

ltem &

ltem 1

Item 2
ltem 1-1

ltem 1-2

Item % }-1
ltem 1
Item 1
Item 1-3-4

ltem 1-4
ltem 1-5

9

ADDING SPECIAL EFFECTS

(=]
Javascript
Effacts

Events

jQuery

New Wave Javascripi

.
| About Me

—

By Chris Heilmann

WEB DEVELOPMENT SOLUTIONS

200

In this chapter we’ll talk about using JavaScript libraries to add some extra zing to your
web site. To make this as easy as possible we’ll use JavaScript libraries. We've already
touched on the subject of JavaScript libraries in Chapter 4, but now we’ll go into more
examples on how to use them. Specifically we’ll pick two common JavaScript tasks and use
one library at a time to fulfill them.

This chapter contains code examples. Do not type these in yourself, as there is no
need for that. You’ll find these examples in the code download zip file for this chap-
ter at http://www.friendsofed.com; simply unpack it to your local server in a folder
called “libraries” or something similar, and try the examples out by double-clicking the
HTML files.

Originally we meant to add readymade scripts to put into a WordPress installation with
these examples. However, seeing that some libraries are still in the process of changing in
a very short period of time, it would not be helpful to give a plug-and-play solution.
Instead, we want to encourage you to take a look at the library pages themselves and
browse the scripts generated there. Before we go on to these examples, let’s remind our-
selves about the why of JavaScript and the why of libraries.

The why of JavaScript

First things first: you don’t need JavaScript to have a good web site. Even more to the
point: a good web site should not require JavaScript to work and make sense, but
JavaScript should make some things easier for you when and if it is available.

JavaScript was invented as users demanded web sites to be more responsive. Long ago,
when reading web sites meant spending a lot of money every minute and loading a page
took several minutes, it was simply a necessity.

There is nothing more frustrating even today than having to load a form 10 times because
you forgot to enter something or you entered something in the wrong format. Now imag-
ine a scenario where you have to wait about 2 minutes for each reload and see your bill
increasing with each of them—you have a recipe for people to bang their keyboard in
frustration (no wonder the office guy doing exactly that became one of the first “funny
web videos”—see http://youtube.com/watch?v=50TZXUI-L8s).

Browser vendors realized that they needed to offer their impatient users something better
to stay in the game and turn the information superhighway into a medium worth explor-
ing for the mass market and not mere science fiction.

They first started with Java and applets—a technology that meant you had to load a large
file first, wait for it to initialize and run, and then you’d have a richer user interface. The
richer interface also meant that you didn’t have to reload the page but data could be
retrieved in the background.

ADDING SPECIAL EFFECTS

Java didn’t make it, though—the applets were large to load and very hungry when it came
to system resources. First you had to wait a lot and then your computer got slow. Not really
a good experience, which is why clever minds shut the door, put their thinking hats on, and
came up with a concept that would revolutionize the Web: a language that was embedded
in a web document or in its own file that could be loaded and executed by the browser.

Java had the problem that you needed to install the Java engine to make things run,
because Java needs to be converted to code that can run on your computer. That got sus-
picious minds wondering why they’d need to install an outside program to improve their
web experience (Flash used to suffer from the same problem). Furthermore, applets
included a lot of code since they contained the user interface.

The new language wouldn’t need that: the interface was already there, namely the HTML
document with its links, forms, and buttons. All the language needed was the interpreter
to translate JavaScript and allow it to work its magic with these interface elements, and
browser vendors simply shipped that one as part of the browser code itself.

JavaScript was born—a lightweight language that allowed developers to write programs
that could be downloaded in seconds, executed on your computer, and even cached (kept
in a temporary file on your hard drive). You had to load the programs only once and could
run them over and over again (unless you cleared your cache in between or turned
caching off).

And this is what JavaScript is meant to be: a lightweight helper technology that turns web
sites into more responsive interfaces. You can use it for good, but a lot of times it is used
for evil—more on that later.

What JavaScript can do for you

JavaScript allows for changes to the HTML document after it has been downloaded and ini-
tially displayed by the browser. This means you can help your visitors by avoiding unnec-
essary page reloads and making the interface appear less cluttered. JavaScript can

® Validate user input on forms and give immediate feedback if there is an error.

® Flag changes that happen asynchronously in the background by giving messages
without requiring a page reload. (Normal page requests are synchronous—you
click something and the page reloads. Asynchronously means that you load data in
the background and display the results when the data is loaded without leaving the
main document.)

® Create modular windows and page elements that the visitor can open and close or
expand and collapse.

® Allow for keyboard access to functionality, such as enabling a user to move around
a menu using the cursor keys.

® Fix inconsistencies in CSS rendering.

® React to changes to the document such as the visitor clicking elements, scrolling,
focusing on a text field, or dragging an item around.

201

WEB DEVELOPMENT SOLUTIONS

202

You can embed JavaScript anywhere in the document enclosed by SCRIPT tags. If you add
the JavaScript after the main document you can already access its elements (as they’ve
already been sent to the browser and therefore exist) and change them. For example, the
following script embedded in the HTML document hides all nested lists:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" =
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="1tr" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>JavaScript Test - Hiding Lists</title>
</head>
<body>

Item 1</1i>
Item 2

Nested Item 1</1i>

</1i>
Item 3</1i>
Item 4

Nested Item 2</1i>

</1i>

<script type="text/javascript">
function hideStuff(){
var lists = document.getElementsByTagName('ul’);
for(var i = 0, j = lists.length; i < j; i++){
if(lists[i].parentNode.nodeName.toLowerCase() === 'li'){
lists[i].style.display = 'none’;
}
}

}
hideStuff();

</script>
</body>
</html>

If you wanted to use this functionality on every page in the site, you’d need to copy and
paste the code into each page, which mean the documents would become unnecessarily
large; in addition, the JavaScript would not be cached. And it would mean that any future
change to the script would have to be replicated in every document. This is why you can
put the code in its own file instead and give it a file extension of .js. For example, you
could call it hideNestedLinks.js and give it the following content:

ADDING SPECIAL EFFECTS

function hideStuff(){
var lists = document.getElementsByTagName('ul');
for(var i = 0, j = lists.length; i < j; i++){

if(lists[i].parentNode.nodeName.toLowerCase() === '1i'){
lists[i].style.display = 'none’;
}
}
}
hideStuff();

You add this script to the document by setting the sxc attribute of the SCRIPT element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" =
"http://www.w3.0rg/TR/html4/strict.dtd">
<html dir="1tr" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>JavaScript Test - Hiding Lists</title>
</head>
<body>

Item 1</1i>
Item 2

Nested Item 1

</1i>
<1i>Item 3</1i>
Item 4

Nested Item 2

</1i>

<script type="text/javascript" src="hideNestedlLinks.js”></script>
</body>
</html>

The most appropriate section of the document to embed scripts into is the head, though,
because doing so makes it easier for maintainers to know where your JavaScript is embed-
ded and where to change it without having to scan the whole document.

The impractical upshot of this is that browsers download scripts linked in the head before
they start showing the document, which could result in a slight delay the first time the
scripts are loaded (afterwards they will be cached and loaded from your hard drive, effec-
tively eliminating the delay). Embedding the script in the head also means that it gets exe-
cuted when the document—and the items you want to affect, in this case the lists—is not
yet available for alteration, which will cause this example script to fail. You can avoid this
problem by executing the script when the window has finished loading:

203

WEB DEVELOPMENT SOLUTIONS

function hideStuff(){
var lists = document.getElementsByTagName('ul');
for(var i = 0, j = lists.length; i < j; i++){
if(lists[i].parentNode.nodeName.toLowerCase() === '1i'){
lists[i].style.display = 'none’;
}
}
}

window.onload = hideStuff;

The problem with this basic solution is that you will have only this script executing when
the window has loaded. In reality you might have several scripts, all of them having to exe-
cute when the window has loaded. This is why there are several helper scripts that allow
you to add your script to a queue to be executed when the window has loaded. Probably
the first script to do that was Simon Willison’s addLoadEvent() (http://simonwillison.
net/2004/May/26/addLoadEvent/):

function addLoadEvent(func) {
var oldonload = window.onload;
if (typeof window.onload != 'function') {
window.onload = func;
} else {
window.onload = function() {
oldonload();
func();
}
}
}

Using this function you can add the hideStuff() function to the window load event
queue with addLoadEvent (hideStuff). You can add as many functions as you want to this
queue and they won’t overwrite the other call. You’ll find an example of that in the code
archive. Probably every library out there comes with a similar function to connect func-
tions with events.

Notice that the simple task to hide nested list elements appears quite complex in
JavaScript:

1. You retrieve all the lists in the document with getElementsByTagName().

2. You loop through these lists one by one with a for loop.

3. You test if the parent element of the current list is a 1i (and you need to use
toLowerCase() as browsers inconsistently report the name of this parent element
either as 1i or LI).

4. If that is the case, you set the list’s display style property to none.

In CSS, all you'd have to do is to use ul ul {display:none;}, which is why clever JavaScript
developers don’t bother using a loop for this task but instead apply a CSS class name to the
body of the document.

204

ADDING SPECIAL EFFECTS

window.onload = function(){
document.body.className = 'dynamic';

}

That way, you can define any visual changes to the document in CSS with a body.dynamic
selector before your others—for example, body.dynamic ul ul {display:none;}. These
changes will only be applied when JavaScript is available. There will be a slight delay before
the styles get applied, though, as the onload event only fires when the whole document,
images, and scripts have finished loading.

The why of JavaScript libraries

In the end, all browser vendors agreed that JavaScript is a great thing to have and that
people should use it. What was missing for browser vendors was a selling point—a unique
identifier why one browser would be better than the other one, and this is when the whole
JavaScript thing went awry. Instead of following a common standard, every browser vendor
came up with its own implementations and interfaces to the language to gain an advan-
tage over the competitor.

The big competition was between Microsoft and Netscape, with Microsoft offering a lot of
options that were Windows-specific (as IE is part of the Windows operating system and not a
standalone application) and Netscape offering the layer element, which allowed for embed-
ding other documents into the current one and positioning or animating the content. This
part of web development history—known as the browser wars—still affects us now, partly
because you will find a lot of scripts on the Web that were developed during that time that
took only these two browsers into consideration and break in more modern browsers. If you
find a document.all or document.layers in a script, you should be very suspicious.

These days most modern browsers support the W3C standards, at least to a large degree,
which means you don’t need to know that many browser-specific extras any longer.
However, developing JavaScript is still a tricky subject. Browser bugs and JavaScript archi-
tecture limitations mean you need to know a lot of different environments your scripts will
be executed in and all their faults and problems. This is where JavaScript libraries come in.

Libraries are collections of functions that take away the random element and provide you
with shorter and more precise methods that do all the “browser normalization” for you. In
other words, you don’t need to know the problems of differing support between browsers
and JavaScript itself as the developers of the libraries took on this job for you.

These are the pragmatic libraries that allow you to create web applications and dynami-
cally enhanced web sites that work in different browsers on different operating systems
without you having to know the twists and turns a developer needs to take to make these
do their bidding.

205

WEB DEVELOPMENT SOLUTIONS

206

There are several issues with JavaScript itself, especially with the DOM interface.
For example, there is an insertBefore() method to add something before some-
thing else, but there is no insertAfter(). You also cannot change the text in any
given element using a simple construct such as element.text; instead you need
to modify element.firstChild.nodeValue to change the text content of the ele-
ment when it already has some content or element.appendChild(document.
createTextNode('text')) when it doesn’t. Truly not one of the most convenient
interfaces.

A different kind of library goes beyond that and does more than fix browser inconsistencies
and provide shorter methods to achieve a certain goal. These libraries try to enhance or
replace the language itself and use a different syntax. For example, they could be mimicking
the behavior and style of higher programming languages like Java, C#, or Perl. Or perhaps
the goal is to make it easier for nontechnical web designers to use JavaScript by, for exam-
ple, providing methods that allow you to retrieve page elements by CSS selector or other
means of retrieving nodes in a document such as XPath (http://www.w3.0rg/TR/xpath).

In essence, using JavaScript libraries is a good idea if you don’t want to learn about
browser bugs and differences, or if you want to be able to do something quickly without
having to know a lot of JavaScript yourself.

The dangers of JavaScript libraries

There is a flipside to the benefits JavaScript libraries bring with them. Probably the biggest
problem is that you rely on a third party and their skills to achieve a goal. If a certain part
of a library causes issues in a new browser coming out, you won’t know how to fix the
problem. You'll have to make sure that you keep up-to-date with the library itself and
upload any patches or upgrades as they get released. It also means that the library devel-
opers must offer upgrades and patches in the future.

Depending on the quality of the library and the dedication of its developers, the library
may not be applicable to your site any longer if it becomes bigger or gets a wider audience
of users with different browsers and needs. It is good to know which browsers the library
code supports, and to what degree, in case people contact you about bugs on your site.
Make sure that the library has a dedicated developer team, good documentation, and a
community to ask for advice. A lot of one-man-show libraries that look great at first can
become a nuisance when the library developer becomes too busy delivering more lucra-
tive jobs than releasing a free JavaScript library.

The other big issue with libraries is that they cloak the code. Any library function will result
in native JavaScript code under the hood as this is the only way it can be executed. This is
especially the case when it comes to libraries that reinvent JavaScript syntax or offer “get
elements by XPath or CSS selectors” shortcut methods. These methods in themselves are
not a real problem, but when you start using them inside a loop it is quite interesting to
see how much work the JavaScript parser really has to do. Take a pseudo-command like
this, for example:

ADDING SPECIAL EFFECTS

var active = getElementsByCssSelector('div ul 1i a.active');
Translated to standard JavaScript, this will result in the following code:

var active = [];
var divs = document.getElementsByTagName('div');
for(var i = 0; i<divs.length; i++){
var uls = divs[i].getElementsByTagName('ul');
for(var j = 0; j<uls.length; j++){
var lis = uls[j].getElementsByTagName('1i');
for(var k = 0; k<lis.length; k++){
var as = lis[k].getElementsByTagName('a");
for(var 1 = 0; l<as.length; 1l++){
if(as[1l].className === 'active'){
active.push(as[1]);

Every for loop in JavaScript takes a lot of time and resources (as in memory). When you
nest loops you multiply this issue, and depending on how large the document and how
complex the CSS selector is, you could end up with a really slow web site—although it has
already loaded.

This is a very basic way of achieving this functionality, and there are cleverer ways
using recursive functions. However, the underlying problem stays the same—you
simulate in JavaScript what the CSS parser of the browser was built for.

Having easier access to the document and easier ways to manipulate it is a great thing.
However, what you need to be aware of is that under the hood you expect a lot of the
browser and the JavaScript parser. In the end, successful web sites are fast web sites and
what helps your visitors is much more important than what is handy or easy for you as the
developer.

There is another aspect of JavaScript that you should be aware of: avoiding the trap of cre-
ating effects for the sake of having effects.

Fighting the temptation

Dynamic effects on web sites are great. A panel that slides in and out smoothly, text that
fades in, and a photo frame that grows smoothly before showing the photo are fun things
to see and give the impression of a much more sophisticated user interface than a web
page that simply shows and hides parts of it.

207

WEB DEVELOPMENT SOLUTIONS

208

There is such a thing as overkill, though. There is also a thing called “not wanting to wait.”
If you ever sat through a presentation of a bad public speaker who tried to make up for
this by applying a lot of transition and animation effects to their PowerPoint (or Keynote)
slides, you know what we mean.

If you want to use animation and dynamic JavaScript changes on your web site, think about
the following:

® An elaborate effect is cool the first time, but may become a nuisance when the
same visitor comes back to your site to get some information they found the last
time.

® Using animation in JavaScript (which has to be converted by a browser running
inside an operating system) is incredibly hard to get smooth. Any other processing
the computer has to do will interfere with your animations, and because there is no
direct access to the video hardware (like OpenGL or ActiveX components have),
there is no buffering to gloss over timing problems. In other words, if you use sev-
eral animations that are dependent on each other, don’t rely on timing to execute
them. Instead, make sure that one animation initiates the next one once it has fin-
ished animating.

® Animation may pose an accessibility barrier as people with learning disabilities or
epilepsy might not be able to cope with it. Make sure that if you use animation
heavily, or you need animation that is very hectic, you also offer an option to turn
it off.

® Don’t rely on the animation to work when it comes to crucial elements of your
site—like the menu. If an animation fails for some reason and the visitor cannot
access your menu, you have lost them.

® While there are many examples where hiding and showing different page elements
is beneficial to the usability of the page, don’t get overly excited about this trick.
First, the interface you created is not necessarily what the visitor sees (they might
have JavaScript disabled, only see part of the screen in a magnifying tool, or have
CSS turned off), and they’ll have to download and deal with all the content (hiding
something in CSS doesn’t make it disappear from the document; it just hides it).
Second, it can become very annoying to have to click and expand elements repeat-
edly to reach what you came for. This is especially annoying when the state is not
stored and you have to do it all again on your next visit.

® Although it is easy to validate user data entry with JavaScript, it is not a foolproof
method. If your only means of blocking out invalid data entry is JavaScript, all a mali-
cious attacker needs to do is to turn it off. The other handy part for evildoers when
it comes to JavaScript validation is that they can simply analyze your JavaScript and
see what the rules are.

In essence, if you use animation and dynamic effects, be sure to use them in moderation
and only when they benefit the user. There are not many things left you can do to amaze
people on the Web with JavaScript bells and whistles. Advertisers and enthusiastic devel-
opers have done this for years already, and people got thoroughly fed up with waiting for
animations to finish and trying to figure out how a menu works.

ADDING SPECIAL EFFECTS

The two tasks

Let’s now go through three examples of libraries with different approaches to the whole
theme of what a library should do: jQuery by John Resig, MooTools by Valerio Proietti, and
the Yahoo! User Interface Library (YUI).

The tasks we will try to achieve are

@ Creating a hierarchical navigation
® Animating page elements

Creating a hierarchical navigation

We'll use the libraries to turn the following HTML list into a hierarchical and collapsible
menu:

<ul id="nav">
Item 1</1i>
Item 2

Item 1-1</1i>
Item 1-2</1i>
Item 1-3

Item 1-3-1</1i>
Item 1-3-2</1i>
Item 1-3-3</1i>
Item 1-3-4</1i>

</1i>
Item 1-4</1i>
Item 1-5</1i>
Item 1-6</1i>

</1i>
Item 3</1i>
Item 4

Item 4-1</1i>
Item 4-2</1i>
Item 4-3</1i>

</1i>
Item 5</1li>
Item 6</1i>

209

WEB DEVELOPMENT SOLUTIONS

210

The idea is that a nested list structure like this is the semantically correct way to mark up

(turn into HTML) a menu. The script should hide all the nested lists and add a CSS class to
the 1i elements that contain a nested list. Furthermore, it should show and hide the
nested lists when the visitor clicks the links in these parent list elements. All the other links
should work as expected. When there is no JavaScript available, the list should not collapse

at all, as shown in Figure 9-1.

Animating page elements

One task JavaScript libraries are constantly used for is animation of
page elements. We've covered this earlier in the chapter and will cre-
ate a small example that slowly shows and hides a menu, as shown in
Figure 9-2. You may remember that we advised against using anima-
tion in something crucial like a menu; however, this example will work
without JavaScript because the link to show and hide the menu is gen-
erated via JavaScript and the DOM. When JavaScript is disabled, the
show and hide link is not generated at all—the user does not get the
promise of functionality that will not work. If you add the link in HTML
and make it dependent on JavaScript to make sense, this wouldn’t be
the case.

A natural animation does not work in linear fashion, but either accel-
erates at the start and gets slower or starts slower and accelerates
toward its end value (imagine a ball running out of momentum or a
metal ball being dragged by a magnet). That is why some JavaScript
libraries use Easing (http://www.robertpenner.com/easing/), which
is a collection of premade animation algorithms that simulate these
more natural movements. Not all libraries support this, but it is a nice
way to make animations look more “real life.”

ltem 1 ltem 1
Item 2 ltem 2
Item 1-1 Item 1-1
ltem 1-2 ltem 1-2
ltem 5 i ltem 1-3
ltem & ltem -1 ltem 1-3-1
Item 1-3-2 Item 1-3-2
Item 1-3-3 Item 1-3-3
ltem 1-3-4 ltem 1-3-4
ltem 1-4 ltem 1-4
ltem 1-5 ltem 1-5
ltem 1-6 ltem 1-6
Item 3 Item 3
Item 4 ltem 4
ltem 5 ltem 4-1 Figure 9-1. Turning a
ltem & ltem 4-2 nested list into a
ltem 4-3 hierarchical dynamic
ltem 5 menu with JavaScript
[T and how it look_s
without JavaScript

ADDING SPECIAL EFFECTS

Understanding and using jQuery

Probably one of the most aspiring libraries out there is John Resig’s jQuery, available at
http://jquery.net. The idea and goal of it becomes apparent in the introduction:

JjQuery is a new type of JavaScript library. It is not a huge, bloated framework
promising the best in Ajax—nor is it just a set of needlessly complex enhance-
ments—jQuery is designed to change the way that you write JavaScript.

One of the main goals of jQuery is to keep the library itself and your code as small as pos-
sible. In order to achieve this it uses a technique called chainable methods, which means
you can attach any of its functions to the other and create one logical stream of function-
ality. For example, the native JavaScript for calling a function called example() when any
link in the document gets clicked is as follows:

var as = document.getElementsByTagName('a");
for (var i = 0; i < as.length; i++){
as[i].onclick = example;
}
Using jQuery, this would be
$('a').click(example);

All the available functions of jQuery are explained and can be navigated at Visual jQuery
(http://www.visualjquery.com/index.xml), as shown in Figure 9-3.

A Visual Guide

$.get{url, params, callback)

Ls using an HTTP GET
of the arguments to the method

IRL) are optional.
Returns
undefined

Parameters

callback (Function): & function to be
executed whenever the data is loaded.

Examples

Figure 9-3. Visual jQuery is a visual representation of all the methods
you have at your disposal with a quick explanation.

211

WEB DEVELOPMENT SOLUTIONS

212

Hierarchical navigation in jQuery

The code to turn our demo list into a hierarchical navigation in jQuery looks like this. You
can see that it is quite short, but also not that easy to understand if you don’t adhere to a
clean coding style with proper indentation. We won’t go into details about the script, since
there are many comments in this example explaining what each line does. Comments in
JavaScript start with a double slash, //.

// when the document has finished loading
$(document) . ready (
function() {
// add a class called "dynamic" to the element with the ID nav
$('#nav').addClass('dynamic');
// loop through all UL elements inside the "nav" element
$('#nav ul').each(
function(){
// add a class called "parent" to the parent element
// of the current UL
$(this.parentNode).addClass('parent');
}
)
// if the visitor clicks on any link inside the "nav" element
$('#tnav a').click(
function(){
// get all lists inside the parent node of this link
var uls = this.parentNode.getElementsByTagName('ul');
// if there is at least one
if(uls.length>0){
// check its style display attribute and toggle it from
// block to none
uls[o].display=uls[0].style.display=="block"?'none": 'block’;
// don't follow the link
return false;
}
}
);
}
);

Animation in jQuery

Animation of objects in jQuery is either done with the animate() method or with preset
permutations of it, namely fadeIn(), fadeOut(), fadeTo(), hide(), show(), slideDown(),
slideUp(), and slideToggle(), each of which do what their name says.

Most of these methods take parameters such as the speed of the animation, which can be
defined either in milliseconds or as slow, medium, or fast. Some methods also need a final
value of the element’s property; for example, fadeTo() needs the speed of the animation
and the final opacity as a value between 0 and 1 as parameters.

ADDING SPECIAL EFFECTS

The animate() method itself has the handy option to define parameter values with text
like hide, show, or toggle, which makes it easy to show and hide elements in a smooth
fashion without having to know their initial measurements (something you have to do if
you wanted to create the animation sequence with your own JavaScript methods).

// when the document has finished loading
$(document) . ready (
function() {
// hide the navigation element
$("#nav').hide();
// create a link to show and hide the navigation
$('#nav').before('show menu");
// define the states to execute alternately when the visitor
// clicks the link
$("#nav').prev().toggle(
// set the text of the link to "hide menu" and show the menu
function(){
$(this).html("hide menu');
$('#nav').slideToggle('medium');
1
// set the text of the link to "show menu" and hide the menu
function(){
$(this).html('show menu');
$('#tnav').slideToggle('medium');
}
)5
}
);

The animation capabilities of jQuery are easy to use and give you some shortcuts other
libraries don’t give you. On the other hand, at the time of this writing there is no option of
changing the animation speed throughout the animation because jQuery does not feature
Easing.

Understanding and using MooTools

MooTools (http://MooTools.net/) is a library with a bit of a confusing history. Originally
MooTools was a visual effect library called moo.fx (http://moofx.mad4milk.net/) that
was built on top of what may be the biggest JavaScript framework, Prototype
(http://prototype.conio.net/).

The developers soon realized that Prototype is a bit too much to use for small effects,
reengineered moo.fx, and started to create their own base library to use rather than
Prototype. Thus, MooTools was born. The core of MooTools and the main idea was to
allow classical object-oriented programming like you’d use in other languages such as Java
or C#. On top of that, the effect libraries of moo.fx have been incorporated; all this
together makes up quite a nice library to use. In the words of the developers:

213

WEB DEVELOPMENT SOLUTIONS

214

MooTools is a very compact, modular, object-oriented JavaScript framework.
Its unique design makes it extremely cross browser, easy to use, and a snap to
extend with your own code. It comes with a choice of more than fifteen
scripts, plugins and add-ons, including Effects, based on (moo.fx) Ajax, based
on (moo.ajax), Dom Navigator, based on (moo.dom), Drag and Drop, Sortable
lists, cookies Manager and many more. All the previous moo scripts have been
made better, reorganized and extended to fully take advantage of the new OO
architecture. One of the big differences is The Element Extension: MooTools
makes it possible for you to extend HTML elements with your own methods, to
make your life easier and your coding style way cooler.

In other words, just like jQuery, MooTools disregards the current style of JavaScript and
tries to improve and change the way we write scripts for the Web.

Undoubtedly the coolest thing about MooTools is the accompanying web site and
especially the download section at http://MooTools.net/download/release, shown in
Figure 9-4. The download section allows you to customize your version of MooTools to
make sure you only get what you need instead of a really large library with lots of ele-
ments you’ll never use.

TOOLS

Figure 9-4. The MooTools download section allows for a
customizable download that only gives you what you need
in either a readable format or optimized and packed for
size. The interface also recognizes dependencies and every
download will be a working chunk of the whole library.

MooTools also comes with extensive documentation (which you’ll find at http://docs.
MooTools.net/) listing all the options you have. The problem with the documentation is
that there is no offline version available at the moment, which can be frustrating if you
wanted to use MooTools on the go and you needed to look up something.

MooTools is a library that makes it appear easy to create dynamic interfaces that can be
animated to fade in and out or slide around. The whole site is built with MooTools and is
a case study for the things MooTools is capable of.

However, there are still some inconsistencies in the library that (we hope) will be fixed by
the time you are reading this. The most obvious fault is that MooTools has no method to
stop a link from being followed or a button from submitting a form. Most of the time you

ADDING SPECIAL EFFECTS

need this, though, as you make a link or a button call a JavaScript function instead of load-
ing a new document or submitting a form. As best practices when it comes to scripting
dictate that you don’t rely on JavaScript, this makes it a real pain to develop to these prac-
tices. It is easy to create an inaccessible web application in MooTools, but if you want to
enhance an already working web site that uses HTML and server-side scripting means you
need to extend MooTools with a function that allows you to stop the default event from
happening. There is a function like this in the code that follows soon.

Generally there is a lot of work going into MooTools, and many communication channels
such as the MooTools forum (http://forum.MooTools.net/) are available where you can
ask for help. The fresh look and feel of the site makes it interesting to dig around and find
out more.

Hierarchical navigation in MooTools

MooTools approaches JavaScript much the same way jQuery does. Instead of using and
extending existing DOM methods like getElementsByTagName() or getElementById(), it
offers you shortcut methods like $() and allows for chaining of methods.

The example script of the hierarchical navigation therefore looks rather similar to the
jQuery example, except for some differences in naming and syntax. Information about
what each line does is provided as inline comments (the lines starting with //).

// when the DOM of the page is ready
Window.onDomReady (
function(){
// add the CSS class "dynamic" to the element with the ID "nav"
$('nav').addClass("'dynamic');
// get all LI elements inside the element with the ID "nav"
$1is = $('nav').getElements('1i");
// loop through all the list items
$lis.each(
// the each() method parses each 1list item as the parameter o
function(o){
// if the list item contains UL elements
if($(o).getElements('ul').length>0){
// add a CSS class to the list item with the name "parent"
0.addClass('parent');
// get the first link inside the list item
var trigger = $E('a’, o);
// execute a function when the visitor clicks the link
trigger.addEvent('click’,
function(e){
// get the first nested UL element and toggle its display
var nest = o.getElements('ul')[0];

215

WEB DEVELOPMENT SOLUTIONS

216

nest.style.display=nest.style.display==
"block'?"'none’:'block’;
// don't follow the link
return Window.stopEvent(e);
}
)
}
}
);
}
);
// Hack extension to allow links not being followed when the user
// clicks them, this is not part of MooTools yet, but should be.
Window.extend({
stopEvent: function(e){
if (e.stopPropagation){
e.stopPropagation();
e.preventDefault();
} else {
e.returnValue = false;
e.cancelBubble = true;
} return false; }

1);

Animation in MooTools

With moo.fx as its ancestor, MooTools comes with an impressive set of predefined anima-
tion sequences and effects. You can create effects with the Fx object, and each effect has
different methods to control it such as show(), hide(), or toggle().

// when the DOM of the page is ready
Window.onDomReady (
function(){

// add the CSS class "dynamic" to the element with the ID "nav"
// thus hiding it
$('nav').addClass('dynamic');
// create a new link element, set the href attribute to # (to make
// it appear as a link) and add text inside the link
// saying "show menu"
var trigger = new Element('a');
trigger.setProperty('href','#');
trigger.appendText('show menu');
// add the new link before the menu to the document
$(trigger).injectBefore('nav');
// define a new slide effect for the menu
var slideeffect = new Fx.Slide('nav');

ADDING SPECIAL EFFECTS

// hide the menu initially
slideeffect.hide();
// make the newly added link execute a function when a visitor
// clicks it
$(trigger).addEvent(
"click',
// function to toggle the menu state
function(e){
// alternately show and hide the menu and slide it open or
// closed
slideeffect.toggle('vertical');
// change the text of the trigger link accordingly

if($(trigger).innerHTML === 'show menu'){
$(trigger).innerHTML = 'hide menu';
} else {

$(trigger).innerHTML = 'show menu';

// don't follow the link
return Window.stopEvent(e);
}
)
}
);
// Hack extension to allow links not being followed when the user
// clicks them
Window.extend({
stopEvent: function(e){
if (e.stopPropagation){
e.stopPropagation();
e.preventDefault();
} else {
e.returnValue = false;
e.cancelBubble = true;
} return false; }

1);

Understanding and using YUI

The Yahoo! User Interface Library (YUI), which you'll find at http://developer.yahoo.
com/yui, was developed primarily to ease the development process of web sites inside
Yahoo!. Instead of each development team consistently having to face and fix browser issues
and create scripts that do the same things over and over again, YUl (shown in Figure 9-5) acts
as a central repository for these tasks. Developers feed problems they encounter back to the
YUI team and those problems get fixed in the next version of the library.

217

WEB DEVELOPMENT SOLUTIONS

218

‘ahoo! Ul Library [YUI)

YUI Theater tmcre e

Yahoo! User Interface Library Matt Sweeney, "Web 2.0: Getting It Right
the Second Time

The Yahoo Usar isterace (1

weitten in JavaScapt, for beid

Ll Thester

Graded Brows s Suppont The fibrary's deveio
Table of b Grade Erowsers cammurily exchasges i

er
Tathuw

Figure 9-5. The Yahoo! User Interface Library web site

The idea behind the different YUl components is that they help developers with one issue
at a time rather than offering an all-encompassing approach the way that jQuery or
MooTools does with methods like $(). To this end, YUl is separated into several compo-
nents, each of which is designed to help with one part of web scripting:

Animation—Allows you to animate parts of a document, cross-browser and
securely

Connection—Allows you to connect to the server to retrieve data via Ajax
Dom—Allows you to retrieve, alter, and add elements from and to the document
DragDrop—Allows you to create drag-and-drop interfaces

Event—Allows you to get informed and react to happenings in the browser and to
the document (for example, a user clicking a link)

Fonts/Grids/Reset—CSS components that allow you to create layouts that work
consistently across browsers

The library is separated into library components and widgets. While the components men-
tioned earlier allow you to easily create your own scripts, widgets are interface elements
that can be used as they are and customized to your needs. At the time of this writing, YUI
has the following widgets:

Logger—Allows you to debug an application while developing it independent of
the browser

Menu/TreeView—Allows you to create menus for your site or application ranging
from simple static menus via dynamic hierarchical menus up to contextual menus

Slider—Provides you with a method to create slider controls or color pickers

® Tabs—Allows you to develop tabbed interfaces

® Autocomplete—Allows you to create text boxes that offer possible values to go in

them while you are typing

Calendar—Provides you with an out-of-the-box calendar widget to make date pick-
ing in a form a lot easier for the visitor

Container—Allows for overlays, tooltips, modular windows, and dialog boxes

ADDING SPECIAL EFFECTS

YUl may have the most extensive documentation and set of code examples of all the
libraries. However, the examples can be a bit exhaustive as they try to show every option a
component or widget has rather than explain step by step what the options are. A couple
of really good companions if you want to use YUl are the Cheatsheets (which are available
as PDFs) and the mailing list, which you can use to find help and search for instances
where your problem has already been solved.

Because YUI code is meant to work in large web sites and applications, its main focus is to
be stable across all modern browsers (what modern browsers are and how Yahoo! defines
support is explained in the browser support grid at http://developer.yahoo.com/
yui/articles/gbs/gbs.html) and safe to implement together with other scripts. The lat-
ter is achieved by adding namespaces to the code. This means that every function devel-
oped using YUI has to start with the word YAHOO followed by what it is and its name. This
might appear verbose at first sight, but it ensures that no Yahoo! script overwrites other
functionality. Here are some examples:

® YAHOO.example.createDynamicMenu() is an example script using YUI that will cre-
ate a dynamic menu.

® YAHOO.util.Event is the event utility component.
® YAHOO.widget.Calendar is YUI's calendar widget.

Following this convention and sticking to a standard JavaScript syntax rather than allowing
for shortcuts like jQuery and MooTools does mean that scripts using YUI tend to be larger.
What it also means, though, is that the scripts don’t need to be converted back to some-
thing the JavaScript parser understands.

Hierarchical navigation using YUI

The easiest option for creating the example of a collapsible hierarchical navigation is to
use either the Menu (http://developer.yahoo.com/yui/menu/) or the TreeView widget
(http://developer.yahoo.com/yui/treeview/). However, to demonstrate how to use the
different components of the library in your own script, let’s give it a go. Notice once again
that the explanations of what the script does are in the inline comments starting with a
double slash.

// use the example namespace and call the main object "tree"
YAHOO.example.tree = {

// the init function to hide elements and add the "parent" classes
init:function(){

// add a class called dynamic to the element that was sent as a

// parameter (stored in this)
YAHOO.util.Dom.addClass(this, 'dynamic"');

219

WEB DEVELOPMENT SOLUTIONS

// add an event listener that calls the toggle method when a

// visitor clicks anywhere inside the tree element

YAH0O.util.Event.addListener(this, 'click', =
YAHOO.example.tree.toggle);

// grab all UL elements inside the element and loop through
// each of them

var uls = this.getElementsByTagName('ul');

for(var i=uls.length-1;i>-1;i--){

// add a class called "parent" to each LI that contains a UL
YAHO0O.util.Dom.addClass(uls[i].parentNode, 'parent');

}
b

// the method to show and hide the nested lists
toggle:function(e){

// use the Event component to find out which element was clicked on
var t = YAHOO.util.Event.getTarget(e);

// compare if the element had the name "a", thus being a link

if(t.nodeName.toLowerCase()==="a"){

// check if the link is inside an LI that has a nested UL element
var nestedlLists = t.parentNode.getElementsByTagName('ul');
if(nestedLists.length > 0){

// toggle the display of the nested UL
nestedLists[0].style.display = nestedLists[0].style.w
display === 'block'?'none':'block";

// don't follow the link
YAHOO.util.Event.preventDefault(e);
}
}
}
}

// as soon as the element with the ID 'nav' is available, call the
// init method
YAH0O.util.Event.onAvailable('nav', YAHOO.example.tree.init);

The structure of a script using YUl does not differ much from any other traditional
JavaScript, which makes it look a bit cumbersome compared to the slicker “new” way of
scripting that jQuery or MooTools offer. However, the practical upshot of this is that you
don’t need to learn about the library itself to use it. In a professional or distributed

220

ADDING SPECIAL EFFECTS

development environment, this can be a very important asset, as you normally don’t have
the time and budget to train people on systems that should make their job easier.

Animation using YUI

Animation is a component of YUI that uses the aforementioned Easing methods to allow
you to create natural-looking animations. Unlike the other libraries we’ve mentioned, YUI
does not provide premade methods to show and hide or toggle elements; you are
expected to create your own instead. This seems a less practical approach, but on the
other hand you have much more control over the outcome. There are lots of examples on
the homepage (http://developer.yahoo.com/yui/animation/) and inside the YUl down-
load zip to get you going. The overall structure of creating an animation is pretty straight-
forward. You define an animation with this constructor:

var anim = new YAHOO.util.Anim(element, { properties }, duration, =
Easing method);

® The properties define how you want to animate the element; for example, width:
{from:100, to: 500}.

® The duration is the length of the animation in seconds.

® The easing method specifies which one of the preset methods for natural anima-
tion you want to use (for example, easeln).

You start the animation by calling the method animate(), and you could stop it prema-
turely with the stop() method. You can also execute different functions before, during,
and after the animation using the onStart, onTween, and onComplete custom events,
respectively.

Custom events are a specialty of YUI. Normal JavaScript events are interesting
moments in the life cycle of a web page. Examples are when the page was loaded
(the load event), when a user clicks an element inside the page (the click event),
or when the browser window s resized (the resize event). You can listen for these
events and do something when they occur. YUI also allows you to define your own
events for the current document that are not part of the normal browser toolset.
You can define functions that get executed when these events are fired (listeners)
and make the event happen any time you want to. This is extremely handy if you
have a complex application or you want to make sure that several page elements
change when something happens to another one. If you go to Yahoo! Maps in
Europe (http://uk.local.yahoo.com/maps) you can see custom events in action;
we used about 20 different ones to make this interface work smoothly.

Putting all of this together, we once again have a script that does look a lot bigger than the
jQuery or MooTools equivalents, but also makes it easy to debug and find your way even if
you don’t know YUI. Explanations are once again in comments (the lines starting with //).

221

WEB DEVELOPMENT SOLUTIONS

222

YAHOO.example.animateMenu = {
// predefine a property to store the visibility status of the menu
menuvisible:false,
// initialization method
init:function(){
// store the height of the menu in menuheight
YAHOO.example.animateMenu.menuheight = this.offsetHeight;
// add a CSS class called dynamic to the menu, thus hiding it
YAHOO.util.Dom.addClass(this, 'dynamic');
// create a new link element and give it a href to make it display
// as a link
YAH0O.example.animateMenu.trigger = document.createElement('a');
YAHOO.example.animateMenu.trigger.setAttribute('href', '#');
// add the text "show menu" to the link
YAHOO.example.animateMenu.trigger. =
appendChild(document.createTextNode (' show menu'));
// insert the link before the menu
this.parentNode.insertBefore(YAHOO.example.animateMenu.trigger, =
this);
// call the method togglemenu when a user clicks the link
YAHOO.util.Event.addListener (YAHOO.example.animateMenu.trigger, =
"click',
YAHOO.example.animateMenu.togglemenu);
1
// method to show and hide the menu
togglemenu:function(e){
// if the menu is hidden
if(YAHOO.example.animateMenu.menuvisible === false){
// set the menu height to zero (to avoid it flashing up before the
// animation starts)
YAHOO.util.Dom.setStyle('nav', 'height', '0');
// remove the CSS class to show the menu
YAHOO.util.Dom.removeClass('nav', 'dynamic');
// define the end value of the animation as the original height
// of the menu
var end = YAHOO.example.animateMenu.menuheight;
// animation attributes - animate until the height is the
// original height
var attributes = {height:{to:end}};
// set the property to state that the menu is visible
YAHOO.example.animateMenu.menuvisible = true;
// change the text of the link to "hide menu"
var linktext = 'hide menu';
// if the menu is visible...
} else {
// define the end value of the animation as 0
var attributes = {height:{to:0}};
// set the property to state that the menu is hidden
YAHOO.example.animateMenu.menuvisible = false;

ADDING SPECIAL EFFECTS

// change the text of the link to "show menu"
var linktext = 'show menu';
}
// define a new animation to change the element with the ID nav
// using the defined attributes, a duration of one second
// and start and end slower using the Easing methods.
var anim = new YAHOO.util.Anim('nav', attributes, 1, =
YAH0O0.util.Easing.easeBoth);
// start the animation
anim.animate();
// when the animation is finished
anim.onComplete.subscribe(
function(){
// change the text of the link
YAHOO.example.animateMenu.trigger.firstChild.nodeValue = =
linktext;
}
);
// don't follow the original link
YAHOO.util.Event.preventDefault(e);
}
}

// execute the initialization method as soon as the element
// with the ID "nav" is available.
YAHOO.util.Event.onAvailable('nav', YAHOO.example.animateMenu.init);

The animation component of YUI is massive in terms of features and functionality and
allows for a lot of different effects and ideas. It does mean, however, that you need to
write these effects yourself based on a set of tools. This is harder to do than, say, using
jQuery’s show('fast"), but it also gives you a lot more options.

Summary

We hope this chapter has given you some insight into the process and the concept behind
using special effects in web sites and blogs. We’ve deliberately tried to keep the examples
to a bare minimum and didn’t delve too much into details about the various libraries. After
all, this is not a JavaScript book (there are other books to teach you the basics of this lan-
guage), and the JavaScript library environment is such a fast-moving target that any book
written on it will be outdated in a month’s time. By the time this one comes out, some of
the things explained even in these short introductions might have changed.

Our intention was to make sure that if you are going to use special effects on your site,
you do so for a reason and you understand the implications of it. Far too many web sites
out there go heavy on JavaScript for the sake of using it or to try to draw visitors’ attention
away from lack of content or updates. This only works for a very short period of time and
is nothing to build your network of contacts or visitors on.

223

