
PART ONE OOP AND ACTIONSCRIPT

8458CH01.qxd  6/13/07  1:35 PM  Page 1



8458CH01.qxd  6/13/07  1:35 PM  Page 2



1 INTRODUCTION TO OOP

8458CH01.qxd  6/13/07  1:35 PM  Page 3



Object-oriented programming (OOP) sounds much scarier than it actually is. Essentially
OOP is nothing more than a way of looking at a particular problem and breaking it down
into smaller pieces called objects. These objects form the building blocks of object-
oriented applications, and when designed properly they help form a solid framework on
which to build your project.

The scoop with OOP
Before OOP became commonplace, we had something called procedural programming,
which often required developers to write very complex and highly interdependent code. A
minor change to any part of the code could spell disaster for the entire application.
Debugging that type of application was a terribly painful and time-consuming task that
often resulted in the need to completely rebuild large pieces of code.

When more and more user interaction got introduced in applications, it became apparent
that procedural programming wouldn’t cut it. Object-oriented programming was born as
an attempt to solve these very problems. Although it certainly isn’t the be-all and end-all
of successful programming, OOP does give developers a great tool for handling any kind
of application development.

The wonderful thing about object-oriented thinking is that you can look at practically any
item in terms of a collection of objects. Let’s look at a car for example. To the average Joe,
a car is simply a vehicle (or object) that gets you places. If you ask a mechanic about a car,
he’ll most likely tell you about the engine, the exhaust, and all sorts of other parts. All
these car parts can also be thought of as individual objects that work together to form a
larger object, “the car.” None of these parts actually know the inner workings of the other
parts, and yet they work (or should work) together seamlessly.

Understanding the object-oriented approach

When studying OOP, you’ll come across a plethora of big words like encapsulation, poly-
morphism, and inheritance. Truth be told the ideas behind them are often quite simple,
and there’s no real need to memorize those terms unless you’d like to use them for show-
ing off at your next family get-together.

“‘See that bird?’ he says. ‘It’s a Spencer’s warbler. (I knew he didn’t know the real
name.) Well, in Italian, it’s a Chutto Lapittida. In Portuguese, it’s a Bom da Peida. In
Chinese, it’s a Chung-long-tah, and in Japanese, it’s a Katano Tekeda. You can know
the name of that bird in all the languages of the world, but when you’re finished,
you’ll know absolutely nothing whatever about the bird. You’ll only know about
humans in different places, and what they call the bird. So let’s look at the bird and
see what it’s doing, that’s what counts.’”

—Richard Feynman

OBJECT-ORIENTED ACTIONSCRIPT 3 .0

4

8458CH01.qxd  6/13/07  1:35 PM  Page 4



Knowing the theory behind this terminology is, however, essential, and that’s just what
we’ll be discussing next.

Classes and objects

When studying OOP, you cannot ignore classes and objects, as those are the fundamental
building blocks of any project. A good understanding of what classes and objects are and
the roles they play will help you get on track to understanding OOP.

There’s a subtle difference between a class and an object. A class is a self-contained
description for a set of related services and data. Classes list the services they provide
without revealing how they work internally. Classes aren’t generally able to work on their
own; they need to instantiate at least one object that is then able to act on the services
and data described in the class.

Suppose you want to build a house. Unless you build it yourself, you need an architect and
a builder. The architect drafts a blueprint, and the builder uses it to construct your house.
Software developers are architects, and classes are their blueprints. You cannot use a class
directly, any more than you could move your family into a blueprint. Classes only describe
the final product. To actually do something you need an object.

If a class is a blueprint, then an object is a house. Builders create houses from blueprints;
OOP creates objects from classes. OOP is efficient. You write the class once and create as
many objects as needed.

Because classes can be used to create multiple objects, objects are often referred to as
class instances.

Properties

Properties give individual objects unique qualities. Without properties, each house (from
the previous example) would remain identical to its neighbors (all constructed from the
same blueprint). With properties, each house is unique, from its exterior color to the style
of its windows.

Let’s look at a Ball class for example. From that one class you can create multiple ball
instances; however, not all balls look identical to one another. By providing your Ball class

INTRODUCTION TO OOP

5

1

8458CH01.qxd  6/13/07  1:35 PM  Page 5



with properties such as color, weight, and shape, you can create instances that describe
balls as diverse as a basketball, bowling ball, or rugby ball just by assigning different values
to properties in each instance of the class.

In OOP, you write classes to offer predefined behaviors and maybe hold some data. Next,
you create one or more objects from a class. Finally, you endow objects with their own
individual property values. The progression from classes to objects to objects with unique
properties is the essence of OOP.

Encapsulation: Hiding the details

When you get into your car, you turn the key, the
car starts, and off you go. You don’t need to
understand how the car parts work to find your-
self in rush-hour traffic. The car starts when you
turn the key. Car designers hide the messy inter-
nal details so you can concentrate on important
things like finding another radio station. OOP
calls this concept encapsulation.

Analogies like the preceding car example are
very useful to explain concepts such as encapsulation, but it is no doubt more appealing to
take an in-depth look at potential real-world scenarios like, for example, an accounting
office.

Accountants love details (all the numbers, receipts, and invoices). The accountant’s boss,
however, is interested in the bottom line. If the bottom line is zero, the company is debt-
free. If the bottom line is positive, the company is profitable. She is happy to ignore all the
messy details and focus on other things. Encapsulation is about ignoring or hiding internal
details. In business, this is delegation. Without it, the boss may need to deal with account-
ing, tax law, and international trading at a level beyond her ability.

OOP loves encapsulation. With encapsulation, classes hide their own internal details. Users
of a class (yourself, other developers, or other applications) are not required to know or
care why it works. Class users just need the available service names and what to provide to

OBJECT-ORIENTED ACTIONSCRIPT 3 .0

6

8458CH01.qxd  6/13/07  1:35 PM  Page 6



use them. Building classes is an abstraction process; you start with a complex problem, and
then reduce it down (abstracting it) to a list of related services. Encapsulation simplifies
software development and increases the potential for code reuse.

To demonstrate, I’ll present some pseudo-code (false code). You can’t enter pseudo-code
into a computer, but it’s great for previewing ideas. First, you need an Accounting class:

Start Of Accounting Class
End Of Accounting Class

Everything between the start and end line is the Accounting class. A useless class so far,
because it’s empty. Let’s give the Accounting class something to do:

Start Of Accounting Class
Start Of Bottom Line Service

(Internal Details Of Bottom Line Service)
End Of Bottom Line Service

End Of Accounting Class

Now the Accounting class has a Bottom Line service. How does that service work? Well, I
know (because I wrote the code), but you (as a user of my class) have no idea. That’s
exactly how it should be. You don’t know or care how my class works. You just use the
Bottom Line service to see if the company is profitable. As long as my class is accurate and
dependable, you can go about your business. You want to see the details anyway? OK, here
they are:

Start Of Accounting Class
Start Of Bottom Line Service

Do Invoice Service
Do Display Answer Service

End Of Bottom Line Service
End Of Accounting Class

Where did the Invoice and Display Answer services come from? They’re part of the class
too, but encapsulation is hiding them. Here they are:

Start Of Accounting Class
Start Of Bottom Line Service

Do Invoice Service
Do Display Answer Service

End Of Bottom Line Service

Start Of Invoice Service
(Internal Details Of Invoice Service)

End Of Invoice Service

Start Of Display Answer Service
(Internal Details Of Display Answer Service)

End Of Display Answer Service
End Of Accounting Class

INTRODUCTION TO OOP

7

1

8458CH01.qxd  6/13/07  1:35 PM  Page 7



The Bottom Line service has no idea how the Invoice service works, nor does it care. You
don’t know the details, and neither does the Bottom Line service. This type of simplifica-
tion is the primary benefit of encapsulation. Finally, how do you request an answer from
the Bottom Line service? Easy, just do this:

Do Bottom Line Service

That’s all. You’re happy, because you only need to deal with a single line of code, which is
essentially the interface that the class exposes. The Bottom Line service (and encapsula-
tion) handles the details for you.

Polymorphism: Exhibiting similar features

Are you old enough to remember fuel stations before the self-service era? You could drive
into these places and somebody else would fill up your tank. The station attendant knew
about OOP long before you did. He put the fuel nozzle into the tank (any tank) and
pumped the fuel! It didn’t matter if you drove a Ford, a Chrysler, or a Datsun. All cars
have fuel tanks, so this behavior is easy to repeat for any car. OOP calls this concept poly-
morphism.

When I speak of hiding code details, I’m speaking conceptually. I don’t mean to mis-
lead you. This is just a mental tool to help you understand the importance of abstract-
ing the details. With encapsulation, you’re not actually hiding code (physically). If you
were to view the full Accounting class, you’d see the same code that I see.

Start Of Accounting Class
Start Of Bottom Line Service

Do Invoice Service
Do Display Answer Service

End Of Bottom Line Service

Start Of Invoice Service
Gather Invoices
Return Sum

End Of Invoice Service

Start Of Display Answer Service
Display Sum

End Of Display Answer Service
End Of Accounting Class

If you’re wondering why some of the lines are indented, this is standard practice (that
is not followed often enough). It shows, at a glance, the natural hierarchy of the code
(of what belongs to what). Please adopt this practice when you write computer code.

OBJECT-ORIENTED ACTIONSCRIPT 3 .0

8

8458CH01.qxd  6/13/07  1:35 PM  Page 8



Much like cars need fuel to run, I take my daily dose of
vitamins by drinking a glass of orange juice at breakfast.
This incidentally brings me to a great example showing
the concept of polymorphism.

Oranges have pulp. Lemons have pulp. Grapefruits have
pulp. Cut any of these fruit open, I dare you, and try to
scoop out the fruit with a spoon. Chances are you’ll get a
squirt of citrus juice in your eye. Citrus fruits know
exactly where your eye is, but you don’t have to spoon
them out to know they share this talent (they’re all acid-
based juice-squirters). Look at the following Citrus class:

Start Of Citrus Class
Start Of Taste Service

(Internal Details Of Taste Service)
End Of Taste Service

Start Of Squirt Service
(Internal Details Of Squirt Service)

End Of Squirt Service
End Of Citrus Class

You can use the Citrus class as a base to define other classes:

Start Of Orange Class
Using Citrus Class
Property Named Juice

End Of Orange Class

Start Of Lemon Class
Using Citrus Class
Property Named Juice

End Of Lemon Class

Start Of Grapefruit Class
Using Citrus Class
Property Named Juice

End Of Grapefruit Class

Besides demonstrating inheritance again, the Orange, Lemon, and Grapefruit classes also
exhibit similar behaviors. This is polymorphism. You know that the Orange, Lemon, and
Grapefruit classes have the ability to squirt (inherited from the Citrus class), but each class
has a Juice property. So the orange can squirt orange juice, the lemon can squirt lemon
juice, and the grapefruit can squirt grapefruit juice. You don’t have to know in advance
which type of fruit, because they all squirt. In fact, you could taste the juice (inherited
from the Citrus class) to know which fruit you’re dealing with. That’s polymorphism: mul-
tiple objects exhibiting similar features in different ways.

INTRODUCTION TO OOP

9

1

8458CH01.qxd  6/13/07  1:35 PM  Page 9



Inheritance: Avoid rebuilding the wheel

Inheritance in OOP is a real timesaver. You don’t need to modify your neighbor’s wheel.
You only need to tell the computer, “Build a replica of my neighbor’s wheel, and then add
this, and this, and this.” The result is a custom wheel, but you didn’t modify the original.
Now you have two wheels, each unique. To clarify, here’s some more pseudo-code:

Start Of Wheel Class
Start Of Roll Service

(Internal Details Of Roll Service)
End Of Roll Service

End Of Wheel Class

The Wheel class provides a single service named Roll. That’s a good start, but what if you
want to make a tire? Do you build a new Tire class from scratch? No, you just use inheri-
tance to build a Tire class, like this:

Start Of Tire Class
Using Wheel Class

End Of Tire Class

By using the Wheel class as a starting point, the Tire class already knows how to roll (the
tire is a type of wheel). Here’s the next logical step:

Start Of Tire Class
Using Wheel Class
Property Named Size

End Of Tire Class

Now the Tire class has a property named size. That means you could create many unique
Tire objects. All of the tires can roll (behavior inherited from the Wheel class), but each
tire has its own unique size. You could add other properties to the Tire class too. With very
little work, you could have small car tires that roll, big truck tires that roll, and bigger bus
tires that roll.

Grog roll wheel. Wheel good. Grog doesn’t like rebuilding
wheels. They’re heavy, made of stone, and tend to crush
feet when they fall over. Grog likes the wheel that his
stone-age neighbor built last week. Sneaky Grog. Maybe
he’ll carve some holes into the wheel to store rocks, twigs,
or a tasty snack. If Grog does this, he’ll have added some-
thing new to the existing wheel (demonstrating inheri-
tance long before the existence of computers).

OBJECT-ORIENTED ACTIONSCRIPT 3 .0

10

8458CH01.qxd  6/13/07  1:35 PM  Page 10



What’s next?
Now that wasn’t too difficult, was it? In this chapter, I covered the basic idea of OOP as
well as an introduction to some of its key features, including encapsulation, polymorphism,
and inheritance. I’ll explain those ideas in much greater detail in Part 3 of this book.

Coming up next, I will focus on the general programming concepts common to modern
high-level computer languages.

INTRODUCTION TO OOP

11

1

8458CH01.qxd  6/13/07  1:35 PM  Page 11


