed_seconds = time_passed / 1000.0

 x += speed_x * time_passed_seconds
 y += speed_y * time_passed_seconds

8725.book Page 97 Sunday, September 23, 2007 8:57 PM

98 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

 # If the sprite goes off the edge of the screen,
 # make it move in the opposite direction
 if x > 640 – sprite.get_width():
 speed_x = –speed_x
 x = 640 – sprite.get_width()
 elif x < 0:
 speed_x = –speed_x
 x = 0.

 if y > 480 – sprite.get_height():
 speed_y = –speed_y
 y = 480 – sprite.get_height()
 elif y < 0:
 speed_y = –speed_y
 y = 0

 pygame.display.update()

To accomplish this bounce, we first have to detect that we have hit an edge. This is done
with some simple math on the coordinates. If the x coordinate is less than 0, we know we have
gone over the left side of the screen because the coordinate of the left edge is 0. If x plus the
width of the sprite is greater than the width of the screen, we know that the right edge of the
sprite has hit the right edge of the screen. The code for the y coordinate is similar, but we use
the height of the sprite rather than the width:

 if x > 640 – sprite.get_width():
 speed_x = –speed_x
 x = 640 – sprite.get_width()
 elif x < 0:
 speed_x = –speed_x
 x = 0.

We have seen that adding a time-based value to the x and y coordinates of a sprite creates
a diagonal movement. In Listing 5-4 I picked values for speed_x and speed_y at random,
because for this demonstration I didn’t really care where the sprite would end up. In a real
game, though, we would want to select a final destination for the sprite and calculate speed_x
and speed_y accordingly. The best way to do this is with vectors.

Exploring Vectors
We used two values to generate diagonal movement: a speed for the x component of the posi-
tion and another for the y component. These two values combined form what is known as a
vector. A vector is something that game developers borrowed from mathematics and they are
used in many areas, in both 2D and 3D games.

Vectors are similar to points in that they both have a value for x and y (in 2D), but they are
used for different purposes. A point at coordinate (10, 20) will always be the same point on the

8725.book Page 98 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 99

screen, but a vector of (10, 20) means add 10 to the x coordinate and 20 to the y coordinate from
the current position. So you could think of a point as being a vector from the origin (0, 0).

Creating Vectors
You can calculate a vector from any two points by subtracting the values in the first point from
the second. Let’s demonstrate with an example from a fictional game. The player character—a
cybernetically enhanced soldier from the future named Alpha—has to destroy a Beta class sen-
try droid with a sniper rifle. Alpha is hiding behind a bush at coordinate A (10, 20) and aiming
at Beta at coordinate B (30, 35). To calculate a vector AB to the target, Alpha has to subtract the
components of B from A. So vector AB is (30, 35) – (10, 20), which is (20, 15). This tells us that to
get from A to B we would have to go 20 units in the x direction and 15 units in the y direction
(see Figure 5-1). The game would need this information in order to animate a projectile
weapon or draw a laser beam between the two points.

Figure 5-1. Creating a vector

Storing Vectors
There is no built-in vector type in Python, but you can store a vector in a tuple or list of two val-
ues, or you can define a vector class. Defining a class is probably the best option because you
can refer to the components by name (x or y) rather than as an index ([0] or [1]). Listing 5-5
demonstrates how we might begin defining a vector class. I called it Vector2 because vectors
are also used in 3D games and we may want to have a 3D version of the vector class called
Vector3. In addition to the constructor there is a __str__ method, which turns a Vector2 object
into a string when it is printed; without it, we would have to print each component
individually.

Listing 5-5. Simple Vector Definition

class Vector2(object):

 def __init__(self, x=0.0, y=0.0):
 self.x = x
 self.y = y

 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

8725.book Page 99 Sunday, September 23, 2007 8:57 PM

100 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

To define a vector, we can now use Vector2 objects. For instance, a call to my_vector =
Vector2(10, 20) produces a Vector2 object called my_vector. We can refer to the components
of the vector individually as my_vector.x and my_vector.y.

The first thing we should add to our Vector2 class is a method to create a vector from two
points, because this is the most common way to create a vector (see Listing 5-6).

Listing 5-6. Vector from Points

class Vector2(object):

 def __init__(self, x=0.0, y=0.0):
 self.x = x
 self.y = y

 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

 @classmethod
 def from_points(cls, P1, P2):
 return cls(P2[0] – P1[0], P2[1] – P1[1])

The function from_points looks like a normal function, but the line where it is defined is pre-
ceded by @classmethod, making it a class method. These class methods are called from the class
and not an instance of the class, such as Vector2.from_points(P1, P2). I made from_points a
class method because it creates a new Vector2 object rather than modifying an existing one.
Listing 5-7 shows how we would use it to create a vector between two points.

Listing 5-7. Testing the from_points Method

A = (10.0, 20.0)
B = (30.0, 35.0)
AB = Vector2.from_points(A, B)
print AB

Executing this example produces the following output:

(20.0, 15.0)

Vector Magnitude
The magnitude of a vector from A to B is the distance between those two points. Continuing
with the cyber-soldier theme, Alpha has a limited amount of fuel and needs to calculate the
distance from A to B to know if he can make it to B. We have already calculated vector AB as
(20, 15). The magnitude will give us the distance he needs to travel.

8725.book Page 100 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 101

To calculate the magnitude of a vector, square the components, add them together, and
then take the square root of the result. So the magnitude of a vector (20, 15) is the square root
of 20 ×20 + 15 ×15, which is 25 (see Figure 5-2). Let’s add a method to our Vector2 to calculate
the magnitude (Listing 5-8).

Figure 5-2. Creating a vector

Listing 5-8. Vector Magnitude Function

import math

class Vector2(object):

 def __init__(self, x=0.0, y=0.0):
 self.x = x
 self.y = y

 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

 @classmethod
 def from_points(cls, P1, P2):
 return Vector2(cls, P2[0] – P1[0], P2[1] – P1[1])

 def get_magnitude(self):
 return math.sqrt(self.x**2 + self.y**2)

A = (10.0, 20.0)
B = (30.0, 35.0)
AB = Vector2.from_points(A, B)
print AB
print AB.get_magnitude()

(20.0, 15.0)
25.0

8725.book Page 101 Sunday, September 23, 2007 8:57 PM

102 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

The line math.sqrt(self.x**2 + self.y**2) does the magnitude calculation. The ** oper-
ator in Python raises a value to a power, so we could just as easily have written the calculation
as math.sqrt(self.x*self.x + self.y*self.y).

The last few lines create a test vector, and then call the get_magnitude we just added. If you
have some graph paper handy, you may want to plot the points A and B and verify that the dis-
tance between the two is 25.0.

Unit Vectors
Vectors actually describe two things: magnitude and direction. For instance, soldier Alpha can
use the vector AB to figure out how far he has to travel (magnitude), but the vector also tells him
in which direction to face (direction). Normally these two pieces of information are tied up
together in a vector, but occasionally you only require one or the other. We have already seen
how to calculate the magnitude, but we can also remove the magnitude information from the
vector by dividing the components by the magnitude. This is called normalizing the vector,
and produces a special kind of vector called a unit vector. Unit vectors always have a length of
1, and are often used to represent a heading. When we move into the third dimension, you will
find them essential for everything from collision detection to lighting. Let’s add a method to
Vector2 that normalizes the vector and turns it into a unit vector (Listing 5-9).

Listing 5-9. Testing the Unit Vector Method

import math

class Vector2(object):

 def __init__(self, x=0.0, y=0.0):
 self.x = x
 self.y = y

 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

 @classmethod
 def from_points(cls, P1, P2):
 return cls(P2[0] – P1[0], P2[1] – P1[1])

 def get_magnitude(self):
 return math.sqrt(self.x**2 + self.y**2)

 def normalize(self):
 magnitude = self.get_magnitude()
 self.x /= magnitude
 self.y /= magnitude

8725.book Page 102 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 103

A = (10.0, 20.0)
B = (30.0, 35.0)
AB = Vector2.from_points(A, B)
print "Vector AB is", AB
print "Magnitude of Vector AB is", AB.get_magnitude()
AB.normalize()
print "Vector AB normalized is", AB

Executing this script produces the following output:

Vector AB is (20.0, 15.0)
Magnitude of Vector AB is 25.0
Vector AB normalized is (0.8, 0.6)

Vector Addition
Vector addition combines two vectors to produce a single vector that has the combined effect
of both. Let’s say soldier Alpha has to rendezvous with a drop ship at point C (15, 45) after pick-
ing up whatever the droid at point B was guarding. The vector from B to C is (–15, 10), which
means he has to go back 15 units in the x direction and continue on 5 units in the y direction. If
we add the components of the BC vector to the AB vector, we get a vector that would take us
from A to C (see Figure 5-3).

Figure 5-3. Vector addition

To add vector addition to our vector library, we could create a method called add, then call
AB.add(BC) to return the result of adding AB and BC together, but it would be more natural if
we could simply call AB+BC. Python provides a way for us to do this. By defining a special
method called __add__, we can let Python know how to add two instances of Vector2 together.

8725.book Page 103 Sunday, September 23, 2007 8:57 PM

104 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

When Python sees AB+BC, it will attempt to call AB.__add__(BC), so we should define __add__ to
return a new object containing the result of the calculation. This is known as operator overload-
ing. There are similar special methods for all the basic operators, such as __sub__ for subtract
(–) and __mul__ for multiply (*). Listing 5-10 extends the vector class with an __add__ method.

■Caution If you use lists or tuples to store your vectors, don’t try to add them together with the + operator.
In Python (1, 2)+(3, 4) is not (4, 6); it’s actually (1, 2, 3, 4)—which is not a valid 2D vector.

Listing 5-10. Adding the __add__ Method to Our Vector2 Class

import math

class Vector2(object):

 def __init__(self, x=0.0, y=0.0):
 self.x = x
 self.y = y

 def __str__(self):
 return "(%s, %s)"%(self.x, self.y)

 @staticmethod
 def from_points(P1, P2):
 return Vector2(P2[0] – P1[0], P2[1] – P1[1])

 def get_magnitude(self):
 return math.sqrt(self.x**2 + self.y**2)

 def normalize(self):
 magnitude = self.get_magnitude()
 self.x /= magnitude
 self.y /= magnitude

 # rhs stands for Right Hand Side
 def __add__(self, rhs):
 return Vector2(self.x + rhs.x, self.y + rhs.y)

A = (10.0, 20.0)
B = (30.0, 35.0)
C = (15.0, 45.0)

8725.book Page 104 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 105

AB = Vector2.from_points(A, B)
BC = Vector2.from_points(B, C)

AC = Vector2.from_points(A, C)
print "Vector AC is", AC

AC = AB + BC
print "AB + BC is", AC

Executing this script produces the following output:

Vector AC is (5.0, 25.0)
AB + BC is (5.0, 25.0)

Vector Subtraction
Subtracting a vector means going in the opposite direction the vector is pointing. If soldier
Alpha was forced to retreat from a well-armed droid, he might calculate a vector to his adver-
sary and then subtract it from his current position to find a point directly behind him. The
math for vector subtraction is very similar to addition, but we subtract from the components
rather than add. Listing 5-11 shows a method to subtract a vector from another vector, which
you can add to the Vector2 class.

Listing 5-11. Vector Subtraction Method

 def __sub__(self, rhs):
 return Vector2(self.x – rhs.x, self.y – rhs.y)

Vector Negation
Let’s suppose soldier Alpha arrived at point B, only to find he had forgotten his spare batteries;
how could he calculate a vector back to A (i.e., Vector BA)? He could do the math given the
points again, but an alternative is to negate vector AB, which has already been calculated.
Negating a vector creates a vector of the same length that points in the opposite direction. So
–AB is the same as BA. To negate a vector, simply negate the components. Listing 5-12 is a
member function that does negation, which you can add to the Vector2 class.

Listing 5-12. Vector Negation

 def __neg__(self):
 return Vector2(–self.x, –self.y)

8725.book Page 105 Sunday, September 23, 2007 8:57 PM

106 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

Vector Multiplication and Division
It is also possible to multiply (or divide) a vector by a scalar (a number), which has the effect of
changing the length of the vector. Simply multiply or divide each component by the scalar
value. Listing 5-13 adds two methods to our Vector2 class to implement multiply and divide
capabilities.

Listing 5-13. Vector Multiplication and Division

 def __mul__(self, scalar):
 return Vector2(self.x * scalar, self.y * scalar)

 def __div__(self, scalar):
 return Vector2(self.x / scalar, self.y / scalar)

If you multiply any vector by 2.0, it will double in size; if you divide a vector by 2.0 (or mul-
tiply by 0.5), it will halve the size. Multiplying a vector by a number greater than 0 will result in
a vector that points in the same direction, but if you were to multiply by a number less than 0,
the resulting vector would be “flipped” and point in the opposite direction (see Figure 5-4).

Figure 5-4. Multiplying a vector by a scalar

■Note Multiplying a vector by another vector is also possible, but it isn’t used very often in games and you
will probably never need it.

So how might soldier Alpha use vector multiplication—or more accurately, how would the
game programmer use it? Vector multiplication is useful to break up a vector into smaller steps
based on time. If we know Alpha can cover the distance from A to B in 10 seconds, we can

8725.book Page 106 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 107

calculate the coordinates where Alpha will be after every second by using a little vector code.
Listing 5-14 shows how you might do this using the Vector2 class.

Listing 5-14. Calculating Positions

A = (10.0, 20.0)
B = (30.0, 35.0)
AB = Vector2.from_points(A, B)
step = AB * .1
position = Vector2(A.x, A.y)
for n in range(10):
 position += step
 print position

This produces the following output:

(12.0, 21.5)
(14.0, 23.0)
(16.0, 24.5)
(18.0, 26.0)
(20.0, 27.5)
(22.0, 29.0)
(24.0, 30.5)
(26.0, 32.0)
(28.0, 33.5)
(30.0, 35.0)

After calculating a vector between points A and B, Listing 5-14 creates a vector step that is
one-tenth of the AB vector. The code inside the loop adds this value to position, which is
another vector we will use to store Alpha’s current location. We do this ten times, once for each
second of Alpha’s journey, printing out the current position vector as we go. Eventually after
ten iterations we reach point B, safe and sound! If you were to take the output and plot the
points, you would see that they form a perfect straight line from A to B.

Calculating intermediate positions like this is essential when moving between two points.
You can also use vectors to calculate movement under gravity, external forces, and friction to
create various kinds of realistic motion.

Game Objects Vector Class
The Vector2 class that we built earlier is good enough for basic vector maths, and you could use
it as a starting point for your own vector class (just about every game developer has written a
vector class at some point!). However, to get up and running quickly, you can use a Vector2
class I wrote as part of Game Objects, a framework to simplify writing games. You can download
Game Objects from www.willmcgugan.com/game-objects/.

The Vector2 class is part of a larger collection of classes in the gameobjects namespace.
Listing 5-15 shows a few things you can do with it.

8725.book Page 107 Sunday, September 23, 2007 8:57 PM

108 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

Listing 5-15. Using the Vector2 Class

from gameobjects.vector2 import *
A = (10.0, 20.0)
B = (30.0, 35.0)
AB = Vector2.from_points(A, B)
print "Vector AB is", AB
print "AB * 2 is", AB * 2
print "AB / 2 is", AB / 2
print "AB + (–10, 5) is", AB + (–10, 5)
print "Magnitude of AB is", AB.get_magnitude()
print "AB normalized is", AB.get_normalized()

When you run this code it will produce the following output:

Vector AB is (20, 15)
AB * 2 is (40, 30)
AB / 2 is (10, 7.5)
AB + (-10, 5) is (10, 20)
Magnitude of AB is 25.0
AB normalized is (0.8, 0.6)

Using Vectors to Create Movement
Now that we have covered vectors, we can use them to move game characters in a variety of
ways, and implement simple, force-based physics that make a game more convincing.

Diagonal Movement
Let’s use vectors to create more accurate diagonal movement. How would we move a sprite
from one position on the screen to another, at a constant speed? The first step is to create a vec-
tor from the current position to the destination (using Vector2.from_points or something
similar). We only need the direction information in this vector, but not the magnitude, so we
normalize it to give us the sprite’s heading. Inside the game loop we calculate how far the sprite
has moved with speed * time_passed_seconds, then multiply it by the heading vector. The
resulting vector gives us the change in x and y since the previous frame, so we add it to sprite
position.

Listing 5-16 implements time-based movement using vectors. When you run it, you will
see a sprite sitting motionless on the screen, but once you click the screen, the code will calcu-
late a vector to the new position and set the sprite moving at 250 pixels per second. If you click
again, a new vector will be calculated and the sprite will change its heading toward the mouse.

8725.book Page 108 Sunday, September 23, 2007 8:57 PM

C H A P T E R 5 ■ M A K I N G T H I N G S M O V E 109

Listing 5-16. Using Vectors for Time-Based Movement (vectormovement.py)

background_image_filename = 'sushiplate.jpg'
sprite_image_filename = 'fugu.png'

import pygame
from pygame.locals import *
from sys import exit
from gameobjects.vector2 import Vector2

pygame.init()

screen = pygame.display.set_mode((640, 480), 0, 32)

background = pygame.image.load(background_image_filename).convert()
sprite = pygame.image.load(sprite_image_filename).convert_alpha()

clock = pygame.time.Clock()

position = Vector2(100.0, 100.0)
speed = 250.
heading = Vector2()

while True:

 for event in pygame.event.get():
 if event.type == QUIT:
 exit()
 if event.type == MOUSEBUTTONDOWN:
 destination = Vector2(*event.pos) – Vector2(*sprite.get_size())/2.
 heading = Vector2.from_points(position, destination)
 heading.normalize()

 screen.blit(background, (0,0))
 screen.blit(sprite, position)

 time_passed = clock.tick()
 time_passed_seconds = time_passed / 1000.0

 distance_moved = time_passed_seconds * speed
 position += heading * distance_moved
 pygame.display.update()

8725.book Page 109 Sunday, September 23, 2007 8:57 PM

110 C H A P T E R 5 ■ M A K I N G T H I N G S M O V E

The destination calculation may require a little explanation. It uses the Vector2 class to
find a point that would put our sprite directly over the mouse coordinate. The * symbol, when
used in front of a parameter to a function call, expands a tuple or list. So Vector2(*event.pos)
is equivalent to Vector2(event.pos[0], event.pos[1]), and will create a vector with the posi-
tion of the mouse. Similar code is used to create a vector containing half the dimensions of the
sprite graphic. Using vectors like this could be considered an abuse of the mathematical con-
cept, but if it saves us a little time it will be worth it. Listing 5-17 shows how we might rewrite
the calculation without vector abuse.

Listing 5-17. Calculating the Destination Coordinate the Long Way

destination_x = event.pos[0] – sprite.get_width()/2.0
destination_y = event.pos[1] – sprite.get_height()/2.0
destination = (destination_x, destination_y)

Summary
Moving a sprite, or anything else on screen, requires that you add small values to the coordinates
on each frame, but if you want the movement to be smooth and consistent it needs to be based on
the current time—or more specifically, the time since the last frame. Using time-based movement
is also important for running the game on as wide a range of computers as possible—computers
can vary a great deal in the number of frames per second they can generate.

We’ve covered vectors, which are an essential part of any game developer’s toolbox. Vec-
tors simplify a great deal of the math you will do in writing your game, and you will find them
remarkably versatile. If you want to take the time to build the Vector2 class we explored in this
chapter, it is well worth doing, but you can use the Vector2 class in the Game Objects library to
save time. This is also what we will be using in the forthcoming chapters.

The techniques for moving in two dimensions extend easily to three dimensions. You will
find that the Vector3 class contains many of the methods used in the Vector2 class but with an
additional component (z).

Now would be a good time to start experimenting with moving things on screen and mix-
ing various kinds of movement. A lot of fun can be had by creating graphics of your friends and
family on screen and having them slide and bounce along!

In the next chapter, you’ll learn how you can connect input devices, such as the keyboard
and joystick, to sprites, so that the player can interact with the game world.

8725.book Page 110 Sunday, September 23, 2007 8:57 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

