
Introducing Active Record

One of the first jobs Kevin had as a teenager was as a dishwasher at a local diner. For those of
you who aren’t familiar with the job, dishwashers are generally at the bottom of the totem pole
in most kitchens. If there’s a job nobody wants to do, like digging through the trash for a retainer
someone left on a plate, the dishwasher is the one who ends up having to do it. As you can
imagine, he hated that job. Still, he did learn a lot of good life lessons, and he learned to be
a jack-of-all-trades at an early age.

As a developer, you can probably relate to the jack-of-all-trades situation (though we hope
you don’t have to dig through the trash like Kevin did!). Developers are expected to know every-
thing there is to know about our language of choice, our development and production platforms,
our database software, and, of course, our business logic. In reality, that’s a lot of stuff, and just
completing a simple task often requires changing hats from a developer to a database administra-
tor to a designer to an end-user. Active Record helps free our brains up a little bit by combining
some of these roles into one simple skill set—that of Active Record developer.

Since this entire book covers the niche topic of Active Record for Ruby, it’s probably safe
to assume that you already know at least the very basics of what the Ruby Active Record library
is. That is, you’ve heard that it’s an object relational mapping (ORM) library that is the model
part of the Rails model, view, controller (MVC) framework and primarily allows for create,
read, update, and delete (CRUD) database operations. If nothing else, you got that much
information from the back cover of this book!

But maybe you skipped the back cover and just flipped to this section to see if this book is
worth buying (it is, and we recommend two copies; we hear it makes a great gift!), or maybe
you’re like us and hate acronyms, or your eyes just glaze over when you hear many technical
terms in a row like that. Whatever the case, we don’t feel like this explanation helps people to
understand what Active Record really is or what can actually be done with it. So here’s our lay-
man’s explanation, which we hope is a bit more direct and easier to digest:

Active Record is a Ruby library that allows your Ruby programs to transmit data and

commands to and from various data stores, which are usually relational databases.

In even more basic terms, you might say:

Active Record allows Ruby to work with databases.

1

C H A P T E R 1

■ ■ ■

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 1

Admittedly, there’s a lot more to Active Record than just this basic explanation, but hope-
fully, this gives you the core idea of what the Active Record library was designed to accomplish.
Throughout the rest of this book, we’ll dig into a lot of little tips, tricks, and features that will
turn you into a master of Active Record for Ruby. But before we get too deep into the guts of it
all, let’s lay a little groundwork and cover some of the background of the Active Record library
and the concepts it incorporates, just so we’re all on the same page at the start.

The Story Behind Active Record
Active Record is actually a design pattern originally published by Martin Fowler in his book
Patterns of Enterprise Application Architecture (Addison-Wesley Professional, 2002). The
now-famous creator of Rails, David Heinemeier Hansson (commonly referred to online and
throughout the rest of this book as simply DHH), took the concepts laid out by Mr. Fowler
and implemented them as a Ruby library that he also called Active Record.

■Note Since both the design pattern and the Ruby library are called Active Record, it can quickly become
confusing which we’re referring to throughout this book. Since the majority of this book is specifically written
for and about the Active Record library for Ruby, when we refer to something as simply “Active Record,”
we mean the Active Record library for Ruby. Therefore, when we refer to the Active Record design pattern,
we will use the full label “Active Record design pattern.”

When DHH released the Rails framework to the public, Active Record was part of the core
bundle, and it’s now also available as its own Ruby gem.

As is often the case with open source projects, once the initial library was out there, a number
of Ruby and Rails contributors took it upon themselves to take the next step so that the library
could be used with almost all of the popular database applications. They did this by develop-
ing various database-specific adapters for Active Record. Active Record adapters are basically
custom implementations of various parts of the Active Record library that abstract the propri-
etary bits of each database system, such as connection details, so that the Active Record library
pretty much works the same regardless of the backend database system you are using. The most
popular and widely used of these adapters are now also directly included as part of the library
(we’ll mention many of the contributors and developers later in this chapter when we cover
the specifics of each database adapter for Active Record).

Active Record Mostly Adheres to the ORM Pattern
The core concept of Active Record and other object relational mapping (ORM) libraries is that
relational databases can be represented reasonably in object-based code if you simply think of
database tables as classes, table rows as objects, and table fields as object attributes. Looking
at a quick example will help to explain this concept best, so assume we had something like the
following accounts table in some type of database:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD2

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 2

Accounts table

ID field (integer; auto-incremented; primary key)

Username field (text type field)

Password field (text type field)

Our Active Record Account class, or model as it’s commonly referred to, would look some-
thing like this:

Class Account < ActiveRecord::Base

end

And finally, throughout our Ruby or Rails code, we would create instances of account
objects like this:

creates a new account object in memory and a new account record in our database

newacc = Account.new

newacc.Username = "Kevin"

newacc.Password = "Marshall"

newacc.save

creates an Account object in memory from data in Account table with ID of 1

(equivalent to the ANSI SQL statement of "select * from accounts where ID = 1")

findacc = Account.find(1)

deletes records from database that have username of "Kevin"

Account.delete("username = 'Kevin'")

Don’t worry if all this sort of seems like magic at this point—right now, we’re simply trying
to show you the ORM concept without any clutter. We’ll dive into the details of all this stuff and
explain all the ins and outs of Active Record syntax in later chapters.

Active Record Is a Different Kind of ORM
Active Record differs from other ORM libraries, such as Java’s Hibernate, mostly in the way it’s
configured or, rather, in the general lack of initial configuration it requires. Out of the box,
Active Record makes a number of configuration assumptions, without requiring any outside
XML configuration files or mapping details, so nearly everything just works as DHH believed
most would expect or want it to—in fact, our previous example showed this was the case and
took full advantage of Active Record assumptions. We weren’t required to do any additional
configuration or set up any special files or instructions. We just opened a text program and
typed a few short lines of code, and before you knew it, we had a fully functional Active Record
program.

In fact, the lack of configuration and taking advantage of the default assumptions
Active Record makes on our behalf is most likely why the previous example felt like magic.
Later in the book, we’ll go into more detail about configuration and the default assumptions
Active Record makes, as well as how to override any of those assumptions whenever you need.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 3

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 3

Active Record Is One Part of the MVC Concept
Active Record is probably most famous as being an important part of the Ruby on Rails frame-
work. And if we had to pick one single thing about the Rails framework that we think makes it
successful, it would be the fact that it adheres to the MVC design. The concept of MVC is to
break code into logical groupings and programs into logical functional groupings. Traditionally,
the model section is where the majority of your business logic code would be; the view is where
your user interface code would be, and the controller code primarily deals with the communi-
cation between the model and view. Rails MVC implementation is a little bit different. With Rails,
the model section is generally your Active Record classes and other data-descriptive or data-
communication code. The view section remains primarily for the user interface, which tends
to be a heavy dose of HTML in most Rails applications. The controller also handles the com-
munication between the models and the views; however, it also tends to host a larger part of
the business logic than traditional MVC systems might.

Since we are focusing on Active Record and not Rails throughout this book, we won’t spend
too much time on MVC concepts or details. From strictly an Active Record developer’s point of
view, it doesn’t really matter where our code is located or how it’s sectioned off. But the MVC
design is worth knowing about when you plan to build programs of any serious size. And it’s
especially important to understand where Active Record fits into the picture of the MVC frame-
work when you are building Rails applications.

Active Record Is Primarily Used for CRUD
Database Transactions
There are four general tasks you perform when working with databases: creating (C), reading
(R), updating (U), and deleting (D) rows of data. As a group, these actions are often referred to
as CRUD. Almost all modern applications perform CRUD operations, and Active Record was
specifically designed to make CRUD operations easy to write and understand. The following
examples display the four basic CRUD operations as you would see them in most Active Record
programs:

newacc = Account.new(:username => "Kevin")

newacc.save #=> creates the new record in the account table

temp = Account.find(1)

=> selects the record associated with id of 1 from the account table

temp.username = 'Kevin' # => assigns a value to the username attribute of the object

temp.save #=> does the actual update statement applying the changes we just stated.

Account.destroy_all(1) #=> deletes the record in the account table with id of 1

Of course, there are a lot more options and ways to do things than the preceding examples
show, but these are the most generic, and probably most common, ones you’ll see in Active Record
applications. In the next chapter, we’ll talk about the Active Record CRUD operations and their
various options in detail.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD4

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 4

The Active Record Library Is Ruby Code
Probably the most important thing to remember when working with Active Record is that in
the end, it’s all really just Ruby code. This means anything you can do with Ruby objects, such
as inheritance, overriding of methods, metaprogramming, and more, also can be done with
Active Record objects. True, the object attributes are generally populated with data pulled from
a database through SQL statements, and in most cases, the object attribute values are eventu-
ally written out to a database through SQL statements. But outside of those two important
processes, everything else you do with or to Active Record objects is really done just like you
are working with any other Ruby object.

Though the whole idea is to represent database records as objects, it’s important to remem-
ber that they really are two separate things: Ruby objects and database records. As such, you can
(and will) sometimes have your database record in a different state or with a different value than
its corresponding Active Record object and its attributes. This is probably most obvious when
you are dealing with data validations. When a data validation fails during an attempt to save,
your Active Record object attribute will still have the value assigned by your application (which
fails validation), but your database record will not have been updated. We talk more about this
issue, and data validation in detail, in Chapter 4.

From Active Record Objects to Database Records
and Back Again
Even though Active Record objects are really just Ruby objects, when packaged as the Active Record
library, they do go through a number of built-in steps or methods each time they are created,
accessed, updated, or deleted. Whether you are saving new records, updating existing ones, or
simply accessing data with Active Record, there are three general steps to follow:

1. Create an Active Record object.

2. Manipulate or access the attributes of the object.

3. Save the attributes as a record in the database.

As mentioned previously, updating data can be done using the previous steps or with
a special update call shown in the following example:

Account.update(1, "Username = Kevin")

Deleting data from a database, on the other hand, is a little bit of a special situation, since
you often want your database records to exist long after your Active Record objects have been
destroyed or gone out of scope. If we tied the deletion of data from the database to the life cycle
of our objects, every time our code was finished executing, our objects would be removed from
memory and our data deleted from our database. That would be a very bad thing. Therefore,
deleting data is done by special destroy or delete statements—not by simply removing the object
from memory. The following example shows one way of deleting the record with a primary
key of 1:

Account.delete(1)

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 5

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 5

If it seems like we are glossing over the details of all this, don’t worry; we’ll break down the
specifics of each of these steps throughout different parts of this book. For now, let’s just take
a peek at the basics of these three steps, so you have a base understanding of how things work.

Creating an Active Record Object
Most often, you create your Active Record objects with a call to the create or new method. Both
of these methods also allow you to set the values of your object’s attributes directly, as shown
in the following example:

example = Account.new(:Account_Name => "Kevin Marshall",

:Account_Username => "Falicon")

The other common way to create an Active Record object is to use one of the various find
methods. All of these methods populate the object’s attributes from records in the database
that matched the search criteria. The following example creates an object that is populated
with the data of the record with a primary key of 1:

example = Account.find(1)

Again, we will cover all the various details and options of create, new, update, delete, and
find methods throughout the following chapters.

Manipulating or Accessing the Attributes of the Object
Once you have an Active Record object, you have the ability to set or get all of its attributes.
The attributes are usually directly mapped from the fields of your database table. So for exam-
ple, if our Account table had an Account_Username field, then our Account Active Record objects
would have a corresponding Account_Username attribute. The following example shows one way
of directly setting an attribute’s value as well as how to access the value of a given attribute:

example.Account_Username = "Falicon"

puts "Your username is now #{example.Account_Username}"

Saving the Attributes as a Record in the Database
It’s important to remember that when you are working with an Active Record object you are
really only setting and accessing the attributes of a Ruby object. Your changes are not reflected
within your database until you make a call to the ActiveRecord::Base.save method.

The save method is where most of the real action and power of the Active Record library
takes place:

Example.save

It’s this method that has built-in support for things like callbacks, data validations, and
many of the other features explained throughout the remainder of this book.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD6

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 6

Why Active Record Is a Smart Choice
Active Record is easy to install, simple to write and read, and full-featured object-based code.
Out of the box, it comes with support for most all modern database systems, is platform inde-
pendent, and goes a long way in abstracting the messy details of dealing with various database
implementations. All this means that you, as a developer, can focus on learning just one thing,
Active Record, to deal with storing and retrieving data from your database. You don’t have to worry
about learning all the ins and outs of your specific database software, the unique version of
SQL it supports, or the related tips and tricks for massaging data in and out of the database.
That leaves you more time and energy for coding your real applications.

If you’ve been reading through this chapter in hopes of deciding if Active Record is worth
learning more about, we hope that you are now anxious to dive into the details with us. However,
if you aren’t yet quite sold on working through the rest of the book, consider the following list
of added benefits to the Active Record approach, each of which we will cover in detail through-
out the remainder of this book:

• Simplified configuration and default assumptions

• Automated mapping between tables and classes and between columns and attributes

• Associations among objects

• Aggregation of value objects

• Data validations

• Ability to make data records act like lists or trees

• Callbacks

• Observers for the life cycle of Active Record objects

• Inheritance hierarchies

• Transaction support on both the object and database level

• Automatic reflection on columns, associations, and aggregations

• Direct manipulation of data as well as schema objects

• Database abstraction through adapters and a shared connector

• Logging support

• Migration support

• Active Record as an important part of the Ruby on Rails framework

• Active Record as it’s integrated in other emerging frameworks like Merb and Camping

This is just a small list of the features of Active Record, but I hope it gives you an idea of just
how powerful Active Record can be. Still, before you can take advantage of anything Active Record
has to offer, you must first get it installed and configured, so let’s get started with that step now.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 7

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 7

Installing and Configuring Active Record
One of the primary design goals of Active Record (and Rails for that matter) was to favor, as DHH
puts it, “convention over configuration.” This means, from a developer’s point of view, it should
be very quick and simple to install and start to use. A developer should not have to spend hours
setting up and learning about all the various configuration options and files before even starting
to do some real coding. As you can imagine, this is a lofty goal for any library designer, but it’s
one that DHH was actually able to achieve! In fact, it’s probably the single biggest reason that
Active Record (and Rails) is being so quickly adapted by developers around the world. In this
chapter, we’ll walk you through the very simple three-step process to get Active Record installed
for your specific situation.

Since Active Record is really just a collection of Ruby code, it stands to reason that you
must first have Ruby correctly installed on your machine. And since Active Record is primarily
distributed as a gem, it should be no surprise that you must also have the Ruby Gem system
correctly installed on your machine. There are many good books and resources that cover the
installation of these requirements, so we won’t go into the details of these here and will instead
assume that you already have them installed.

■Note If you are looking for more information on installing Ruby or the Ruby Gem system, two good web
sites full of Ruby resources are http://www.rubycentral.com and http://www.rubyforge.com.

Assuming that you do, in fact, have Ruby and the Ruby Gem system installed correctly on
your machine, installing Active Record requires just three simple steps:

1. Install the Active Record gem.

2. Depending on the database adapter you intend to use, install the required files or libraries.

3. Supply the adapter-specific connection information to make a connection to the database.

Let’s look at each of these steps in a little more detail. When we’re finished with this
chapter, you’ll have Active Record fully installed, and you’ll be ready to dive into coding!

Installing the Active Record Gem
You are probably already familiar with the idea of Ruby Gems—a simple system for packaging,
distributing, and installing various Ruby libraries. You’re probably also already aware that
www.rubyforge.com is the default remote gem distribution site. So it should be no surprise to
learn that Active Record is, in fact, a gem available through the RubyForge.com system and
that the most basic command to install the Active Record gem is to simply type gem install
activerecord at a command line. The gem system should then walk you through any addi-
tional steps that are required for installing the library, including installing the Active Support
library, which is a Ruby requirement for Active Record.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD8

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 8

■Note If you prefer, you can download the Active Record library for local installation from www.rubyforge.com.
However, it’s generally easier and, therefore, recommended that you simply use the remote gem installation
procedure described in this section.

Installing Any Additional Required Libraries or Gems
Active Record handles communication between your code and the database through the use
of database-specific adapters. Because each of these adapters is unique and specific to the
database that it communicates with, each adapter also has unique and varying underlying
requirements in addition to those required by the general Active Record library.

Since Active Record is really just Ruby code, you can view the source code at any time. The
source code for each Active Record adapter can be found in your Ruby installation directory
under the lib/ruby/gems/1.8/gems/activerecord-1.15.1/lib/active_record/connection_
adapters directory. Looking directly at the source code is the best possible way to get familiar
with the real ins and outs of what each adapter actually does and supports. If you’re serious
about becoming an Active Record expert, I highly recommend taking a peek at the inner work-
ings of each. It’s also a great way to see high-level Ruby programming and design in action.

Out of the box, Active Record comes with adapters for connecting to the most popular
and commonly used databases currently on the market: DB2, Firebird, FrontBase, MySQL, Open-
Base, Oracle, PostgreSQL, SQLite, SQL Server, and Sybase. Let’s take a little more detailed look
at the specific dependencies of each database adapter:

DB2: The DB2 adapter was written and is currently maintained by Maik Schmidt. The
adapter requires the ruby-db2 driver or Ruby DBI with DB2 support to be installed on the
machine as well. You can obtain the ruby-db2 library or the Ruby DBI files from www.
rubyforge.org/projects/ruby-dbi.

Firebird: The Firebird adapter was written and is currently maintained by Ken Kunz. The
adapter requires the FireRuby library to be installed on the machine as well. You can install
the FireRuby library via the gem command gem install fireruby.

FrontBase: The FrontBase adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-frontbase library to be
installed on the machine as well. You can obtain the ruby-frontbase library via the gem
command gem install ruby-frontbase.

MySQL: The MySQL adapter does not currently have any author or maintenance informa-
tion in its source code. The adapter requires the MySQL library to be installed on the machine
as well. You can obtain the MySQL library via the gem command gem install mysql.

OpenBase: The OpenBase adapter does not currently have any author or maintenance
information it in its source code. The adapter requires the OpenBase library to also be
installed on the machine. You can obtain the OpenBase library via the gem command
gem install openbase.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 9

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 9

Oracle: The Oracle adapter was originally written by Graham Jenkins and is currently
maintained by Michael Schoen. The adapter requires the ruby-oci8 library, which itself
requires that the OCI8 API be installed on your machine. The OCI8 API can be installed as
part of the Oracle client available via www.oracle.com, and the ruby-oci8 library files can
be obtained from www.rubyforge.org/projects/ruby-oci8.

PostgreSQL: The PostgreSQL adapter does not currently have any author or maintenance
information in its source code. The adapter requires the ruby-postgres library to be installed
on the machine as well. You can obtain the ruby-postgres library via the gem command
gem install ruby-postgres.

SQLite: The SQLite adapter was originally written by Luke Holden and was updated
for SQLite3 support by Jamis Buck. The adapter requires the sqlite-ruby library for
SQLite2 support and the sqlite3-ruby library for SQLite3 support. You can obtain the
sqlite-ruby library via the gem command gem install sqlite-ruby. You can obtain
the sqlite3-ruby library via the gem command gem install sqlite3-ruby.

SQLServer: The SQLServer adapter was written by Joey Gibson with updates provided by
DeLynn Berry, Mark Imbriaco, Tom Ward, and Ryan Tomayko. The adapter is currently
maintained by Tom Ward. The adapter requires the Ruby DBI library and support for either
ADO or ODBC drivers be installed on the machine. You can obtain the DBI library from
www.rubyforge.org/projects/ruby-dbi. If you intend to use the ADO drivers, included in
the DBI download should be the file bdi-0.1.0/lib/dbd/ADO.rb. Once the DBI library is
installed, this ADO.rb file should be copied to your-ruby-install-directory/lib/ruby/
site_ruby/1.8/DBD/ADO/ directory. ODBC driver support varies for each operating system
and is outside of the scope of this book. Please refer to your specific operating system’s doc-
umentation for details on properly setting up ODBC driver support.

■Note You will probably need to manually create the ADO directory within the DBD directory before placing
the ADO.rb file in it.

Sybase: The Sybase adapter was written and is maintained by John R. Sheets. The adapter
requires the Sybase-ctlib library to be installed on the machine as well. You can obtain the
Sybase library via http://raa.ruby-lang.org/project/sybase-ctlib/.

Supplying the Adapter-Specific Information
The final step before you can start to actually use Active Record is to establish a connection to
your specific database. If you are connecting to Active Record through a Rails application, you
generally provide these details in a database.yml file in your applications config directory. You
supply these connection details in YAML format. However, the YAML approach is really just Rails
syntactic shorthand for calling the ActiveRecord::Base.establish_connection method. Since
this is a book about Active Record (and not Rails), throughout our examples, we will generally
call the establish_connection method rather than use the YAML file option.

The establish_connection method expects parameters to be passed as hash values, and
each adapter has its own set of acceptable parameters. Let’s take a look at each situation in

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD10

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 10

detail. We will also provide an example call of the establish_connection method for each
adapter.

DB2 Parameters
The minimum DB2 requirements are the adapter and database parameters. Here is the complete
list of parameters to consider:

adapter: Specifies that this is connection information for a DB2 database. The value can
be either db2 or ibm-db2 for the IBM adapter.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. The default value is nothing.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. The default value is nothing.

schema: Optional parameter containing the initial database schema to be set.

The following example shows how to open an Active Record database connection for DB2:

ActiveRecord::Base.establish_connection(:adapter => "db2",

:database => "artest", :username => "kevin", :password => "test")

Firebird Parameters
The minimum Firebird requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a Firebird database. The value
should be firebird.

database: The name of the database that you are attempting to connect to. This value can
be either an alias of the Firebird database, the full path of the database file, or a full Firebird
connection string.

■Note If you provide a full Firebird connection string in the database parameter, you should not specify the
host, service, or port parameters separately.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database. If this value is not provided, the underlying operating system
user credentials are used (on supporting platforms).

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text. This parameter is required if
the username parameter is supplied but should be omitted if the username is not provided.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 11

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 11

host: Optional parameter containing the domain name of the machine that hosts your
database. You should not provide this parameter if you are providing the full connection
information in the database parameter. Some platforms require that you set this to localhost
when connecting to a local Firebird instance through a database alias.

port: Optional parameter containing the port on which the database is available for connec-
tions. This parameter is required only if the database is only available on a nonstandard port
and the service parameter is not provided. If the service parameter is provided, this value
will not be used.

service: Optional parameter containing the service name. This parameter is required only
if the host parameter is set and you are connecting to a nonstandard service.

charset: Optional parameter containing the character set that should be used for this con-
nection. You should refer to your Firebird documentation for the valid values that can be
used with this parameter.

The following example shows how to open an Active Record database connection for Firebird:

ActiveRecord::Base.establish_connection(:adapter => "firebird",

:database => "test", :host => "www.yourdbserver.com",

:username => "kevin", :password => "test")

FrontBase Parameters
The minimum FrontBase requirements are the adapter, database, and port parameters. Here
is the complete list of parameters to consider:

adapter: Specifies that this is connection information for a FrontBase database. The value
should be frontbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

The following example shows how to open an Active Record database connection for
FrontBase:

ActiveRecord::Base.establish_connection(:adapter => "frontbase",

:database => "test", :host => "www.yourdbserver.com")

MySQL Parameters
The minimum MySQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD12

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 12

adapter: Specifies that this is connection information for a MySQL database. The value
should be mysql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

socket: Optional parameter that contains the socket that should be used to communicate
with the MySQL database. If this parameter is omitted, the adapter assumes a value of
/tmp/mysql.sock.

port: Optional parameter containing the port on which the database is available for
connections.

sslkey: Required parameter if you are connecting to a MySQL database via SSL.

sslcert: Required parameter if you are connecting to a MySQL database via SSL.

sslca: Required parameter if you are connecting to a MySQL database via SSL.

sslcapath: Required parameter if you are connecting to a MySQL database via SSL.

sslcipher: Required parameter if you are connecting to a MySQL database via SSL.

The following example shows how to open an Active Record database connection for
MySQL:

ActiveRecord::Base.establish_connection(:adapter => "mysql", :database => "test",

:username => "kevin", :password => "test")

OpenBase Parameters
The minimum OpenBase requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an OpenBase database. The
value should be openbase.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

host: Optional parameter containing the domain name of the machine that hosts your
database.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 13

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 13

The following example shows how to open an Active Record database connection for
OpenBase:

ActiveRecord::Base.establish_connection(:adapter => "openbase",

:database => "test", :host => www.yourdbserver.com,

:username => "kevin", :password => "test")

Oracle Parameters
The minimum Oracle requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for an Oracle database. The value
should be oracle.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for Oracle:

ActiveRecord::Base.establish_connection(:adapter => "oracle",

:database => "test", :username => "kevin", :password => "test")

PostgreSQL Parameters
The minimum PostgreSQL requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a PostgreSQL database. The value
should be postgresql.

database: The name of the database that you are attempting to connect to.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

port: Optional parameter containing the port that the database is available for connections.

host: Optional parameter containing the domain name of the machine that hosts your
database.

min_messages: Optional parameter that allows you to set the min_message value within
your database for this connection.

schema_search_path: Optional parameter containing a comma-separated list of schema
names to use in the schema search path for the connection.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD14

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 14

allow_concurrency: Optional parameter that contains either the value true or false. If the
value is set to true, the connection uses asynchronous query methods, which will help
prevent the Ruby threads from deadlocking. The default value is false, which uses blocking
query methods.

encoding: Optional parameter that allows you to specify the encoding to use.

The following example shows how to open an Active Record database connection for
PostgreSQL:

ActiveRecord::Base.establish_connection(:adapter => "postgresql",

:database => "test", :username => "kevin", :password => "test")

SQLite Parameters
The minimum SQLite requirements are the adapter and database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a SQLite database. The value
should be sqlite.

database: The name of the database that you are attempting to connect to.

The following example shows how to open an Active Record database connection for
SQLite:

ActiveRecord::Base.establish_connection(:adapter => "sqlite", :database => "test")

SQL Server Parameters
The minimum SQL Server requirements are the adapter and the database parameters. Here is
the complete list of parameters to consider:

adapter: Specifies that this is connection information for a Microsoft SQL Server database.
The value should be sqlserver.

mode: Optional parameter containing the mode in which you wish to make the connec-
tion. Valid values are ado or odbc. If this parameter is omitted, the adapter defaults to the
ADO mode.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

dsn: Required parameter if the mode is odbc. This parameter references the name of your
data source set up in your ODBC settings.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 15

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 15

port: Optional parameter containing the port on which the database is available for
connections.

autocommit: Optional parameter to turn the autocommit feature of SQL Server on or off.
Valid values are true and false. If this parameter is omitted, the adapter defaults to true.

The following example shows how to open an Active Record database connection for SQL
Server:

ActiveRecord::Base.establish_connection(:adapter => "sqlserver",

:database => "test", :username => "kevin", :password => "test",

:host => "www.yourdbserver.com")

Sybase Parameters
The minimum Sybase requirements are the adapter and the database parameters. Here is the
complete list of parameters to consider:

adapter: Specifies that this is connection information for a Sybase database. The value
should be sybase.

database: The name of the database that you are attempting to connect to.

host: Optional parameter containing the domain name of the machine that hosts your
database.

username: Optional parameter containing the username of the user as whom you wish to
connect to the database.

password: Optional parameter containing the password of the user as whom you wish to
connect to the database. This value is provided in plain text.

The following example shows how to open an Active Record database connection for
Sybase:

ActiveRecord::Base.establish_connection(:adapter => "sybase",

:database => "test", :host => "www.yourdbserver.com",

:usrname => "kevin", :password => "test")

Learning More
By design, Active Record abstracts many of the details of each database, leaving the developer
free to focus on the details of coding the application. Switching from one backend database to
another, from an Active Record view, generally requires little more than changing your connec-
tion information. For the most part, Active Record developers are shielded from having to learn
the specifics of any one database implementation—or even most of ANSI SQL for that matter.

Still, each database is fundamentally different and will provide varying levels of support
for features and data types. Some will readily support triggers, sequences, and stored proce-
dures; others will not. Some will have elegant ways of dealing with CLOB and BLOB data types;
others will not. Each ActiveRecord adapter does its best to create a common denominator for

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD16

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 16

each of these issues, so that nearly all Active Record methods, techniques, and data types are
available for each type of database. But as you can imagine, this is a difficult goal to achieve.
Databases, like any software application, continue to grow more and more complex and add
new features all the time.

With all this in mind, I recommend that you become as familiar as you can with the spe-
cific database application you intend to use. I also highly recommend that you learn at least
the basics of ANSI SQL. These two chores will help you tremendously throughout your career
in debugging and developing even the most advanced Active Record programs. The following
list is a rundown of the most common databases available today and some good starting points
for learning more about each:

DbB2: DB2 has been around for a very long time, and some even consider it to be the first
database product to use SQL. DB2 is a commercial product provided by IBM and comes
in a variety of forms for a variety of platforms. For more information about DB2 you should
visit www-306.ibm.com/software/data/db2.

Firebird: Firebird is a free-of-charge relational database that runs on Linux, Windows,
and a variety of Unix platforms. It is based on the source code released by Inprise Cor-
poration on July 25, 2000. For more information and to download Firebird, you should
visit www.firebirdsql.org.

FrontBase: FrontBase is a relational database primarily designed for Mac OS X. Licenses
for FrontBase are now free. For more information, you should visit www.frontbase.com.

MySQL: MySQL is an open source relational database developed and primarily maintained
by MySQL AB. There are MySQL versions for most all platforms. For more information, you
should visit www.mysql.com.

OpenBase: OpenBase is a commercial relational database that has been around since
1991. It is provided by OpenBase International and is available for a variety of platforms
including Max OS X, Linux, and Microsoft Windows. For more information on OpenBase,
you should visit www.openbase.com.

Oracle: Oracle is a commercial relational database provided by Oracle Corporation.
There are Oracle versions for most all platforms. For more information, you should visit
www.oracle.com.

PostgreSQL: PostgreSQL is an open source, object-relational database. PostgreSQL is avail-
able for various platforms. For more information, you should visit www.postgresql.org.

SQLite: SQLite is a public domain C library that implements a SQL database engine. You
can run SQLite on most platforms. For more information, you should visit www.sqlite.org.

SQL Server: SQL Server is a commercial relational database provided by Microsoft. SQL
Server is primarily designed for the Microsoft platform. For more information, you should
visit www.microsoft.com/sql.

Sybase: Sybase is a commercial relational database provided by Sybase Corporation. Sybase
versions are available for a variety of platforms. For more information, you should visit
www.sybase.com.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 17

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 17

Building Your First Active Record Program
This section will walk you through writing your first Active Record program. It will explain the
core concepts of Active Record, including the assumptions it makes in order to dramatically
simplify development. Finally, we’ll begin to explore the ways you can change these assump-
tions (a topic which we’ll dig deeper into later on in the book).

As previously mentioned, Active Record is an ORM library. ORM is a way of persisting
objects to and from relational databases. Recall that, with ORM, an object is analogous to
a database table, and individual instances of that object are represented as rows in the table.
Finally, the individual member variables of an object are represented as columns in the table.

The elements of a standard Active Record program follow:

1. Include or require the Active Record gem.

2. Establish a connection to your database using the appropriate adapter.

3. Define your Active Record classes by extending the ActiveRecord::Base class.

4. CRUD away.

Recall the accounts table from earlier in this chapter:

Accounts table

id field (integer; auto-incremented; primary key)

username field (text type field)

password field (text type field)

We’ll use this accounts table in our examples throughout the rest of this chapter.

Your First Example
Below is the source code for your first Ruby program that uses the Active Record library. The
program simply establishes a connection, creates an account object, and stores the attributes
of that account object in the database as a new record:

require "rubygems"

require_gem "activerecord"

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "localhost",

:username => "project",

:database => "project_development")

class Account < ActiveRecord::Base

end

account = Account.new

account.username = "cpytel"

account.save

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD18

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 18

This simple Active Record program includes the Active Record gem, which you installed
previously. It establishes a connection to the project_development database with username
project.

Next, the Account class is defined. Notice that there is nothing in the class. Our Active Record
objects will eventually have stuff in them, but for now, its important to note that no configura-
tion is needed to get up and running with basic functionality. We’ve merely supplied the database
connection parameters.

Finally, we instantiate a new Account object, set the username member variable, and save
the instance of the object back to the database.

It’s possible to merely connect to the database and be up and running because of the
assumptions that Active Record is making and because Active Record gets the rest of its con-
figuration from the database itself.

Active Record Assumptions and Conventions
Our first Active Record program example makes full use of Active Record assumptions and coding
conventions. This speeds our development, eases our typing workload, and makes our example
seem almost magical. Active Record makes the following assumptions:

• It infers database table names based on class names.

• It assumes the existence of certain database columns.

The first assumption of an Active Record class is the table name. In the case of our Account
class, the table Active Record assumes is accounts. It makes this assumption based on the fol-
lowing guidelines:

• The name of the table within the database is the pluralized name of the class defined in
your Active Record program. In our experience, this assumption turns out to be one of
the large productivity boosts you’ll recognize with Active Record once you get used to it,
because it enables the developer to gloss over the naming conventions and instead
concentrate on the programming aspects.

• The table name is in lowercase. This is important to note because each database may
support case in a variety of ways. Since Ruby variables start with lowercase characters and
constants start with uppercase characters, Active Record prefers to force all table and col-
umn names to lowercase (via a downcase method call). In many of the database systems,
case does not really matter when referring to a table or column, so the Active Record
downcasing should not cause a problem. For the select few in which case is important,
Active Record jumps through as many hoops for you as it can to keep its lowercase prefer-
ence in line with the specific adapter code for that database.

• If the class name includes multiple words that begin with capital letters, the words will
be separated by underscores in the table name.

Table 3-1 lists some examples of assumptions Active Record would make based on the
guidelines we’ve just outlined.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 19

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 19

Table 3-1. Examples of Active Record Table Pluralization

Class Name Table Name

Account accounts

Person people

UserImage user_images

Address addresses

Currency currencies

Mouse mice

As you can see from the Table 3-1, Active Record is intelligent about pluralizing the class
names. In addition, Active Record also assumes that each table has an automatically incremented
integer primary key column named id.

When an Active Record class is instantiated and any data is accessed within the class,
Active Record reads the columns of the table and maps these to the class’s attributes. While
there aren’t formal conventions for the naming of columns, since Active Record only creates
an attribute in the Active Record class that matches the name of the column, many of the
Ruby and Rails naming conventions are seen in a typical Active Record table, including the
liberal doses of underscores.

When Active Record reads the columns of the database table and creates the attribute
mappings, it also reads the data types of those columns and makes sensible mappings among
the attribute types and the database column types, as you might expect. However, the boolean
attribute type is a little different for two reasons. First, a boolean type is not supported in all
databases supported by Active Record. Second, in Ruby only the false constant and the value nil
are considered false. As a workaround, Active Record attribute methods expand the values
considered false to include an empty string, 0, "0", "false", and "f". Conversely, the val-
ues 1, "1", "true", and "t" are considered true.

These few assumptions, coupled with the dynamic language features provided by Ruby
(such as duck typing), provide a foundation that makes it possible to provide an incredibly
powerful, yet straightforward, feature set.

■Note Duck typing is a form of dynamic typing in which the type of an object is not determined strictly by
its class but by its capabilities. This term comes from the idea that if it walks like a duck, and quacks like
a duck, it must be a duck. You can read more about duck typing at http://en.wikipedia.org/wiki/
Duck_typing.

Overriding the Assumptions
While staying true to the Active Record way of doing things can free you up to worry about
other things during application development, obviously your application may have some
constraints that require you to override some of the assumptions that Active Record is making,
particularly if you are working with a legacy database.

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD20

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 20

If you want table names to be singular instead of plural, you can set the configuration
parameter pluralize_table_names:

ActiveRecord::Base.pluralize_table_names = false

If, instead, you need to override a table name completely, you specify this in the Active Record
class itself. For instance, if our Accounts class should persist to a table named AccountBean, we
would specify the Account class as follows:

class Account < ActiveRecord::Base

set_table_name "AccountBean"

end

Additionally, if your primary key column is not named simply id, you can override this
from within the class definition as well:

class Account < ActiveRecord::Base

set_primary_key "accountId"

end

If you want to use a primary key other than an automatically incremented integer, you
must set the value of the primary key yourself, and you must still use the id attribute to do so.
Additionally, you should only use the id attribute to set the primary key. To retrieve the value
of the primary key, you must use your overridden attribute name.

For example, if we’ve overridden the account primary key to be account_number, and we
want to use a custom key format, our Account creation code would need to be as follows:

account = Account.new

account.id = "X5476"

account.save

And to retrieve the account_number of an account, you would use this:

puts account.account_number #=> X5476

Retrieving Objects from the Database
With the groundwork laid regarding Active Record knowledge about our database, the dynamic
nature of Ruby Active Record is able to help us work with our objects. For instance, to retrieve
objects from the database we have a core method find. If we know the value of the primary
key that we want, for instance 1, we can simply call it:

Account.find(1)

In addition, it is possible to use a feature of Active Record called dynamic finders. These
allow you to easily find records by their attribute values. For example, if you wish to find the
account with the username equal to cpytel you can simply write:

Account.find_by_username("cpytel")

While dynamic finders are fun magic, let’s be sure not to get ahead of ourselves. Using the
normal find method, the following code would return the same result as the dynamic finder:

Account.find(:all, :conditions => ["username = ?", "cpytel"])

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 21

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 21

■Note A lot of Active Record magic, such as dynamic finders, is made possible by using the Ruby’s
method_missing function; method_missing allows you to handle situations when a message is sent to an
object for which it doesn’t have a method. The method find_by_username doesn’t exist in the code anywhere,
so it is being handled by method_missing.

Once we’ve retrieved an Active Record object, say with

account = Account.find_by_username("cpytel")

we can delete the associated record from the database by calling this method:

account.destroy

When you use the destroy method listed here, you are really only executing a SQL delete
statement within your database. The record will no longer be available within your database,
but your Active Record object, whose attributes were populated with data from that record,
will still be available to you as a read-only instance of the object. This object will persist until
it goes out of scope within your application or you specifically delete that instance. This turns
out to be a handy feature when you want to report on the deletion of data, as the following code
snippet shows:

account = Account.find(1)

do a variety of things within your application...

account.destroy

puts "we just deleted the record with id of #{account.id} from the database"

We go into more detail on the various CRUD actions you can perform with Active Record
in Chapter 2.

Exploring Active Record Relationships
Relationships among objects, that is, when one or more objects are associated with one
another, are not only an incredibly important part of the functionality of the Active Record
library, but also of any real-world application. There are several types of relationships, and
we’ll cover them all in detail in Chapter 4.

All configuration options for a relationship occur within the Active Record class definitions
themselves. For our Account class, we want to add a relationship to a Role object, so we can tell
what type of account we have on our hands. We start off by manually defining our roles table
within our database:

Roles table

id field (integer; auto-incremented; primary key)

name field (text type field)

description field (text type field)

We want our account class to hold the reference to the account’s role, and we want the
foreign key (the column in one table that points to the ID of a row in another) to be in the accounts
table. So we define this relationship of roles to accounts in our account model with the belongs_to
method. First, we add our Role class definition:

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD22

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 22

class Role < ActiveRecord::Base

end

Next, we modify our definition of the Account class as follows:

class Account < ActiveRecord::Base

belongs_to :role

end

With those new class definitions we now have a unidirectional relationship between
Account and Role. This relationship is unidirectional, because Account knows what role it has,
but Role does not know what Account class instances have it.

With this relationship in place, we now have an attribute for the role relationship of our
account objects. However, we first need to make sure that we have a role to work with.

Along with the dynamic finder methods we’ve already seen, Active Record also has
a find_or_create_by_* dynamic finder. This finder works just like the normal find_by_*
method, but if a matching object is not found, one will be created for you. We’ll use this
method to make sure that our desired role exists:

admin_role = Role.find_or_create_by_name("Administrator")

We can then assign our administrator role to our account:

account.role = admin_role

Putting the pieces together, we can now show a more complete and realistic example
of an Active Record program. Here we set up our connection, define two models that have
a one-to-many relationship, and perform a number of basic CRUD operations:

require "rubygems"

require_gem "activerecord"

ActiveRecord::Base.establish_connection(

:adapter => "mysql",

:host => "localhost",

:username => "project",

:database => "project_development")

class Role < ActiveRecord::Base

end

class Account < ActiveRecord::Base

belongs_to :role

end

admin_role = Role.find_or_create_by_name("Administrator")

account = Account.new

account.username = "cpytel"

account.role = admin_role

account.save

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD 23

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 23

puts "#{account.username} (#{account.id}) is a(n) #{account.role.name}"

cpytel (1) is a(n) Administrator

comment out the following line to avoid deleting the created account

account.destroy

puts "We have just deleted the #{account.username} account!"

Them’s the Basics!
Believe it or not, in just one chapter, we’ve introduced you to Active Record and walked you
completely through installing and configuration; plus, we’ve built and explained complete
working programs showing the basic CRUD operations. It really is amazing how little you need
to do to get started with Active Record!

Of course, there’s a lot more to Active Record than just the basics we’ve covered here
(otherwise, this would be a very short book!). In the next few chapters, we’ll dig into the guts of
Active Record and show you how to take full advantage of the Active Record feature set. Before
you know it, you’ll go beyond building simple CRUD programs and start building full-featured
applications with complex business logic seamlessly integrated with your database via
Active Record!

CHAPTER 1 ■ INTRODUCING ACTIVE RECORD24

8474_ch01FINAL.qxd 8/25/07 9:10 AM Page 24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

