
Files, Streams, and XML

Handling files is a complex problem when it comes to cross-platform applications because
even the most basic features can vary across platforms. For instance, Unix systems use the
slash (/) as a separator in paths, whereas the Windows platform uses a backslash (\). And this
is just the beginning; you’ll also encounter an unnerving array of fundamental differences
such as different line endings and encodings, each of which can cause all sorts of strange
problems to crop up when you attempt to coax your application into running on multiple
platforms.

To overcome this problem, Qt offers a range of classes to handle paths, files, and streams.
Qt also handles XML files—a format structuring the contents in a portable way.

Working with Paths
The QDir class is the key to handling paths and drives in Qt applications. When specifying
paths to a QDir object, the slash (/) is used as a separator and is automatically converted to
whatever separator is used on the current platform. Drive letters are allowed, and paths start-
ing with a colon (:) are interpreted as references to resources embedded into the application.

The QDir static methods make it possible to easily navigate the file system. First,
QDir::current() returns a QDir that refers to the application’s working directory. QDir::home()
returns a QDir for the user’s home directory. QDir::root() returns the root, and QDir::temp()
returns the directory for temporary files. QDir::drives() returns a QList of QFileInfo objects,
representing the roots of all the available drives.

■Note Unix systems are considered to have a single drive /, whereas a Windows machine's drive space
can be configured to have several drives.

QFileInfo objects are used to hold information about files and directories. It has a number
of useful methods, some of which are listed here:

235

C H A P T E R 8

8318CH08.qxd 7/10/07 10:36 AM Page 235

• isDir(), isFile(), and isSymLink(): Return true if the file information object repre-
sents a directory, file, or symbolic link (or a shortcut on Windows).

• dir() and absoluteDir():Return a QDir object represented by the file information
object. The dir method can return a directory relative to the current directory,
whereas absoluteDir returns a directory path starting with a drive root.

• exists(): Returns true if the object exists.

• isHidden(), isReadable(), isWritable(), and isExecutable():Return information
about the file’s state.

• fileName():Returns the file name without the path as a QString.

• filePath():Returns the file name including the path as a QString. The path can be
relative to the current directory.

• absoluteFilePath():Returns the file name including the path as a QString. The path
starts with a drive root.

• completeBaseName() and completeSuffix():Return QString objects holding the name of
the file and the suffix (extension) of the file name.

Let’s use these methods to create an application listing all drives and folders in the root of
each drive. The trick is to find the drives using QDir::drives and then find the directories of
each drive’s root (see Listing 8-1).

Listing 8-1. Listing the drives with the root directories

#include <QDir>
#include <QFileInfo>

#include <QtDebug>

int main(int argc, char **argv)
{
foreach(QFileInfo drive, QDir::drives())
{
qDebug() << "Drive: " << drive.absolutePath();

QDir dir = drive.dir();
dir.setFilter(QDir::Dirs);

foreach(QFileInfo rootDirs, dir.entryInfoList())
qDebug() << " " << rootDirs.fileName();

}

return 0;
}

CHAPTER 8 ■ FILES, STREAMS, AND XML236

8318CH08.qxd 7/10/07 10:36 AM Page 236

The QDir::drives method returns a list of QFileInfo objects that are iterated using
foreach. After having printed the drive’s root path through qDebug, the QDir object for each
root is retrieved using the dir method.

■Note To use qDebug in a Windows environment, you must add the line CONFIG += console to your
project file.

One nice aspect of QDir objects is that they can be used to get a directory listing. By using
the filter() method, you can configure the object to return only directories. The directories
are then returned as a QList of QFileInfo objects from the entryInfoList method. These
QFileInfo objects represent directories, but the fileName method still returns the directory
name. The isDir and isFile methods make it possible to confirm that the file name is a direc-
tory name or the name of a file. This is easier to understand if you consider directories to be
files containing references to their contents.

The setFilter(Filters) method can be used to filter out directory entries based on a
number of different criteria. You can also combine the filters criteria to get the entry list you
want. The following values are supported:

QDir::Dirs: Lists directories that are matched by the name filter.

QDir::AllDirs: Lists all directories (does not apply the name filter).

QDir::Files: Lists files.

QDir::Drives: Lists drives. It is ignored on Unix systems.

QDir::NoSymLinks: Does not list symbolic links. It is ignored on platforms in which
symbolic links not are supported.

QDir::NoDotAndDotDot: Does not list the special entries . and ...

QDir::AllEntries: Lists directories, files, drives, and symbolic links.

QDir::Readable: Lists readable files. It must be combined with Files or Dirs.

QDir::Writeable: Lists writable files. It must be combined with Files or Dirs.

QDir::Executable: Lists executable files. It must be combined with Files or Dirs.

QDir::Modified: Lists files that have been modified. It is ignored on Unix systems.

QDir::Hidden: Lists files that are hidden. On Unix systems, it lists files starting with ..

QDir::System: Lists system files.

QDir::CaseSensitive: The name filter should be case sensitive if the file system is
case sensitive.

CHAPTER 8 ■ FILES, STREAMS, AND XML 237

8318CH08.qxd 7/10/07 10:36 AM Page 237

The filter method is combined with the setNameFilters() method, which takes a
QStringList of file name–matching patterns such as *.cpp. Notice that the name filter is a list
of patterns, so it is possible to filter for *.cpp, *.h, *.qrc, *.ui, and *.pro files with one name
filter.

Working with Files
You can use QDir to find files and QFileInfo to find out more about files. To take it one step
further to actually open, read, modify and create files, you have to use the QFile class.

Let’s start looking at QFile by checking out Listing 8-2. The application checks whether
the file testfile.txt exists. If it does, the application attempts to open it for writing. If that is
allowed, it simply closes the file again. Along the way, it prints status messages using qDebug.

The highlighted lines in the listing show the interesting QFile operations. First, the file
name is set in the constructor. The file name can be set using the setFileName(const
QString&) method, which makes it possible to reuse a QFile object. Next, the application
uses the exists method to see whether the file exists.

The last highlighted line attempts to open the file for writing because it is easy to write-
protect a file on all platforms supported by Qt. The open method returns true if the file is
successfully opened.

The rest of the listing consists of code for outputting debug messages and exiting the
main function (using return). Make sure to close the file before exiting if the opening of the
file was successful.

Listing 8-2. Basic QFile operations

#include <QFile>

#include <QtDebug>

int main(int argc, char **argv)
{
QFile file("testfile.txt");

if(!file.exists())
{
qDebug() << "The file" << file.fileName() << "does not exist.";
return -1;

}

if(!file.open(QIODevice::WriteOnly))
{
qDebug() << "Could not open" << file.fileName() << "for writing.";
return -1;

}

qDebug() << "The file opened.";

CHAPTER 8 ■ FILES, STREAMS, AND XML238

8318CH08.qxd 7/10/07 10:36 AM Page 238

file.close();

return 0;
}

The previous listing opened the file for writing. You can use other flags when opening files
to control how the file is read and modified:

• QIODevice::WriteOnly: Opens the file for writing.

• QIODevice::ReadWrite: Opens the file for reading and writing.

• QIODevice::ReadOnly: Opens the file for reading.

The preceding three flags can be combined with the following flags to control the file
access mode in detail:

• QIODevice::Append: Appends all written data to the end of the file.

• QIODevice::Truncate: Empties the file when it is opened.

• QIODevice::Text: Opens the file as a text file. When reading from the file, all line
endings are translated to \n. When writing to the file, the line endings are converted
to a format appropriate for the target platform (for example, \r\n on Windows and \n
on Unix).

• QIODevice::Unbuffered: Opens the file without any buffering.

You can always tell which mode is used for a given QFile object by calling the openMode()
method. It returns the current mode. For closed files, it returns QIODevice::NotOpen.

Working with Streams
After you have opened a file, it is more convenient to access it using a stream class. Qt comes
with two stream classes: one for text files and one for binary files. By opening a stream to
access a file, you can use redirect operators (<< and >>) to write and read data to and from the
file. With streams, you also get around platform differences such as endianess and different
line-ending policies.

Text Streams
With text streams, you can interface a file as you can from the C++ standard library—but with
a twist. The twist is that the file is handled in a cross-platform manner so that line endings and
other such details do not mess up the results when you move applications and files between
different computers.

To create a text stream for a file, create a QFile object and open it as usual. It is recom-
mended that you pass the QIODevice::Text flag with your read and write policy. After you
open the file, pass a pointer to the file object to the constructor of a QTextStream object. The
QTextStream object is now a stream to and from the file, depending on how the file was
opened.

CHAPTER 8 ■ FILES, STREAMS, AND XML 239

8318CH08.qxd 7/10/07 10:36 AM Page 239

Listing 8-3 shows a main function that opens a file called main.cpp for reading as text. If
the file is opened successfully, a text stream is created. At the end of the function, the file is
closed.

Listing 8-3. Opening a text stream for reading

int main(int argc, char **argv)
{
QFile file("main.cpp");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
qFatal("Could not open the file");

QTextStream stream(&file);

...

file.close();

return 0;
}

Listing 8-4 shows a simple loop meant to be used in the main function from the previous
listing. The loop uses atEnd to see whether the end of the file is reached. If not, a QString is
read from the stream using the >> operator and then printed to the debug console.

The result of executing the loop shown will not look like the contents of the main.cpp file.
Operator >> reads until the first white space is encountered. So the line #include <QFile>
would be split into #include and <QFile>. Because qDebug adds a line break after each call, the
example line would be printed over two lines on the debug console.

Listing 8-4. Reading from a text stream word by word

while(!stream.atEnd())
{
QString text;
stream >> text;
qDebug() << text;

}

The solution is to either read the entire file, including both text and line breaks, by using
the readAll() method on the stream object or to read it line by line. Reading with readAll()
works in most cases, but because the entire file is loaded into memory at once, it can easily
use up the entire memory.

To read the file line by line, use the readLine() method, which reads a complete line at a
time. Listing 8-5 shows the loop from the previous listing, but with readLine instead. Execut-
ing the loop gives a result on the debug console, showing the contents of the main.cpp file.

CHAPTER 8 ■ FILES, STREAMS, AND XML240

8318CH08.qxd 7/10/07 10:36 AM Page 240

Listing 8-5. Reading from a text stream line by line

while(!stream.atEnd())
{
QString text;
text = stream.readLine();
qDebug() << text;

}

Data Streams
Sometimes you can’t rely on using a text file for your data. For instance, you might want to
support an already existing file format that is not text-based or you might want to produce
smaller files. By storing the actual data in a machine-readable, binary format instead of con-
verting it to human-readable text, you can save both file size and complexity in your save and
load method.

When you need to read and write binary data, you can use the QDataStream class. There
are two important matters you need to keep in mind when using data streams, however: data
types and versioning.

With data types, you must ensure that you use exactly the same data type for the >> oper-
ator as for the << operator. When dealing with integer values, it is best to use qint8, qint16,
qint32, or qint64 instead of the short, int, and long data types that can change sizes between
platforms.

The second issue, versioning, involves making sure that you read and write the data using
the same version of Qt because the encoding of the binary data has changed between the dif-
ferent versions of Qt. To avoid this problem, you can set the version of the QDataStream with
the setVersion(int) method. If you want to use the data stream format from Qt 1.0, set the
version to QDataStream::Qt_1_0. When creating a new format, it is recommended to use the
highest possible version (for Qt 4.2 applications, use QDataStream::Qt_4_2).

All the basic C++ types and most Qt types—such as QColor, QList, QString, QRect, and
QPixmap—can be serialized through a data stream. To make it possible to serialize a type of
your own, such as a custom struct, you need to provide << and >> operators for your type.
Listing 8-6 shows the ColorText structure and the redirect operators for it. The structure is
used for keeping a string and a color.

■Tip When an object or data is serialized, it means that the object is converted into a series of data
suitable for a stream. Sometimes this conversion is natural (for example, a string is already a series of char-
acters); in other cases it requires a conversion operation (for example, a tree structure can’t be mapped to a
series of data in a natural way). When conversion is needed, a serialization scheme must be designed that
defines how to serialize a structure and also how to restore the structure from the serialized data.

In this context, type means any type—a class, a structure, or a union. By providing the <<
and >> operators for such a type, you make it possible to use the type with a data stream with-
out requiring any special treatment. If you look at the stream operators in the listing, you see

CHAPTER 8 ■ FILES, STREAMS, AND XML 241

8318CH08.qxd 7/10/07 10:36 AM Page 241

that they operate on a reference to a QDataStream object and a ColorText object, and return a
reference to a QDataStream object. This is the interface that you must provide for all custom
types that you want to be able to serialize. The implementation is based on using existing <<
and >> operators to serialize the type in question. Also remember to place the data on the
stream in the same order in which you plan to read it back in.

If you want to write stream operators for a type of variable size—for example, a string-like
class—you must first send the length of your string to the stream in your << operator to know
how much information you need to read back using your >> operator.

Listing 8-6. The ColorText structure with its << and >> operators

struct ColorText
{
QString text;
QColor color;

};

QDataStream &operator<<(QDataStream &stream, const ColorText &data)
{
stream << data.text << data.color;

return stream;
}

QDataStream &operator>>(QDataStream &stream, ColorText &data)
{
stream >> data.text;
stream >> data.color;

return stream;
}

Now that the custom type ColorText is created, let’s try to serialize a list of ColorText
objects: a QList<ColorText>. Listing 8-7 shows you how to do this. First, a list object is created
and populated. Then a file is opened for writing before a data stream is created in the same
manner as a text stream. The last step is to use setVersion to ensure that the version is prop-
erly set. When everything is set up, it is just a matter of sending the list to the stream by using
the << operator and closing the file. All the details are sorted out by the different layers of <<
operators being called directly and indirectly for QList, ColorText, QString, and QColor.

Listing 8-7. Saving a list of ColorText items

QList<ColorText> list;
ColorText data;

data.text = "Red";
data.color = Qt::red;
list << data;

CHAPTER 8 ■ FILES, STREAMS, AND XML242

8318CH08.qxd 7/10/07 10:36 AM Page 242

...

QFile file("test.dat");
if(!file.open(QIODevice::WriteOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt_4_2);

stream << list;

file.close();

Loading the serialized data back is just as easy as serializing it. Simply create a destination
object of the right type; in this case, use QList<ColorText>. Open a file for reading and then
create a data stream. Ensure that the data stream uses the right version and reads the data
from the stream using the >> operator.

In Listing 8-8, you can see that the data is loaded from a file, and the contents of the
freshly loaded list are dumped to the debug console using qDebug from a foreach loop.

Listing 8-8. Loading a list of ColorText items

QList<ColorText> list;

QFile file("test.dat");
if(!file.open(QIODevice::ReadOnly))
return;

QDataStream stream(&file);
stream.setVersion(QDataStream::Qt_4_2);

stream >> list;

file.close();

foreach(ColorText data, list)
qDebug() << data.text << "("

<< data.color.red() << ","
<< data.color.green() << ","
<< data.color.blue() << ")";

XML
XML is a meta-language that enables you to store structurized data in a string or text file (the
details of the XML standard are beyond the scope of this book). The basic building blocks of
an XML file are tags, attributes, and text. Take Listing 8-9 as an example. The document tag

CHAPTER 8 ■ FILES, STREAMS, AND XML 243

8318CH08.qxd 7/10/07 10:36 AM Page 243

contains the author tag and the text that reads Some text. The document tag starts with the
opening tag <document> and ends with the closing tag </document>.

Listing 8-9. A very simple XML file

<document name="DocName">
<author name="AuthorName" />
Some text

</document>

Both tags have an attribute called name with the values DocName and AuthorName. It is pos-
sible for a tag to have any number of attributes, ranging from none to infinity.

The author tag has no contents and is opened and closed at once. Writing <author /> is
equivalent to writing <author></author>.

■Note This information is the very least you need to know about XML. The XML file presented here is not
even a proper XML file—it lacks a document type definition. And you haven’t even started to learn about
namespaces and other fun details of XML. But you do know enough now to start reading and writing XML
files using Qt.

Qt supports two ways of handing XML files: DOM and SAX (described in the following
sections). Before you get started, you need to know that the XML support is part of the Qt
module QtXml, which means that you are required to add a line reading QT += xml to your
project file to include it.

DOM
The document object model (DOM) works by representing the entire XML document as a tree
of node objects in memory. Although it is easy to parse and modify the document, the entire
file is loaded into memory at once.

Creating an XML File
Let’s start by creating an XML file using the DOM classes. To make things easier, the goal is to
create the document shown in Listing 8-9. The process is divided into three parts: creating the
nodes, putting the nodes together, and writing the document to a file.

The first step—creating the nodes—is shown in Listing 8-10. The different building blocks
of the XML file include a QDomDocument object representing the document, QDomElement objects
representing the tags, and a QDomText object representing the text data in the document tag.

The elements and text object are not created using a constructor. Instead, you have to use
the createElement(const QString&) and createTextNode(const QString &) methods of the
QDomDocument object.

CHAPTER 8 ■ FILES, STREAMS, AND XML244

8318CH08.qxd 7/10/07 10:36 AM Page 244

Listing 8-10. Creating the nodes for a simple XML document

QDomDocument document;

QDomElement d = document.createElement("document");
d.setAttribute("name", "DocName");

QDomElement a = document.createElement("author");
a.setAttribute("name", "AuthorName");

QDomText text = document.createTextNode("Some text");

The nodes created in Listing 8-10 are not ordered in any way. They can be considered to
be independent objects, even though they all were created with same document object.

To create the structure shown in Listing 8-9, the author element and text have to be put in
the document element by using the appendChild(const QDomNode&) method, as shown in
Listing 8-11. In the listing, you can also see that the document tag is appended to the document
in the same manner. It builds the same tree structure, as can be seen in the file that you are
trying to create.

Listing 8-11. Putting the nodes together in the DOM tree

document.appendChild(d);
d.appendChild(a);
d.appendChild(text);

The last step is to open a file, open a stream to it, and output the DOM tree to it, which
is what happens in Listing 8-12. The XML string represented by the DOM tree is retrieved by
calling toString(int) on the QDomDocument object in question.

Listing 8-12. Writing a DOM document to a file

QFile file("simple.xml");
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
qDebug("Failed to open file for writing.");
return -1;

}

QTextStream stream(&file);
stream << document.toString();

file.close();

Loading an XML File
Knowing how to create a DOM tree is only half of what you need to know to use XML through
DOM trees. You also need to know how to read an XML file into a QDomDocument and how to
find the elements and text contained in the document.

CHAPTER 8 ■ FILES, STREAMS, AND XML 245

8318CH08.qxd 7/10/07 10:36 AM Page 245

This is far easier than you might think. Listing 8-13 shows all the code it takes to get a
QDomDocument object from a file. Simply open the file for reading and try to use the file in a call
to the setContent member of a suitable document object. If it returns true, your XML data is
available from the DOM tree. If not, the XML file was not valid.

Listing 8-13. Getting a DOM tree from a file

QFile file("simple.xml");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
qDebug("Failed to open file for reading.");
return -1;

}

QDomDocument document;
if(!document.setContent(&file))
{
qDebug("Failed to parse the file into a DOM tree.");
file.close();
return -1;

}

file.close();

The root element of a DOM tree can be retrieved from the document object by using the
documentElement() method. Given that element, it is easy to find the child nodes. Listing 8-14
shows you how to use firstChild() and nextSibling() to iterate through the children of the
document element.

The children are returned as QDomNode objects—the base class of both QDomElement and
QDomText. You can tell what type of node you are dealing with by using the isElement() and
isText() methods. There are more types of nodes, but text and element nodes are most com-
monly used.

You can convert the QDomNode into a QDomElement by using the toElement() method. The
toText() method does the same thing, but returns a QDomText instead. You then get the actual
text using the data() method inherited from QDomCharacterData.

For the element object, you can get the name of the tag from the tagName() method.
Attributes can be queried using the attribute(const QString &, const QString &) method.
It takes the attribute’s name and a default value. In Listing 8-14, the default value is “not set.”

Listing 8-14. Finding the data from the DOM tree

QDomElement documentElement = document.documentElement();

QDomNode node = documentElement.firstChild();
while(!node.isNull())
{
if(node.isElement())
{

CHAPTER 8 ■ FILES, STREAMS, AND XML246

8318CH08.qxd 7/10/07 10:36 AM Page 246

QDomElement element = node.toElement();
qDebug() << "ELEMENT" << element.tagName();
qDebug() << "ELEMENT ATTRIBUTE NAME"

<< element.attribute("name", "not set");
}

if(node.isText())
{
QDomText text = node.toText();
qDebug() << text.data();

}

node = node.nextSibling();
}

Listing 8-14 simply lists the child nodes of the root node. If you want to be able to traverse
DOM trees with more levels, you have to use a recursive function to look for child nodes for all
element nodes encountered.

Modifying an XML File
Being able to read and write DOM trees is all you need to know in many applications. Keeping
your application’s data in a custom structure and translating your data into a DOM tree before
saving and then extracting your data from the DOM tree when loading is usually enough.
When the DOM tree structure is close enough to your application’s internal structure, it is
nice to be able to modify the DOM tree on the fly, which is what happens in Listing 8-15.

To put the code in the listing in a context, you need to know that the document has been
loaded from a file before this code is run. When the code has been executed, the document is
written back to the same file.

You find the root node using documentElement, which gives you a starting point. Then you
ask the root node for a list of all author tags (all elements with the tagName property set to
author) by using the elementsByTagName(const QString &) method.

If the list is empty, add an author element to the root node. The freshly created element is
added to the root node using insertBefore(const QDomNode &, const QDomNode &). Because
you give an invalid QDomNode object as the second parameter to the method, the element is
inserted as the first child node.

If the list contains an author element, you add a revision element to it. The revision ele-
ment is given an attribute named count, whose value is calculated from the number of
revision elements already in the author element.

That’s all it takes. Because the nodes have been added to the DOM tree, you just need to
save it again to get an updated XML file.

Listing 8-15. Modifying an existing DOM tree

QDomNodeList elements = documentElement.elementsByTagName("author");
if(elements.isEmpty())
{
QDomElement a = document.createElement("author");

CHAPTER 8 ■ FILES, STREAMS, AND XML 247

8318CH08.qxd 7/10/07 10:36 AM Page 247

documentElement.insertBefore(a, QDomNode());
}
else if(elements.size() == 1)
{
QDomElement a = elements.at(0).toElement();

QDomElement r = document.createElement("revision");
r.setAttribute("count",

QString::number(
a.elementsByTagName("revision").size() + 1));

a.appendChild(r);
}

Reading XML Files with SAX
The simple API for XML (SAX) can be used only to read XML files. It works by reading the file
and locating opening tags, closing tags, attributes, and text; and calling functions in the han-
dler objects set up to handle the different parts of an XML document. The benefit of this
approach compared with using a DOM document is that the entire file does not have to be
loaded into memory at once.

To use SAX, three classes are used: QXmlInputSource, QXmlSimpleReader, and a handler.
Listing 8-16 shows the main function of an application using SAX to parse a file. The
QXmlInputSource is used to provide a predefined interface between the QFile and the
QXmlSimpleReader object.

The QXmlSimpleReader is a specialized version of the QXmlReader class. The simple reader
is powerful enough to be used in almost all cases. The reader has a content handler that is
assigned using the setContentHandler method. The content handler must inherit the
QXmlContentHandler, and that is exactly what the MyHandler class does. Having set everything
up, it is just a matter of calling the parse(const QXmlInputSource *, bool) method, passing
the XML input source object as a parameter, and waiting for the reader to report everything
worth knowing to the handler.

Listing 8-16. Setting up a SAX reader with a custom handler class

int main(int argc, char **argv)
{
QFile file("simple.xml");
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
qDebug("Failed to open file for reading.");
return -1;

}

QXmlInputSource source(&file);

MyHandler handler;

CHAPTER 8 ■ FILES, STREAMS, AND XML248

8318CH08.qxd 7/10/07 10:36 AM Page 248

QXmlSimpleReader reader;
reader.setContentHandler(&handler);
reader.parse(source);

file.close();

return 0;
}

The declaration of the handler class MyHandler can be seen in Listing 8-17. The class
inherits from QXmlDefaultHandler, which is derived from QXmlContentHandler. The benefit
of inheriting QXmlDefaultHandler is that the default handler class provides dummy imple-
mentations of all the methods that you otherwise would have had to implement as stubs.

The methods in the handler class get called by the reader when something is encountered.
You want to handle text and tags and know when the parsing process starts and ends, so the
methods shown in the class declaration have been implemented. All methods return a bool
value, which is used to stop the parsing if an error is encountered. All methods must return
true for the reader to continue reading.

Listing 8-17. The MyHandler SAX handler class

class MyHandler : public QXmlDefaultHandler
{
public:
bool startDocument();
bool endDocument();

bool startElement(const QString &namespaceURI,
const QString &localName,
const QString &qName,
const QXmlAttributes &atts);

bool endElement(const QString &namespaceURI,
const QString &localName,
const QString &qName);

bool characters(const QString &ch);
};

All methods except startElement look more or less like the method shown in Listing 8-18.
A simple text is printed to the debug console, and then true is returned. In the case of
endElement (shown in the listing), an argument is printed as well.

Listing 8-18. A simple handling class method

bool MyHandler::endElement(const QString &namespaceURI, const QString &localName,
const QString &qName)

{
qDebug() << "End of element" << qName;
return true;

}

CHAPTER 8 ■ FILES, STREAMS, AND XML 249

8318CH08.qxd 7/10/07 10:36 AM Page 249

The startElement method, shown in Listing 8-19, is slightly more complex. First, the ele-
ment’s name is printed; then the list of attributes passed through an QXmlAttributes object is
printed. The QXmlAttributes is not a standard container, so you must iterate through it using
an index variable instead of just using the foreach macro. Before the method ends, you return
true to tell the reader that everything is working as expected.

Listing 8-19. The startElement method lists the attributes of the element.

bool MyHandler::startElement(const QString &namespaceURI, const QString &localName,
const QString &qName, const QXmlAttributes &atts)

{
qDebug() << "Start of element" << qName;
for(int i=0; i<atts.length(); ++i)
qDebug() << " " << atts.qName(i) << "=" << atts.value(i);

return true;
}

The reason for printing the qName instead of the namespaceURI or localName is that the
qName is the tag name that you expect. Namespaces and local names are beyond the scope of
this book.

It is not very complicated to build an XML parser by implementing a SAX handler. As
soon as you want to convert the XML data into custom data for your application, you should
consider using SAX. Because the entire document is not loaded at once, the memory require-
ments of the application are reduced, which might mean that your application runs more
quickly.

Files and the Main Window
You learned in Chapter 4 that the setup with a isSafeToClose and the closeEvent method was
a good starting point for giving the user the option to save the file when a window with a mod-
ified document is closed. Now the time has come to add support for that functionality to the
SDI application (the same concept also applies to the MDI application).

Starting with Listing 8-20, you can see the changes made to the SdiWindow class declara-
tion. The highlighted lines were added to handle the load and save functionality.

The change is made to add the menu items Open, Save, and Save As to the File menu. The
changes to the class declaration consist of four parts: actions for handling the menu entries,
slots for the actions, the functions loadFile and saveFile for loading and saving the docu-
ment to an actual file, and the private variable currentFilename for keeping the current file
name. All methods that have to do with saving documents return a bool value, telling the
caller whether the document was saved.

Listing 8-20. Changes made to the SdiWindow class to enable loading and saving documents

class SdiWindow : public QMainWindow
{
Q_OBJECT

CHAPTER 8 ■ FILES, STREAMS, AND XML250

8318CH08.qxd 7/10/07 10:36 AM Page 250

public:
SdiWindow(QWidget *parent = 0);

protected:
void closeEvent(QCloseEvent *event);

private slots:
void fileNew();
void helpAbout();

void fileOpen();
bool fileSave();
bool fileSaveAs();

private:
void createActions();
void createMenus();
void createToolbars();

bool isSafeToClose();

bool saveFile(const QString &filename);
void loadFile(const QString &filename);
QString currentFilename;

QTextEdit *docWidget;

QAction *newAction;
QAction *openAction;
QAction *saveAction;
QAction *saveAsAction;
QAction *closeAction;
QAction *exitAction;

QAction *cutAction;
QAction *copyAction;
QAction *pasteAction;

QAction *aboutAction;
QAction *aboutQtAction;

};

Creating the actions and then adding them to the appropriate menu is done in exactly
the same way as for the already existing actions. The fileOpen method, connected to the
open action, is shown in Listing 8-21. It uses the static getOpenFileName method from the
QFileDialog class to get a file name. If the user has closed the dialog without choosing a file,
the resulting string’s isNull method returns true. In that case, you return from the slot with-
out opening a file.

CHAPTER 8 ■ FILES, STREAMS, AND XML 251

8318CH08.qxd 7/10/07 10:36 AM Page 251

If an actual file name is retrieved, you can try to load the file using loadFile. However, if
the current document has not been given a file name and is unchanged, the file is loaded into
the current document. If the current document has a file name or has been modified, a new
SdiWindow instance is created and then the file is loaded into it.

All SdiWindows are given file names when they are saved or loaded, so only new files do
not have valid file names.

Listing 8-21. Implementing the slot connected to the open action

void SdiWindow::fileOpen()
{
QString filename = QFileDialog::getOpenFileName(this);
if(filename.isEmpty())
return;

if(currentFilename.isEmpty() && !docWidget->document()->isModified())
loadFile(filename);

else
{
SdiWindow *window = new SdiWindow();
window->loadFile(filename);
window->show();

}
}

The loadFile(const QString&) method is used to load the contents from a given file into
the document of the current window. The source code of the method is shown in Listing 8-22.
The function attempts to open the file. If the file cannot be opened, a message box is shown
for the user. If the file is opened, a QTextStream is created, and the entire file content is loaded
by using readAll. The document is then assigned the new text with the setPlainText method.
When the document has been updated, the currentFilename variable is updated, the modified
flag is set to false, and the window’s title is updated.

Listing 8-22. Source code actually loading file contents into the document

void SdiWindow::loadFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::ReadOnly | QIODevice::Text))
{
QMessageBox::warning(this, tr("SDI"), tr("Failed to open file."));
return;

}

QTextStream stream(&file);
docWidget->setPlainText(stream.readAll());

CHAPTER 8 ■ FILES, STREAMS, AND XML252

8318CH08.qxd 7/10/07 10:36 AM Page 252

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

}

The opposite method of loadFile is saveFile(const QString &). (You can see its imple-
mentation in Listing 8-23.) Despite their different tasks, the two functions’ implementations
look very similar. The concept is the same: attempt to open the file, send the document as
plain text to a stream and update the currentFilename, reset the modified bit, and update the
window title. When a file is actually saved, the saveFile function returns true; if the file is not
saved, the function returns false.

Listing 8-23. Source code for saving the document to a file

bool SdiWindow::saveFile(const QString &filename)
{
QFile file(filename);
if(!file.open(QIODevice::WriteOnly | QIODevice::Text))
{
QMessageBox::warning(this, tr("SDI"), tr("Failed to save file."));
return false;

}

QTextStream stream(&file);
stream << docWidget->toPlainText();

currentFilename = filename;
docWidget->document()->setModified(false);
setWindowTitle(tr("%1[*] - %2").arg(filename).arg(tr("SDI")));

return true;
}

The return value from the saveFile method is used in the implementation of the
fileSaveAs method shown in Listing 8-24. The Save As slot looks very much like the Open
slot. It uses the getSaveFileName method to ask the user for a new file name. If a file name is
selected, the saveFile method is called to try to save the document.

Notice that false is returned if the file dialog is canceled, and the return value from the
saveFile method is returned when an attempt to save the document is made. The saveFile
returns true only if the document actually has been written to the file.

Listing 8-24. Source code for the Save As action

bool SdiWindow::fileSaveAs()
{
QString filename =
QFileDialog::getSaveFileName(this, tr("Save As"), currentFilename);

CHAPTER 8 ■ FILES, STREAMS, AND XML 253

8318CH08.qxd 7/10/07 10:36 AM Page 253

if(filename.isEmpty())
return false;

return saveFile(filename);
}

The fileSave method tries to save the document to the same file as before—the name
kept in currentFilename. If the current file name is empty, the file has not been given a file
name yet. In this case, the fileSaveAs method is called, showing the user a File dialog to pick
a file name. It is shown as source code in Listing 8-25.

The fileSave method returns the return value from either saveFile or fileSaveAs,
depending on which method is used to save the file.

Listing 8-25. Source code for the Save action

bool SdiWindow::fileSave()
{
if(currentFilename.isEmpty())
return fileSaveAs();

else
return saveFile(currentFilename);

}

The final option needed to make the dialog behave as expected is to let the user save the
file from the warning dialog shown when a modified document is being closed. The new
implementation of the isSafeToClose method is shown in Listing 8-26, in which the lines
containing the actual changes are highlighted.

The first change is the addition of the Save option to the warning dialog using the
QMessageBox::Save enumerated value. The other change consists of a case for handling the
Save button. If the button is pressed, a call is made to fileSave. If the file is not saved (that is,
false is returned), the close event is aborted. This makes it impossible for the user to lose a
document without actually having chosen to do so (or experiencing some sort of power
failure).

Listing 8-26. Source code for checking whether to close a document

bool SdiWindow::isSafeToClose()
{
if(isWindowModified())
{
switch(QMessageBox::warning(this, tr("SDI"),
tr("The document has unsaved changes.\n"

"Do you want to save it before it is closed?"),
QMessageBox::Save | QMessageBox::Discard | QMessageBox::Cancel))

{
case QMessageBox::Cancel:
return false;

case QMessageBox::Save:
return fileSave();

CHAPTER 8 ■ FILES, STREAMS, AND XML254

8318CH08.qxd 7/10/07 10:36 AM Page 254

default:
return true;

}
}

return true;
}

Adding these saving and loading capabilities fits well into the SDI structure presented
earlier. By confirming that the document actually has been saved (by using the return value
from all methods involved), you can build a waterproof protection, making it impossible to
close an unsaved document without confirming to do so.

Summary
Using files on different platforms usually means trouble. The incompatibilities are found on
all levels: file names, directory paths, line breaks, endianess, and so on. You can avoid prob-
lems with paths, drives, and file names by using the QDir and QFileInfo classes.

After you locate a file, you can open it by using QFile. Qt has streams to read and write
data. If you use the QTextStream class, you can handle text files with ease; if you use the
QDataStream class, it is easy to serialize and read back your data from binary files. Just think
about the potential stream-versioning problem. Even if you use the same Qt versions for all
your application deployments, you will get more versions in the future. A simple setVersion
call can save days of frustration.

One alternative to storing your data as text or in a custom binary format is to use XML.
Qt enables you to use DOM, which allows you to read an entire XML document into memory,
modify it, and then write it back to a file. If you want to read an XML file without having to
load it all at once, you can use Qt’s SAX classes.

When you use XML, you need to add the line QT += xml to your project file because the
XML support is implemented in a separate module. This module is not included in all editions
of Qt, so verify that you have access to it before trying to use it.

Finally, you saw the missing piece of the SDI application. Adding the methods covered in
the final section of this chapter makes it easy to build applications that support file loading
and saving.

CHAPTER 8 ■ FILES, STREAMS, AND XML 255

8318CH08.qxd 7/10/07 10:36 AM Page 255

8318CH08.qxd 7/10/07 10:36 AM Page 256

