
AdvancED DOM Scripting
Dynamic Web Design Techniques

Jeffrey Sambells

with Aaron Gustafson

Lead Editor

Chris Mills

Technical Reviewers

Cameron Turner, Victor Sumner

Editorial Board

Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Jonathan Hassell, Chris Mills, Matthew Moodie,

Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,

Matt Wade, Tom Welsh

Senior Project Manager

Kylie Johnston

Copy Edit Manager

Nicole Flores

Copy Editor

Heather Lang

Assistant Production Director

Kari Brooks-Copony

Senior Production Editor

Laura Cheu

Compositor

Dina Quan

Artist

Kinetic Publishing Services, LLC

Proofreader

Liz Welch

Indexer

Broccoli Information Management

Cover Image Designer

Bruce Tang

Interior and Cover Designer

Kurt Krames

Manufacturing Director

Tom Debolski

AdvancED DOM Scripting:
Dynamic Web Design Techniques

Copyright © 2007 by Jeffrey Sambells, Aaron Gustafson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval system, without the prior written

permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-856-6

ISBN-10 (pbk): 1-59059-856-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,

we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of

infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.

Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.

Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the

preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any

loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

203

CHAPTER 5

In Chapter 1, I stressed the importance of separating your markup, behavior, and

presentation. The problem with separating everything is that many aspects of the

three layers overlap or even collide in an explosion messed-up code. You’ve already

seen how to manipulate the DOM document structure in Chapter 3 and the behav-

ioral event listeners in Chapter 4. Now it’s time to discuss the presentation layer and

how you can write scripts to modify your presentation. We’ll explore ways to modify

the presentation without embedding it in the script itself, though sometimes doing

so will be unavoidable.

In this chapter, we’ll briefly look at the key parts of the W3C DOM Level 2 Style spec-

ification along with a variety of methods you can use to keep your presentation sep-

arated from your DOM scripts. We’ll also discuss one of the biggest misconceptions

about the style property as well as a little fix for PNG transparency in some versions

of Microsoft Internet Explorer. The last part of the chapter will also deal with creat-

ing transitions and effects, which will be further expanded on in Chapter 10.

The W3C DOM2 Style specification
The W3C DOM2 Style specification (http://w3.org/TR/DOM-Level-2-Style/) can

appear very scary at first, but if you understand the basics of CSS, you already know

DYNAMICALLY MODIFYING STYLE AND

CASCADING STYLE SHEETS

the majority of it. Without discussing CSS at length, I’m going to focus on a few of the more compli-

cated, and more useful, aspects of the specification, focusing on things you’ll encounter in your day-

to-day DOM scripts.

CSSStyleSheet objects

The CSSStyleSheet objects represent all of your CSS. These include external and inline style sheets

specified using <style type="text/css"></style> tags. CSSStyleSheet is constructed from various

other DOM2 CSS objects, such as a list of CSSStyleRule objects representing each of the rules in the

style sheet.

You’ll find a list of your document’s CSSStyleSheet objects in the document.styleSheets property.

Each of the CSSStyleSheet objects has several properties:

type will always be text/css, as you’re dealing with Cascading Style Sheets in your HTML

documents.

disabled is a Boolean property indicating that the style sheet is applied (false) to the current

document or disabled (true).

href is the URL where the style sheet is located relative to the current document, or it’s the

URL of the current document for inline style sheets.

title is a label that can be used to group style sheets, as you’ll see later in this chapter.

media indicates the type of target devices the style applies to, such as screen or print.

ownerRule is a read-only CSSRule object representing the parent rule if the style sheet was

imported using @import or something similar.

cssRules is a read-only CSSRuleList list of all the CSSRule objects in the style sheet.

Each CSSStyleSheet object also has methods, including the following:

insertRule(rule,index): For adding new style declarations

deleteRule(index): For removing rules from the style sheet

We’ll look at these properties and methods in more detail throughout this chapter as you modify and

edit the presentation of your documents.

CSSStyleRule objects

Within each CSSStyleSheet is a list of CSSStyleRule objects. These objects each represent a single

rule such as

body {
font: 62.5%/1.2em "Lucida Grande", Lucida, Verdana, sans-serif;
background: #c7f28e;
color: #1a3800;

}

The CSSStyleRule objects have properties that define the rule:

204

CHAPTER 5

type is a property inherited from the CSSRule object and is a number between 0 and 6 repre-

senting the type of rule. For CSSStyleRule rules this will always be 1, but other rule objects,

such as CSSImportRule, which represents @import rules, take other values. The list of type
values follows:

0: CSSRule.UNKNOWN_RULE

1: CSSRule.STYLE_RULE (indicates a CSSStyleRule object)

2: CSSRule.CHARSET_RULE (indicates a CSSCharsetRule object)

3: CSSRule.IMPORT_RULE (indicates a CSSImportRuleobject)

4: CSSRule.MEDIA_RULE (indicates a CSSMediaRule object)

5: CSSRule.FONT_FACE_RULE (indicates a CSSFontFaceRule object)

6: CSSRule.PAGE_RULE (indicates a CSSPageRule object)

cssText contains the string representation of the entire rule in its current state. If the rule has

been modified using other DOM methods, this string will represent the changes as well.

parentStyleSheet references the parent CSSStyleSheet object.

parentRule will reference another CSSRule if the rule is within another rule. For example, rules

within a specific @media rule will have the @media rule as their parent rule.

Also, the CSSStyleRule objects have CSS-specific properties, such as the following:

selectorText contains the selector used for the rule.

style, like HTMLElement.style, is an instance of CSSStyleDeclaration.

You’ll also see these properties and methods in more detail throughout this chapter.

CSSStyleDeclaration

The last object we’ll look at, and probably the one you’ll run into most, is the CSSStyleDeclaration
object, which is the object that represents an element’s style property. Like the CSSStyleRule object,

the CSSStyleDeclaration object has properties such as the following:

cssText contains the string representation of the entire rule.

parentRule will reference the CSSStyleRule.

Also, the CSSStyleDeclaration object has several methods, including these:

getPropertyValue(propertyName) returns the value of a CSS style property as a string.

removeProperty(propertyName) removes the given property from the declaration.

setProperty(propertyName,value,priority) allows you to set the value of a given CSS

property.

Instances of the CSSStyleDeclaration object, such as the HTMLElement.style property, also have a

shortcut access method through CSS2Properties, but we’ll discuss that in more detail when we look

at the style property later in this chapter.

205

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

A lack of support

Unfortunately, some browsers don’t support all the features of the Style specification. Those browsers

have similar objects that represent similar features, but they’re accessed differently than the DOM2

Style methods. Throughout the rest of this chapter, I’ll focus on the W3C methods, but all of the style-

related access and manipulation methods you’ll be adding to your ADS library will be browser agnos-

tic and include any necessary browser-specific access methods. I’ll point out the cases where access

differs from the W3C, but I won’t go into a lot of detail regarding the proprietary methods. The only

exception will be the Microsoft Internet Explorer CSS filter property in the context of translucent

PNGs, which I’ll cover near the end of this chapter.

When DOM scripting and style collide
The presentation layer in your web application consists primarily of the CSS styles. I’m going to assume

that you’re at least somewhat familiar with CSS and that you already know the basics, but if you’re not,

or haven’t yet embraced CSS, I highly recommend these additional books:

Web Standards Solutions: The Markup and Style Handbook by Dan Cederholm (friends of ED;

ISBN-13: 978-1-59059-381-3)

CSS Mastery: Advanced Web Standards Solutions by Andy Budd with Simon Collison and

Cameron Moll (friends of ED; ISBN-13: 978-1-59059-614-2)

Transcending CSS: The Fine Art of Web Design by Andy Clark and Molly Holzschlag (New Riders

Press; ISBN-13: 978-0-32141-097-9)

CSS, like DOM scripting, is not a magic fix for your web site. To take advantage of its power and flexi-

bility, you need to implement it properly with all your CSS styles defined in an external style sheet. This

will separate the style from the markup, but it poses two problems:

As I said, CSS is not a magic solution. It often requires additional tags in the semantic markup

so that the CSS can manipulate extra elements for stylistic purposes.

CSS also poses a problem for your behavioral layer. In many, if not most, cases, your behavioral

enhancements will involve manipulating the presentation of your elements—but your presen-

tation shouldn’t be mixed into your DOM scripts either.

With a bit of forethought and planning, the presentation of your document can be separated from

your behavioral elements while maintaining flexibility for both the CSS and DOM script.

As you’ll see later in this chapter, the style property doesn’t reference the

computed style from the cascade.

206

CHAPTER 5

Modifying markup for style

Semantic purists will discourage the use of any markup that doesn’t directly relate to the semantics of

the document, but sometimes it can’t be avoided. As you work with CSS, you’ll soon realize that its

limitations will sometimes require a little extra markup to nudge things around and make them look

the way you want—for presentation purposes only—but that’s not a bad thing. Personally, I believe a

little bit of extra markup isn’t going to hurt anyone as long as it’s done with forethought and you’re

not just layering on new markup without considering alternative solutions.

CSS image replacement is a common situation where additional markup is often required. The image

could be replacing something as simple as the text in a header or something more complicated, such

as a bulleted list or table. Either way, the goal is to provide a visually pleasing alternative to the text,

but it should also maintain accessibility to the information.

The resulting markup should still

be accessible to screen readers

be understandable when images are off and CSS is on (a problem for many solutions)

maintain accessibility features such as alt tags and titles

avoid unnecessary markup—if at all possible

The classic technique is known as Fahrner Image Replacement (FIR). This technique involves adding an

extraneous tag around the content within an element such as a header:

<h1 id="advancedHeader">Advanced DOM Scripting</h1>

and then applying CSS to insert a background image on the header and hide the :

/* Add a background image to the parent element */
#advancedHeader {

height:60px;
background: transparent url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
}
/* Hide the text */
#advancedHeader span {

display:none;
}

The result, with the CSS applied, is a custom styled graphic that replaces the plain browser text, as

shown in the chapter5/image-replacement/fir.html file in Figure 5-1; the plain text AdvancED DOM
Scripting header has been replaced with an image.

207

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

Figure 5-1. The header replaced with an image

Without CSS, the header will gracefully degrade into the plain text alternative shown in Figure 5-2.

Figure 5-2. The header as it would appear in the text-based lynx browser

There are two problems with the classic FIR method. First, nothing shows if images are disabled,

because the span is still hidden. The second problem is that display:none may also hide the content

from screen readers that support CSS, effectively destroying the whole point of accessible image

replacement.

208

CHAPTER 5

Other methods have since been devised, such as the following three:

The Dwyer method by Leon Dwyer uses a 0 size for the extra , but like FIR, it doesn’t work with

CSS turned on and images off, as in the chapter5/image-replacement/dwyer.html example:

/* Add a background image to the parent element */
#advancedHeader {

height:60px;
background: transparent url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
}
/* Hide the text using a 0-sized box*/
#advancedHeader span {

display:block;
width:0;
height:0;
overflow:hidden;

}

The Phark method by Mike Rundle doesn’t require any additional markup and uses a negative text

indent to hide the content, but again, it doesn’t work with CSS on and images off, as in the chapter5/
image-replacement/phark.html example:

/* Use a background image along with a negative
text indent to hide the text */
#advancedHeader {

text-indent: -100em;
overflow:hidden;
height:60px;
background: transparent url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
}

Another option is the Shea method by Dave Shea, which still uses an extra empty element:

<h1 id="advancedHeader" title="AdvancED DOM Scripting">
Advanced DOM Scripting

</h1>

but rather than hiding the text, the span is positioned above the text with a solid opacity to hide the

underlying words, as in the chapter5/image-replacement/shea.html example:

/* Use relative positioning for the parent
so children can use absolute */

#advancedHeader {
height:60px;
position:relative;

}
/* Hide the text using an opaque background image

on the absolute positioned span */
#advancedHeader span {

209

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

background: transparent url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
position:absolute;
display:block;
width:100%;
height:100%;

}

When images are off, the Shea method allows the text to remain visible. Also, the title attribute of

the header can still act as the equivalent alt attribute on the image when hovering the pointer over

the header.

Removing the extra markup
The extra tag in the preceding image-replacement solutions provides no additional semantic

meaning and is really an extra tag. It’s not all that bad, but you could use a DOM script to achieve the

same goal. If you’re happy letting JavaScript-disabled browsers receive the degraded text-only version,

you can easily add this extra markup by using a load event listener. To do so, start with a clean header

that contains only the necessary identifying markup, as found in the chapter5/image-replacement/
advancED.html source:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>advancED Image Replacement</title>
<link rel="stylesheet" type="text/css"

href="../../shared/source.css" />
<link rel="stylesheet" type="text/css" href="../chapter.css" />

<!-- ADS Library (full version from source linked here) -->
<script type="text/javascript"

src="../../ADS-final-verbose.js"></script>

<!-- Image replacement -->
<link rel="stylesheet" type="text/css"

href="advancED.css" media="screen">

<!-- The load script -->
<script type="text/javascript" src="advancED.js"></script>

</head>
<body>

<h1>advancED Image Replacement</h1>
<h2 id="advancedHeader">Advanced DOM Scripting</h2>

</body>
</html>

Next, include the appropriate CSS rules in the linked advancED.css file. Here, I’ve chosen to use the

Shea method as the base CSS method, but I’ve added an additional .advancED class to the selectors:

210

CHAPTER 5

/* The styling for the text if images are disabled */
#advancedHeader {

color: #1A5B9D;
}

/* Sizing the header for the image */
#advancedHeader.advancED {

height:60px;
position:relative;
overflow:hidden;

}
/* Hide the text with the opaque image*/
#advancedHeader.advancED span {

background: white url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
display:block;
width:100%;
height:100%;
position:absolute;

}

The extra .advancED class is the tricky part, as it doesn’t yet appear anywhere in the chapter5/
image-replacement/advancED.html source markup.

With these CSS rules in place as is, a device running without JavaScript will see the header with the

limited CSS (or no CSS if that’s not available either), as shown in Figure 5-3.

Figure 5-3. The advanced image replacement solution when the script hasn’t run

211

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

To make everything really snazzy, the load event in the chapter5/image-replacement/advancED.js
file is used to inject the extra into the header and add the extra .advancED class name, which

completes the transformation:

ADS.addEvent(window, 'load', function() {
// Retrieve the header
var header = ADS.$('advancedHeader');
// Create an image element
var image = document.createElement('IMG');

// Only add the span and class if the image loads
ADS.addEvent(image, 'load', function() {

var s = document.createElement('SPAN');
// Prepend the span to the header's children
ADS.prependChild(header,s);

// Create the title attribute as necessary
if(!header.getAttribute('title')) {

var i, child;
var title = '';
// Loop through the children and assemble the title
for(i=0 ; child = header.childNodes[i] ; i++) {

if(child.nodeValue) title += child.nodeValue;
}
header.setAttribute('title',title);

}
// Modify the class name to indicate the
// change and apply the CSS
header.className = 'advancED';

});

// Load the image
// This hardcoded path isn't ideal.
// You'll revisit this later in the chapter
image.src = 'http://advanceddomscripting.com/➥

images/advancED-replace.png';

});

If the image loads successfully, the image’s load event will generate the proper markup and trigger the

CSS to do its thing:

This example isn't very portable. You must change the script if you want to change the

image. We’ll solve this problem later in this chapter.

212

CHAPTER 5

<h1 id="advancedHeader" title="Advanced DOM Scripting" class="advancED">

Advanced DOM Scripting</h1>

The addition of the class is important for degradation and cleanliness. By appending the class with

your DOM script, you indicate to the CSS presentation layer that the change to the markup was suc-

cessful and that the header should be modified. This allows you to keep the actual presentation sepa-

rate from the DOM script while allowing the DOM script to control the process. At the same time, if

either CSS or images are unavailable, the gracefully degraded version will still contain the header text

as it appears in the markup.

The only caveat with this method is that the replacement relies on your DOM script. Depending on the

speed of the computer and the Internet connection, there may be a brief flicker when the browser

renders the text and the load modification runs (while the image is loading). You’ll have to weigh the

pro of a clean, accessible, and degradable solution against the con of requiring JavaScript and decide

which is right for you.

Keeping style out of your DOM script
Separating your style from your markup is easily done with the appropriate class and ID attributes

along with an external CSS style sheet. But, the same concepts are often overlooked in your DOM

scripts where it’s equally important to separate stylistic changes from behavioral changes. To work

properly, your DOM scripts will influence the appearance of your document—but they shouldn’t do so

in a way that forces you to edit the DOM script when tweaking the design.

In the previous section, you saw how image replacement could be achieved using a combination of

CSS and DOM scripting to manipulate the markup. In this section, you’ll see that there are a number

of ways to influence appearance without directly changing stylistic properties. We’ll also start off by

taking a look at one of the most misunderstood things in DOM scripting: the DOM style property.

The style property

When applying presentation changes on a small scale, for maybe only one or two elements at a time,

you’ve probably come across a number of examples online—and even in this book—that use the

style property of the HTMLElement to modify its presentation. There are two big problems with mod-

ifying the style property:

Using the style property embeds stylistic design into your behavioral DOM script, which isn’t

any better than using the style attribute in the semantic markup. Sometimes, however, using

the style property does make sense for behavior-related properties, such as positioning, or

stylistic changes that aren’t related to the overall design of the site.

If you try this example as is, you may run into problems when you override an existing

class on the header elements. You’ll be creating class name manipulation methods for

your ADS library to solve that problem later in this chapter.

213

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

The style property isn’t what you think it is. Let me explain. The style property itself is a

CSSStyleDeclaration object representing all the various CSS properties for the given element.

What you may not realize, however, is that the style property only provides access to CSS

properties declared inline in the element’s style attribute. That’s it. Nothing else. It doesn’t

contain any CSS properties from the cascades of additional style sheets or properties inherited

from parent elements. This means you can’t use it to retrieve the overall computed style of

the element. For that, you’ll have to use a few different objects that we’ll discuss later in this

chapter.

Keeping these two things in mind, let’s look at the style property and some of its other quirks.

As you’ve already seen, you can set simple properties, such as the foreground color of the element,

using the CSS color property:

element.style.color = 'red';

And you can set the element’s background-color using

element.style.backgroundColor = 'red';

All the CSS properties follow this same pattern, but you’ll notice that the background-color example

uses a camel case syntax rather than the more familiar hyphenated CSS syntax. Converting

background-color to the camel case backgroundColor syntax—by removing the hyphen and upper-

casing the first letter of the following word—is necessary, because you’re actually using a shortcut. To

properly access style properties, the DOM2 Style CSSStyleDeclaration object has methods such as

setProperty(), which use the proper, hyphenated CSS property name and value:

element.style.setProperty('background-color','red');

Again, the problem is that nonstandard browsers such as Microsoft Internet Explorer don’t support

the setProperty() method, so you’ll have to rely on the shortcut method for cross-browser compat-

ibility.

To keep things agnostic, add the following setStyleById() method to your ADS library along with the

setStylesByClassName() and setStylesByTagName() methods. I’ve set up these methods to use a

JavaScript object in the second parameter, so you can use JavaScript object notation to define mul-

tiple styles with proper CSS property names, though it will also work with the camel cased version

as well:

If you thought that the style property contained the computed style of the element,

you’re not alone. This is a common assumption that most people get wrong. Some

people assume that the style sheet hasn’t loaded yet or that some other browser-

loading quirk is interfering with the style property, which simply isn’t true. By design,

the style property will never give you that information. It’s a good example of why

it’s smart to spend a little time reading up on specifications so that you can avoid the

frustration of spending hours fighting a “bug” that’s really a feature.

214

CHAPTER 5

ADS.setStyleById('example'{
'background-color': 'red',
'border': '1px solid black',
'padding': '1em',
'margin':'1em'

});

Within these setStyle methods, the hyphenated version of the CSS properties will be converted

to camel case as necessary using the ADS.camelize() method you added when writing the HTML to

DOM conversion tool in Chapter 3:

(function(){

window['ADS'] = {};

... above here is your existing library ...

/* changes the style of a single element by id */
function setStyleById(element, styles) {

// Retrieve an object reference
if(!(element = $(element))) return false;
// Loop through the styles object and apply each property
for (property in styles) {

if(!styles.hasOwnProperty(property)) continue;

if(element.style.setProperty) {
// DOM2 Style method
element.style.setProperty(
uncamelize(property,'-'),styles[property],null);

} else {
// Alternative method
element.style[camelize(property)] = styles[property];

}
}
return true;

}
window['ADS']['setStyle'] = setStyleById;
window['ADS']['setStyleById'] = setStyleById;

/* changes the style of multiple elements by class name */
function setStylesByClassName(parent, tag, className, styles) {

if(!(parent = $(parent))) return false;
var elements = getElementsByClassName(className, tag, parent);
for (var e = 0 ; e < elements.length ; e++) {

setStyleById(elements[e], styles);
}
return true;

}
window['ADS']['setStylesByClassName'] = setStylesByClassName;

215

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

/* changes the style of multiple elements by tag name */
function setStylesByTagName(tagname, styles, parent) {

parent = $(parent) || document;
var elements = parent.getElementsByTagName(tagname);
for (var e = 0 ; e < elements.length ; e++) {

setStyleById(elements[e], styles);
}

}
window['ADS']['setStylesByTagName'] = setStylesByTagName;

... below here is your existing library ...

})();

These methods also provide a nice browser-agnostic way of modifying the style properties of related

elements by class name:

ADS.setStylesByClassName(
findClass',
'*',
document,
{'background-color':'red'}

);

or by tag name

ADS.setStylesByTagName('a',{'text-decoration':'underline'});

But again, changing things like the background-color in your script embeds the style in your code.

Even if you have no intention of sharing and your code is for you and you alone, it’s still a good idea

to refrain from mixing CSS style with your DOM scripts. When you're ready to move on from your cur-

rent design and the time comes to edit your CSS, you’ll be much happier messing with a few CSS files

rather than sifting through all your scripts line by line, looking for every instance of background-
color=red.

The only time mixing style and scripting is really acceptable is in the case of positioning, where the

point of things like drag-and-drop interaction is to move the elements around the page. Setting

absolute positioning along with the position, as follows, makes sense in the script, because the posi-

tioning and location are not part of the visual design, they’re directly based on a reaction to the

mouse movement on the page:

ADS.setStyleById('example',{
'position':'absolute',
'top':'10px',
'left':'20px'

});

Font manipulation and color changes, on the other hand, don’t belong in your scripts—at least not

directly.

216

CHAPTER 5

Switching styles based on a className

For small- to medium-scale presentation changes, such as colors, borders, backgrounds, and font

styles that affect a few elements, you can avoid trudging through the code to look for style properties

by implementing className switching. Simply use your DOM script to modify the className property

of the desired elements, thus allowing you to alter the appearance based on predefined rules in your

style sheets.

From an implementation point of view, this will require the manual or dynamic addition of a style

sheet along with your script, increasing the usability and friendliness for designers. In addition, it also

allows for reuse of the same DOM script across multiple designs, because your site’s design isn’t part

of the DOM script. For example, instead of modifying the element’s background-color directly

through the style property, you could define two classes in your CSS file:

.normal {
background-color: black;

}
.normal.modified {

background-color: red;
}

And modify the className property of the element to apply the modified style:

var element = ADS.$('example');
element.className += ' modified';

Using common classes with className switching
When implementing className switching, it’s a good idea to come up with a set of common classes

that are only used to indicate changes in the document. These classes can act as pseudo-selectors and

should only be used in combination with other selectors to trigger changes based on DOM scripts. For

example, you may decide that hover is a reserved word. If a hover class was declared directly, as

follows

.hover {
position:absolute:
top:100px;
left:200px;

}

it would destroy the effectiveness of the DOM script. But if used only in combination with other selec-

tors, like this

#cart.hover {
background-color:yellow;

}
#sidebar.hover a {

text-decoration:underline;
}

the hover class will act as a pseudo-class, in the same way as a CSS a:hover pseudo-class.

217

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

Using the className switching approach now maintains the proper separation and opens the presen-

tation to CSS designers using the site’s style sheets.

To make this a little easier, add these className manipulation methods to your ADS library:

(function(){

window['ADS'] = {};

... above here is your existing library ...

/* retrieve the classes as an array */
function getClassNames(element) {

if(!(element = $(element))) return false;
// Replace multiple spaces with one space and then
// split the classname on spaces
return element.className.replace(/\s+/,' ').split(' ');

};
window['ADS']['getClassNames'] = getClassNames;

/* check if a class exists on an element */
function hasClassName(element, className) {

if(!(element = $(element))) return false;
var classes = getClassNames(element);
for (var i = 0; i < classes.length; i++) {

// Check if the className matches and return true if it does
if (classes[i] === className) { return true; }

}
return false;

};
window['ADS']['hasClassName'] = hasClassName;

/* Add a class to an element */
function addClassName(element, className) {

if(!(element = $(element))) return false;
// Append the classname to the end of the current className
// If there is no className, don't include the space
element.className += (element.className ? ' ' : '') + className;
return true;

};
window['ADS']['addClassName'] = addClassName;

/* Remove a class from an element */
function removeClassName(element, className) {

if(!(element = $(element))) return false;
var classes = getClassNames(element);
var length = classes.length

218

CHAPTER 5

// Loop through the array deleting matching items
// You loop in reverse as you're deleting items from
// the array which will shorten it.
for (var i = length-1; i >= 0; i--) {

if (classes[i] === className) { delete(classes[i]); }
}
element.className = classes.join(' ');
return (length == classes.length ? false : true);

};
window['ADS']['removeClassName'] = removeClassName;

... below here is your existing library ...

})();

Looking at the methods, they simply manipulate the className as appropriate:

ADS.getClassNames(element) returns an array of the class names associated with the element.

ADS.hasClassName(element, class) checks to see if the class is defined in the elements class

name.

ADS.addClassName(element, class) appends a class to className.

ADS.removeClassName(element, class) removes the given class from the elements class

name.

You can use these methods to easily retrieve all the classes associated with an element:

var element = document.getElementById('example');
var classes = ADS.getClassNames(element);
var class;
for (var i=0; class=classes[i]; i++) {

//do something with the class
}

or to check if a class is assigned to the element before adding it, to produce a toggle effect:

function toggleClassName(element,className) {
if(!ADS.hasClassName(element,className)) {

ADS.addClassName(element,className);
} else {

ADS.removeClassName(element,className);
}

}
ADS.addEvent('toggleButton','click',function() {

toggleClassName(this,'active');
});

219

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

You can even reproduce a rollover effect with the appropriate event listeners and a hover class:

var element = document.getElementById('example');
ADS.addEvent(element,'mouseover',function() {

ADS.addClassName(this,'hover');
});
ADS.addEvent(element,'mouseout',function() {

ADS.removeClassName(this,'hover');
});

Drawbacks of using className switching
Using dynamic class names to indicate style changes is great, but it does have some drawbacks.

The first drawback is that the style of an element can influence the interaction in your scripts. Styles

declared with different padding and margins can change the size and position of the elements, so your

fancy draggable objects may no longer line up properly. Creating a common markup scheme for inter-

active elements can solve this problem. For example, you might create a policy where all draggable

elements have a secondary inner container with a common class that CSS designers are free to manip-

ulate, leaving the outer container to be positioned as expected.

The second drawback is shown in the earlier example when you appended modified to the className
without checking to see what was already there. In most cases, you’ll be using a more meaningful class

name based on the desired action, but you’ll also be adding and removing multiple class names for

different actions. This will involve some checking to first determine what’s already in the className so

that you don’t clutter it unnecessarily. Likewise, when you want to remove the modified class name,

some string manipulation will be required to make sure you’re removing the correct portion of the

className string. Using the class name methods you added to your ADS library will help solve that

problem.

Why not use setAttribute for class names?
At this point, you may be wondering why the examples have all been modifying the className prop-

erty directly rather than using the setAttribute() method. The className refers to the class attrib-

ute of the HTMLElement, so there are actually three different ways you could possibly define the class,

but they each work differently depending on the browser:

element.setAttribute('class','newClassName') works in all W3C-compliant browsers.

element.setAttribute('className','newClassName') works in Internet Explorer but isn’t a

W3C-compliant way of setting the value.

element.className = 'newClassName' works in all browsers.

The third method works in all browsers and is a completely valid way of altering an HTMLElements
className read/write property, so we’ll stick to it for ease of use.

Switching the style sheet

For changes on a much grander scale, such as changing the layout of the entire page, it doesn’t make

sense to iterate over the DOM tree and manually modify the style of each individual element. The

220

CHAPTER 5

easiest thing to do would be to simply switch the active style sheet for a completely different one. This

can be done several ways depending on how you’ve set up your CSS style sheets and rules:

You can use the rel property of the <link> element to define alternative style sheets and

switch among them accordingly.

You can apply a class to the body tag and modify your CSS selectors depending on the body

class—effectively className switching using the body tag as the root.

You can dynamically add and remove style sheets.

Regardless of which method you choose, the desired effect is to drastically change the layout and

presentation of most, if not all, of the elements in the document.

Using alternative style sheets
Switching among alternative style sheets was originally proposed by Paul Sowden in his article

“Alternative Style: Working with Alternate Style Sheets” (http://alistapart.com/stories/alternate/).
This method takes advantage of some of the features of the DOM2 HTML <link> element.

If you’ve been following the separation of presentation and markup methodologies, you’ll already be

familiar with the <link> element. It’s used in the head of your document to include your style sheet:

<link type="text/css" href="/path/to/style.css" media="screen" />

In a <link> element

type is used to indicate the MIME type of the style file, in this case text/css.

href is used to specify the location of the style sheet.

media limits the types of devices that should implement the style sheet. However, it’s up to the

device and software to check the media types. Some devices will ignore the media or use the

incorrect one.

These attributes are the most common ones you’ve dealt with, but there are others. Link elements

also include the following attributes (among others):

rel indicates the relationship between the style sheet and the document.

disabled indicates if the style sheet is active.

title is a title associated with the style sheet.

You can use the rel="stylesheet" attribute to specify if a style sheet should be applied to a docu-

ment immediately:

<link rel="stylesheet" type="text/css" ➥

href="/path/to/style.css" media="screen">

You’ll notice that these attributes are similar to the CSSStyleSheet properties

form the beginning of this chapter.

221

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

or if it should be considered an alternate style sheet and disabled by default using rel="alternate
stylesheet":

<link rel="alternate stylesheet" type="text/css" ➥

href="/path/to/style.css" media="screen">

When the relationship is alternate stylesheet the browser will load the style sheet, but it will also

set the disabled flag to true, so it won’t be applied to the document immediately.

The title attribute has no effect on the style sheet itself but you can take advantage of it in your

script. You can use it as an identifier to dynamically create the list of available styles, allowing the user

to switch among them at will. If you take a look at the example in the chapter5/switcher/example.
html source, I’ve included a few example CSS layouts, so you can see the alternate style sheets in

action:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Style Switcher</title>
<!--

The common styles that won't change.
Leave the title off so they won't be included in the list

-->
<link rel="stylesheet" type="text/css"

href="../../shared/source.css" />
<link rel="stylesheet" type="text/css" href="../chapter.css" />
<link rel="stylesheet" type="text/css"

href="common.css" media="screen">

<!-- AdvancED DOM Scripting Simple Style (the default) -->
<link rel="stylesheet" title="AdvancED DOM Scripting"

type="text/css" href="ads.css" media="screen">
<!--[if true]>
<link rel="alternate stylesheet" title="AdvancED DOM Scripting"

type="text/css" href="adsIE.css" media="screen">
<![endif]-->

<!-- A friends of ED style -->
<link rel="alternate stylesheet" title="friends of ED"

type="text/css" href="foed.css" media="screen">

<!-- An Apress style -->
<link rel="alternate stylesheet" title="Apress"

type="text/css" href="apress.css" media="screen">

<!-- ADS Library (full version from source linked here) -->
<script type="text/javascript"

src="../../ADS-final-verbose.js"></script>

222

CHAPTER 5

<!-- The load script -->
<script type="text/javascript" src="styleSwitcher.js"></script>

</head>
<body>
<h1>Style Switcher</h1>

<div id="content">
<h2>It's Easy!</h2>
<ul id="styleSwitcher">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Quisque iaculis elit in mauris. Mauris euismod tempor tortor.
Integer fringilla, orci at venenatis consequat, lorem ipsum.
Morbi ornare sollicitudin justo. Nulla est. Cras lorem.</p>

</div>
</body>
</html>

In this case, the common CSS files have no title, while the friends of ED and Apress styles each have

one style sheet, and the AdvancED DOM Scripting style contains two (one just for Internet Explorer).

The following empty list in the markup

<ul id="styleSwitcher">

is populated by the load event in chapter5/switch/styleSwitcher.js based on the available style

sheets and their titles:

ADS.addEvent(window,'load',function() {
// Retrieve all the link elements
var list = ADS.$('styleSwitcher');
var links = document.getElementsByTagName('link');
var titles = [];

for (var i=0 ; i<links.length ; i++) {

// Skip <link> element that aren't styles with titles.
if(links[i].getAttribute("rel").indexOf("style") != -1

&& links[i].getAttribute("title")) {

// Append a new item to the list if the title hasn't
// already been added
var title = links[i].getAttribute("title");
if(!titles[title]) {

var a = document.createElement('A');
a.appendChild(document.createTextNode(title));
a.setAttribute('href','#');
a.setAttribute('title','Activate ' + title);
a.setAttribute('rel',title);
ADS.addEvent(a,'click',function(W3CEvent) {

223

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

// When clicked activate the style sheet indicated
// by the title in the anchor's rel property
setActiveStyleSheet(this.getAttribute('rel'));
ADS.preventDefault(W3CEvent);

});

var li = document.createElement('LI');
li.appendChild(a);

list.appendChild(li);

// Set the titles array to true for this title
// so that it will be skipped if multiple sheets use
// the same title
titles[title] = true;

}
}

}
});

styleSwitcher.js creates a regular list that you can style as needed, as shown in Figure 5-4.

Figure 5-4. The style switcher list populated from the link title attributes

224

CHAPTER 5

The resulting list allows you to select among the alternative style sheet sets using the anchor’s click

event listener and the setActiveStyleSheet() function from Paul Sowden’s original article, which

follows:

function setActiveStyleSheet(title) {
var i, a, main;
for(i=0; (a = document.getElementsByTagName("link")[i]); i++) {
if(a.getAttribute("rel").indexOf("style") != -1

&& a.getAttribute("title")) {
a.disabled = true;
if(a.getAttribute("title") == title) a.disabled = false;

}
}

}

The result is illustrated in Figure 5-5.

Figure 5-5. The styles as shown when clicking each link

This example is incomplete, as it doesn’t maintain the style across multiple pages in your site, but it

does illustrate the ability to enable and disable multiple style sheets.

Switching the body className
This idea follows the same principles of className switching that you saw earlier, but in this case,

you’re switching the className on the body tag. Andy Clarke and James Edwards describe the full

body class switching technique in more detail in their article “Invasion of the Body Switchers”

(http://alistapart.com/articles/bodyswitchers), but the definition of the CSS rules is the only

real difference from the earlier className switching technique applied to elements. To apply styles

based on the body tag, you simply include one style sheet that has the body’s class selector in all the

declarations:

/* common Style*/
body {

font: 62.5%/1.2em sans-serif;
color: #1a3800;

225

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

text-align:center;
}

#container {
text-align:left;

}

/* AdvancED DOM Scripting style */

body.ads {
background-image: url(images/ads-bg.jpg);

}

body.ads h1 {
height: 12px;
margin: 1em 3em 0 30px;
padding: 2em 0 0 20px;
padding-bottom: 0em ;
background: #f06;
width: 300px;
overflow: hidden;
white-space: nowrap;
-moz-border-radius: 0.5em;
-moz-border-radius-bottomleft: 0em

}
body.ads h2 {

border: 0;
font-size: 3em;
color: #1A5B9D;
font-weight: normal;

}

/* etc */

/* friends of ED style */

body.foed {
font-family: sans-serif;
background-color: #fffbf2;
line-height: 1.8em;

}

body.foed h1 {
height: 100px;
color: #f06;
padding: 40px 0 0 40px;
background: transparent url(images/foed.png) no-repeat top right;
border: 2px solid #999;
width: 460px;

226

CHAPTER 5

margin: 1em auto 1em auto;
}

body.foed h2 {
border-width: 2px;
background: #f06;
padding: 0.5em;
width: 100%;

}

/* etc */

/* Apress style */
body.apress {

font-family: sans-serif;
background-color: white;
line-height: 1.8em;

}

body.apress h1 {
height: 80px;
background: black url(images/fractal.jpg) no-repeat top right;
color: #ffCC00;
padding: 80px 0 0 80px;

}

body.apress h2 {
border: 0;
background: #900;
padding: 0.5em;
color: white;
width: 40%;

}
/* etc */

Next, using the class name methods in your ADS library from earlier in this chapter, or some other

function you create yourself, you can switch the body’s class dynamically, and the CSS rules will alter

the page accordingly:

ADS.addEvent('ads-anchor','click',function() {
ADS.addClassName(document.body,'asd');

});
ADS.addEvent('foed-anchor','click',function() {

ADS.addClassName(document.body,'foed');
});
ADS.addEvent('apress-anchor','click',function() {

ADS.addClassName(document.body,'apress');
});

227

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

Automatically populating a list of styles using this method is a little tricky, as there’s no easy way to

associate a title with the different sets.

This class name and CSS cascade technique can be applied to any level of the document, not just indi-

vidual elements and the body.

Dynamically loading and removing style sheets
The third technique involves dynamically loading and unloading the style sheets in your document and

is pretty straightforward. All you have to do is create a new <link> through the document.
createElement() method with the appropriate properties. Add these two methods to your ADS

library, and they will do just that:

(function(){

window['ADS'] = {};

... above here is your existing library ...

/* Add a new stylesheet */
function addStyleSheet(url,media) {

media = media || 'screen';
var link = document.createElement('LINK');
link.setAttribute('rel','stylesheet');
link.setAttribute('type','text/css');
link.setAttribute('href',url);
link.setAttribute('media',media);
document.getElementsByTagName('head')[0].appendChild(link);

}
window['ADS']['addStyleSheet'] = addStyleSheet;

/* Remove a stylesheet */
function removeStyleSheet(url,media) {

var styles = getStyleSheets(url,media);
for(var i = 0 ; i < styles.length ; i++) {

var node = styles[i].ownerNode || styles[i].owningElement;
// Disable the stylesheet
styles[i].disabled = true;
// Remove the node
node.parentNode.removeChild(node);

}
}
window['ADS']['removeStyleSheet'] = removeStyleSheet;

... below here is your existing library ...

})();

The ADS.addStyleSheet() method will add the style sheet at the given URL and media:

ADS.addStyleSheet('/path/to/style.css','screen');

228

CHAPTER 5

Likewise, ADS.removeStyleSheet() will remove the style sheet for the given URL and media:

ADS.removeStyleSheet('/path/to/style.css','screen');

By loading and unloading various style sheets, you can switch among as many style sheets as you like.

Modifying CSS rules

When your scripts need to modify the appearance of several related elements on a page, it may be

easier to modify the actual CSS rule in the style sheet itself rather than locating all the elements and

modifying their individual style properties. This is exceptionally useful if you want a few specific prop-

erties to change but, at the same time, you still want the cascade of declarations to apply for things

such as an anchor’s :hover pseudo-class.

Take these simple anchor CSS declarations:

/* anchor styles */
a {

font-weight:normal;
}
a:link {

text-decoration:none;
color: black;

}
a:visited {

text-decoration:none;
}
a:hover {

color: #248030;
text-decoration: none;

}

If you have a few CSS rules applied to a simple paragraph of text with a few links, such as this

<p>Lorem ➥

ipsum dolor sit amet, consectetuer adipiscing elit. <a ➥

href="http://lipsum.com" title="Go to lipsum.com">Aliquam ➥

tempor risus ac elit. Nullam consectetuer. Sed feugiat ➥

pharetra enim. Mauris et velit in felis ultricies suscipit. ➥

Proin quam arcu, <a href="http://lipsum.com" title="Go to ➥

lipsum.com">mattis vitae, consectetuer non, cursus non, ➥

mauris. Fusce tristique magna id diam. Mauris sit amet lacus a ➥

elit auctor ➥

dapibus. Aliquam eros sem, nonummy vitae, mollis et, tempus ➥

vel, neque.</p>

The ADS.removeStyleSheet() method relies on the ADS.getStyleSheets()
method that you’ll be adding next.

229

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

you would get something similar to the page in Figure 5-6.

Figure 5-6. A page of text with various links

If you then want your DOM script to reveal the URL behind every anchor on the page, you could take

several approaches.

First, you could loop through all the links on the page and modify each element as appropriate using

DOM methods to read the href property and append the appropriate content into the anchor. That

would work, but it will require the script to search the DOM tree for all the appropriate anchor tags

and modify the markup directly. If the browser supports a few CSS2 properties and selectors, such as

content and the :after pseudo-class, it can be easily done with a simple CSS rule:

a[href]:after {
content: " (" attr(href) ") ";
font-size: 40%;
color: #16009b;

}

As an alternative to altering the markup of your DOM document, you can use your DOM script to add

or edit the CSS rules in your style sheet—but it gets a little tricky. Your document can contain several

style sheets in the document.styleSheets property. Unless you know which style sheet you want to

manipulate, you’ll have to loop through them all looking for the appropriate selectors. Even if you do

know the URL of the style sheet you want, you’ll still have to loop through them all to figure out which

one it is, as the document.styleSheets list is indexed numerically. Here’s a method you can add to

your ADS library to help sort out the document.styleSheets list by looking for the appropriate href
and media properties:

(function(){

window['ADS'] = {};

... above here is your existing library ...

230

CHAPTER 5

/* Retrieve an array of all the stylesheets by URL */
function getStyleSheets(url,media) {

var sheets = [];
for(var i = 0 ; i < document.styleSheets.length ; i++) {

if (url && document.styleSheets[i].href.indexOf(url) == -1) {
continue;

}
if(media) {

// Normalize the media strings
media = media.replace(/,\s*/,',');
var sheetMedia;

if(document.styleSheets[i].media.mediaText) {
// DOM mehtod
sheetMedia = document.styleSheets[i].media.➥

mediaText.replace(/,\s*/,',');
// Safari adds an extra comma and space
sheetMedia = sheetMedia.replace(/,\s*$/,'');

} else {
// MSIE
sheetMedia = document.styleSheets[i].media.➥

replace(/,\s*/,',');
}
// Skip it if the media don't match
if (media != sheetMedia) { continue; }

}
sheets.push(document.styleSheets[i]);

}
return sheets;

}
window['ADS']['getStyleSheets'] = getStyleSheets;

... below here is your existing library ...

})();

This getStyleSheets() method returns an array of style sheets that match the given href and

optional media properties of the CSSStyleSheet objects. In the case of an inline <style> block in the

head or body of your document—which you shouldn’t be doing—the href will be that of the current

page.

Now you can find the style sheets you need and modify them by adding these ADS.editCSSRule() and

ADS.addCSSRule() methods to your ADS library:

(function(){

window['ADS'] = {};

... above here is your existing library ...

231

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

/* Edit a CSS rule */
function editCSSRule(selector,styles,url,media) {

var styleSheets = (typeof url == 'array' ? url : ➥

getStyleSheets(url,media));

for (i = 0; i < styleSheets.length; i++) {

// Retrieve the list of rules
// The DOM2 Style method is styleSheets[i].cssRules
// The MSIE method is styleSheets[i].rules
var rules = styleSheets[i].cssRules || styleSheets[i].rules;
if (!rules) { continue; }

// Convert to uppercase as MSIE defaults to UPPERCASE tags.
// this could cause conflicts if you're using case
// sensitive ids
selector = selector.toUpperCase();

for(var j = 0; j < rules.length; j++) {
// Check if it matches
if(rules[j].selectorText.toUpperCase() == selector) {

for (property in styles) {
if(!styles.hasOwnProperty(property)) { continue; }
// Set the new style property
rules[j].style[camelize(property)] = ➥

styles[property];
}

}
}

}
}
window['ADS']['editCSSRule'] = editCSSRule;

/* Add a CSS rule */
function addCSSRule(selector, styles, index, url, media) {

var declaration = '';

// Build the declaration string from the style object
for (property in styles) {

if(!styles.hasOwnProperty(property)) { continue; }
declaration += property + ':' + styles[property] + '; ';

}

var styleSheets = (typeof url == 'array' ? url :➥

getStyleSheets(url,media));
var newIndex;
for(var i = 0 ; i < styleSheets.length ; i++) {

// Add the rule
if(styleSheets[i].insertRule) {

232

CHAPTER 5

// The DOM2 Style method
// index = length is the end of the list
newIndex = (index >= 0 ? index :➥

styleSheets[i].cssRules.length);
styleSheets[i].insertRule(

selector + ' { ' + declaration + ' } ',
newIndex

);
} else if(styleSheets[i].addRule) {

// The Microsoft method
// index = -1 is the end of the list
newIndex = (index >= 0 ? index : -1);
styleSheets[i].addRule(selector, declaration, newIndex);

}
}

}
window['ADS']['addCSSRule'] = addCSSRule;

... below here is your existing library ...

})();

Applying these methods to the previous page of text and links, you can make simple modifications,

such as highlighting all the anchors with a background color:

ADS.editCSSRule('a',{'background-color':'yellow'});

You can also add a new selector to the style sheet to reveal the URL, as shown in Figure 5-7, but this

will only work in CSS 2.1–compatible browsers such as Firefox, Safari, and Opera:

ADS.addCSSRule('a[href]:after',{
'content':'" (" attr(href) ") "',
'font-size': '40%',
'color': '#16009b'

});

When editing the anchor background color, all the anchors will receive this new color

unless another style in the cascade overrides the color. If, for example, a:hover was

declared with a different background color, the hover state would still work as

expected. Modifying the style property of the element itself can’t implement changes

such as this.

Remember, when editing rules you can only edit a rule that has been explicitly declared

in the style sheet. Also, the ADS.addCSSRule() method doesn’t work properly in

Safari, but it does work in the latest WebKit release from Webkit.org, so you can

expect it to work in a future version of Safari.

233

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

In the case of the ADS.addCSSRule() method, the third index parameter specifies where in the CSS file

the rule should be added, with null representing the end of the file.

Figure 5-7. Anchors altered to show the href attribute

The page of example text only contains a single style sheet, so the optional url and media parameters

for the edit and add methods aren’t necessary. If you have multiple style sheets, you can retrieve just

those matching url by including an additional parameter:

ADS.editCSSRule(
'a:hover',
{'text-decoration':'underline'},
'/path/to/style.css'

);
ADS.addCSSRule(

'a',
{'font-weight':'bold'},
null,
'/path/to/style.css'

);

Modifying each individual style property, switching the body class, and editing the CSS rules each have

their advantages, so you’ll have to decide which solution is best for your application.

AdvancED image replacement revisited
Earlier in this chapter you created an image replacement script in chapter5/image-replacement/
advancED.html example that required you to hard-code the URL of the image into the load event:

ADS.addEvent(window, 'load', function() {

... cut ...

// Load the image
// This hardcoded path isn't ideal.

234

CHAPTER 5

image.src = 'http://advanceddomscripting.com/images/➥

advancED-replace.png';
});

Rather than hard-code the URL into the DOM script, you can specify a style sheet for the image

replacement, for example advancED.css, and then search its rules for the required background URL.

To do so, you create a CSS file that follows the same logic of the earlier CSS file, as shown in the

chapter5/image-replacement/advancED.css source:

/* The styling for the text if images are disabled */
#advancedHeader {

color: #1A5B9D;
}

/* Sizing the header for the image */
#advancedHeader.advancED {

height:60px;
position:relative;
overflow:hidden;

}
/* Hide the text with the opaque image*/
#advancedHeader.advancED span {

background: white url(http://advanceddomscripting.com/➥

images/advancED-replace.png) no-repeat;
display:block;
width:100%;
height:100%;
position:absolute;

}

Next, to retrieve the URL of the image, you’ll need to examine the selectorText attribute of each

rule in the style sheet by locating the ID number and advancED class combination along with the

 tag:

#advancedHeader.advancED span

Again, it’s a little tricky. This rule could also be defined as

.advancED#advancedHeader span

or with the a tag, such as a <h2>

h2.advancED#advancedHeader span

Also, in Internet Explorer, the rule’s selectorText property will be converted to .class#id and the

tags converted to uppercase, regardless of how it’s written in the CSS file:

.advancED#advancedHeader SPAN

235

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

You can repurpose the earlier image-replacement load event into an auxiliary method and simply pass

in the ID of the element, as shown in the chapter5/image-replacement-revisited/advancED.js
source:

function replaceImage(element) {
// Retrieve the element
var element = ADS.$(element);
// Create an image element
var image = document.createElement('IMG');

// Only add the span and class if the image loads
ADS.addEvent(image, 'load', function() {

var s = document.createElement('SPAN');
// Prepend the span to the element's children
ADS.prependChild(element,s);

// Create the title attribute as necessary
if(!element.getAttribute('title')) {

var i, child;
var title = '';
// Loop through the children and assemble the title
for(i=0 ; child = element.childNodes[i] ; i++) {

if(child.nodeValue) title += child.nodeValue;
}
element.setAttribute('title',title);

}
// Modify the class name to indicate the change
// and apply the CSS
ADS.addClassName(element,'advancED');

});

// Load the image
var styleSheet = ADS.getStyleSheets('advancED.css')[0];
if(!styleSheet) return;

var list = styleSheet.cssRules || styleSheet.rules
if(!list) return;

var rule;
for(var j = 0 ; rule = list[j] ; j++) {

// Look for the rule:
// either: #element-id.advancED span
// or .advancED#element-id span
// or as in MSIE: .advancED#element-id SPAN
// where element-id is the one passed into this method

236

CHAPTER 5

if(
rule.selectorText.indexOf('#' + ➥

element.getAttribute('id')) !== -1
&& rule.selectorText.indexOf('.advancED') !== -1
&& rule.selectorText.toUpperCase().indexOf(' SPAN') !== -1

) {
// look for a url() in the css using
// the regex: /url\(([^\)]+)\)/
var matches = rule.style.cssText.match(/url\(([^\)]+)\)/);
// matches[1] will contain the value in the
// capturing parenthesis of the regex
if(matches[1]) {

image.src = matches[1];
break;

}
}

}
}

ADS.addEvent(window, 'load', function() {
replaceImage('advancedHeader');

});

With this load event and replaceImage() method, you achieve the same result by retrieving the

advancED.css file and using a regular expression to extract the URL from the appropriate rule. The

style of the object is now completely separated from the DOM script, and the CSS is free to change as

necessary.

To take it one step further, you can make the DOM script even more unobtrusive by adding an addi-

tional class to images your markup:

<h2 id="advancedHeader" class="replaceMe">Advanced DOM Scripting</h2>

and use the load event to look for any element that match that class and replace them as required:

ADS.addEvent(window, 'load', function() {
var replacements = ADS.getElementsByClassName('replaceMe');
for(var i=0 ; i< replacements.length ; i++) {

replaceImage(replacements[i]);
}

});

This last addition makes the script maintenance free, as all you need to do is include the script and

mark up your document and CSS accordingly. No additional DOM script editing is necessary.

Accessing the computed style
Before you modify the presentation of an element, you’ll want to first determine its current style

properties. As you saw, an element’s style property only applies to styles defined inline, so you can’t

237

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

use it to retrieve the computed style. You could retrieve additional style information from the CSS

rules themselves, but it would be a long and complicated process better left to the browser. If you

want to access all the computed stylistic properties of an element, as determined by the cascade,

you’ll need to look at alternative properties.

DOM2 Style includes a method in the document.defaultView called getComputedStyle() for just this

purpose. This method returns a read-only CSSStyleDeclaration object with all the computed style

properties for the given element, not just those defined inline.

After retrieving the computed style for a given element, you can retrieve the style information the

same way you did from the element’s style property:

var element = ADS.$('example');
var styles = document.defaultView.getComputedStyle(element);

Retrieving the background-color is as simple as this:

var color = styles.getProperty('background-color');

The problem with this is, again, that Microsoft has its own version using the element’s currentStyle
property, so you’ll have to access the proprietary methods as well using the following ADS.getStyle()
method in your ADS library:

(function(){

window['ADS'] = {};

... above here is your existing library ...

/* retrieve the computed style of an element */
function getStyle(element,property) {

if(!(element = $(element)) || !property) return false;
// Check for the value in the element's style property
var value = element.style[camelize(property)];
if (!value) {

// Retrieve the computed style value
if (document.defaultView && document.defaultView.➥

getComputedStyle) {
// The DOM method
var css = document.defaultView.getComputedStyle(

element, null
);
value = css ? css.getPropertyValue(property) : null;

} else if (element.currentStyle) {
// The MSIE method
value = element.currentStyle[camelize(property)];

}
}
// Return an empty string rather than auto so that you don't
// have to check for auto values
return value == 'auto' ? '' : value;

238

CHAPTER 5

}
window['ADS']['getStyle'] = getStyle;
window['ADS']['getStyleById'] = getStyle;

... below here is your existing library ...

})();

The Microsoft filter property
I’m not one to promote proprietary features that aren’t standard across browsers—except when

you’re using them to fix the inconsistencies in the browser they’re in. In this case, I’m referring to the

Internet Explorer filter property and the ability to “fix” transparent PNG files in Microsoft Internet

Explorer version 6 or less.

The object I’m about to present doesn’t follow any standards and is only expected to run in Internet

Explorer version 6 or less, so the majority of the code is Microsoft-specific. If the code encounters any-

thing greater than Internet Explorer 6 or another browser, it won’t run, as it has no need to.

The problem in Internet Explorer 6 is that the translucent areas of a PNG file don’t render properly;

instead, they appear as a light blue box, as shown in Figure 5-8.

Figure 5-8. Translucent PNG files as they appear in
Internet Explorer

239

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

This problem can crop up in places such as these:

An element with a PNG as its source

Style sheets imported using the <link> element or @import rules that use translucent PNGs in

the background of the elements

Inline style attributes that define translucent PNGs as the background of the element

To work around this problem, you can use the Microsoft.AlphaImageLoader filter, which allows you

to use a translucent PNG file as the background of your HTML elements. This can be applied directly

in your CSS file by using conditional comments to include a Microsoft-only CSS file:

<!--[if lte IE 6]>
<link rel="stylesheet" href="style-lte-IE-6.css" type="text/css"/>

<![endif]-->

and including the appropriate rules for the specific element:

#example {
/* Internet Explorer translucent PNG hack */
background-color: transparent;
background-image: url(blank.gif);
width: 100px;
height: 100px;
/* filter requires the full path */
filter: progid:DXImageTransform.Microsoft.AlphaImageLoader(➥

src="translucent-image.png", sizingMethod="scale");
}

The example chapter5/fixMSIEPng/test.html source file includes this fixMSIEPng() method in

chapter5/fixMSIEPng/fixMSIEPng.js that runs when the page is loaded and walks through the doc-

ument and CSS files looking for PNG related files to fix:

function fixMSIEPng() {
if(!document.body.filters) {

// Not MSIE
return;

}
if(7 <= parseFloat(navigator.appVersion.split("MSIE")[1])) {

// 7+ supports PNG
return;

}
// Fix the inline images
if(document.images) {

var images = document.images;
var img = null;

for(var i=images.length-1; img=images[i]; i--) {

// Check if it's PNG image
if(img.src

240

CHAPTER 5

&& img.src.substring(
img.src.length-3,
img.src.length

).toLowerCase() !== 'png'
) {

// Skip it
continue;

}

// Build the style property for the outer element
var inlineStyle = '';
if (img.align == 'left' || img.align == 'right') {

inlineStyle += 'float:' + img.align + ';';
}

if (img.parentElement.nodeName == 'A') {
// This image is inside an anchor so show a hand
inlineStyle += 'cursor:hand;';

}

// Make the display inline-block so that it can have a
// width and height yet still be positioned properly
inlineStyle += 'display:inline-block;';

// Grab any other CSS style applied to the element
if(img.style && img.style.cssText) {

inlineStyle += img.style.cssText;
}

// Wrap a around the image with the appropriate
// style and information such as className and ID
img.outerHTML = '<span '
+ (img.id ? ' id="' + img.id + '"' : '')
+ (img.className ? 'class="' + img.className + '" ' : '')
+ ' style="width:' + img.width + 'px; height:'
+ img.height + 'px;'
+ inlineStyle
+ ';filter:progid:DXImageTransform.Microsoft'
+ '.AlphaImageLoader(src=\''
+ img.src
+ '\', sizingMethod=\'scale\');">';

}
}

// Create a private method to apply in the next set of loops
// This sets the appropriate styles for the elements
function addFilters(e) {

// Check if the element has style, a background and verify

241

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

// it doesn't already have a filter applied
if(

e.style
&& e.style.background
&& !e.style.filter

) {
// Check if it's a PNG
var src=null;
if(src = e.style.backgroundImage.➥

match(/^url\((.*\.png)\)$/i)) {
e.style.backgroundColor = 'transparent';
e.style.backgroundImage = 'url()';
e.style.filter = 'progid:DXImageTransform.Microsoft.'

+ 'AlphaImageLoader(src=\''
+ src[1]
+ '\',sizingMethod=\''
+ ((e.style.width && e.style.height) ? ➥

'scale' : 'crop')
+ '\')';

}
}

}

// Create a private recursive processing method to apply the
// addFilters() method to the style sheets
function processRules(styleSheet) {

for (var i in styleSheet.rules) {
addFilters(styleSheet.rules[i]);

}

//recurse for @import stylesheets...
if(styleSheet.imports) {

for (var j in styleSheet.imports) {
processRules(styleSheet.imports[j]);

}
}

}

// Process each style sheet
var styleSheets = document.styleSheets;
for(var i=0; i < styleSheets.length; i++) {

processRules(styleSheets[i]);
}

// Fix the inline style properties
if(document.all) {

var all = document.all;

242

CHAPTER 5

for(var i=0; i < all.length; i++) {
addFilters(all[i]);

}
}

}
if(window.attachEvent) window.attachEvent("onload", fixMSIEPng);

The function will only run in Internet Explorer, as it uses the Internet Explorer–only attachEvent
method, and it will transform all the PNGs as shown in Figure 5-9.

Figure 5-9. The PNGs with translucent backgrounds after
the fix has run

Please note that the filter property introduces a bug: in some cases, anchors and other clickable ele-

ments become inoperative within an element with a filter applied. In the following example, the

nested anchor may not work if #background has a filter style applied:

<div id="background">
<div id="content">

<p>The content with anchors</p>
</div>

</div>

243

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

To avoid this, I suggest modifying the markup to something similar to the following, and using CSS to

layer the #content above the translucent #background with the filter applied:

<div id="background"></div>

<div id="content">

<p>The content with anchors</p>

</div>

Practical example: a simple transition effect
Before I go further, this next example comes with a caution: transition effects should be used unob-

trusively to enhance your user’s experience, not just because you can. JavaScript got a really bad rep-

utation for introducing obtrusive animation effects that some people considered fun and cool but

most people considered very annoying. With standard DOM scripting methods, you can still make the

same mistakes, so use things like animation and transitions with a bit of apprehension.

Transition effects are a nice touch when you need to subtly highlight a portion of the page to indicate

a change. For example, after you’ve completed an action in the interface, you may want to indicate if

the change was a success or if it failed. Likewise, if one action has an influence on another seemingly

unrelated element of the page, you may want to indicate the change there as well.

In order for a transition to work, your script needs to run a periodical method that alters the desired

elements over time. For this, you’ll need to use the setTimeout() JavaScript function, which invokes a

method after a given number of milliseconds. By creating a number of sequential setTimeout() calls

that modify the same elements with increasing time, as follows, you can create the desired transitions:

setTimeout(modifyElement,10);
setTimeout(modifyElement,20);
setTimeout(modifyElement,30);
setTimeout(modifyElement,40);
setTimeout(modifyElement,50);
//etc...

Transition effects are highly customized, so in many cases, you’ll have to roll your own solutions, but

in Chapter 10, we’ll look at a number of JavaScript libraries, many of which have a variety of built-in

transition methods to make things a little easier. Until then, let’s get your creative juices flowing with

a quick example of a fade between two colors:

Using the following fadeColor() method from the chapter5/fadeColor/test.html example, you can

specify the two colors as well as the callback method:

function fadeColor(from, to, callback, duration, framesPerSecond) {

// A function wrapper around setTimeout that calculates the
// time to wait based on the frame number
function doTimeout(color,frame) {

setTimeout(function() {
try {

callback(color);
} catch(e) {

244

CHAPTER 5

// Uncomment this to debug exceptions
// ADS.log.write(e);

}
}, (duration*1000/framesPerSecond)*frame);

}

// The duration of the transition in seconds
var duration = duration || 1;
// The number of animated frames in the given duration
var framesPerSecond = framesPerSecond || duration*15;

var r,g,b;
var frame = 1;

// Set the initial start color at frame 0
doTimeout('rgb(' + from.r + ',' + from.g + ',' + from.b + ')',0);

// Calculate the change between the RGB values for each interval
while (frame < framesPerSecond+1) {

r = Math.ceil(from.r
* ((framesPerSecond-frame)/framesPerSecond)
+ to.r * (frame/framesPerSecond));

g = Math.ceil(from.g
* ((framesPerSecond-frame)/framesPerSecond)
+ to.g * (frame/framesPerSecond));

b = Math.ceil(from.b
* ((framesPerSecond-frame)/framesPerSecond)
+ to.b * (frame/framesPerSecond));

// Call the timeout function for this frame
doTimeout('rgb(' + r + ',' + g + ',' + b + ')',frame);

frame++;
}

}

To invoke the transition, define two JavaScript objects with r, g, and b properties for the starting

and ending colors and provide a callback method to apply the new transition color to whichever ele-

ments you like. The callback function will receive one argument containing the color in the format

rgb(#,#,#):

fadeColor(
{r:0,g:255,b:0}, // Star color
{r:255,g:255,b:255}, // End color
function(color) {

// Apply the color to your elements
ADS.setStyle('element',{'background-color':color});

}

);

245

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

Let’s revisit the address postal code example from Chapter 4, where entering a postal code prepopu-

lated the rest of the address fields. It would be beneficial to indicate the successful prepopulation by

highlighting the change. Using this fadeColor() method would provide a subtle yet informational

touch to the user interface, and it would only involve adding a few lines to the postal code’s

XMLHttpRequest onreadystatechange method:

req.onreadystatechange = function() {
if (req.readyState == 4) {

eval(req.responseText);

if(ADS.$('street').value == '') {
ADS.$('street').value = street;
fadeColor(

{r:0,g:255,b:0},{r:255,g:255,b:255},
function(color) {

ADS.setStyle('street',
{'background-color':color}

);
}

);
}

if(ADS.$('city').value == '') {
ADS.$('city').value = city;
fadeColor(

{r:0,g:255,b:0},{r:255,g:255,b:255},
function(color) {

ADS.setStyle('city',
{'background-color':color}

);
}

);
}

if(ADS.$('province').value == '') {
ADS.$('province').value = province;
fadeColor(

{r:0,g:255,b:0},{r:255,g:255,b:255},
function(color) {

ADS.setStyle('province',
{'background-color':color}

);
}

);
}

}
}

When populated, the fields will fade from green to white, indicating a successful prepopulation of the

information.

246

CHAPTER 5

Summary
Dynamically modifying the presentation of elements is a relatively simple task, but doing it right can

be a challenge. In this chapter, you looked at a few of the common DOM2 Style objects that you’ll be

using, and you added a number of methods to your ADS library that provide browser-agnostic access

to those objects.

The importance of separating CSS presentation from your DOM script was also stressed throughout the

chapter. Some of the methods and techniques included modifying the style property and className
switching for smaller changes, as well as style sheet switching and CSS rule modification for more

global changes.

These concepts will be important to keep in mind, not only for large projects with multiple designers

and developers but also for small projects that are just yours and yours alone. Separating your pres-

entation from both the document structure and behavioral enhancements helps to future-proof your

web application and will inevitably save you time, effort, and money down the road when you decide

things are getting a little out of date and you need a redesign.

Now, let’s look at a case study in Chapter 6; we’ll take everything we’ve learned so far and use it to cre-

ate an unobtrusive image resizing and cropping tool.

247

DYNAMICALLY MODIFYING STYLE AND CASCADING STYLE SHEETS

