
315

■ ■ ■

C H A P T E R 9

Menus and Toolbars

This chapter will teach you how to create pop-up menus, menu bars, and toolbars. You will
begin by creating each manually, so you learn how the widgets are constructed. This will give
you a firm understanding of all of the concepts on which menus and toolbars rely.

After you understand each widget, you will be introduced to GtkUIManager, which allows
you to dynamically create menus and toolbars through custom XML files. Each user interface
file is loaded, and each element applied to a corresponding action object, which tells the item
how it will be displayed and how it will act.

In this chapter, you will learn the following:

• How to create pop-up menus, menu bars, and toolbars

• How to apply keyboard accelerators to menu items

• What the GtkStatusBar widget is and how you can use it to provide more information to
the user about a menu item

• What types of menu and toolbar items are provided by GTK+

• How to dynamically create menus and toolbars with UI files

• How to create custom stock items with GtkIconFactory

Pop-up Menus
You will begin this chapter by learning how to create a pop-up menu. A pop-up menu is a
GtkMenu widget that is displayed to the user when the right mouse button is clicked while hov-
ering above certain widgets. Some widgets, such as GtkEntry and GtkTextView, already have
pop-up menus built into the widget by default.

If you want to change the pop-up menu of a widget that offers one by default, you should
edit the supplied GtkMenu widget in the pop-up callback function. For example, both GtkEntry
and GtkTextView have a populate-popup signal, which receives the GtkMenu that is going to be
displayed. You can edit this menu in any way you see fit before displaying it to the user.

7931.book Page 315 Thursday, February 22, 2007 9:09 PM

316 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Creating a Pop-up Menu
For most widgets, you will need to create your own pop-up menu. In this section, you are going
to learn how to supply a pop-up menu to a GtkProgressBar widget. The pop-up menu we are
going to implement is presented in Figure 9-1.

Figure 9-1. A simple pop-up menu with three menu items

The three pop-up menu items are used to pulse the progress bar, set it as 100 percent com-
plete, and clear it. You will notice that, in Listing 9-1, an event box contains the progress bar.
Because GtkProgressBar, like GtkLabel, is not able to detect GDK events by itself, we need to
catch button-press-event signals using an event box.

Listing 9-1. Simple Pop-up Menu (popupmenus.c)

#include <gtk/gtk.h>

static void create_popup_menu (GtkWidget*, GtkWidget*);
static void pulse_activated (GtkMenuItem*, GtkProgressBar*);
static void clear_activated (GtkMenuItem*, GtkProgressBar*);
static void fill_activated (GtkMenuItem*, GtkProgressBar*);
static gboolean button_press_event (GtkWidget*, GdkEventButton*, GtkWidget*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *progress, *eventbox, *menu;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Pop-up Menus");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);
 gtk_widget_set_size_request (window, 250, -1);

7931.book Page 316 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 317

 /* Create all of the necessary widgets and initialize the pop-up menu. */
 menu = gtk_menu_new ();
 eventbox = gtk_event_box_new ();
 progress = gtk_progress_bar_new ();
 gtk_progress_bar_set_text (GTK_PROGRESS_BAR (progress), "Nothing Yet Happened");
 create_popup_menu (menu, progress);

 gtk_progress_bar_set_pulse_step (GTK_PROGRESS_BAR (progress), 0.05);
 gtk_event_box_set_above_child (GTK_EVENT_BOX (eventbox), FALSE);

 g_signal_connect (G_OBJECT (eventbox), "button_press_event",
 G_CALLBACK (button_press_event), menu);

 gtk_container_add (GTK_CONTAINER (eventbox), progress);
 gtk_container_add (GTK_CONTAINER (window), eventbox);

 gtk_widget_set_events (eventbox, GDK_BUTTON_PRESS_MASK);
 gtk_widget_realize (eventbox);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

/* Create the pop-up menu and attach it to the progress bar. This will make sure
 * that the accelerators will work from application load. */
static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *progress)
{
 GtkWidget *pulse, *fill, *clear, *separator;

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

7931.book Page 317 Thursday, February 22, 2007 9:09 PM

318 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

In most cases, you will want to use button-press-event to detect when the user wants the
pop-up menu to be shown. This allows you to check whether the right mouse button was clicked.
If the right mouse button was clicked, GdkEventButton’s button member will be equal to 3.

However, GtkWidget also provides the popup-menu signal, which is activated when the user
presses built-in key accelerators to activate the pop-up menu. Most users will use the mouse to
activate pop-up menus, so this is not usually a factor in GTK+ applications. Nevertheless, if you
would like to handle this signal as well, you should create a third function that displays the
pop-up menu that is called by both callback functions.

New menus are created with gtk_menu_new(). The menu is initialized with no initial con-
tent, so the next step is to create menu items.

In this section, we will cover two types of menu items. The first is the base class for all
other types of menu items, GtkMenuItem. There are three initialization functions provided
for GtkMenuItem: gtk_menu_item_new(), gtk_menu_item_new_with_label(), and gtk_menu_
item_new_with_mnemonic().

GtkWidget* gtk_menu_item_new_with_label (const gchar *label);

In most cases, you will not need to use the gtk_menu_item_new(), because a menu item
with no content is not of much use. If you use that function to initialize the menu item, you will
have to construct each aspect of the menu in code instead of allowing GTK+ to handle the
specifics.

■Note Menu item mnemonics are not the same thing as keyboard accelerators. A mnemonic will activate
the menu item when the user presses Alt and the appropriate alphanumeric key while the menu has focus. A
keyboard accelerator is a custom key combination that will cause a callback function to be run when the com-
bination is pressed. You will learn about keyboard accelerators for menus in the next section.

The other type of basic menu item is GtkSeparatorMenuItem, which places a generic sepa-
rator at its location. You can use gtk_separator_menu_item_new() to create a new separator
menu item.

7931.book Page 318 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 319

Separators are extremely important when designing a menu structure, because they orga-
nize menu items into groups so that the user can easily find the appropriate item. For example,
in the File menu, menu items are often organized into groups that open files, save files, print
files, and close the application. Rarely should you have many menu items listed without a
separator in between them (e.g., a list of recent files might appear without a separator). In
most cases, you should group similar menu items together and place a separator between
adjacent groups.

After the menu items are created, you need to connect each menu item to the activate sig-
nal, which is emitted when the user selects the item. Alternatively, you can use the activate-item
signal, which will additionally be emitted when a submenu of the given menu item is displayed.
There will be no discernable difference between the two unless the menu item expands into a
submenu.

Each activate and activate-item callback function receives the GtkMenuItem widget that
initiated the action and any data you need to pass to the function. In Listing 9-2, three menu
item callback functions are provided. They are used to pulse the progress bar, fill it to 100 per-
cent complete, and clear all progress.

Now that you have created all of the menu items, you need to add them to the menu.
GtkMenu is derived from GtkMenuShell, which is an abstract base class that contains and
displays submenus and menu items. Menu items can be added to a menu shell with
gtk_menu_shell_append(). This function appends each item to the end of the menu shell.

void gtk_menu_shell_append (GtkMenuShell *menu_shell,
 GtkWidget *child);

Additionally, you can use gtk_menu_shell_prepend() or gtk_menu_shell_insert() to add
a menu item to the beginning of the menu or insert it into an arbitrary position respectively.
Positions accepted by gtk_menu_shell_insert() begin with an index of zero.

After setting all of the GtkMenu’s children as visible, you should call gtk_menu_attach_
to_widget() so that the pop-up menu is associated to a specific widget. This function accepts
the pop-up menu and the widget it will be attached to.

void gtk_menu_attach_to_widget (GtkMenu *menu,
 GtkWidget *attach_widget,
 GtkMenuDetachFunc detacher);

The last parameter of gtk_menu_attach_widget() accepts a GtkMenuDetachFunc, which can
be used to call a specific function when the menu is detached from the widget.

Pop-up Menu Callback Functions
After creating the necessary widgets, you need to handle the button-press-event signal, which
is shown in Listing 9-2. In this example, the pop-up menu is displayed every time the right
mouse button is clicked on the progress bar.

7931.book Page 319 Thursday, February 22, 2007 9:09 PM

320 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-2. Callback Functions for the Simple Pop-up Menu (popupmenus.c)

static gboolean
button_press_event (GtkWidget *eventbox,
 GdkEventButton *event,
 GtkWidget *menu)
{
 if ((event->button == 3) && (event->type == GDK_BUTTON_PRESS))
 {
 gtk_menu_popup (GTK_MENU (menu), NULL, NULL, NULL, NULL,
 event->button, event->time);
 return TRUE;
 }

 return FALSE;
}

static void
pulse_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_pulse (progress);
 gtk_progress_bar_set_text (progress, "Pulse!");
}

static void
fill_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_set_fraction (progress, 1.0);
 gtk_progress_bar_set_text (progress, "One Hundred Percent");
}

static void
clear_activated (GtkMenuItem *item,
 GtkProgressBar *progress)
{
 gtk_progress_bar_set_fraction (progress, 0.0);
 gtk_progress_bar_set_text (progress, "Reset to Zero");
}

7931.book Page 320 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 321

In the button-press-event callback function in Listing 9-2, you can use gtk_menu_popup()
to display the menu on the screen.

void gtk_menu_popup (GtkMenu *menu,
 GtkWidget *parent_menu_shell,
 GtkWidget *parent_menu_item,
 GtkMenuPositionFunc func,
 gpointer func_data,
 guint button,
 guint32 event_time);

In Listing 9-2, all parameters were set to NULL except for the mouse button that was clicked
to cause the event (event->button) and the time when the event occurred (event->time). If the
pop-up menu was activated by something other than a button, you should supply 0 to the but-
ton parameter.

■Note If the action was invoked by a popup-menu signal, the event time will not be available. In that case,
you can use gtk_get_current_event_time(). This function returns the timestamp of the current event or
GDK_CURRENT_TIME if there are no recent events.

Usually, parent_menu_shell, parent_menu_item, func, and func_data are set to NULL,
because they are used when the menu is a part of a menu bar structure. The parent_menu_shell
widget is the menu shell that contains the item that caused the pop-up initialization. Alterna-
tively, you can supply parent_menu_item, which is the menu item that caused the pop-up
initialization.

GtkMenuPositionFunc is a function that decides at what position on the screen the menu
should be drawn. It accepts func_data as an optional last parameter. As previously stated, these
parameters are not frequently used in applications, so they can safely be set to NULL. In our
example, the pop-up menu was already associated with the progress bar, so it will be drawn in
the correct location.

Keyboard Accelerators
When creating a menu, one of the most important things to do is to set up keyboard accelera-
tors. A keyboard accelerator is a key combination created from one accelerator key and one or
more modifiers such as Ctrl or Shift. When the user presses the key combination, the appropri-
ate signal is emitted.

7931.book Page 321 Thursday, February 22, 2007 9:09 PM

322 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-3 is an extension of the progress bar pop-up menu application that adds key-
board accelerators to the menu items. The progress bar is pulsed when the user presses Ctrl+P,
filled with Ctrl+F, and cleared with Ctrl+C.

Listing 9-3. Adding Accelerators to Menu Items (accelerators.c)

static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *window,
 GtkWidget *progress)
{
 GtkWidget *pulse, *fill, *clear, *separator;
 GtkAccelGroup *group;

 /* Create a keyboard accelerator group for the application. */
 group = gtk_accel_group_new ();
 gtk_window_add_accel_group (GTK_WINDOW (window), group);
 gtk_menu_set_accel_group (GTK_MENU (menu), group);

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 /* Add the necessary keyboard accelerators. */
 gtk_widget_add_accelerator (pulse, "activate", group, GDK_P,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);
 gtk_widget_add_accelerator (fill, "activate", group, GDK_F,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);
 gtk_widget_add_accelerator (clear, "activate", group, GDK_C,
 GDK_CONTROL_MASK, GTK_ACCEL_VISIBLE);

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

7931.book Page 322 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 323

Keyboard accelerators are stored as an instance of GtkAccelGroup. In order to implement
accelerators in your application, you need to create a new accelerator group with gtk_accel_
group_new(). This accelerator group must be added to the GtkWindow where the menu will
appear for it to take effect. It must also be associated with any menus that take advantage of its
accelerators. In Listing 9-3, this is performed immediately after creating the GtkAccelGroup
with gtk_window_add_accel_group() and gtk_menu_set_accel_group().

It is possible to manually create keyboard accelerators with GtkAccelMap, but in most
cases, gtk_widget_add_accelerator() will provide all of the necessary functionality. The only
problem that this method presents is that the user cannot change keyboard accelerators cre-
ated with this function during runtime.

void gtk_widget_add_accelerator (GtkWidget *widget,
 const gchar *signal_name,
 GtkAccelGroup *group,
 guint accel_key,
 GdkModifierType mods,
 GtkAccelFlags flags);

To add an accelerator to a widget, you can use gtk_widget_add_accelerator(), which will
emit the signal specified by signal_name on the widget when the user presses the key combina-
tion. You need to specify your accelerator group to the function, which must be associated with
the window and the menu as previously stated.

An accelerator key and one or more modifier keys form the complete key combination.
A list of available accelerator keys is available in <gdk/gdkkeysyms.h>. This header file is not
included in <gtk/gtk.h>, so it must explicitly be included. Modifiers are specified by the
GdkModifierType enumeration. The most often used modifiers are GDK_SHIFT_LOCK, GDK_
CONTROL_MASK, and GDK_MOD1_MASK, which correspond to the Shift, Ctrl, and Alt keys respectively.

■Tip When dealing with key codes, you need to be careful because you many need to supply multiple
keys for the same action in some cases. For example, if you want to catch the number 1 key, you will need to
watch for GDK_1 and GDK_KP_1—they correspond to the 1 key at the top of the keyboard and the 1 key on
the numeric keypad.

The last parameter of gtk_widget_add_accelerator() is an accelerator flag. There are three
flags defined by the GtkAccelFlags enumeration. The accelerator will be visible in a label if
GTK_ACCEL_VISIBLE is set. GTK_ACCEL_LOCKED will prevent the user from modifying the accelera-
tor. GTK_ACCEL_MASK will set both flags for the widget accelerator.

Status Bar Hints
Usually placed along the bottom of the main window, the GtkStatusbar widget can be used to
give the user further information about what is going on in the application. A status bar can
also be very useful with menus, because you can provide more information to the user about

7931.book Page 323 Thursday, February 22, 2007 9:09 PM

324 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

the functionality of the menu item that the mouse cursor is hovering over. A screenshot of a
status bar can be viewed in Figure 9-2.

Figure 9-2. A pop-up menu with status bar hints

The Status Bar Widget
While the status bar can only display one message at a time, the widget actually stores a stack
of messages. The currently displayed message is on the top of the stack. When you pop a mes-
sage from the stack, the previous message is displayed. If there are no more strings left on the
stack after you pop a message from the top, no message is displayed on the status bar.

New status bar widgets are created with gtk_statusbar_new(). This will create a new
GtkStatusbar widget with an empty message stack. Before you are able to add or remove
a message from the new status bar’s stack, you must retrieve a context identifier with
gtk_status_bar_get_context_id():

guint gtk_statusbar_get_context_id (GtkStatusBar *statusbar,
 const gchar *description);

The context identifier is a unique unsigned integer that is associated with a context
description string. This identifier will be used for all messages of a specific type, which allows
you to categorize messages on the stack.

For example, if your status bar will hold hyperlinks and IP addresses, you could create two
context identifiers from the strings “URL” and “IP”. When you push or pop messages to and
from the stack, you have to specify a context identifier. This allows separate parts of your appli-
cation to push and pop messages to and from the status bar message stack without affecting
each other.

■Tip It is important to use different context identifiers for different categories of messages. If one part of
your application is trying to give a message to the user while the other is trying to remove its own message,
you do not want the wrong message to be popped from the stack!

7931.book Page 324 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 325

After you generate a context identifier, you can add a message to the top of the status bar’s
stack with gtk_statusbar_push(). This function returns a unique message identifier for the
string that was just added. This identifier can be used later to remove the message from the
stack, regardless of its location.

guint gtk_statusbar_push (GtkStatusBar *statusbar,
 guint context_id,
 const gchar *message);

There are two ways to remove a message from the stack. If you want to remove a message
from the top of the stack for a specific context ID, you can use gtk_statusbar_pop(). This func-
tion will remove the message that is highest on the status bar’s stack with a context identifier of
context_id.

void gtk_statusbar_pop (GtkStatusBar *statusbar,
 guint context_id);

It is also possible to remove a specific message from the status bar’s message stack with
gtk_statusbar_remove(). To do this, you must provide the context identifier of the message
and the message identifier of the message you want to remove, which was returned by
gtk_statusbar_push() when it was added.

void gtk_statusbar_remove (GtkStatusBar *statusbar,
 guint context_id,
 guint message_id);

GtkStatusbar has one property, has-resize-grip, which will place a graphic in the corner
of the status bar for resizing the window. The user will be able to grab the resize grip and drag
it to resize its parent window. You can also use the built-in function gtk_statusbar_set_has_
resize_grip() to set this property.

Menu Item Information
One useful role of the status bar is to give the user more information about the menu item the
mouse cursor is currently hovering over. An example of this was shown in the previous section
in Figure 9-2, which is a screenshot of the progress bar pop-up menu application in Listing 9-4.

To implement status bar hints, you should connect each of your menu items to GtkWidget’s
enter-notify-event and leave-notify-event signals. Listing 9-4 shows the progress bar pop-up
menu application you have already learned about, except status bar hints are provided when the
mouse cursor moves over a menu item.

7931.book Page 325 Thursday, February 22, 2007 9:09 PM

326 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Listing 9-4. Displaying More Information About a Menu Item (statusbarhints.c)

static void
create_popup_menu (GtkWidget *menu,
 GtkWidget *progress,
 GtkWidget *statusbar)
{
 GtkWidget *pulse, *fill, *clear, *separator;

 pulse = gtk_menu_item_new_with_label ("Pulse Progress");
 fill = gtk_menu_item_new_with_label ("Set as Complete");
 clear = gtk_menu_item_new_with_label ("Clear Progress");
 separator = gtk_separator_menu_item_new ();

 g_signal_connect (G_OBJECT (pulse), "activate",
 G_CALLBACK (pulse_activated), progress);
 g_signal_connect (G_OBJECT (fill), "activate",
 G_CALLBACK (fill_activated), progress);
 g_signal_connect (G_OBJECT (clear), "activate",
 G_CALLBACK (clear_activated), progress);

 /* Connect signals to each menu item for status bar messages. */
 g_signal_connect (G_OBJECT (pulse), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (pulse), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (fill), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (fill), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (clear), "enter-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);
 g_signal_connect (G_OBJECT (clear), "leave-notify-event",
 G_CALLBACK (statusbar_hint), statusbar);

 g_object_set_data (G_OBJECT (pulse), "menuhint",
 (gpointer) "Pulse the progress bar one step.");
 g_object_set_data (G_OBJECT (fill), "menuhint",
 (gpointer) "Set the progress bar to 100%.");
 g_object_set_data (G_OBJECT (clear), "menuhint",
 (gpointer) "Clear the progress bar to 0%.");

 gtk_menu_shell_append (GTK_MENU_SHELL (menu), pulse);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), separator);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), fill);
 gtk_menu_shell_append (GTK_MENU_SHELL (menu), clear);

7931.book Page 326 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 327

 gtk_menu_attach_to_widget (GTK_MENU (menu), progress, NULL);
 gtk_widget_show_all (menu);
}

/* Add or remove a status bar menu hint, depending on whether this function
 * is initialized by a proximity-in-event or proximity-out-event. */
static gboolean
statusbar_hint (GtkMenuItem *menuitem,
 GdkEventProximity *event,
 GtkStatusbar *statusbar)
{
 gchar *hint;
 guint id = gtk_statusbar_get_context_id (statusbar, "MenuItemHints");

 if (event->type == GDK_ENTER_NOTIFY)
 {
 hint = (gchar*) g_object_get_data (G_OBJECT (menuitem), "menuhint");
 gtk_statusbar_push (statusbar, id, hint);
 }
 else if (event->type == GDK_LEAVE_NOTIFY)
 gtk_statusbar_pop (statusbar, id);

 return FALSE;
}

When implementing status bar hints, you first need to figure out what signals are neces-
sary. We want to be able to add a message to the status bar when the mouse cursor moves over
the menu item and remove it when the mouse cursor leaves. From this description, using
enter-notify-event and leave-notify-event is a good solution.

One advantage of using these two signals is that we only need one callback function,
because the prototype for each receives a GdkEventProximity object. From this object, we can
discern between GDK_ENTER_NOTIFY and GDK_LEAVE_NOTIFY events. You will want to return FALSE
from the callback function, because you do not want to prevent GTK+ from handling the event;
you only want to enhance what is performed when it is emitted.

Within the statusbar_hint() callback function, you should first retrieve a context identi-
fier for the menu item messages. You can use whatever string you want, as long as your
application remembers what was used. In Listing 9-4, "MenuItemHints" was used to describe all
of the menu item messages added to the status bar. If other parts of the application used the
status bar, using a different context identifier would leave the menu item hints untouched.

guint id = gtk_statusbar_get_context_id (statusbar, "MenuItemHints");

If the event type is GDK_ENTER_NOTIFY, you need to show the message to the user. In the
create_popup_menu() function, a data parameter was added to each menu item called
"menuhint". This is a more in-depth description of what the menu item does, which will be
displayed to the user.

hint = (gchar*) g_object_get_data (G_OBJECT (menuitem), "menuhint");
gtk_statusbar_push (statusbar, id, hint);

7931.book Page 327 Thursday, February 22, 2007 9:09 PM

328 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Then, with gtk_statusbar_push(), the message can be added to the status bar under the
"MenuItemHints" context identifier. This message will be placed on the top of the stack and
displayed to the user. You may want to consider processing all GTK+ events after calling this
function, since the user interface should reflect the changes immediately.

However, if the event type is GDK_LEAVE_NOTIFY, you need to remove the last menu item
message that was added with the same context identifier. The most recent message can be
removed from the stack with gtk_statusbar_pop().

Menu Items
Thus far, you have learned about flat menus that display label and separator menu items. It is
also possible to add a submenu to an existing menu item. GTK+ also provides a number of
other GtkMenuItem objects. Figure 9-3 shows a pop-up menu that contains a submenu along
with image, check, and radio menu items.

Figure 9-3. Image, check, and radio menu items

Submenus
Submenus in GTK+ are not created by a separate type of menu item widget but by calling
gtk_menu_item_set_submenu(). This function calls gtk_menu_attach_to_widget() to attach the
submenu to the menu item and places an arrow beside the menu item to show that it now has
a submenu. If the menu item already has a submenu, it will be replaced with the given GtkMenu
widget.

void gtk_menu_item_set_submenu (GtkMenuItem *menuitem,
 GtkWidget *submenu);

Submenus are very useful if you have a list of very specific options that would clutter an
otherwise organized menu structure. When using a submenu, you can use the activate-item
signal provided by the GtkMenuItem widget, which will be emitted when the menu item displays
its submenu.

In addition to GtkMenuItem and menu item separators, there are three other types of menu
item objects: image, check, and radio menu items; these are covered in the remainder of this
section.

7931.book Page 328 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 329

Image Menu Items
GtkImageMenuItem is very similar to its parent class GtkMenuItem except it shows a small image to the
left of the menu item label. There are four functions provided for creating a new image menu item.

The first function, gtk_image_menu_item_new() creates a new GtkImageMenuItem object with
an empty label and no associated image. You can use image menu item’s image property to set
the image displayed by the menu item.

GtkWidget* gtk_image_menu_item_new ();

Additionally, you can create a new image menu item from a stock identifier with
gtk_image_menu_item_new_from_stock(). This function creates the GtkImageMenuItem with
the label and image associated with stock_id. This function accepts stock identifier strings
that are listed in Appendix D.

GtkWidget* gtk_image_menu_item_new_from_stock (const gchar *stock_id,
 GtkAccelGroup *accel_group);

The second parameter of this function accepts an accelerator group, which will be set to
the default accelerator of the stock item. If you want to manually set the keyboard accelerator
for the menu item as we did in Listing 9-3, you can specify NULL for this parameter.

Also, you can use gtk_image_menu_item_new_with_label() to create a new GtkImageMenuItem
initially with only a label. Later, you can use the image property to add an image widget. GTK+
also provided the function gtk_image_menu_item_set_image(), which allows you to edit the image
property of the widget.

GtkWidget* gtk_image_menu_item_new_with_label (const gchar *label);

Also, GTK+ provides gtk_image_menu_item_new_with_mnemonic(), which will create an
image menu item with a mnemonic label. As with the previous function, you will have to set the
image property after the menu item is created.

Check Menu Items
GtkCheckMenuItem allows you to create a menu item that will display a check symbol beside the
label, depending on whether its Boolean active property is TRUE or FALSE. This would allow
the user to view whether an option is activated or deactivated.

As with GtkMenuItem, three initialization functions are provided: gtk_check_menu_item_new(),
gtk_check_item_new_with_label(), and gtk_check_menu_item_new_with_mnemonic(). These func-
tions create a GtkCheckMenuItem with no label, with an initial label, or with a mnemonic label,
respectively.

GtkWidget* gtk_check_menu_item_new ();
GtkWidget* gtk_check_menu_item_new_with_label (const gchar *label);
GtkWidget* gtk_check_menu_item_new_with_mnemonic (const gchar *label);

As previously stated, the current state of the check menu item is held by the active prop-
erty of the widget. GTK+ provides two functions, gtk_check_menu_item_set_active() and
gtk_check_menu_item_get_active() to set and retrieve the active value.

7931.book Page 329 Thursday, February 22, 2007 9:09 PM

330 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

As with all check button widgets, you are able to use the toggled signal, which is emitted
when the user toggles the state of the menu item. GTK+ takes care of updating the state of the
check button, so this signal is simply to allow you to update your application to reflect the
changed value.

GtkCheckMenuItem also provides gtk_check_menu_item_set_inconsistent(), which is used
to alter the inconsistent property of the menu item. When set to TRUE, the check menu item
will display a third, “in between” state that is neither active nor inactive. This can be used to
show the user that a choice must be made that has yet to be set or that the property is both set
and unset for different parts of a selection.

Radio Menu Items
GtkRadioMenuItem is a widget derived from GtkCheckMenuItem. It is rendered as a radio button
instead of a check button by setting check menu item’s draw-as-radio property to TRUE. Radio
menu items work the same way as normal radio buttons.

The first radio button should be created with one of the following functions. You can set
the radio button group to NULL, because it is not necessary since requisite elements will be
added to the group by referencing the first element. These functions create an empty menu
item, a menu item with a label, and a menu item with a mnemonic, respectively.

GtkWidget* gtk_radio_menu_item_new (GSList *group);
GtkWidget* gtk_radio_menu_item_new_with_label (GSList *group,
 const gchar *text);
GtkWidget* gtk_radio_menu_item_new_with_mnemonic (GSList *group,
 const gchar *text);

All other radio menu items should be created with one of the following three functions,
which will add it to the radio button group associated with group. These functions create an
empty menu item, a menu item with a label, and a menu item with a mnemonic, respectively.

GtkWidget* gtk_radio_menu_item_new_from_widget (GtkRadioMenuItem *group);
GtkWidget* gtk_radio_menu_item_new_from_widget_with_label (GtkRadioMenuItem *group,
 const gchar *text);
GtkWidget* gtk_radio_menu_item_new_from_widget_with_mnemonic
 (GtkRadioMenuItem *group,
 const gchar *text);

Menu Bars
GtkMenuBar is a widget that organizes multiple pop-up menus into a horizontal or vertical row.
Each root element is a GtkMenuItem that pops down into a submenu. An instance of GtkMenuBar
is usually displayed along the top of the main application window to provide access to func-
tionality provided by the application. An example menu bar is shown in Figure 9-4.

7931.book Page 330 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 331

Figure 9-4. A menu bar with three menus

In Listing 9-5, a GtkMenuBar widget is created with three menus: File, Edit, and Help. Each
of the menus is actually a GtkMenuItem with a submenu. A number of menu items are then
added to each submenu.

Listing 9-5. Creating Groups of Menus (menubars.c)

#include <gtk/gtk.h>

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *menubar, *file, *edit, *help, *filemenu, *editmenu, *helpmenu;
 GtkWidget *new, *open, *cut, *copy, *paste, *contents, *about;
 GtkAccelGroup *group;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Menu Bars");
 gtk_widget_set_size_request (window, 250, -1);

 group = gtk_accel_group_new ();
 menubar = gtk_menu_bar_new ();
 file = gtk_menu_item_new_with_label ("File");
 edit = gtk_menu_item_new_with_label ("Edit");
 help = gtk_menu_item_new_with_label ("Help");
 filemenu = gtk_menu_new ();
 editmenu = gtk_menu_new ();
 helpmenu = gtk_menu_new ();

 gtk_menu_item_set_submenu (GTK_MENU_ITEM (file), filemenu);
 gtk_menu_item_set_submenu (GTK_MENU_ITEM (edit), editmenu);
 gtk_menu_item_set_submenu (GTK_MENU_ITEM (help), helpmenu);

7931.book Page 331 Thursday, February 22, 2007 9:09 PM

332 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), file);
 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), edit);
 gtk_menu_shell_append (GTK_MENU_SHELL (menubar), help);

 /* Create the File menu content. */
 new = gtk_image_menu_item_new_from_stock (GTK_STOCK_NEW, group);
 open = gtk_image_menu_item_new_from_stock (GTK_STOCK_OPEN, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (filemenu), new);
 gtk_menu_shell_append (GTK_MENU_SHELL (filemenu), open);

 /* Create the Edit menu content. */
 cut = gtk_image_menu_item_new_from_stock (GTK_STOCK_CUT, group);
 copy = gtk_image_menu_item_new_from_stock (GTK_STOCK_COPY, group);
 paste = gtk_image_menu_item_new_from_stock (GTK_STOCK_PASTE, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), cut);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), copy);
 gtk_menu_shell_append (GTK_MENU_SHELL (editmenu), paste);

 /* Create the Help menu content. */
 contents = gtk_image_menu_item_new_from_stock (GTK_STOCK_HELP, group);
 about = gtk_image_menu_item_new_from_stock (GTK_STOCK_ABOUT, group);
 gtk_menu_shell_append (GTK_MENU_SHELL (helpmenu), contents);
 gtk_menu_shell_append (GTK_MENU_SHELL (helpmenu), about);

 gtk_container_add (GTK_CONTAINER (window), menubar);
 gtk_window_add_accel_group (GTK_WINDOW (window), group);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

New GtkMenuBar widgets are created with gtk_menu_bar_new(). This will create an empty
menu shell into which you can add content.

After you create the menu bar, you can define the pack direction of the menu bar items with
gtk_menu_bar_set_pack_direction(). Values for the pack-direction property are defined by the
GtkPackDirection enumeration and include GTK_PACK_DIRECTION_LTR, GTK_PACK_DIRECTION_RTL,
GTK_PACK_DIRECTION_TTB, or GTK_PACK_DIRECTION_BTT. These will pack the menu items from left to
right, right to left, top to bottom, or bottom to top, respectively. By default, child widgets are
packed from left to right.

7931.book Page 332 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 333

GtkMenuBar also provides another property called child-pack-direction, which sets what
direction the menu items of the menu bar’s children are packed. In other words, it controls how
submenu items are packed. Values for this property are also defined by the GtkPackDirection
enumeration.

Each child item in the menu bar is actually a GtkMenuItem widget. Since GtkMenuBar is
derived from GtkMenuShell, you can use gtk_menu_shell_append() to add an item to the bar as
shown in the following line.

gtk_menu_shell_append (GTK_MENU_SHELL (menubar), file);

You can also use gtk_menu_shell_prepend() or gtk_menu_shell_insert() to add an item to
the beginning or in an arbitrary position of the menu bar.

You next need to call gtk_menu_item_set_submenu() to add a submenu to each of the root
menu items. Each of the submenus is a GtkMenu widget created in the same way as pop-up
menus. GTK+ will then take care of showing submenus to the user when necessary.

gtk_menu_item_set_submenu (GTK_MENU_ITEM (file), filemenu);

Toolbars
A GtkToolbar is a type of container that holds a number of widgets in a horizontal or vertical
row. It is meant to allow easy customization of a large number of widgets with very little trou-
ble. Typically, toolbars hold tool buttons that can display an image along with a text string.
However, toolbars are actually able to hold any type of widget. A toolbar holding four tool but-
tons and a separator is shown in Figure 9-5.

Figure 9-5. A toolbar showing both images and text

In Listing 9-6, a simple toolbar is created that shows five tool items in a horizontal row.
Each toolbar item displays an icon and a label that describes the purpose of the item. The tool-
bar is also set to display an arrow that will provide access to toolbar items that do not fit in
the menu.

7931.book Page 333 Thursday, February 22, 2007 9:09 PM

334 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

In this example, a toolbar is used to provide cut, copy, paste, and select-all functionality to
a GtkEntry widget. The main() function creates the toolbar, packing it above the GtkEntry. It
then calls create_toolbar(), which populates the toolbar with tool items and connects the
necessary signals.

Listing 9-6. Creating a GtkToolbar Widget (toolbars.c)

static void select_all (GtkEditable*);

/* Create a toolbar with Cut, Copy, Paste and Select All toolbar items. */
static void
create_toolbar (GtkWidget *toolbar,
 GtkWidget *entry)
{
 GtkToolItem *cut, *copy, *paste, *selectall, *separator;

 cut = gtk_tool_button_new_from_stock (GTK_STOCK_CUT);
 copy = gtk_tool_button_new_from_stock (GTK_STOCK_COPY);
 paste = gtk_tool_button_new_from_stock (GTK_STOCK_PASTE);
 selectall = gtk_tool_button_new_from_stock (GTK_STOCK_SELECT_ALL);
 separator = gtk_separator_tool_item_new ();

 gtk_toolbar_set_show_arrow (GTK_TOOLBAR (toolbar), TRUE);
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_BOTH);

 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), cut, 0);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), copy, 1);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), paste, 2);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), separator, 3);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), selectall, 4);

 g_signal_connect_swapped (G_OBJECT (cut), "clicked",
 G_CALLBACK (gtk_editable_cut_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (copy), "clicked",
 G_CALLBACK (gtk_editable_copy_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (paste), "clicked",
 G_CALLBACK (gtk_editable_paste_clipboard), entry);
 g_signal_connect_swapped (G_OBJECT (selectall), "clicked",
 G_CALLBACK (select_all), entry);
}

/* Select all of the text in the GtkEditable. */
static void
select_all (GtkEditable *entry)
{
 gtk_editable_select_region (entry, 0, -1);
}

7931.book Page 334 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 335

New toolbars are created with gtk_toolbar_new(), which was called before the
create_toolbar() function shown in Listing 9-6. This creates an empty GtkToolbar widget
in which you can add tool buttons.

GtkToolbar provides a number of properties for customizing how it appears and interacts
with the user including the orientation, button style, and the ability to give access to items that
do not fit in the toolbar.

If all of the toolbar items cannot be displayed on the toolbar because there is not enough
room, then an overflow menu will appear if you set gtk_toolbar_set_show_arrow() to TRUE. If
all of the items can be displayed on the toolbar, the arrow will be hidden from view.

void gtk_toolbar_set_show_arrow (GtkToolbar *toolbar,
 gboolean show_arrow);

Another GtkToolbar property is the style by which all of the menu items will be dis-
played, which is set with gtk_toolbar_set_style(). You should note that this property can be
overridden by the theme, so you should provide the option of using the default style by call-
ing gtk_toolbar_unset_style(). There are four toolbar styles, which are defined by the
GtkToolbarStyle enumeration:

• GTK_TOOLBAR_ICONS: Show only icons for each tool button in the toolbar.

• GTK_TOOLBAR_TEXT: Show only labels for each tool button in the toolbar.

• GTK_TOOLBAR_BOTH: Show both icons and labels for each tool button, where the icon is
located above its label.

• GTK_TOOLBAR_BOTH_HORIZ: Show both icons and labels for each tool button, where the
icon is to the left of the label. The label text of a tool item will only be shown if the is-
important property for the item is set to TRUE.

Another important property of the toolbar is the orientation that can be set with
gtk_toolbar_set_orientation(). There are two possible values defined by the GtkOrientation
enumeration, GTK_ORIENTATION_HORIZONTAL and GTK_ORIENTATION_VERTICAL, which can be used
to make the toolbar horizontal (default) or vertical.

Toolbar Items
Listing 9-6 introduces three important tool item types: GtkToolItem, GtkToolButton, and
GtkSeparatorToolItem. All tool buttons are derived from the GtkToolItem class, which holds
basic properties that are used by all tool items.

If you are using the GTK_TOOLBAR_BOTH_HORIZ style, then an essential property installed in
GtkToolItem is the is-important setting. The label text of the toolbar item will only be shown for
this style if this property is set to TRUE.

As with menus, separator tool items are provided by GtkSeparatorToolItem and are cre-
ated with gtk_separator_tool_item_new(). Separator tool items have a draw property, which
will draw a separator when set to TRUE. If you set draw to FALSE, it will place padding at its loca-
tion without any visual separator.

7931.book Page 335 Thursday, February 22, 2007 9:09 PM

336 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

■Tip If you set the expand property of a GtkSeparatorToolItem to TRUE and its draw property to FALSE,
you will force all tool items after the separator to the end of the toolbar.

Most toolbar items are of the type GtkToolButton. GtkToolButton provides a number of ini-
tialization functions including gtk_tool_button_new_from_stock(). This function accepts a
stock identifier; a list of stock items available in GTK+ 2.10 can be found in Appendix D. Unlike
most initialization functions, this method returns a GtkToolItem object instead of a GtkWidget.

Alternatively, you can use gtk_tool_button_new() to create a GtkToolButton with a custom
icon and label. Each of these properties can be set to NULL.

GtkToolItem* gtk_tool_button_new (GtkWidget *icon,
 const gchar* label);

It is possible to manually set the label, stock identifier, and icon after initialization with
gtk_tool_button_set_label(), gtk_tool_button_set_stock_id(), and gtk_tool_button_
set_icon_widget(). These functions provide access to tool button’s label, stock-id, and
icon-widget properties.

Additionally, you can define your own widget to use instead of the default GtkLabel widget
of the tool button with gtk_tool_button_set_label_widget(). This will allow you to embed an
arbitrary widget, such as an entry or combo box, into the tool button. If this property is set to
NULL, the default label will be used.

void gtk_tool_button_set_label_widget (GtkToolButton *button,
 GtkWidget *label_widget);

After you create the toolbar items, you can insert each GtkToolItem into the toolbar with
gtk_toolbar_insert(). You do not have to cast the GtkToolItem, since the initialization func-
tions do not return a GtkWidget.

void gtk_toolbar_insert (GtkToolbar *toolbar,
 GtkToolItem *item,
 gint pos);

The third parameter of gtk_toolbar_insert() accepts the position to insert the item into
the toolbar. Tool button positions are indexed from zero. A negative position will append the
item to the end of the toolbar.

Toggle Tool Buttons
GtkToggleToolButton is derived from GtkToolButton and, therefore, only implements initializa-
tion and toggle abilities itself. Toggle tool buttons provide the functionality of a GtkToggleButton
widget in the form of a toolbar item. It allows the user to view whether the option is set or unset.

Toggle tool buttons are tool buttons that remain depressed when the active property is set
to TRUE. You can use the toggled signal to receive notification when the state of the toggle but-
ton has been changed.

7931.book Page 336 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 337

There are two ways to create a new GtkToggleToolButton. The first is with gtk_toggle_
tool_button_new(), which will create an empty tool button. You can then use the functions
provided by GtkToolButton to add a label and image.

GtkToolItem* gtk_toggle_tool_button_new ();
GtkToolItem* gtk_toggle_tool_button_new_from_stock (const gchar *stock_id);

Alternatively, you can use gtk_toggle_tool_button_new_from_stock(), which will create a
tool button with the label and image associated with the stock identifier. If the stock identifier
is not found, the image and label will be set to the error stock item.

Radio Tool Buttons
GtkRadioToolButton is derived from GtkToggleToolButton, so it inherits the active property
and toggled signal. Therefore, the widget only needs to give a way for you to create new radio
tool buttons and add them to a radio group.

The first radio tool button should be created with gtk_radio_tool_button_new() or
gtk_radio_tool_button_new_from_stock(), where the radio group is set to NULL. This will create
a default initial radio group for the radio tool button.

GtkToolItem* gtk_radio_tool_button_new (GSList *group);
GtkToolItem* gtk_radio_tool_button_new_from_stock (GSList *group,
 const gchar *stock_id);

GtkRadioToolButton inherits functions from GtkToolButton, which provides functions and
properties that can then be used to set the label of the radio tool button if necessary.

All requisite elements should be created with gtk_radio_tool_button_from_widget() or
gtk_radio_tool_button_new_with_stock_from_widget(). Setting group as the first radio tool
button will add all requisite items added to the same group.

GtkToolItem* gtk_radio_tool_button_new_from_widget (GtkRadioToolButton *group);
GtkToolItem* gtk_radio_tool_button_new_with_stock_from_widget
 (GtkRadioToolButton *group,
 const gchar *stock_id);

GtkRadioToolButton provides one property, group, which is another radio tool button that
belongs to the radio group. This allows you to link all of the radio buttons together so that only
one will be selected at a time.

Menu Tool Buttons
GtkMenuToolButton, derived from GtkToolButton, allows you to attach a menu to a tool button.
The widget places an arrow beside the image and label that provides access to the associated
menu. For example, you could use GtkMenuToolButton to add a list of recently opened files to a
GTK_STOCK_OPEN toolbar button. Figure 9-6 is a screenshot of a menu tool button that is used for
this purpose.

7931.book Page 337 Thursday, February 22, 2007 9:09 PM

338 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Figure 9-6. A menu tool button showing recently opened files

Listing 9-7 shows you how to implement a menu tool button. The actual tool button is cre-
ated in a similar way as any other GtkToolButton except there is an extra step of attaching a
menu to the GtkMenuToolButton widget.

Listing 9-7. Using GtkMenuToolButton

GtkToolItem *open;
GtkWidget *recent;

recent = gtk_menu_new ();
/* Add a number of menu items where each corresponds to one recent file. */

open = gtk_menu_tool_button_new_from_stock (GTK_STOCK_OPEN);
gtk_menu_tool_button_set_menu (GTK_MENU_TOOL_BUTTON (open), GTK_MENU (recent));

In Listing 9-7, the menu tool button was created with a default stock icon and label with
gtk_menu_tool_button_new_from_stock(). This function accepts a stock identifier and will
apply the appropriate label and icon.

Alternatively, you can create a menu tool button with gtk_menu_tool_button_new(), which
accepts an icon widget and the label text. You can set either of these parameters to NULL if you
want to set them at a later time using GtkToolButton properties.

GtkToolItem* gtk_menu_tool_button_new (GtkWidget *icon,
 const gchar *label);

What makes GtkMenuToolButton unique is that an arrow to the right of the tool button
provides the user with access to a menu. The tool button’s menu is set with gtk_menu_tool_
button_set_menu() or by setting the menu property to a GtkMenu widget. This menu is dis-
played to the user when the arrow is clicked.

7931.book Page 338 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 339

Dynamic Menu Creation
While it is possible to manually create every menu and toolbar item, doing so can take up a
large amount of space and cause you to have to code monotonously for longer than necessary.
In order to automate menu and toolbar creation, GTK+ allows you to dynamically create
menus from XML files.

Creating UI Files
User interface files are constructed in XML format. All of the content has to be contained
between <ui> and </ui> tags. One type of dynamic UI that you can create is a GtkMenuBar with
the <menubar> tag shown in Listing 9-8.

Listing 9-8. Menu UI File (menu.ui)

<ui>
 <menubar name="MenuBar">
 <menu name="FileMenu" action="File">
 <menuitem name="FileOpen" action="Open"/>
 <menuitem name="FileSave" action="Save"/>
 <separator/>
 <menuitem name="FileQuit" action="Quit"/>
 </menu>
 <menu name="EditMenu" action="Edit">
 <menuitem name="EditCut" action="Cut"/>
 <menuitem name="EditCopy" action="Copy"/>
 <menuitem name="EditPaste" action="Paste"/>
 <separator/>
 <menuitem name="EditSelectAll" action="SelectAll"/>
 <menuitem name="EditDeselect" action="Deselect"/>
 </menu>
 <menu name="HelpMenu" action="Help">
 <menuitem name="HelpContents" action="Contents"/>
 <menuitem name="HelpAbout" action="About"/>
 </menu>
 </menubar>
</ui>

While not necessary, you should add the name attribute to every menubar, menu, and
menuitem. The name attribute can be used to access the actual widget. If name is not specified,
using the "action" field can access the widget.

7931.book Page 339 Thursday, February 22, 2007 9:09 PM

340 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Each <menubar> can have any number of <menu> children. Both of these tags must be closed
according to normal XML rules. If a tag does not have a closing tag (e.g., <menuitem/>), you must
place a forward slash character (/) at the end of the tag so the parser knows the tag has ended.

The action attribute is applied to all elements except top-level widgets and separators.
When loading the UI file to associate a GtkAction object to each element, GtkUIManager uses the
action attributes. GtkAction holds information about how the item is drawn and what callback
function should be called, if any, when the item is activated.

Separators can be placed in a menu with the <separator/> tag. You do not need to pro-
vide name or action information for separators, because a generic GtkSeparatorMenuItem will
be added.

In addition to menu bars, you can create toolbars in a UI file with the <toolbar> tag, as
shown in Listing 9-9.

Listing 9-9. Toolbar UI File (toolbar.ui)

<ui>
 <toolbar name="Toolbar">
 <toolitem name="FileOpen" action="Open"/>
 <toolitem name="FileSave" action="Save"/>
 <separator/>
 <toolitem name="EditCut" action="Cut"/>
 <toolitem name="EditCopy" action="Copy"/>
 <toolitem name="EditPaste" action="Paste"/>
 <separator/>
 <toolitem name="EditSelectAll" action="SelectAll"/>
 <toolitem name="EditDeselect" action="Deselect"/>
 <separator/>
 <toolitem name="HelpContents" action="Contents"/>
 <toolitem name="HelpAbout" action="About"/>
 </toolbar>
</ui>

Each toolbar can contain any number of <toolitem> elements. Tool items are specified in
the same manner as menu items, with an "action" and an optional "name". You can use the
same "name for elements in separate UI files, but you should not use the same names if, for
example, the toolbar and menu bar are located in the same file.

However, you can and should use the same "action" for multiple elements. This will cause
each element to be drawn in the same way and to be connected to the same callback function.
The advantage of this is that you need to define only one GtkAction for each item type. For exam-
ple, the same "action" will be used for the Cut element in the UI files in Listings 9-8 through 9-10.

7931.book Page 340 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 341

■Tip While the toolbar, menu bar, and pop-up menu were split into separate UI files, you can include as
many of these widgets as you want in one file. The only requirement is that the whole file content is contained
between the <ui> and </ui> tags.

In addition to toolbars and menu bars, it is possible to define pop-up menus in a UI file, as
illustrated in Listing 9-10. Notice that there are repeated actions in Listings 9-8, 9-9, and 9-10.
Repeating actions allows you to define only a single GtkAction object instead of separate
objects for each instance of an "action".

Listing 9-10. Pop-up UI File (popup.ui)

<ui>
 <popup name="EntryPopup">
 <menuitem name="EditCut" action="Cut"/>
 <menuitem name="EditCopy" action="Copy"/>
 <menuitem name="EditPaste" action="Paste"/>
 <separator/>
 <menuitem name="EditSelectAll" action="SelectAll"/>
 <menuitem name="EditDeselect" action="Deselect"/>
 </popup>
</ui>

The last type of top-level widget supported by UI files is the pop-up menu, denoted by
the <popup> tag. Since a pop-up menu is the same thing as a normal menu, you can still use
<menuitem> elements as children.

Loading UI Files
After you create your UI files, you need to load them into your application and retrieve the nec-
essary widgets. To do this, you need to utilize the functionality provided by GtkActionGroup and
GtkUIManager.

GtkActionGroup is a set of items with name, stock identifier, label, keyboard accelerator,
tooltip, and callback functions. The name of the each action can be set to an action parameter
from a UI file to associate it with a UI element.

GtkUIManager is an object that allows you to dynamically load one or more user interface
definitions. It will automatically create an accelerator group based on associated action groups
and allow you to reference widgets based on the name parameter from the UI file.

In Listing 9-11 GtkUIManager is used to load the menu bar and toolbar from the UI files in
Listings 9-8 and 9-9. The resulting application is shown in Figure 9-7.

7931.book Page 341 Thursday, February 22, 2007 9:09 PM

342 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Figure 9-7. A menu bar and a toolbar that are dynamically loaded

Each of the menu and tool items in the application are connected to empty callback func-
tions, because this example is only meant to show you how to dynamically load menus and
toolbars from UI definitions. You will implement callback functions with actual content in the
two exercises found at the end of this chapter.

Listing 9-11. Loading a Menu with GtkUIManager (uimanager.c)

#include <gtk/gtk.h>

/* All of the menu item callback functions have a GtkMenuItem parameter, and
 * receive the same gpointer value. There is only one callback function shown
 * since all of the rest will be formatted in the same manner. */
static void open (GtkMenuItem *menuitem, gpointer data);

#define NUM_ENTRIES 13
static GtkActionEntry entries[] =
{
 { "File", NULL, "_File", NULL, NULL, NULL },
 { "Open", GTK_STOCK_OPEN, NULL, NULL,
 "Open an existing file", G_CALLBACK (open) },
 { "Save", GTK_STOCK_SAVE, NULL, NULL,
 "Save the document to a file", G_CALLBACK (save) },
 { "Quit", GTK_STOCK_QUIT, NULL, NULL,
 "Quit the application", G_CALLBACK (quit) },
 { "Edit", NULL, "_Edit", NULL, NULL, NULL },
 { "Cut", GTK_STOCK_CUT, NULL, NULL,
 "Cut the selection to the clipboard", G_CALLBACK (cut) },
 { "Copy", GTK_STOCK_COPY, NULL, NULL,
 "Copy the selection to the clipboard", G_CALLBACK (copy) },
 { "Paste", GTK_STOCK_PASTE, NULL, NULL,
 "Paste text from the clipboard", G_CALLBACK (paste) },
 { "SelectAll", GTK_STOCK_SELECT_ALL, NULL, NULL,
 "Select all of the text", G_CALLBACK (selectall) },
 { "Deselect", NULL, "_Deselect", "<control>d",
 "Deselect all of the text", G_CALLBACK (deselect) },
 { "Help", NULL, "_Help", NULL, NULL, NULL },
 { "Contents", GTK_STOCK_HELP, NULL, NULL,
 "Get help on using the application", G_CALLBACK (help) },

7931.book Page 342 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 343

 { "About", GTK_STOCK_ABOUT, NULL, NULL,
 "More information about the application", G_CALLBACK (about) }
};

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *menubar, *toolbar, *vbox;
 GtkActionGroup *group;
 GtkUIManager *uimanager;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "UI Manager");
 gtk_widget_set_size_request (window, 250, -1);

 /* Create a new action group and add all of the actions to it. */
 group = gtk_action_group_new ("MainActionGroup");
 gtk_action_group_add_actions (group, entries, NUM_ENTRIES, NULL);

 /* Create a new UI manager and build the menu bar and toolbar. */
 uimanager = gtk_ui_manager_new ();
 gtk_ui_manager_insert_action_group (uimanager, group, 0);
 gtk_ui_manager_add_ui_from_file (uimanager, "menu.ui", NULL);
 gtk_ui_manager_add_ui_from_file (uimanager, "toolbar.ui", NULL);

 /* Retrieve the necessary widgets and associate accelerators. */
 menubar = gtk_ui_manager_get_widget (uimanager, "/MenuBar");
 toolbar = gtk_ui_manager_get_widget (uimanager, "/Toolbar");
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_ICONS);
 gtk_window_add_accel_group (GTK_WINDOW (window),
 gtk_ui_manager_get_accel_group (uimanager));

 vbox = gtk_vbox_new (FALSE, 0);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), menubar);
 gtk_box_pack_start_defaults (GTK_BOX (vbox), toolbar);

 gtk_container_add (GTK_CONTAINER (window), vbox);
 gtk_widget_show_all (window);

 gtk_main ();
 return 0;
}

The first thing you need to do when using GtkUIManager to dynamically load menus and
toolbars is to create an array of actions. It is possible to manually create every GtkAction,
GtkToggleAction, or GtkRadioAction object, but there is a much easier way.

7931.book Page 343 Thursday, February 22, 2007 9:09 PM

344 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

GtkActionEntry is a structure that holds an action name, stock identifier, label, accelera-
tor, tooltip, and callback function. The content of the GtkActionEntry structure can be viewed
in the following code snippet.

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 GCallback callback;
} GtkActionEntry;

The action name string must be the same as the action attribute of a menu or tool item in
a UI definition for it to be used. Any of the attributes except for the action name can safely be
set to NULL if they are not needed. If you specify a stock identifier, you do not need to specify a
label or an accelerator unless you want to override their default values.

The keyboard accelerator is specified as a string that spells out its value. Acceptable key-
board accelerators include "<Control>a", "<Shift><Control>x", "F3", and so on. Some of the
modifiers can also be abbreviated. For example, the Control key can be referenced with
"<Ctrl>" or "<Ctl>". In short, the accelerator must be of the form that it can be parsed by
gtk_accelerator_parse().

After you create lists of actions, you need to create a new GtkActionGroup that will hold all
of the actions with gtk_action_group_new(). The name specified to this function will be used
when associating key bindings with the actions.

An array of GtkActionEntry objects can be added to a GtkActionGroup by calling
gtk_action_group_add_actions(). This function accepts the array of entries, the number
of entries, and an optional data parameter that will be passed to each callback function.

void gtk_action_group_add_actions (GtkActionGroup *group,
 const GtkActionEntry *entries,
 guint n_entries,
 gpointer data);

If you need to pass different data parameters to different callback functions, you will
have to manually create each GtkAction and add it to the group with gtk_action_group_
add_action() or gtk_action_group_add_action_with_accel().

The next step is to create the GtkUIManager with gtk_ui_manager_new(). This object will be
used to load the UI definitions and connect each item to its corresponding GtkAction. You then
need to use gtk_ui_manager_insert_action_group() to add all of your action groups to the
GtkUIManager. This function will add all of the actions from the group to the UI manager. Then,
it will be able to match actions to elements in UI definitions to create appropriate widgets.

void gtk_ui_manager_insert_action_group (GtkUIManager *uimanager,
 GtkActionGroup *group,
 gint pos);

7931.book Page 344 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 345

The third parameter of this function is an integer that states the position of the action
group within the UI manager. Actions with the same name in groups with a lower position will
take preference over those with higher positions.

Next, you will want to use gtk_ui_manager_add_ui_from_file() to load any number of UI
files. In Listing 9-11, the menu.ui and toolbar.ui files were loaded with respect to the execut-
able. The third parameter of this function is an optional GError object.

guint gtk_ui_manager_add_ui_from_file (GtkUIManager *uimanager,
 const gchar *filename,
 GError **error);

This function will load the content of each file. Each element is then matched up with
objects added from an action group. The UI manager will then create all of the appropriate
widgets according to the UI definition. An error will be output to the terminal if an action does
not exist.

After the UI manager creates the widgets, you can load them based on name paths or the
action if the name parameter does not exist, as shown in the following code. The two top-level
widgets were the menu bar and toolbar found at "/MenuBar" and "/Toolbar". They are loaded
with gtk_ui_manager_get_widget().

GtkWidget* gtk_ui_manager_get_widget (GtkUIManager *self,
 const gchar *path);

You have to give the absolute path to any widget when a path is required. In the absolute
path, the <ui> element is omitted. The path is then built with the name attribute of each item.
For example, if you wanted to access the GTK_STOCK_OPEN element in the menu bar, you call
gtk_ui_manager_get_widget(), which would return the "/MenuBar/FileMenu/FileOpen"
menu item.

Additional Action Types
Menu and toolbar items with stock images and keyboard accelerators are great, but what
about using toggle buttons and radio buttons with GtkUIManager? For this, GTK+ provides
GtkToggleActionEntry and GtkRadioActionEntry. The content of GtkToggleActionEntry
follows:

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 GCallback callback;
 gboolean is_active;
} GtkToggleActionEntry;

7931.book Page 345 Thursday, February 22, 2007 9:09 PM

346 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

■Note One advantage of using UI definitions is that the actual definition does not know anything about how
the action is going to be implemented in your application. Because of this, the user can redesign a menu
structure without needing to know how each action will be implemented.

In addition to GtkActionEntry, GTK+ provides GtkToggleActionEntry, which will create a
toggle menu or tool item. This structure includes an additional member—is_active, which
defines whether the button is initially set as active.

Adding an array of GtkToggleActionEntry objects is similar to adding normal actions
except you have to use gtk_action_group_add_toggle_actions(). This function accepts an
array of GtkToggleActionEntry objects, the number of actions in the array, and a pointer that
will be passed to every callback function.

void gtk_action_group_add_toggle_actions (GtkActionGroup *group,
 const GtkToggleActionEntry *entries,
 guint num_entries,
 gpointer data);

Additionally, GtkRadioActionEntry allows you to create a group of radio actions. The value
member is a unique integer that can be used to activate a specific radio menu item or radio
tool button.

typedef struct
{
 const gchar *name;
 const gchar *stock_id;
 const gchar *label;
 const gchar *accelerator;
 const gchar *tooltip;
 gint value;
} GtkRadioActionEntry;

The radio actions are added to the action group with gtk_action_group_add_radio_actions(),
which will group all of the radio buttons together. This function works the same as gtk_action_
group_add_toggle_actions() except you need to specify two additional parameters.

void gtk_action_group_add_radio_actions (GtkActionGroup *group,
 const GtkRadioActionEntry *entries,
 guint num_entries,
 gint value,
 GCallback on_change,
 gpointer data);

The value parameter is the identifier assigned to the action that should be initially acti-
vated or set to -1 to deactivate all by default. The callback function on_change() is called when
the changed signal is emitted on a radio button.

7931.book Page 346 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 347

Placeholders
When creating UI files, you may want to mark a location in a menu where other menu items
can be added at a later time. For example, if you want to add a list of recent files to the File
menu, you may not know how many files will be available for the list.

For this situation, GTK+ provides the <placeholder> tag. In the following line of code, a
<placeholder> tag is defined that can be used to mark the location in the File menu that recent
file menu items can be added.

<placeholder name="FileRecentFiles"/>

Within your application, you can use gtk_ui_manager_add_ui() to add new user interface
information at the location of the placeholder. This function first accepts a unique unsigned
integer that was returned by a call to gtk_ui_manager_new_merge_id(). You have to retrieve a
new merge identifier every time you add a widget to the user interface.

void gtk_ui_manager_add_ui (GtkUIManager *uimanager,
 guint merge_id,
 const gchar *path,
 const gchar *name,
 const gchar *action,
 GtkUIManagerItemType type,
 gboolean top);

The next parameter of gtk_ui_manager_add_ui() is a path to the point where the new item
should be added; this would be "/MenuBar/File/FileRecentFiles", which is the path to the
placeholder. Then, you should specify a name and action for the new widget followed by the
type of UI item that is being added. UI item types are defined by the following
GtkUIManagerItemType enumeration options:

• GTK_UI_MANAGER_AUTO: GTK+ will determine what type of widget is to be added.

• GTK_UI_MANAGER_MENUBAR: Add a GtkMenuBar widget. The location of the placeholder
should be a direct child of a <ui> tag.

• GTK_UI_MANAGER_MENU: Add a GtkMenu as a child of a top-level widget.

• GTK_UI_MANAGER_TOOLBAR: Add a GtkMenuBar. The location of the placeholder should be a
direct child of a <ui> tag.

• GTK_UI_MANAGER_PLACEHOLDER: Add a new placeholder, which can be added at any loca-
tion in the user interface.

• GTK_UI_MANAGER_POPUP: Add a GtkMenuBar. This requires that the placeholder is located as
a direct child of a <ui> tag.

• GTK_UI_MANAGER_MENUITEM: Add a GtkMenuItem as a child of a top-level widget.

• GTK_UI_MANAGER_TOOLITEM: Add a GtkToolItem as a child of a top-level GtkToolbar widget.

• GTK_UI_MANAGER_SEPARATOR: Add a separator into any type of top-level widget.

• GTK_UI_MANAGER_ACCELERATOR: Add a keyboard accelerator to a menu or toolbar.

7931.book Page 347 Thursday, February 22, 2007 9:09 PM

348 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

The last parameter of gtk_ui_manager_add_ui() is a Boolean variable that positions the
new UI element with respect to the given path. If set to TRUE, the UI element is inserted before
the path. Otherwise, it is inserted after the path.

Custom Stock Items
From the last section, you will notice that GtkActionEntry accepts a stock identifier to add an
image to the item. Because of this, you will, at some point, need to create your own custom
stock icons that can be used for nonstandard menu and toolbar items. New stock items are cre-
ated with three objects: GtkIconSource, GtkIconSet, and GtkIconFactory. Let us work from the
bottom up.

GtkIconSource is an object that holds a GdkPixbuf or an image filename. It is meant to hold
one variant of an image. For example, if you have an image that will be displayed differently
when it is enabled or disabled, you would need to have multiple icon sources, one for each
state. You may need multiple icon sources for different icon sizes, different languages, or dif-
ferent icon states.

Multiple icon sources are organized with GtkIconSet, which holds all of the GtkIconSource
objects for one stock image. In some cases, your icon set may only have one image. While this
is usually not the case, you can use gtk_icon_set_new_from_pixbuf() to skip the step of creat-
ing an icon source.

GtkIconSet* gtk_icon_set_new_from_pixbuf (GdkPixbuf *pixbuf);

After you have created all of the necessary icon sets, they are added to a GtkIconFactory,
which is used to organize all of the stock items for a particular theme. Icon factories are added
to a global list that GTK+ searches through to find stock items.

In this section, a number of new stock items are going to be created. Figure 9-8 is a screen-
shot of the new stock items that are created in Listing 9-12.

Figure 9-8. Custom images added to the global icon factory

In Listing 9-12, five new stock items are created including "check-list", "calculator",
"screenshot", "cpu", and "desktop". A toolbar item is then created from each of the new stock
items and displayed on the screen.

7931.book Page 348 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 349

Listing 9-12. Using GtkIconFactory (iconfactory.c)

#include <gtk/gtk.h>

#define ICON_LOCATION "/path/to/icons/"

typedef struct
{
 gchar *location;
 gchar *stock_id;
 gchar *label;
} NewStockIcon;

const NewStockIcon list[] =
{
 { ICON_LOCATION"checklist.png", "check-list", "Check _List" },
 { ICON_LOCATION"calculator.png", "calculator", "_Calculator" },
 { ICON_LOCATION"camera.png", "screenshot", "_Screenshots" },
 { ICON_LOCATION"cpu.png", "cpu", "CPU _Info" },
 { ICON_LOCATION"desktop.png", "desktop", "View _Desktop" },
 { NULL, NULL, NULL }
};

static void add_stock_icon (GtkIconFactory*, gchar*, gchar*);

int main (int argc,
 char *argv[])
{
 GtkWidget *window, *toolbar;
 GtkIconFactory *factory;
 gint i = 0;

 gtk_init (&argc, &argv);

 window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
 gtk_window_set_title (GTK_WINDOW (window), "Icon Factory");
 gtk_container_set_border_width (GTK_CONTAINER (window), 10);

 factory = gtk_icon_factory_new ();
 toolbar = gtk_toolbar_new ();

7931.book Page 349 Thursday, February 22, 2007 9:09 PM

350 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

 /* Loop through the list of items and add new stock items. */
 while (list[i].location != NULL)
 {
 GtkToolItem *item;

 add_stock_icon (factory, list[i].location, list[i].stock_id);
 item = gtk_tool_button_new_from_stock (list[i].stock_id);
 gtk_tool_button_set_label (GTK_TOOL_BUTTON (item), list[i].label);
 gtk_tool_button_set_use_underline (GTK_TOOL_BUTTON (item), TRUE);
 gtk_toolbar_insert (GTK_TOOLBAR (toolbar), item, i);
 i++;
 }

 gtk_icon_factory_add_default (factory);
 gtk_toolbar_set_style (GTK_TOOLBAR (toolbar), GTK_TOOLBAR_BOTH);
 gtk_toolbar_set_show_arrow (GTK_TOOLBAR (toolbar), FALSE);
 gtk_container_add (GTK_CONTAINER (window), toolbar);

 gtk_widget_show_all (window);
 gtk_main ();
 return 0;
}

/* Add a new stock icon from the given location and with the given stock id. */
static void
add_stock_icon (GtkIconFactory *factory,
 gchar *location,
 gchar *stock_id)
{
 GtkIconSource *source;
 GtkIconSet *set;

 source = gtk_icon_source_new ();
 set = gtk_icon_set_new ();

 gtk_icon_source_set_filename (source, location);
 gtk_icon_set_add_source (set, source);
 gtk_icon_factory_add (factory, stock_id, set);
}

Creating a new icon factory, source, or set is as simple as calling gtk_icon_factory_new(),
gtk_icon_source_new(), or gtk_icon_set_new(). Each of these functions creates an empty
object that is not of any use in its current state.

In Listing 9-12, the icon source is initialized to an image found at the specified filename
with gtk_icon_source_set_filename(). Alternatively, you can create the icon source out of a
GdkPixbuf object with gtk_icon_source_set_pixbuf().

7931.book Page 350 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 351

Since we only needed one icon source in Listing 9-12 for each stock item, there was no
need for further customization. However, it is possible to set the icon to be displayed for a spe-
cific size with gtk_icon_source_set_size(). This will tell GTK+ to only use this icon if the
application needs the specified size.

void gtk_icon_source_set_size (GtkIconSource *source,
 GtkIconSize size);

■Caution If you need to set the icon source size, it will have no effect unless you pass FALSE to
gtk_icon_source_set_size_wildcarded(). Otherwise, the icon source will be used for all sizes. This
also goes for icon states, which must be unset with gtk_icon_source_set_state_wildcarded().

Additionally, you can define the icon to be shown during a specific state defined by the
GtkIconState. If you use gtk_icon_source_set_state(), you will want to make sure to define
icons for all five states defined by the enumeration.

void gtk_icon_source_set_state (GtkIconSource *source,
 GtkIconState state);

After you create your icon sources, you will need to add them all to an icon set with
gtk_icon_set_add_source(). This function accepts the GtkIconSet and the icon source that
will be added.

Void gtk_icon_set_add_source (GtkIconSet *iconset,
 const GtkIconSource *source)

If you unset any wildcards in the icon sources, you will want to make sure to define stock
icons for every possible state or size. Adding a single icon source with both the state and the
size indicated as the wildcards usually does this. If there is a more specific icon, it will be used.
If the appropriate icon is not found, the wildcard icon will be used. This wildcard image may be
lightened or altered in some other way to fit the occasion.

Next, you need to add each GtkIconSet to the icon factory with gtk_icon_factory_add().
This function accepts the stock identifier that will be used to reference the icon. Normally,
you will want to name this "myapp-iconname", where "myapp" is replaced by the name of your
application.

void gtk_icon_factory_add (GtkIconFactory *factory,
 const gchar *stock_id,
 GtkIconSet *iconset);

If the stock identifier already exists, the new item will replace it, so by using your applica-
tion name in the stock identifier, you avoid overriding any default stock items.

Any stock items added to your icon factory are not available until you add it to the global
list of icon factories with gtk_icon_factory_add_default(). Normally, a separate icon factory
will exist for each graphical library that includes its default icons.

7931.book Page 351 Thursday, February 22, 2007 9:09 PM

352 C H A P T E R 9 ■ M E N U S A N D T O O L B A R S

Test Your Understanding
The following two exercises give an overview of what you have learned about menus and tool-
bars throughout the chapter.

In addition to completing them, you may want to create examples of pop-up menus with other
widgets that do not support them by default. Also, after finishing both of these exercises, you should
expand them by creating your own stock icons that are used in place of the default items.

Exercise 9-1. Toolbars

In Chapter 7, you created a simple text editor using the GtkTextView widget. In this exercise, expand on that appli-
cation and provide a toolbar for actions instead of a vertical box filled with GtkButton widgets.

While manual toolbar creation is possible, in most applications, you will want to utilize the GtkUIManager method
of toolbar creation. Therefore, use that method in this exercise. You should also make use of built-in stock items or
create your own with GtkIconFactory.

Oftentimes, it is advantageous for an application to provide the toolbar as a child of a handle box. Do this for your
text editor, placing the toolbar above the text view. Also, set up the toolbar so that the textual descriptor is shown
below every tool button.

This first exercise taught you how to build your own toolbars. It also showed you how to
use the GtkHandleBox container. In the next exercise, you will reimplement the Text Editor
application with a menu bar.

Exercise 9-2. Menu Bars

In this exercise, implement the same application as in Exercise 9-1, except use a menu bar this time. You should
continue to use GtkUIManager, but the menu does not need to be contained by a GtkHandleBox.

Since tooltips are not shown for menu items automatically, use a status bar to provide more information about
each item. The menu bar should contain two menus: File and Edit. You should also provide a Quit menu item in
the File menu.

Summary
In this chapter, you learned two methods for creating menus, toolbars, and menu bars. The
first method was the manual method, which was more difficult but introduced you to all of the
necessary widgets.

The first example showed you how to use basic menu items to implement a pop-up menu
for a progress bar. This example was expanded on in order to provide keyboard accelerators
and more information to the user with the GtkStatusbar widget. You also learned about sub-
menus as well as image, toggle, and radio menu items.

7931.book Page 352 Thursday, February 22, 2007 9:09 PM

C H A P T E R 9 ■ M E N U S A N D T O O L B A R S 353

The next section showed you how to use menu items with submenus to implement a
menu bar with a GtkMenuShell. This menu bar could be displayed horizontally or vertically and
forward or backward.

Toolbars are simply a horizontal or vertical list of buttons. Each button contains an icon
and label text. You learned about three additional types of toolbar buttons: toggles, radio but-
tons, and tool buttons with a supplemental menu.

Then, after much hard work, you were taught how to create dynamically loadable menus.
Each menu or toolbar is held in a UI definition file, which is loaded by the GtkUIManager class.
The UI manager associates each object with the appropriate action and creates the widgets
according to the UI definition.

Last, you learned how to create your own custom stock icons. It is necessary to create your
own icons, because arrays of actions require a stock identifier to add an icon to an action.

In the next chapter, we are going to take a short break from coding and cover the design of
graphical user interfaces with the Glade User Interface Builder. This application creates user
interface XML files, which can be dynamically loaded when your application starts. You will
then learn how to handle these files programmatically with Libglade.

7931.book Page 353 Thursday, February 22, 2007 9:09 PM

7931.book Page 354 Thursday, February 22, 2007 9:09 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

