CHAPTER 17

Loading Models

This chapter continues using the 3D world of Chapter 16, but as a setting to demonstrate four new
coding techniques:

*

The loading and positioning of 3D models created using the Wavefront OB]J file format.

» The selection (picking) of objects in the scene by clicking them with the mouse. OpenGLs
selection mode is utilized to implement this feature.

e 3D sound, in this case the chirping of a penguin, which varies as the user moves around the
scene (nearer and farther from a penguin model). It’s implemented using JOAL and the
JOALSoundMan class introduced in Chapters 13.

e Fogshrouding the scene, making it harder to find the models.

The vast majority of this chapter (nearly two-thirds of it) is concerned with the first technique,
leading to the development of an OBJ model loader package called OBJLoader and an application
called ModelLoaderGL that uses the loader. The loader and the other three topics (picking, sound,
and fog) are required by the chapter’s other example, TourModelsGL.

ModelLoaderGL and TourModelsGL are briefly explained in the next section.

Overviews of the Examples

ModelLoaderGL is a simple model viewer, shown in Figure 17-1, displaying a penguin.

439

440

CHAPTER 16 © TOURING THE WORLD

ModelLoaderGL (=] B

Figure 17-1. Displaying a penguin

The model’s name is specified on the command line, along with the display size and whether
the model should rotate. The model is loaded and positioned using the OBJLoader package devel-
oped in this chapter. ModelLoaderGL can be employed to check what an object looks like before it’s
loaded into a more complex application.

TourModelsGL is a simple game based around trying to find a penguin and a couch hidden in
the fog. The search is made a bit harder by including other models in the scene, but the player is
given some aural help because the penguin is constantly chirping. When the user clicks the mouse
on the penguin or the couch, a message is printed to standard output. Needless to say, a lot could
be done to make this a more exciting gaming experience. Figures 17-2 and 17-3 show TourMod-
elsGL without the fog and with it. The four OBJ models are a penguin wrapped in a single texture, a
red couch, a red rose in a blue vase, and a racing car decorated with several colors and textures.

CHAPTER 16 = TOURING THE WORLD aM

TourModelsGL =[alx]

Figure 17-2. TourModelsGL with a clear blue sky

TourModelsGL =[alx]

Figure 17-3. TourModelsGL after the fog has descended

442

CHAPTER 16 ' TOURING THE WORLD

TourModelsGL reuses the checkerboard floor from the previous chapter, but I've removed the
skybox, the billboard trees, the rotating sphere, the splash screen, and the “Game Over” message in
order to simplify the code.

The 0BJ File Format

The complete Wavefront OBJ file format offers many advanced elements, such as free-form curves
and surfaces, rendering interpolation, and shadowing. However, most OB]J exporters and loaders
(including the Java 3D loader from Chapter 7) only support polygonal shapes. A polygon’s face is
defined using vertices, with the optional inclusion of normals and texture coordinates. Faces can be
grouped together, and different groups can be assigned materials made from ambient, diffuse, and
specular colors and textures. The material information is stored in a separate MTL text file.

Alist of OB]J features can be found at http://www.csit.fsu.edu/~burkardt/data/obj/obj.html,
and examples of MTL are at http://www.csit.fsu.edu/~burkardt/data/mtl/mtl.html. The descrip-
tion in this chapter will focus on the core elements found in the Java 3D loader (accessed via the
ObijectFile class). Some unnecessary details will be left out, but they can be found in the ObjectFile
class documentation.

An OB] file is a text file consisting of lines of statements, comments, and blank lines. Com-
ments start with # and are ignored. Each statement begins with an operator name indicating how to
process the data that follows it on the line. There are three types of basic OBJ statements: those that
are shape-related, those for grouping, and those for materials. I'll briefly explain the format of each.

Shape Statements

The three floats in a v statement specify a vertex’s position:
v float float float

The first vertex listed in an OBJ file (i.e., the first v statement) is assigned an index value of 1,
and subsequent vertices are numbered sequentially.
The floats in a vn statement specify a normal:

vn float float float

The first normal in the file (i.e., the first vn statement) is assigned index 1, and subsequent nor-
mals are numbered sequentially.
A vt statement is used to define a 2D or 3D texture coordinate:

vt float float [float]

The square brackets mean that the third float argument is optional.

The first texture coordinate in a file (i.e., the first vt statement) is index 1, and subsequent
textures are numbered sequentially.

A polygonal face is specified using an f statement, which can employ three different formats:

f int int int ...

or

f int/int int/int int/int ...
or

f int/int/int int/int/int int/int/int ...

CHAPTER 16 = TOURING THE WORLD

A face can be defined as a sequence of vertex indices (the first format), or vertices and textures
indicies (the second format), or vertices, textures, and normal indices (the last format). I'll call each
collection of indices (e.g., int/int/int) a term.

When a term has three elements, it's possible for the texture indices to be left out if they haven't
been defined for the model, resulting in the f statement:

f int//int int//int int//int ...

The number of terms making up a face depends on its shape; often it’s a triangle (which needs
three terms to define it) or a quadrilateral (four terms).

The first face in the file (i.e., the first f statement) is assigned index 1, and subsequent faces are
numbered sequentially.

Grouping Statements

A g statement specifies a group name:
g name

Faces defined after a g statement will be added to the named group. Named groups are a useful
way of referring to a collection of faces; for example, Java 3D maps each named group to a Shape3D
object at load time. This makes it easier to apply transformations or appearance changes to sub-
components of the model:

The s statement defines a “smoothing” group:

s int

Subsequent face definitions will be members of the numbered group and have their normals
calculated as if they form part of the same surface.

Material Use Statements

The MTL file named in the mltlib statement contains material definitions that can be used in the
rest of the OB] file:

mltlib filename

When a usemtl statement is encountered in the OB] file, all subsequent faces will be rendered
with the named material obtained from the MTL file:

usemtl name

The MTL File Format

An MTL file consists of a series of material definitions made up of statements, comments, and blank
lines. Comments start with # and are ignored.
Each new material definition begins with a newmtl statement that specifies a material’s name:

newmtl name

The name is used by the usemtl statement in an OB]J file to refer to the material.
A material’s properties (e.g., its color, transparency, texture) are defined using material state-
ments (e.g., Ka, Kd) given on the lines after the newmtl statement, as in this example:

newmtl penguinMat
material properties for the penguin model

443

444

CHAPTER 16 ' TOURING THE WORLD

Ka 0.01 0.75 0.75
Kd 0.90 0.69 0.90
Ks 0.93 0.93 0.93
Ns 445

illum 2

map_Kd penguin.gif

The following are the basic material statements:
Kargh
The three floats (r, g, and b) define the ambient RGB color of the material.
Kdrghb
The three floats specify the diffuse RGB color of the material.
Ksrgh
Ther, g, and b floats represent the specular color of the material.
d alpha
or
Tr alpha

The alpha value specifies the transparency of the material. Java 3D doesn’t support either the d
or Tr statement.

Ns s

The shininess of the material is set with the s float value. If no Ns statement is supplied for a
material, the material’s default shininess will be 0.0f (i.e., it will not be shiny).

illum n

The illum statement sets the illumination mode for a material. If n is 1, the material has no
specular highlights and the Ks values are ignored. If n is 2, specular highlights are present and will
utilize the Ks value. When n is 0, lighting is disabled.

map_Ka filename

The named file contains a texture for the material. The MTL specification states that this
should be an ASCIT dump of RGB values, but most tools (including the Java 3D loader) also support
standard image files (GIE JPG, PNG). The image must have a size that is a power of 2 (e.g., 64 by 64,
128 by 128).

The OBJ File Loader

My OBJLoader package can load models and materials from simple OBJ and MTL files. The shape
statements (v, vt, vn, f) and material statements (mtllib and usemtl) are understood, but grouping
operations are ignored (g and s). MTL statements are processed, except for transparency (d, Tr) and
illumination (illum). Textures and colors can’t be blended together; the presence of a texture for a
material (map_Ka) disables any color settings (e.g., Ka, Kd, Ks).

Class diagrams for the OBJLoader package are shown in Figure 17-4.

OBJModel

B draw..)
® 0B.Modelt..)
® OB.Madelf]

CHAPTER 16

~

Materials

H taterials(.)

® rendetwithtdaterial(.)
H shawhdaterials(.)

B switchOff Tex..)

Faces

FaceMaterials

H addUse(.)

® Facetdaterials(.)

® findbdaterial(.)

H showl)sedhaterials(.)

® Faces(.)
¥ gettumFaces(.)
renderFace(.)

Material

B et)
H getkal.)

B getkd(.)

B getks(.)

B gethls(.)

® getTexture(..)

® hasMamel.)

H loadTexture(..)

H taterial(.)

H setD(.)

H setkal.)

H setid(.)

H setis(.)

sethdaterialColors(.)
H seths(.)

H sefTexturel.)

H shawhdaterial(...)

Tuple3

= toStrin.g(...)
B Tuple3(.)

ModelDimensions

® getCenter(..)

® getDepth(.)

B getHeight.)

® getlargest(.)

B getwidthi.)

® todelDimensions (.
reportDimensions(..)
H geti.)

H update(..)

Figure 17-4. The class diagrams for the OBJLoader package

TOURING THE WORLD

The OBJModel class loads the OB] model, centers it at the origin and scales it to a size supplied
in its constructor. The OpenGL commands for rendering the model are stored in a display list and
are executed by calling OBJModel.draw().

The Faces class stores information about each face of the model. When OBJModel is construct-
ing the display list, it calls Faces.renderFace() to render a face in terms of the loaded model’s
vertices, texture coordinates, and normals.

The Materials class loads material details from the MTL file, storing them as Material objects in

an ArrayList.

FaceMaterials stores the face indices where materials are first used. This information is used to
load the right material when a given face needs to be drawn.

ModelDimensions holds the smallest and largest coordinates for the model along its three
dimensions. These are utilized to calculate the model’s width, height, depth, its largest dimension,
and its center point. ModelDimensions is employed by OBJModel to resize and center the loaded

model.

Tuple3 is a general-purpose class for storing a three-element tuple. It’s used in several places in
the package to store vertices, normals, and texture coordinates as Tuple3 objects.

While writing the OBJLoader package, I got a lot of help and inspiration from examining the
loaders written by Evangelos Pournaras in his JautOGL game
(http://today.java.net/pub/a/today/2006/10/10/development-of-3d-multiplayer-racing-
game.html and https://jautogl.dev.java.net/) and Kevin Glass’s Asteroids tutorial

(http://www.cokeandcode.com/asteroidstutorial/).

445

446

CHAPTER 16 ' TOURING THE WORLD

Reading in the OB] File

OBJModel is responsible for reading in the OB]J file, line by line, and processing the statements it
finds. The shape data (vertices, texture coordinates, and normals) is stored in ArrayLists of Tuple3
objects:

private Arraylist<Tuple3> verts;
private ArraylList<Tuple3> normals;
private Arraylist<Tuple3> texCoords;

OBJModel also initializes the other package objects:

private Faces faces; // holds model faces
private FaceMaterials faceMats; // materials used by the faces
private Materials materials; // materials defined in MTL file

private ModelDimensions modelDims; // model dimensions
The parsing of the OB]J file is carried out in readModel():

private void readModel(BufferedReader br)

{
boolean isloaded = true; // hope things will go okay

int lineNum = 0;

String line;

boolean isFirstCoord = true;
boolean isFirstTC = true;
int numFaces = 0;

try {
while (((line = br.readlLine()) != null) && islLoaded) {
lineNum++;
if (1line.length() > 0) {
line = line.trim();

if (line.startsWith("v ")) { // vertex
isloaded = addVert(line, isFirstCoord);
if (isFirstCoord)
isFirstCoord = false;

else if (line.startsWith("vt")) { // tex coord
isLoaded = addTexCoord(line, isFirstTC);
if (isFirstTC)
isFirstTC = false;

else if (line.startsWith("vn")) // normal
isloaded = addNormal(line);

else if (line.startswith("f ")) { // face
isloaded = faces.addFace(line);
numFaces++;

else if (line.startsWith("mtllib ")) // load material
materials = new Materials(line.substring(7));

else if (line.startsWith("usemtl ")) // use material
faceMats.addUse(numFaces, line.substring(7));

else if (line.charAt(0) == 'g') { // group name
// not implemented

}

CHAPTER 16 = TOURING THE WORLD

else if (line.charAt(0) == 's') { // smoothing group
// not implemented

else if (line.charAt(0) == '#') // comment line
continue;
else
System.out.println("Ignoring line " + lineNum +
"o "+ line);
}

}

}

catch (IOException e) {
System.out.println(e.getMessage());
System.exit(1);

}

if (lisLoaded) {
System.out.printIn("Error loading model");
System.exit(1);

}
} // end of readModel()

The v, vt, and vn statements trigger code that adds a vertex, a texture coordinate, and a normal
Tuple3 object to the verts, texCoords, and normals ArrayLists. For example, addVert() adds a tuple
to verts and updates the model dimension’s information:

private boolean addVert(String line, boolean isFirstCoord)

{
Tuple3 vert = readTuple3(line);
// store (x,y,z) from "v x y z" in a tuple
if (vert != null) {
verts.add(vert);
if (isFirstCoord)
modelDims.set(vert); // add first coordinate
else
modelDims.update(vert); // add a later coordinate
return true;

return false;
} // end of addvert()

In readModel(), an f statement is handled by addFace() in the Faces class, and mtllib triggers
the creation of a Materials object that reads in the named MTL file. A usemtl statement causes the
FaceMaterials object to record the current face index and the named material. The material will be
utilized when that face and subsequent ones need to be rendered.

Reading a Face

The Faces object stores information about all the face statements in the OB]J file.

The data for a single face is stored in three arrays of vertex indices, texture coordinate indices,
and normal indices; the indices come from the face’s f statement.

For example, if the statement is

f 10/12/287 9/14/287 8/16/287

the vertex indices array will hold {10, 9, 8}; the texture coordinate indices array will contain
{12, 14, 16}; and the normal indices array is {287, 287, 287}.

447

448 CHAPTER 16 ' TOURING THE WORLD

All the faces data is held in three ArrayLists called facesVertldxs, facesTexIdxs, and
facesNormldxs. facesVertldxs stores all the vertex indices arrays, facesTexIdxs all the texture
coordinate indices arrays, and facesNormIdxs the normal indices arrays:

private Arraylist<int[]> facesVertIdxs; // for the vertices indices
private Arraylist<int[]> facesTexIdxs; // texture coords indices
private Arraylist<int[]> facesNormIdxs; // normal indices

The Faces.addFace() method (called from OBJModel.readModel()) pulls the terms out of an f
line, builds arrays for the vertices, texture coordinates, and normals indices, and adds those arrays
to the ArrayLists.

Things are complicated by the fact that terms may be missing texture and normal information:

public boolean addFace(String line)

{
try {
line = line.substring(2); // skip the "f "
StringTokenizer st = new StringTokenizer(line, " ");

int numTokens = st.countTokens(); // number of v/vt/vn tokens
// create arrays to hold the v, vt, vn indices

int v[] = new int[numTokens];

int vt[] = new int[numTokens];

int vn[] = new int[numTokens];

for (int i = 0; 1 < numTokens; i++) {
String faceToken = addFaceVals(st.nextToken());
// get a v/vt/vn token

StringTokenizer st2 = new StringTokenizer(faceToken, "/");
int numSeps = st2.countTokens();
// how many '/'s are there in the token

v[i] = Integer.parselnt(st2.nextToken());

vt[i] = (numSeps > 1) ? Integer.parselnt(st2.nextToken()) : 0;

vn[i] = (numSeps > 2) ? Integer.parseInt(st2.nextToken()) : 0;
// add 0s if the vt or vn index values are missing;
// 0 is a good choice since real indices start at 1

}

// store the indices for this face

facesVertIdxs.add(v);

facesTexIdxs.add(vt);

facesNormIdxs.add(vn);

catch (NumberFormatException e) {
System.out.println("Incorrect face index");
System.out.println(e.getMessage());
return false;
}
return true;
} // end of addFace()

CHAPTER 16 = TOURING THE WORLD 449

Reading in an MTL File

The processing of an MTL file is handled by a Materials object. readMaterials() parses the MTL file
line by line, adding Material objects to a materials ArrayList:

// global
public Arraylist<Material> materials;
// stores the Material objects built from the MTL file data

private void readMaterials(BufferedReader br)
{
try {
String line;
Material currMaterial = null; // current material

while (((line = br.readlLine()) != null)) {
line = line.trim();
if (line.length() == 0)
continue;

if (line.startsWith("newmtl ")) { // new material
if (currMaterial != null) // save previous material
materials.add(currMaterial);

// start collecting info for new material
currMaterial = new Material(line.substring(7));

}

else if (line.startswith("map Kd ")) { // texture filename
String fileName = MODEL DIR + line.substring(7);
currMaterial.loadTexture(fileName);

else if (line.startsWith("Ka ")) // ambient color
currMaterial.setKa(readTuple3(line));

else if (line.startsWith("Kd ")) // diffuse color
currMaterial.setKd(readTuple3(line));

else if (line.startsWith("Ks ")) // specular color
currMaterial.setKs(readTuple3(line));

else if (line.startsWith("Ns ")) { // shininess
float val = Float.valueOf(line.substring(3)).floatValue();
currMaterial.setNs(val);

}

else if (line.charAt(0) == 'd") { // alpha
float val = Float.valueOf(line.substring(2)).floatValue();
currMaterial.setD(val);

}
else if (line.startsWith("illum ")) { // illumination model
// not implemented

else if (line.charAt(o) == "#') // comment line
continue;

else
System.out.println("Ignoring MTL line:

+ line);

materials.add(currMaterial);

450

CHAPTER 16 ' TOURING THE WORLD

catch (IOException e)
{ System.out.println(e.getMessage()); }
} // end of readMaterials()

When a newmtl statement is encountered, the current Material object is added to the materials
ArrayList, and a new object is created, ready to be filled with color and texture information read
from subsequent statements.

The Ka, Kd, Ks, Ns, and d values are passed to the Material object via set methods. When
readMaterials() sees a map_Kd statement, it calls loadTexture() in the current Material object:

// in the Material class
// global texture info
private String texFnm;

private Texture texture;

public void loadTexture(String fnm)
{
try {
texFnm = fnm;
texture = TextureIO.newTexture(new File(texFnm), false);
texture.setTexParameteri(GL.GL_TEXTURE MAG FILTER, GL.GL NEAREST);
texture.setTexParameteri(GL.GL_TEXTURE_MIN FILTER, GL.GL NEAREST);
}
catch(Exception e)
{ System.out.println("Error loading texture
} // end of loadTexture()

+ texFnm); }

Recording Material Use

A subtle aspect of the OBJ format is how materials are linked to faces. After a material is named in a
usemtl statement, all subsequent faces will use it for rendering until another usemtl line is encoun-
tered, as in the following example:

usemtl couch

f 10/10/287 9/9/287 8/8/287

t 10/10/287 8/8/287 7/7/287

f 10/10/287 7/7/287 6/6/287

f 10/10/287 6/6/287 5/5/287
// many more faces ...

All the faces defined after the usemtl line will use the couch material at render time.
When OBJModel.readModel() encounters a usemtl statement, it stores the information
by passing the current face index and material name to a FaceMaterials object:

else if (line.startsWith("usemtl ")) // use materials
faceMats.addUse(numFaces, line.substring(7));

numFaces contains the current index, and the substring is the material name.
A HashMap in the FaceMaterials object is employed to connect face indices to material names:

private HashMap<Integer, String>faceMats;

CHAPTER 16 = TOURING THE WORLD

FaceMaterials.addUse() adds a new face index and material name to faceMats:

public void addUse(int faceldx, String matName)
{
// store the face index and the material it uses
if (faceMats.containsKey(faceIdx)) // face index already present
System.out.println("Face index " + faceldx +
" changed to use material " + matName);

faceMats.put(faceldx, matName);

// other non-relevant code...
} // end of addUse()

Centering and Resizing a Model

After the OBJ and MTL files have been read in, OBJModel calls centerScale() to center the model at
the origin and resize it. The size is either specified in OBJModel’s constructor or defaults to 1 unit.

centerScale() relies on the ModelDimensions object, which stores the minimum and maximum
coordinates for the model and includes methods for calculating the model’s largest dimension and
center point:

// global
private float maxSize; // for scaling the model

private void centerScale()

{
// get the model's center point
Tuple3 center = modelDims.getCenter();

// calculate a scale factor
float scaleFactor = 1.0f;
float largest = modelDims.getlargest();
if (largest != 0.0f)
scaleFactor = (maxSize / largest);
System.out.println("Scale factor: " + scaleFactor);
// modify the model's vertices
Tuple3 vert;
float x, vy, z;
for (int i = 0; 1 < verts.size(); i++) {
vert = (Tuple3) verts.get(i);
x = (vert.getX() - center.getX()) * scaleFactor;
vert.setX(x);
y = (vert.getY() - center.getY()) * scaleFactor;
vert.setY(y);
z = (vert.getZ() - center.getZ()) * scaleFactor;
vert.setZ(z);
}
} // end of centerScale()

centerScale() directly modifies the model’s vertices to modify its scale. An alternative approach,
which may seem more efficient, is to apply translation and scaling transformations to the geometry.
Unfortunately, a scaling transformation also affects the model’s normals, so they’re no longer guar-
anteed to be of unit length. This will cause the model’s color to change at render time and textures
to be positioned incorrectly.

451

452

CHAPTER 16 ' TOURING THE WORLD

Creating a Display List for the Model

Once OBJModel has centered and scaled the model, it can render it to a display list. Subsequent
calls to OBJModel.draw() will execute the list, greatly improving the drawing speed.
OBJModel.drawToList() creates the display list:

// globals
private int modelDisplList; // the model's display list
private boolean flipTexCoords = false;

// whether the texture coords should be vertically flipped

private void drawTolist(GL gl)

{
modelDisplList = gl.glGenlists(1);
gl.glNewList(modelDispList, GL.GL COMPILE);

gl.glPushMatrix();
// render the model face-by-face
String faceMat;
for (int i = 0; i < faces.getNumFaces(); i++) {
faceMat = faceMats.findMaterial(i);
// get material used by face i
if (faceMat != null)
flipTexCoords = materials.renderWithMaterial(faceMat, gl);
// render using that material
faces.renderFace(i, flipTexCoords, gl); // draw face i

}
materials.switchOffTex(gl);
gl.glPopMatrix();

gl.glEndList();
} // end of drawTolist()

drawToList() draws each face by calling Faces.renderFace() in a loop. Before rendering a face, it
checks whether the face’s index is associated with a material (with FaceMaterials.findMaterial()). If a
material change is required, it is loaded into OpenGL by Materials.renderWithMaterial().

Materials.renderWithMaterial() assigns a value to the flipTexCoords boolean, which is passed
to FaceMaterials.findMaterial(). The boolean indicates whether the texture’s coordinates need to be
vertically flipped when they’re mapped to the shape’s coordinates at render time.

Texturing may still be enabled at the end of the loop, so a call to Materials.switchOffTex()
makes sure that it’s switched off and that the lights are reenabled.

Finding a Material

The FaceMaterial instance, faceMats, stores a HashMap of face indices mapped to material names.
When FaceMaterial.findMaterial() is called with a face index, the retrieval of the associated material
name is a fast lookup:

// in the FaceMaterial class
private HashMap<Integer, String>faceMats;
// the face index (integer) where a material is first used

public String findMaterial(int faceIdx)
{ return (String) faceMats.get(faceldx); }

CHAPTER 16 = TOURING THE WORLD

If the index isn’t in the HashMap, the method returns null, which is tested for back in OB]J-
Model.drawToList().

Rendering with a Material

If the face that’s about to be rendered has an associated material, it needs to be loaded first.
Materials.renderWithMaterial() has two types of material to deal with colors and textures. Also,
before a new material can be loaded, any existing texturing must be disabled:

// in the Materials class
// globals
private String renderMatName = null;
// stores the material currently being used for rendering
private boolean flipTexCoords = false;
// whether the model's texture coords should be vertically flipped

public boolean renderWithMaterial(String faceMat, GL gl)

if (!faceMat.equals(renderMatName)) { // is faceMat new?
renderMatName = faceMat;
switchOffTex(gl); // switch off any previous texturing

// set up new rendering material

Texture tex = getTexture(renderMatName);

if (tex != null) { // use the material's texture
switchOnTex(tex, gl);
flipTexCoords = tex.getMustFlipVertically();

else // use the material's colors
setMaterialColors(renderMatName, gl);

return flipTexCoords;
} // end of renderWithMaterial()

renderWithMaterial() checks the new material name (stored in faceMat) with the name of the
currently loaded material (in renderMatName) and makes no changes if the names are the same.

The method returns a boolean indicating whether the texture’s coordinates need to be verti-
cally flipped when they’re mapped to the shape’s coordinates. The current value is stored in a global
so it can be returned by future calls to renderWithMaterial() when the material name hasn’t
changed.

The method doesn't allow color and texturing to be mixed (i.e., blended). Any face color is
ignored when a texture is applied.

switchOffTex() switches off 2D texturing (and enables lighting lighting). switchOnTex() turns
texturing on (and disables lighting):

// global
private boolean usingTexture = false;

public void switchOffTex(GL gl)

if (usingTexture) {
gl.glDisable(GL.GL_TEXTURE_2D);
usingTexture = false;
gl.glEnable(GL.GL_LIGHTING);

453

454

CHAPTER 16 ' TOURING THE WORLD

} // end of switchOffTex()

private void switchOnTex(Texture tex, GL gl)

gl.glDisable(GL.GL_LIGHTING);
gl.glEnable(GL.GL_TEXTURE 2D);
usingTexture = true;
tex.bind();

} // end of switchOnTex()

getTexture() iterates through the materials ArrayList until it finds the named material and
retrieves its texture:

// global
private Arraylist<Material> materials;
// stores the Material objects built from the MTL file data

private Texture getTexture(String matName)
{
Material m;
for (int i = 0; i < materials.size(); i++) {
m = (Material) materials.get(i);
if (m.hasName(matName))
return m.getTexture();

return null;
} // end of getTexture()

setMaterialColors() performs a similar iteration through materials, but gets the Material object
to turn on its own colors:

private void setMaterialColors(String matName, GL gl)

Material m;
for (int i = 0; i < materials.size(); i++) {
m = (Material) materials.get(i);
if (m.hasName(matName))
m.setMaterialColors(gl);

} // end of setMaterialColors()

Material.setMaterialColors() consists of several calls to GL.gIMaterialfv() to switch on the ambi-
ent, diffuse, and specular colors for the material and its shininess:

// in the Material class

// global color info

private Tuple3 ka, kd, ks; // ambient, diffuse, specular colors
private float ns, d; // shininess and alpha

public void setMaterialColors(GL gl)
{
if (ka !'= null) { // ambient color
float[] colorKa = { ka.getX(), ka.getY(), ka.getZ(), 1.0f };
gl.glMaterialfv(GL.GL_FRONT_AND BACK, GL.GL_AMBIENT, colorKa,O0);

if (kd != null) { // diffuse color

CHAPTER 16 = TOURING THE WORLD

float[] colorkd = { kd.getX(), kd.getY(), kd.getz(), 1.0f };
gl.glMaterialfv(GL.GL_FRONT_AND BACK, GL.GL DIFFUSE, colorKd,o0);

if (ks != null) { // specular color
float[] colorKs = { ks.getX(), ks.getY(), ks.getZ(), 1.0f };
gl.glMaterialfv(GL.GL_FRONT_AND BACK, GL.GL_SPECULAR,colorKs,0);

if (ns != 0.0f) // shininess
gl.glMaterialf(GL.GL_FRONT AND BACK, GL.GL SHININESS, ns);

if (d !'= 1.0f) { // alpha
// not implemented

}
} // end of setMaterialColors()

IT'haven’t implemented transparency, although the Material object stores an alpha value (in the
d variable). It would require the use of blending and depth testing and the inclusion of the d value
in the three calls to GL.gIlMaterialfv().

Rendering a Face

The code for rendering a face is complicated by the use of indices in the OBJ data. Each face is
defined by a sequence of terms, with each term consisting of indices pointing to the actual vertex,
texture coordinate, and normal data, as shown in the following example:

f 104/22/188 114/45/198 78/78/138
f 81/56/144 104/87/188 78/21/138

The numbers are indices for the vertices, texture coordinates, and normals data.
Faces.renderFace()’s task is to draw the ith face of the model. The i value is used to access the
ith arrays in facesVertldxs, facesTexIdxs, and facesNormIdxs:

private Arraylist<int[]> facesVertIdxs;
private Arraylist<int[]> facesTexIdxs;
private Arraylist<int[]> facesNormIdxs;

The array retrieved from facesVertldxs contains vertex indices for the ith face. The array
extracted from facesTexIdxs holds texture coordinate indices, and the array from facesNormIdxs has
normal indices.

The actual data is stored in the verts, normals, or texCoords ArrayLists:

private Arraylist<Tuple3> verts;
private Arraylist<Tuple3> normals;
private ArraylList<Tuple3> texCoords;

When an index (e.g., index value j) is read from one of the indices arrays, such as facesVertIdxs,
renderFace() uses it to access the j-1th tuple in verts. This tuple contains the model’s vertex for
index j.

T'use j-1 since the OBJ format starts its indices at 1, while the tuples in the verts, normals, and
texCoords ArrayLists start at position 0.

The following is Faces.renderFace():

// global
private static final float DUMMY _Z TC = -5.0f;

public void renderfFace(int i, boolean flipTexCoords, GL gl)

455

456 CHAPTER 16 ' TOURING THE WORLD

if (i »>= facesVertIdxs.size()) // i out of bounds?
return;

int[] vertIdxs = (int[]) (facesVertIdxs.get(i));
// get the vertex indices for face i

int polytype; // the shape of the faces
if (vertIdxs.length == 3)
polytype = gl.GL_TRIANGLES;
else if (vertIdxs.length == 4)
polytype = gl.GL_QUADS;
else
polytype = gl.GL_POLYGON;

gl.glBegin(polytype);

// get the normal and tex coords indices for face i
int[] normIdxs = (int[]) (facesNormIdxs.get(i));
int[] texIdxs = (int[]) (facesTexIdxs.get(i));

/* render the normals, tex coords, and vertices for face i
by accessing them using their indices */
Tuple3 vert, norm, texCoord;

float yTC;
for (int f = 0; f < vertIdxs.length; f++) {
if (normIdxs[f] != 0) { // if there are normals, render them

norm = (Tuple3) normals.get(normIdxs[f] - 1);
gl.glNormal3f(norm.getX(), norm.getY(), norm.getZ());

if (texIdxs[f] !'=0) { // if there are tex coords, render them
texCoord = (Tuple3) texCoords.get(texIdxs[f] - 1);
yTC = texCoord.getY();
if (flipTexCoords) // flip tuple's y-value (the texture's t-value)
yTC = 1.0f - yTC;

if (texCoord.getZ() == DUMMY_Z TC) // using 2D tex coords
gl.glTexCoord2f(texCoord.getX(), yTC);

else // 3D tex coords
gl.glTexCoord3f(texCoord.getX(), yTC, texCoord.getZ());

vert = (Tuple3) verts.get(vertIdxs[f] - 1);
// render the vertices
gl.glVertex3f(vert.getX(), vert.getY(), vert.getZ());

gl.glEnd();
} // end of renderFace()

The vertex, texture coordinates, and normals data is rendered using the GL methods:
glVertex3f(), glTexCoord2f(), and glNormal3f().

If 3D texture coordinates are detected, glTexCoord3f() is called, but only the 2D part will be
drawn due to the use of 2D texture rendering in switchOnTex().

CHAPTER 16 = TOURING THE WORLD

renderFace() is passed a boolean called flipTexCoords that indicates whether the texture’s coor-
dinates need to be vertically flipped when they’re mapped to the shape’s coordinates. This is done
by subtracting the texture’s t-value from 1.0.

OB]J face data may leave out texture coordinate and normal indices. For example, a face with-
out texture coordinates will have the following form:

f 104//188 114//198 78//138
f 81//144 104//188 78//138

If faces don’t use normals or texture coordinates, the indices arrays will contain 0s. This is
tested for in renderFace(), and the calls to glTexCoord2f() and gINormal3f() are skipped.

Drawing a Model

The lengthy code needed to create a display list has its payoff in the brevity and speed of the draw-
ing operation, OBJModel.draw():

// in the O0BJIModel class
private int modelDisplist; // the model's display list

public void draw(GL gl)
{ gl.glCallList(modelDisplList); }

draw() is the only public method in OBJModel, aside from its constructors.

When to Create the Display List

The display list technique employed in draw() has a drawback: the display list (in modelDispList)
must already exist. The list is created in drawToList() (described previously in the “Creating a Dis-
play List for the Model” section), which is called at the end of the loading phase.

This approach can be criticized since display list creation is arguably not part of loading. In
practical terms, it means that the loader can only start once it has a valid reference to the OpenGL
state. This makes it impossible for the loader to be used for offline batch processing tasks where
there is no rendering phase and no OpenGL state.

OBJLoader could be rewritten to not finish its loading phase with a call to drawToList(). The call
could be moved to the start of draw() instead, with the addition of testing code so that drawToList()
was only called once, when draw() was executed for the first time. This would free the loading phase
from its dependency on the OpenGL state, but with the small penalty of having draw() take a little
longer to render the model initially.

Viewing a Model

Before moving on to TourModelGL, I'll demonstrate the OBJLoader package by using it inside a sim-
ple model display application, ModelLoaderGL (shown in action in Figure 17-1).

ModelLoaderGL utilizes the callback coding approach, described in Chapter 15 and illustrated
by Figure 17-5.

457

458

CHAPTER 16 © TOURING THE WORLD

FPSAnimator
. GLEventListener
call display() listener

repeatedly callbacks:
at specified init()
intervals X reshape()
JFrame JPgnel display()
(container for displayChanged()

the canvas)

Figure 17-5. The callback coding framework

The ModelLoaderGL JFrame contains a JPanel that holds a GLCanvas. The GLCanvas displays
the OBJ model, which may be rotating. The model is scaled and centered at the origin.

The canvas’s listener is ModelLoaderGLListener (a subclass of GLEventListener), and the can-
vas’s display is updated by an FPSAnimator instance using fixed-rate scheduling.

The simplicity of the application is reflected in the class diagrams for ModelLoaderGL in
Figure 17-6 (only the public methods are listed).

ModelLoaderGL

<<Unknown>>::JFrame
& main(...) [:

® todelloaderGL{.)

ModelLoaderGLListener

B
display(..) | ‘D[<<interface>>

B o
= ic::i?(pl)ayChanged(...) <<Unknown>>::GLEventListener

® todelloaderGLListener(.)
® reshapel.)

Figure 17-6. Class diagrams for ModelLoaderGL

Loading the Model

The name of the model is supplied on the command line and passed to the ModelLoaderGLListener
constructor where it’s stored in the global string modelName.
When init() is called, the model is loaded using its name:

// in the ModelloaderGLListener class
// globals

private String modelName;

private OBIModel model;

public void init(GLAutoDrawable drawable)

GL gl = drawable.getGL();
// other non-relevant lines...

CHAPTER 16 = TOURING THE WORLD

model = new OBIModel(modelName, maxSize, gl, true);
} // end of init()

The maxSize value in the OBJModel constructor specifies the maximum size of the model’s
largest dimension. The true argument switches on verbose reporting of the model’s details, which
includes the number of vertices, normals, and texture coordinates found and its dimensions and
colors used. They're printed to standard output.

Drawing the Model
OBJModel.draw() is called in the display() callback method:
public void display(GLAutoDrawable drawable)

GL gl = drawable.getGL();
// other nonrelevant lines...

model.draw(gl);
gl.glFlush();
} // end of display()

Other JOGL Model Loaders

Pournaras’s JautOGL is a 3D multiplayer racing game with many interesting features, such as use of
the full-screen exclusive mode (FSEM), 3D sound through JOAL, multiple camera views, and a UDP
client-server model employing nonblocking sockets
(http://today.java.net/pub/a/today/2006/10/10/development-of-3d-multiplayer-racing-
game.html and https://jautogl.dev.java.net/).

The loader part of the game consists of two classes, GLModel and MtlLoader. The former is
responsible for parsing and displaying the OBJ file, the latter for loading the MTL file. Texturing isn’t
supported, and coloring is implemented using GL.GL_COLOR_MATERIAL and calls to
GL.glColor4f().

Glass’s loader is part of his 3D asteroid game tutorial (http://www.cokeandcode.com/asteroid-
stutorial/) built using IWJGL (which is quite similar to JOGL). He also develops a game
framework, utilities for drawing the GUI (e.g., menus), a texture loader, classes for 3D sprites, a par-
ticle system, and sound based around LIWJGLs binding of OpenAL and JOrbis for decoding OGG
files.

His loader handles v, vt, vn, and f OB]J statements, but there’s no MTL capability. Instead, a tex-
ture is loaded separately and wrapped around the entire model.

An OB]J loader is under development by Chris Brown at https://jglmark.dev.java.net/. As of
March 2007, it didn’t handle materials or textures.

A 3DS loader can be found at http://joglutils.dev.java.net/. The ThreeDS package by Greg
Rodgers supports colors and textures, but 3DS features such as keyframe animation aren’t in place
yet. It is part of the full joglutils JAR, which is downloadable from the Documents & Files folder at
the web site.

The NeHe site (http://nehe.gamedev.net/) is an excellent resource for OpenGL tutorials. Les-
son 31 by Brett Porter explains how to build a MilkShape3D model loader. Color and texturing is
available but not animation. The JOGL port by Nikolaj Ougaard can be found at
http://pepijn.fab4.be/?page_id=34.Interestingly, it includes code for keyframe positioning of
joints, but it was incomplete as of March 2007.

459

460

CHAPTER 16 ' TOURING THE WORLD

The need for model loaders in JOGL will undoubtedly drive development forward at a rapid
pace, so it’s a good idea to regularly search the JOGL forum at
http://www.javagaming.org/forums/index.php?board=25.0 for announcements about new and
improved packages.

The TourModelsGL Application

Having developed the OBJLoader package and tested it with ModelLoaderGL, it’s time to consider
TourModelsGL. It reuses a lot of code from the TourGL example in Chapter 16. It implements the
active rendering framework, and the 3D scene reuses TourGLs green and blue checkerboard floor
with numbers along its x- and z- axes.

The class diagrams for TourModelsGL are shown in Figure 17-7; only public methods are
shown.

TourModelsGL

® main..) [<<Unknown>>::JFrame

® TaurkdodelsGL(.)

H windowactivated(..) "’-\\/

H windowClosed(..) | <«<interface>>

B windowClasing(.) :¢<Unknown>>:WindowListener

H windowDeactivated(..)
H windowDeiconified(.)
H windowlconified(..)
H windowOpened(.)

N
TourModelsCanvasGL

B addMatify(.) [::<«Unknown>>::Canvas
Bl pauseGamel.)

processHits(..) —"\\/

¥l reshape..

& :giu?n%%galne(_.) — «<interface>>
 runi..) :<<Unknown>>::Runnable

H stopGame(..)
® TaurkdodelsCanvasGL{.)
H ypdate(..)

\2

JOALSoundMan

H cleanUp(.)
]

3]
2]

B JOALSoundhdan(.)
]

]
H movelistener(.)
]

]
H setlistenerOri(.)
H setlistenerPas(.)
]

]
H turnListener(.)

Figure 17-7. Class diagrams for TourModelsGL

TourModelsGL creates the JFrame and JPanel around the heavy-weight TourModelsCanvasGL
canvas and handles window events such as resizing and iconification.

CHAPTER 16 = TOURING THE WORLD

TourModelsCanvasGL spawns a single thread that initializes rendering, then loops, carrying
out an update/render/sleep cycle with a fixed period.

Aside from the checkerboard, TourModelsCanvasGL makes use of TourCanvasGLs user naviga-
tion code, which converts key presses into camera movement forward, backward, left, and right.
One change is that the user can’t move vertically. This simplifies the 3D audio requirements for the
game and lets me reuse JOALSoundMan from Chapter 13 (it assumes that a listener stays on the XZ
plane).

TourModelsCanvasGL doesn't display a skybox, billboard trees, a rotating sphere, or the splash
screen and “Game Over” message. Instead, the scene contains four OBJ models, shown in Figure 17-
8 (and also in Figure 17-2).

=

Figure 17-8. The models in TourModelsGL

The other new elements in TourModelsCanvasGL are the following:

* The ability to select (pick) the penguin or couch with the mouse. OpenGLs selection mode is
utilized to implement this feature.

¢ The penguin singing with the help of JOALSoundMan.

* The spooky fog (which is switched off in Figures 17-2 and 17-8 but can be seen in Figure 17-
3).

Each of these is explained in detail in the rest of this chapter.

Adding Models

The four models (penguin, rose and vase, racing car, and couch) were chosen to illustrate the fea-
tures (and limitations) of the OBJLoader package.

461

462

CHAPTER 16 ' TOURING THE WORLD

The penguin is a mesh wrapped with a single texture. The use of texturing means that the color
lighting values defined in the penguin’s MTL file are ignored.

The couch employs a single diffuse color, but the model’s normals allow it to be affected by the
scene’s light source.

The rose and vase model has several colors using various ambient, diffuse, and specular set-
tings.

I borrowed the racing car model from Pournaras’s JautOGL game and modified its MTL file so
the car uses different colors and textures on different faces.

Loading the Models
The models are loaded during the initialization phase in TourModelsCanvasGL.initRender():

// globals for the four OBJ models
private OBIModel couchModel, carModel, penguinModel, roseVaseModel;

// loading done in initRender()

couchModel = new OBJModel("couch", 2.0f, gl, false);
carModel = new OBIModel("formula", 4.0f, gl, false);
penguinModel = new OBIModel("penguin”, gl);

roseVaseModel = new OBIModel("rose+vase"”, 3.2f, gl, false);

OBJModel attempts to load an OB]J file with the specified name. The four-argument version of
the constructor includes a maximum size, a reference to the GL state, and a boolean that deter-
mines whether verbose model details are printed to standard output.

It’s important to set the model’s size using a constructor argument rather than a later call to
GL.glScalef(), since a scaling transformation will affect the model’s normals and so will modify the
model’s coloring and/or texturing.

The two-argument version of the OBJModel constructor assumes that the maximum size of the
model will be 1.0f and that its details shouldn’t be output.

The previous code fragments show a potential drawback of this loader: the need for a reference
to the OpenGL state (the gl argument) in the call to the OBJModel constructor. As explained previ-
ously in the “When to Create the Display List” section, the reference is required so a display list can
be created for the model at the end of the loading phase.

Drawing the Models

renderScene() calls drawModels() to render the models. Each model is drawn after being translated
and rotated:

private void drawModels()

{

drawCouch();

// the racing car

gl.glPushMatrix();
gl.glTranslatef(-3.0f, 0.5f, -3.0f); // move left, up, back
carModel.draw(gl);

gl.glPopMatrix();

drawPenguin();

// the rose vase

gl.glPushMatrix();
gl.glTranslatef(of, 1.6f, of); // move up
roseVaseModel.draw(gl);

CHAPTER 16 = TOURING THE WORLD

gl.glPopMatrix();
} // end of drawModels()

private void drawCouch()

{
gl.glPushMatrix();
gl.glTranslatef(4.0f, 0.5f, -4.0f); // move right, up, back
gl.glRotatef(-90.0f, 1.0f, 0.0f, 0.0f);
// rotate clockwise around x-axis
couchModel.draw(gl);
gl.glPopMatrix();
} // end of drawCouch()

private void drawPenguin()

gl.glPushMatrix();
gl.glTranslatef(2.0f, 0.5f, of); // move right, up
gl.glRotatef(-90.0f, 0.0f, 1.0f, 0.0f); // rotate clockwise
penguinModel.draw(gl);
gl.glPopMatrix();
} // end of drawPenguin()

The couch and penguin are drawn by separate methods so these functions can be reused by
the picking code described in the next section.

The calls to GL.glPushMatrix() and GL.glPopMatrix() stop the translation and rotation opera-
tions from affecting other elements in the scene. If a model isn’t moved from its default position at
the origin, stack pushing and popping isn’'t needed.

The rotation of a model around the x-axis (e.g., for the couch) is a fairly common requirement
since many drawing packages use the XY plane as a “floor” rather than XZ.

Let’s Be Picky

OpenGL supports a selection (or picking) mode that makes it fairly straightforward to click an
object inside a scene with the mouse and retrieve details about it, such as its ID and distance from
the camera.

Picking is enabled for the penguin and the couch in TourModelsCanvasGL. For example, I can
click the penguin’s eye when the camera is orientated as in Figure 17-9.

Figure 17-9. The penguin in front of the couch

463

464

CHAPTER 16 © TOURING THE WORLD

The application then prints the following:

No. of hits: 2

Hit: 1

minZ: 0.7478; maxZ: 0.769
Name(s): couch

Hit: 2

minZ: 0.3818; maxZ: 0.4625
Name(s): penguin

Picked the penguin

The positioning of the penguin in front of the couch means that both models are selected
when the user clicks the penguin’s eye. Their depth information (stored in minZ and maxZ) allows
the application to determine that the penguin is nearest to the camera, so it is chosen from the two
possibilities.

If the camera is moved so the models don't overlap, picking will only return details for the one
clicked upon.

The picking code has four main stages:

1. The cursor coordinates of a mouse press are recorded.

2. Selection mode is entered when it’s time to render the scene, and the viewing volume is
reduced to a small area around the cursor location.

3. The scene is rendered, which means that details about named objects inside the viewing
volume are stored in hit records in a selection buffer. Rendering is a misleading word since
nothing is drawn to the frame buffer.

4. Once the selection mode has been exited, name and depth information can be extracted
from the hit records.

An object is named with an integer (not a string), which is pushed onto the name stack prior to
the object’s “rendering” in selection mode, and popped afterward. The names stored in the hit
records are copied from the name stack when the viewing volume is examined in stage 3.

Capturing Mouse Presses
A mouse listener is set up in TourModelsCanvasGLs constructor:

// in TourModelsCanvasGL()

addMouselistener(new MouseAdapter() { // used for picking
public void mousePressed(MouseEvent e)
{ mousePress(e); }

1;

mousePress() stores the cursor coordinates and switches on the inSelectionMode boolean:

// globals for picking
private boolean inSelectionMode = false;
private int xCursor, yCursor;

private void mousePress(MouseEvent e)
{

xCursor = e.getX();

yCursor = e.getY();

inSelectionMode = true;

}

CHAPTER 16 = TOURING THE WORLD

Switching to Selection Mode

In renderScene(), the inSelectionMode boolean is used to distinguish between normal rendering
and selection mode:

// global
private GLDrawable drawable; // the rendering 'surface'

// in renderScene()
if (inSelectionMode)
pickModels();
else { // normal rendering
drawFloor();
drawModels();
drawable.swapBuffers(); // put the scene onto the canvas
// swap front and back buffers, making the new rendering visible

}

All the normal scene rendering (e.g., of the floor and models) should be moved to the else part
of the if-test since there’s no point drawing objects unrelated to picking when selection mode is
enabled.

In previous active rendering examples (e.g., TourCanvasGL in the previous chapter), the call to
GLDrawable.swapBuffer() occurs after renderScene() has returned, back in renderLoop(). The call
has been moved so it only occurs after the scene has really been rendered. Selection mode render-
ing only affects the selection buffer, so there’s no need to swap the front and back buffers.

If the swapBuffers() call is left in renderLoop() in TourModelsCanvasGL, it triggers a nasty
flicker since the back buffer is empty after picking but filled after normal rendering. This means the
user will see a white screen for a moment after each selection.

Model Picking
pickModels() illustrates the picking code stages:

// global names (IDs) for pickable models
private static final int COUCH ID = 1;

private static final int PENGUIN_ID = 2;

private void pickModels()
// draw the couch and penguin models in selection mode

startPicking();

gl.glPushName(COUCH_ID);
drawCouch();
gl.glPopName();

gl.glPushName (PENGUIN_ID);
drawPenguin();
gl.glPopName();

endPicking();
} 7/ end of pickModels()

465

466

CHAPTER 16 ' TOURING THE WORLD

Picking initialization (stage 2) is carried out in startPicking(), then the objects are rendered
(stage 3) and picking is terminated by endPicking() (stage 4), which also processes the hit records in
the selection buffer.

The drawCouch() and drawPenguin() methods are reused without change, but their calls are
bracketed by the pushing and popping of their names onto OpenGLs name stack.

A common mistake is to forget to pop a name after its object has been rendered. Also,
GL.glPushName() and GL.glPopName() only work after the selection mode has been enabled
(which is done in startPicking()).

The Start of Picking

startPicking() switches to the selection mode, initializes the selection buffer and name stack, and
creates a reduced-size viewing volume around the cursor:

// globals
private static final int BUFSIZE = 512; // size of buffer
private IntBuffer selectBuffer;

private void startPicking()

{
// initialize the selection buffer
int selectBuf[] = new int[BUFSIZE];
selectBuffer = BufferUtil.newIntBuffer(BUFSIZE);
gl.glSelectBuffer(BUFSIZE, selectBuffer);

gl.glRenderMode(GL.GL_SELECT); // switch to selection mode
gl.glInitNames(); // make an empty name stack

// save the original projection matrix
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glPushMatrix();
gl.glloadIdentity();

// get the current viewport
int viewport[] = new int[4];
gl.glGetIntegerv(GL.GL_VIEWPORT, viewport, 0);

// create a 5x5 pixel picking volume near the cursor location
glu.gluPickMatrix((double) xCursor,

(double) (viewport[3] - yCursor),

5.0, 5.0, viewport, 0);

/* set projection (perspective or orthogonal) exactly as it is in
normal rendering (i.e. duplicate the gluPerspective() call
in resizeView()) */
glu.gluPerspective(45.0,
(float)panelWidth/(float)panelHeight, 1, 100);

gl.glMatrixMode(GL.GL_MODELVIEW); // restore model view
} // end of startPicking()

JOGLs BufferUtil utility class was utilized to create an integer buffer
(BufferUtil.newIntBuffer()). The selection buffer in OpenGL is an array of unsigned integers,
a slightly different thing, which impacts how depth values are extracted later.

CHAPTER 16 = TOURING THE WORLD

The first two arguments of GLU.gluPickMatrix() are the cursor’s (x, y) location, but it needs to
be converted from Java coordinate’s scheme (x and y starting at the top left) to OpenGLs scheme
(x and y starting at the bottom left). This is done by subtracting the cursor’s y-value from the
viewport’s height: (viewport[3] - yCursor).

A common problem is forgetting to set the selection mode’s projection (perspective or orthogo-
nal) to be the same as in normal rendering. In the active rendering framework, this is done with a
call to GLU.gluPerspective() in resizeView(), which is duplicated in startPicking().

The End of Picking

endPicking() switches rendering back to normal, which has the side-effect of making the selection
buffer available:

private void endPicking()

{

// restore original projection matrix
gl.glMatrixMode(GL.GL_PROJECTION);
gl.glPopMatrix();
gl.glMatrixMode(GL.GL_MODELVIEW);
gl.glFlush();

// return to normal rendering mode, and process hits
int numHits = gl.glRenderMode(GL.GL_RENDER);
processHits(numHits);

inSelectionMode = false;
} // end of endPicking()

The buffer is examined in processHits().

Processing the Hit Records

processHits() simply lists all the hit records in the selection buffer and reports the name of the
object that was picked closest to the viewport.
Each hit record contains the following:

* The number of names assigned to the hit object (usually there’s only one, but it’s possible to
assign more)

¢ The minimum and maximum depths of the hit

¢ The names assigned to the hit object (which come from the name stack)

One source of confusion is that the depth values are for the part of an object that intersects
with the viewing volume; they do not correspond to the object’s z-axis dimensions.

Also, although the OpenGL specification talks about names on the name stack and in the hit
records, it's more accurate to think of them as integer name IDs:

public void processHits(int numHits)
{
if (numHits == 0)
return; // no hits to process

System.out.println("No. of hits: " + numHits);

// storage for the name ID closest to the viewport
int selectedNameID = -1; // dummy initial values
float smallestZ = -1.0f;

467

468 CHAPTER 16 ' TOURING THE WORLD

boolean isFirstloop = true;
int offset = 0;

/* iterate through the hit records, saving the smallest z value
and the name ID associated with it */
for (int i=0; i < numHits; i++) {
System.out.printIn("Hit: " + (1 + 1));

int numNames = selectBuffer.get(offset);
offset++;

// minZ and maxZ are taken from the Z buffer
float minZ = getDepth(offset);
offset++;

// store the smallest z value
if (isFirstLoop) {
smallestZ = minZ;
isFirstlLoop = false;
}
else {
if (minZ < smallestZ)
smallestZ = minZ;
}

float maxZ = getDepth(offset);
offset++;

System.out.println(" minZ: " + df4.format(minz) +
"; maxZ: " + df4.format(maxz));

// print name IDs stored on the name stack
System.out.print(" Name(s): ");
int namelD;
for (int j=0; j < numNames; j++){
nameID = selectBuffer.get(offset);
System.out.print(idToString(nameID));
if (j == (numNames-1)) {
// if the last one (the top element on the stack)
if (smallestZ == minZ) // is this the smallest min z?
selectedNameID = nameID; // then store it's name ID
}

System.out.print(" ");
offset++;
}
System.out.println();
}

System.out.println("Picked the " + idToString(selectedNameID));
System.out.println("------------- ");
} // end of processHits()

CHAPTER 16 = TOURING THE WORLD

Typical output from processHits() was shown earlier. Here’s another example, when only the
couch is picked:

No. of hits: 1

Hit: 1

minZ: 0.6352; maxZ: 0.6669
Name(s): couch

Picked the couch

A depthis in the range 0 to 1 but is stored after being multiplied by 2432 -1 and rounded to the
nearest unsigned integer. The number will be negative due to the multiplication and being cast to a
signed integer in the buffer.

The conversion of the integer back to a float is done by getDepth():

private float getDepth(int offset)

long depth = (long) selectBuffer.get(offset); // large -ve number
return (1.0f + ((float) depth / ox7fffffff));
// return as a float between 0 and 1
} // end of getDepth()

The depths aren’t linearly proportional to the distance to the viewpoint due to the nonlinear
nature of the Z buffer, but different depths can be compared to find the one closest to the camera.
The mapping from a name ID to a string is carried out by idToString():

private String idToString(int nameID)

if (nameID == COUCH_ID)
return "couch";

else if (nameID == PENGUIN_ID)
return "penguin”;

// we should not reach this point
return "nameID " + namelD;
} // end of idToString()

Gleem: A Different Way of Picking

The picking described in this chapter relies on OpenGLss selection mode, which is simple to use but
has a reputation for being slow. A more advanced solution is to utilize ray-to-triangle intersection
tests, as found in gleem (OpenGL Extremely Easy-to-Use Manipulators), a library used in many of
the JOGL demos (http://jogl-demos.dev.java.net/).

Gleem supports several forms of object selection and dragging based on the manipulators
idea first introduced in Silicon Graphics’s Open Inventor 3D graphics API (http://oss.sgi.com/
projects/inventor/). Gleem includes manipulators for translating a selected object along a line
and across a plane and for rotating it about various axes and for scaling.

The manipulator functionality employs ray casting to find intersections with the triangles
in the scene’s objects. A ray is the path followed by a light beam from the camera to the object.

Gleem includes useful camera navigation controls in its ExaminerViewer class, such as
trackball-style rotation, translation, and zooming.

Gleem was developed by Ken Russell, who is also one of the main developers of JOGL.

The source is included with the JOGL demos source code, downloadable from http://
jogl-demos.dev.java.net. Some older background information can be found at
http://www.media.mit.edu/~kbrussel/gleem/.

469

470

CHAPTER 16 ' TOURING THE WORLD

A Singing Penguin
JOALSoundMan (developed in Chapter 13) is employed to set up a 3D sound for the penguin model

and to attach an audio listener to the camera.
A JOALSoundMan instance is created in TourModelsCanvasGLs constructor:

// global
private JOALSoundMan soundMan;

// in TourModelsCanvasGL()
soundMan = new JOALSoundMan();

Locating the Penguin Sound
The penguin sound is positioned at (2, 0, 0) in initRender(), and set to play repeatedly:

// in initRender()
if (!soundMan.load("penguin", 2, 0, 0, true))
System.out.println("Penguin sound not found");
else
soundMan.play("penguin");

Although the penguin model is also loaded in initRender(), it isn’t positioned until drawPen-
guin() is called at rendering time:

private void drawPenguin()

gl.glPushMatrix();
gl.glTranslatef(2.0f, 0.5f, of); // move up, right, to (2,0.5,0)
gl.glRotatef(-90.0f, 0.0f, 1.0f, 0.0f);
// rotate the model to face left
penguinModel.draw(gl);
gl.glPopMatrix();
} // end of drawPenguin()

There’s no direct link between the audio source and the penguin model, so it’s up to the pro-
grammer to ensure they stay colocated. That’s easy here since the penguin doesn't move.

Connecting the Camera and the Listener

As the camera moves and rotates about the scene, so should the listener. The connection is made by
updating the listener’s position and y-axis orientation to match those of the camera.

Obtaining the positional data is straightforward since the camera details are stored in three
globals, xPlayer, yPlayer, and zPlayer, updated by processKey(). The listener moves by using xPlayer
and zPlayer (yPlayer isn't utilized since JOALSoundMan assumes the listener always stays on the
floor).

Linking the rotation of the camera to the listener is a bit trickier. The camera’s rotation angle is
stored in the viewAngle global, which initially has the value -90 degrees to point it along the nega-
tive z-axis. When the camera rotates clockwise around the y-axis, a positive amount is added to
viewAngle (see Figure 17-10). However, JOAL initializes its listener to point down the negative z-
axis, so it starts at 0 degrees. Also, a clockwise rotation reduces the angle rather than increases it (as
shown in Figure 17-10).

CHAPTER 16 = TOURING THE WORLD

viewAngle = -90 __— listenerAngle = 0

-X

z z
Camera Listener
Orientation Orientation

Figure 17-10. Rotating the camera and listener

TourModelsCanvasGL includes a new global, listenerAngle, which stores the current rotation
angle of the listener around the y-axis. It starts with the value 0, which corresponds to it pointing
down the negative z-axis. Both viewAngle and listenerAngle are initialized in initViewerPosn():

// globals
private double viewAngle, listenerAngle;

// in initViewerPosn()
viewAngle = -90.0; // along negative z-axis
listenerAngle = 0;

When processKey() adjusts the camera’s rotation value (in viewAngle) it also changes the lis-
tener’s rotation (in listenerAngle) but with the opposite operation (e.g., addition instead of
subtraction). For instance, the following code fragment deals with the camera turning left:

// globals
private final static double ANGLE INCR = 5.0; // degrees

// turning left in processKey()
viewAngle -= ANGLE_INCR; // subtract
listenerAngle += ANGLE_INCR; // add

The positional and rotational data are employed in renderScene() to move the listener:

// in renderScene()
soundMan.setListenerPos((float)xPlayer, (float)zPlayer);
soundMan.setListenerOri((int) listenerAngle);

The casting of listenerAngle to an integer is a requirement of the JOALSoundMan.setListen-
erOri() method, and perhaps the code should be rewritten to accept doubles (or floats).

The Fog Descends

The fog shown in Figure 17-3 makes it much harder to find the models, which could be used as the
basis of a time-constrained search game. Also, the fog reduces the amount of geometry that needs
to be rendered, thereby improving the application’s speed.

47

CHAPTER 16 ' TOURING THE WORLD

Almost all the fog-related code is in one method, addFog(), which is called from initRender():

private void addFog()
gl.glEnable(GL.GL_FOG);

gl.glFogi(GL.GL_FOG_MODE, GL.GL_EXP2);
// possible modes are: GL.GL_LINEAR, GL.GL_EXP, GL.GL_EXP2

float[] fogColor = {0.7f, 0.6f, 0.6F, 1.0f};
// same color as background
gl.glFogfv(GL.GL_FOG_COLOR, fogColor, 0);

gl.glFogf(GL.GL_FOG_DENSITY, 0.35f);

gl.glFogf(GL.GL_FOG START, 1.0f); // start depth
gl.glFogf(GL.GL_FOG END, 5.0f); // end depth

gl.glHint(GL.GL_FOG _HINT, GL.GL_DONT_CARE);
/* possible hints are: GL.GL_DONT_CARE, GL.GL_NICEST,
GL.GL_FASTEST */
} // end of addFog()

The fog is enabled and its various characteristics are set. OpenGL implements fog by blending
each pixel with the fog’s color, depending on the distance from the camera, the fog density, and the
fog mode.

Possible fog modes are GL.GL._LINEAR, GL.GL_EXP, and GL.GL_EXP2, with GL.GL_EXP2 look-
ing the most realistic but also being the most computationally expensive. If the linear blend is
chosen, start and end depths for the fog must be defined using the GL_FOG_START and
GL.GL_FOG_END attributes. If GL.GL_EXP or GL.GL_EXP2 is employed, the GL_FOG_DENSITY
attribute needs to be set.

I've used the GL.GL_EXP2 mode in addFog(), so the GL_FOG_START and GL.GL_FOG_END
values aren't really needed; I've included them to show how they’re used.

The fog color is set with the GL.GL_FOG_COLOR argument, and the scene generally looks bet-
ter if its background is the same color as well. In initRender(), I set the background to be the
following:

gl.glClearColor(0.7f, 0.6, 0.6f, 1.0f); // same color as the fog

In the clear sky screenshots (Figures 17-2, 17-8, and 17-9), the blue background was generated
with the following:

gl.glClearColor(0.17f, 0.65f, 0.92f, 1.0f); // sky blue

The GL.GL_FOG_HINT argument may be utilized by OpenGL to switch to faster or higher-
quality blending; its default value is GL.GL_DONT_CARE.

Fog can be switched off with GL.glDisable(), so it’s possible to have the fog only selectively
affect objects in the scene.

CHAPTER 16 = TOURING THE WORLD

Summary

This chapter was primarily about the development of a loader for Wavefront OBJ models, resulting
in the OBJLoader package that can load polygonal shapes utilizing multiple colors and textures
defined using the Wavefront MTL format.

The main example, TourModelsGL, is the beginning of a search-type game, which utilizes
OBJLoader to load and position models. The needs of the application also led to the discussion of
three other programming techniques: picking with OpenGL's selection mode, 3D sound, and fog.

The 3D sound (a chirping penguin) employs JOAL via the JOALSoundMan class introduced in
Chapter 13.

473

