CHAPTER 5

Introduction to Seam

The preceding two chapters covered the EJB3 and JSF frameworks, which are the core
components of Seam. In those chapters, you learned a simplistic way of designing both
presentation and business logic. However, in order to have the JSF pages call the business
logic, we had to go through JSF backing beans, the intermediate classes. Doing so often
required adding code referencing the backing beans in faces-config.xml.

Now it is time to discuss Seam itself. In this chapter, I will show you how to eliminate
the backing beans and call the EJB3’s SB directly. In addition, I will also start the discus-
sion on using Seam objects to help make common tasks simpler.

In the Figure 5-1 road map, you will see that our main focus is the Seam interception
in every tier. To a lesser extent, our focus will be the EJB3 and JSF objects because they
will be the target of our interception.

Presentation Tier Business Logic Tier Persistence Tier

JSF Container EJB Container

Session Beans

JSF Tags

Entity Beans

=
S
=
=%
D
o
2
=
£
<
f+r3
(7]

Seam Interception

=
S
=
=%
D
o°
2
=
£
[}
<53
w

| ! TestNG !
| |

Figure 5-1. The road map showing that our main focus will be Seam interception across the tiers

121

122

CHAPTER 5 © INTRODUCTION TO SEAM

This chapter discusses how we take the EJBs and JSF pages we created before and
modify them to leverage Seam. As you will see, the end result will be less code required
and an easy separation of barriers. Also, you will be able to see that not only does using
Seam save time and space, but it adds functionality that we did not previously have.

The chapter starts off by explaining how to configure and download Seam. It then
moves on to Seam’s architecture, including an explanation of how it works and various
high-level design aspects. You will learn about the injection and conversation mecha-
nisms that Seam is known for. The chapter wraps up with a discussion of the basic
components that you can use with Seam. Many of you will want to use these on a day-
to-day basis.

Note Although this chapter refers only to the standard EJB3/JSF combination for Seam, there are other
frameworks (for example, Hibernate) that can be used with Seam. These are discussed in later chapters.

What Is Seam?

Seam is a new application framework designed by JBoss, a division of Red Hat, to be
integrated with many popular next-generation service-oriented architectures. This is
achieved not by adding a heavy amount of code surrounding all the common architec-
tures, but by sprinkling interceptors and annotations into already-existing classes. This
keeps in line with the idea of using plain old Java objects (POJOs) in Java development
by requiring less time for you to worry about the framework piece and leaving more
time to spend actually developing the business functionality.

The obvious question you might ask is, “How does adding more into a potentially
working model help save time?” Seam achieves this by eliminating the need for
“plumbing” code. Essentially, we are allowing Seam to handle the plumbing and to
have the business logic interact with the JSF pages themselves. One of the nice things
about Seam is that even if you already have code you want to use, you will be able to
keep your existing EJBs and JSF pages, thus being able to maintain a mixed environ-
ment if you choose. Seam does this by integrating with existing layers, as shown in
Figure 5-2.

CHAPTER 5 © INTRODUCTION TO SEAM 123

Presentation Tier

Seam

SeamPhaselistener

JSF Faces

Business Logic Tier

Seam

SeamInterceptor

EJB3
Session Beans

Persistence Tier

Seam

SeamInterceptor

EJB3
Entity Beans

Figure 5-2. Diagram of Seam intermixing with the various tiers

Basic Seam Configuration

This section covers the configuration of Seam in an environment that is supporting EJB3,
and the deployment of an EAR file.

Downloading Seam

Before configuring Seam, you first have to download the compressed Seam file. Seam is a

product of JBoss and can be downloaded as a gun-zipped TAR file or as a ZIP file from
http://labs.jboss.com/portal/jbossseam/download/index.html. This book uses the Seam

1.1.0 GA release.

124

CHAPTER 5 © INTRODUCTION TO SEAM

The Seam download has many external library files associated with it, because of the
large number of configurations possible with Seam. For right now, though, all you have to
worry about is the basic configuration, so you will need only the jboss-seam-ui.jar and
jboss-seam. jar files in the root directory of the downloaded file.

However, later in this chapter, you will also need the jboss-seam-debug. jar file to use
Seam’s debug mode.

Configuring Seam

Earlier I mentioned that there are many ways to configure Seam. For our first Seam appli-
cations, we are going to use the most basic configuration: the JSF—EJB3 configuration.
This is the traditional way that Seam was designed to be set up. This minimalist configu-
ration allows for coupling the presentation tier information to the persistence tier and
will enable Seam to work with the examples in this chapter. Later in this chapter, I will
discuss further modifications to make life easier in the Seam environment, and in later
chapters you can add advanced options depending on the needs of your environment.

Updating XML Files

Let’s begin. I will assume that you have an EAR file ready to go from Chapter 4. You will
have to modify three of the existing files, one for the business logic and two on the pres-
entation end. We will start with the faces-config.xml file in Listing 5-1.

Listing 5-1. The faces-config.xml File After Adding the Seam Phase Listener

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
"http://java.sun.com/dtd/web-facesconfig 1 0.dtd">
<faces-config>
<lifecycle>
<phase-listener>org.jboss.seam.jsf.SeamPhaselListener</phase-listener>
</lifecycle>

</faces-config>

This first modification integrates Seam with the phase life cycle of the JSF request life
cycle. There are actually multiple class files to specify in the phase listener. The one you
select depends on how you want to manage the transaction demarcation. I will explain
the differences later; for right now;, just stick with the basic phase listener.

Next we will move on to the web.xml file in Listings 5-2 and 5-3.

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-2. In web.xml, Add a Context Parameter for State Saving

<context-param>
<param-name>javax.faces.STATE_SAVING METHOD</param-name>
<param-value>client</param-value>

</context-param>

Another item that you need to add to your faces-config.xml file, depending on what
JSF implementation you are using, is the setting of the state-saving method. If you are
using Apache’s MyFaces, Seam needs client-side state saving. For our initial examples we
will be using MyFaces, so include the previous listing for now.

Listing 5-3. In web.xml, Add the Listener to the Servlet Request Life Cycle

<listener>
<listener-class>
org.jboss.seam.servlet.SeamListener
</listener-class>
</listener>

In every framework that integrates with the web tier, you will have to add either a
listener to the life cycle or a front controller servlet to be called by the Web. Seam solves
this problem by using a listener to bootstrap the JSF servlet life cycle. The Seam listener
is then responsible for moving the data across the tiers as well as for creation and
destruction of context objects.

Adding Seam JAR Files

Now that you have your XMLs configured, there are two extra JAR files that you have to add
to make the application work: jboss-seam. jar and jboss-seam-ui.jar. The jboss-seam-ui.jar
file goes into the WEB-INF/1ib directory. The jboss-seam. jar file belongs at the root level of
the EAR file. The server will load up the jboss-seam-ui.jar automatically. However, you will
have to specify the location of jboss-seam.jar in ejb-jar.xml, as shown in Listing 5-4.

Listing 5-4. In ejb-jar, Add the jboss-seam.jar File

<module>
<java>jboss-seam.jar</java>
</module>

125

126

CHAPTER 5 © INTRODUCTION TO SEAM

Finalizing the Setup

Now that you have your XML and JAR files set up, there is one final thing to do to make
Seam work, and although this may seem trivial, if you do not do it you will run into a lot
of errors that seem to make no sense at all. So the final step is the addition of the
Seam.properties file to the EAR file. This file can be blank but it has to be there. I will
explain later in this chapter what you can add to it.

Make these modifications to your files, compile them, and you should be good to go,
ready to start using Seam. After the addition of the preceding files, your directory struc-
ture should look like the one in Figure 5-3, minus any JSP files.

v (= garage-sale.ear
v (& META-INF
|X] application.xml
IK] jboss-app.xml
MANIFEST.MF
B garage-sale.war
|5 garage-sale-business.ejb3
D jboss-seam.jar
¥ (= garage-sale.war
» (= META-INF
v (= WEB-INF
v = lib
0O jboss-seam-ui.jar
ly components.xml
|X] faces-config.xml
llj web.xml
¥ (& garage-sale-business.ejb3.
» (= com
» (= META-INF
seam.properties

Figure 5-3. The file structure of the EAR, EJB3, and WAR directories

Note Seam has a generation program that provides a shortcut to get Seam up and running. For more
information, consult the following websites: http://www.integrallis.com or the Apress website at
http://www.apress.com in the Source Code/Download section.

First Example: Stateless Session Bean

Our first example application is the most basic one, a stateless session bean (SLSB). In this
page we will be creating a SLSB that will add a House to the database. As I mentioned ear-
lier, Seam does not really add any new code but takes your existing code and modifies it to
integrate the business tier and presentation tier for you. So in this section, we will take the
HouseManagerAction stateless bean from Chapter 4 and modify it for use with Seam.

CHAPTER 5 © INTRODUCTION TO SEAM

For this example, we are going create a relatively simple SLSB that will add a House to
the database by starting at a JSF page, setting properties on the House, and inserting the
House into the database. In a typical web application, you would have the presentation
tier call an action class, which in turn would call a utility class to do a JNDI lookup of the
stateless session bean and to do a narrowing on it. At this point, you would have a refer-
ence to the home interface, and a method would be called to create the EJB remote. The
EJB remote would then be brought to the action class for use, and finally back to the JSP.
That is a lot of processing and essentially an extra class in the middle just to convert the
request to data to call our session bean. By using Seam, we are going to do the same thing
but not have what is essentially a middleman class (the action). We will modify our SLSB
so that the JSF page can access it implicitly through Seam. Listing 5-5 shows an example
of a SLSB class.

Listing 5-5. Stateless Session Bean Class-Level Modifications by Seam

@Stateless

@Name("salesManager")

@Interceptors(SeamInterceptor.class)

@IndiName("garage-sale/SaleManagerAction/local")

public class SaleManagerAction implements SaleManager {
// Put the rest of the method in here

The first line of this should look familiar; it defines that this is a stateless bean. This is
the only part of the class definitions that are not Seam specific.

The @Name attribute defines the Seam component name. This annotation is used by the
JSF pages to reference the component or bean. This can of course lead to someone defining
the same name in multiple beans. There is really no way to prevent this, or to specify which
one will be the overwriting one. Your only indication will be a warning on the console.

The @IndiName annotation specifies the JNDI name that Seam will use to look up the
EJB. This of course could get tedious to have in every single EJB, not to mention that the
pattern could change per application server. Thankfully, there is a more global way to do
this that I will explain later in this chapter.

The @Interceptors annotation is not a Seam-specific annotation, but we are using it
for Seam. This annotation is needed for Seam to perform its bijection, validation, and so
forth, by intercepting the invocation of the component. However, this is not required for
EB because bijection and context demarcations are not defined. As with the @IndiName
annotation, there is an easier way to do this that I will explain later in this chapter.

Now that you see how to start creating our Seam-modified session bean, let’s go into
some of the code itself. Listing 5-6 adds methods.

127

128

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-6. Stateless Session Bean Method-Level Modifications by Seam

@Stateless

@Name("salesManager")
@Interceptors(SeamInterceptor.class)
@IndiName("garage-sale/SaleManagerAction/local")

public class SaleManagerAction implements SaleManager {

@PersistenceContext
private EntityManager em;

@In @ut
private House house;

public String addHouse() {
em.persist(house);
return "/homeSuccess.jsp";

This is the body of our SLSB, with the necessary items in place to perform the house
addition. As you can see, it does not take much code—a lot less than Struts would
require. EntityManager is a normal component of the SLSB that I discussed in Chapter 4,
so I will not explain that any further. The House object is an entity bean, with @In and @out
annotations. I will discuss these annotations further later in the chapter. For now, just
realize that these annotations tell the Seam interceptors to populate that object and
return it. Listing 5-7 shows our EB House object.

Listing 5-7. Entity Bean Example

@Entity
@Name ("house")

public class House {

private long houseld;
private String address;
private String city;
private String state;
private Date startTime;
private Date endTime;

CHAPTER 5 © INTRODUCTION TO SEAM 129

@Id @GeneratedValue

public long getHouseId() {
return houseld;

}

public void setHouseId(long houseId) {
this.houseld = houseld;

@NotNull(message="Address is required")

@Length(min=5, max=15, message="Address should be between 5 and 15")

public String getAddress() {
return address;

}

public void setAddress(String address) {
this.address = address;

}

public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;

}

public Date getEndTime() {
return endTime;

}

public void setEndTime(Date endTime) {
this.endTime = endTime;

}

public Date getStartTime() {
return startTime;

}

public void setStartTime(Date startTime) {
this.startTime = startTime;

}

public String getState() {
return state;

}

public void setState(String state) {
this.state = state;

130

CHAPTER 5 © INTRODUCTION TO SEAM

public String toString() {

return houseld + ", " +address;

Well, that is all that’s required for the session bean to be ready to be used as a Seam
component. As you can see, very little code was added, and what was added were anno-
tations. This helps provide the robustness needed for a web application.

Now onto the changes needed by the JSF page. For reference, Listing 5-8 shows the
JSF page from before with the Seam modifications needed.

Listing 5-8. Seam Modifications to the JSF

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<f:view>

<h:form>
Please enter your address:

<h:inputText value="#{house.address}" size="15"/>

<h:commandButton value="Add House" action="#{salesManager.addHouse}"/>
</h:form>
</fiview>

You may be looking at this very hard, thinking, “I do not see the modifications.” Well,
you are correct. There are no modifications needed to the JSF page to make this work.
This is the simplicity that Seam helps bring to a JSF environment. Now that being said,
there are Seam-level tag libraries we can use to help make life even easier, but for this
example those are not needed.

Well that’s it. That’s all you have to do to create your first Seam page (see Figure 5-4).
In a bit we will get into some additional options for Seam and JSF pages.

CHAPTER 5 " INTRODUCTION TO SEAM 131

Please enter your address:
*

Home is successful,

Figure 5-4. Screen transition of entering a new home

Architecture

The preceding example showed how easy it is to convert your EJBs and JSF pages to use
Seam. As you saw, we added annotated POJOs to allow our objects to use the Seam archi-
tecture. You should find this easier than a traditional Java enterprise three-tier architecture.

However, this example raises two questions: what does Seam need with those anno-
tations, and how does it put those together to create seamless application tiers? There are
five main topics I will go over to explain how Seam works:

¢ POJOs and annotations

e Inversion of control and bijection

132

CHAPTER 5 © INTRODUCTION TO SEAM

¢ Interceptors
¢ Seam context

¢ Three-tier architecture with Seam

POJOs and Annotations

Plain old Java objects have become the rage lately in Java development, and there is a
good reason for that. They are lightweight service objects that can easily be plugged into
any framework. The use of POJOs is one of the core values of many new architectures,
and Seam is no different. Seam actually has no base classes to extend or interfaces to
implement as do many other frameworks (think Struts and the Action interface). Every
Seam-related object you create can be a POJO. You could of course use classes that are
not POJOs, but there really is no need because POJOs give you straightforward code with-
out the hassle of a lot of plumbing.

However, as is obvious, POJOs are not enough. Seam needs something else to at
least help identify that the POJO is a Seam component. In older frameworks, XML files
were used to identify these objects. However, that can get messy fast. Now, there are
annotations.

As you saw in the first example in this chapter and in our Hello World application in
Chapter 1, all Seam needs are POJOs—POJOS with annotations. Annotations provide a
flexible way of adding functionality to your existing class structure.

Seam could not easily have been developed without this Java 5 addition. Had Seam’s
creators not gone this route, they would have had to base all the functionality entirely on
XML-based files (which, given the number of things you can do with POJOs, would have
gotten messy fast). Imagine in your XML file having to identify not only the class, but
then which methods need validating, the type of validation, the time of input/output of
objects—yick. So not only do annotations provide a more readable way of understanding
the code, they also reduce the number of files needed. In fact, in some situations Seam
uses already-existing annotations and then expands on the functionality for them. (The
validation framework does this, as you will see this later in this chapter.)

This use of annotations is what sets Seam apart from other frameworks you have
used in the past. This is the path that most frameworks in their next versions will be fol-
lowing as well—including Spring, Tapestry, and others.

Inversion of Control and Bijection

Inversion of control (IoC) is not a new concept, but a concept that until recently frame-
works did not use. Frameworks such as Spring and Apache’s HiveMind have made great
use of it, and Seam is no exception in adding it to their repertoire.

CHAPTER 5 © INTRODUCTION TO SEAM

Inversion of control, also known by many as dependency injection, takes the need to
instantiate objects away from the normal user calls. Instead, you allow the container to
handle the creation of the component and its subcomponents. Seam is no different in
using dependency injection to inject objects. However, Seam takes it to the next step by
allowing the injection to go both ways.

IoC is needed because of the nature of Seam. Because we don'’t use any JSF action
classes to translate our presentation tier requests into objects and then set them on the
EJB and call the EJB, we have to use IoC to make up for it. This helps us save time and
space by letting the container manage the objects.

The usage of IoC in Seam is often referred to as bijection, because the injection is
two-way (injection and “outjection”). You can specify the direction of the components.
However, bijection is so much more in Seam than it is in most typical IoC patterns. Seam
takes IoC and expands it by making it dynamic, contextual, and bidirectional, and allow-
ing assembly by the container.

So where can you use bijection? Bijection can be used on any object that is a Seam
object. Remember, a Seam object is any object that you have defined with an @Name anno-
tation on the class. You can then biject your Seam objects into any SB or JavaBean.
However, you cannot biject objects into your EB. This is because the domain model
should be independent of business logic and because EBs are instantiated at the applica-
tion level and Seam could not intercept them anyway.

Seam performs bijection by dividing it into two areas: one going into the system and
one going out. As I have said, these are more commonly defined as injection and outjec-
tion, and we use @In and @0ut for these, respectively.

You got a brief taste of bijection in the first example. Now let’s take a look at what
exactly is happening and the options on those annotations. In this example, we have an
EB Seam object called House:

@In @ut
private House house;

This code specifies that your EB House will be a variable that can be injected in and
out of the SLSB and back to the JSF page.
The @0ut annotation has the following parameters:

required: This parameter specifies whether the field coming in/out should be cre-
ated. By default, this is set to true and will automatically be created, or you can
specify required=false to not have it automatically created.

scope: This is used to specify the scope of a non-Seam component. This is not neces-
sary if you are referencing objects that you specified with a Seam name. This is more
for objects such as strings, lists, and so forth.

133

134

CHAPTER 5 © INTRODUCTION TO SEAM

value: This is the context variable name, thus the name you are going to use when
referencing this component either in other beans or in your JSF page. This will
default to the name of the field or the getter/setter method.

The @In annotation will have all the parameters of @0ut as well as the create parameter:

create: This parameter specifies that a component should be created if the context
variable is null.

Note You cannot do bijection directly in an interceptor. You would have to call the objects through other
means in the interceptor.

BIJECTION WITH STATELESS SESSION BEANS

One thing that should be noted before we continue is that the bijection in Seam is actually very com-
plex (in a good way). Case in point: how we deal with stateless session beans. If you have worked with
them in the past, you are used to a simplistic model in which you send data to the SLSB, it performs
some operation, and then you return data. You never have the SLSB access property-specific data on
the SLSB. It is not safe to do so with SLSBs, unless the property is a global object such as a database
connection or logger reference.

However, with Seam this methodology is thrown out the window a bit. Seam does not use a sim-
plistic creation-time loC. Instead the bijection happens at invocation. Therefore, the objects you are
setting with @In or @Out to be injected or outjected are done at invocation, and when the method is
complete, they are disinjected. This is what makes it safe for us in Seam to reference properties of the
SLSB inside the methods.

Of course, along with this plus there's a minus. These SLSBs now become somewhat Seam spe-
cific, because you would never want to use them in a regular EJB3 container because their behavior
would be different. In a non-Seam container, you would not be guaranteed that the properties set on the
SLSB would then be the same SLSB that you are calling the method on.

Interceptors

So far, I have discussed the POJO objects that allow you to create both business and

domain objects that Seam applies its functionality to. I also discussed using annotations
for decorating the POJOs, indicating where we want to apply Seam functionality. So now
the question becomes, “How does Seam use these annotations to provide functionality?”

CHAPTER 5 © INTRODUCTION TO SEAM

After all, there are no parent interfaces or any classes that get called directly. The answer
is, through a combination of interceptors. These interceptors are called directly via the
code and the configuration file, or indirectly by classes used by existing interceptors.

There are many ways to wrap calls to the interceptor. In Seam we use Java EE’s inter-
ceptor classes to wrap the POJOs. The interceptor classes use the javax.interceptor.
AroundInvoke and javax.interceptor.InvocationContext annotations for creating the
methods that should be called during that interception.

Seam Contexts

Previously I explained how IoC works and its use in the Seam framework. Now part of [oC
is the life cycle of the injected object—obviously, it would be bad to have these objects
around forever or to have them deleted at each request. This concept is the same with the
POJOs themselves; they need to be kept around for sometimes more than one request.
The few built-in contexts into the Servlet specification (Request, Session, Servlet context)
hardly match everything you could need. Hence Seam has come up with a few more con-
texts to help you out. I cannot cover them all in detail in this chapter; however, you will
see examples of all of them in this or later chapters.

So what exactly are contexts and why do you need them? Any experienced web devel-
oper or avid web surfer knows the need to maintain his website as the pages go on. If you
are filling out a multipage loan form, you obviously want the information you stored on the
first page to go to the second page and so on. You especially do not want to have that infor-
mation destroyed because you tried to open a new browser window. Or, if you are a system
administrator, you might want only certain users to have access to each page. As an even
more-advanced example, you may want to have someone interact with the information you
are using. You may need to have one person create a request and one person approve it.
There are many of these concepts that web developers encounter on a daily or weekly basis.

On most traditional web applications, we handle these contexts by storing informa-
tion in the request or session objects. Sometimes you have to get tricky and use tokens to
prevent the user from using the Back button and refilling in data or using new browser
windows. There are many different tricks to the trade. Well, Seam realized this and basi-
cally said enough is enough, and instead of forcing developers to add tricks ad hoc by
using the request and session objects, just created new conversation states to use.

The following are the contexts available in Seam.

Stateless: The stateless pseudo context.

Event: This is more commonly known as a request scope. This will last the length of a
single server request.

Page: This is the culmination of requests for a single Faces request. It will start when
you invoke the action to take you to the page, and it lasts until the end of any action
invoked from the page.

135

136

CHAPTER 5 © INTRODUCTION TO SEAM

Conversation: This is for use on a series of requests from the same browser window
that all are related to the same topic or conversation. A typical example is a wizard
application for a loan.

Business Process: This is used for process management with tools such as jBPM.
Applications that require multiple actors to use the same set of items in a process is
an example. Chapter 7 covers this topic in greater detail. This context will span multi-
ple conversations with multiple users.

Session: This is a traditional Session context.

Application: This is a traditional Servlet context.

How to Define Context Scope

Before I explain details about each context, you need to know how to set your objects
to be those contexts. With Seam they refer to the context of an object as its scope; think
of it as the scope of the context. It is pretty simple. You can define the scope either on
your POJO itself, or on the attributes of the POJO by using the scope reference, as in
Listing 5-9.

Listing 5-9. Example of Using Scope

Import org.jboss.seam.ScopeType;

@Scope(ScopeType.Stateless)
public class MyBean {

@0ut(scope = ScopeType.Stateless)
String name;

As you see, we have defined the bean itself as a stateless scope, and we have defined
the outjection of name in a stateless scope as well. Under normal circumstances, you can
easily define just one, not both.

Now let’s delve into more details of each scope type.

CHAPTER 5 © INTRODUCTION TO SEAM

Stateless

Stateless contexts are for contexts that are, as you may have guessed, stateless. There
really is not much to discuss or show. These are used for a totally stateless object such as
a stateless session bean.

Event

For most of your requests that go from one page to another page, this is the context you
will be using. This is considered the “narrowest” context. Event contexts are held for one
cycle of one request. This can be as simple as going to a list page or just loading the home

page.

Page

The Page context is a relatively simple concept; it is when a component is tied to one par-
ticular page. Conversely, the page then has access to all the components that referenced
it. You will want to use this on pages where you need to persist the components upon
multiple subsequent calls to the same page.

Conversation

Have you ever been to a website that requires multiple form submissions and
wanted to try multiple scenarios? Suppose you are on a vacation-planning website
and you have to go through multiple selections—for example, selecting your air-
plane travel, hotel, car rental, and maybe even meals. Well, you are not sure what
option you want to pick. So you open up your tab-allowed browser such as Mozilla’s
Firefox and create multiple travel plans. As you may have experienced, there can be
one big problem: the site uses session-scoped data and now some of those sessions
are overlapping. So you will get a final page with data from different parts. Now
there are ways around this, but they have to be programmatically included in the
code. That can be a pain.

As a solution, Seam has come up with this idea of a conversation, also known as
a workspace. Conversations are essentially the context every call will initially be in.
Most normal conversations will last the duration of one call. However, with Seam we
can upgrade these conversations to long-running conversations. Once upgraded,
these conversations will last multiple page calls, and in fact will be tied to
conversationId. Creating the long-running conversations is basically a way of using
the same named context data multiple times. Think in terms of having an HttpSession
object with a name, but then if you wanted to start a separate path in the system, you
could re-create it again without losing your data from the previous session. Also,
another great feature is that the user can access any of these conversations on any of

137

138

CHAPTER 5 © INTRODUCTION TO SEAM

the pages. So let’s say that when you were booking your travel, you could still display
data from your other selections on that page—for example, showing the total price
thus far.

Business Process

The business process mechanism is a way of managing interactions across multiple
screens and multiple users all joined together. Because Seam is a JBoss product, it is only
natural for it to use the JBoss jBPM (Business Process Manager). Explaining how to use
and set up jBPM is too complex for this chapter. However, we will delve into it more in
Chapter 7.

Session

This is like a traditional HttpSession object. This is necessary when you have SFSBs that
need to have their data persisted across multiple session requests. For example, often you
will have a request for a list page that you want to make changes to, and you may not
want to lose the persistable list data. So you store the data to the Session context, and the
data will be persisted until the Seam contexts are destroyed.

Application

This is like the traditional ServletContext holding information that is available to all the
users. Because this is like the Servlet context, there is no tracking of individual web
requests from specific users.

Three-Tier Architecture with Seam

So now that we have all of the major players in place, it is time to put this all together into
a functioning Seam application. In this section, I am going to explain how Seam with its
interceptors defines the three-tier architecture. This interception for the most part will be
transparent to the user. Figure 5-5 presents a diagram of this interception.

CHAPTER 5 © INTRODUCTION TO SEAM

139

Web Client SeamlListener SeamPhaseListener FacesServlet Seaminterceptor

;
]

//contextinitialized

1/sessionCreated

//beforePhase

Y

//service

Y

/faroundinvoke

\4

//Business Method Call

>
//Returns String of Page to Display | |

<

P /Niew to Display

<

//afterPhase

A

/Niew Page

A

L
1
]
]
]

Figure 5-5. The sequence diagram of an initial full life-cycle call with Seam

Seam’s Integration with the MVC

Most frameworks integrate directly by having you call their framework-specific servlets to
integrate with the architecture. Seam is different; it controls items by adding listeners and
life cycles into the request. This allows us to maintain the normal life cycle of a JSF
request. You saw this already earlier in the chapter when I presented Seam’s basic config-
uration. Here I will explain it in a bit more detail.

Before I start explaining how Seam integrates with the various areas, you need to be
aware of a central class: org. jboss.seam.context.Lifecyle. This is the class that will keep
our contexts straight. Contexts will handle state in the web tier in a more advanced way
than a standard request and session object.

As you may recall, in the web.xml a listener (org. jboss.seam.servlet.SeamListener) was
added. You also see this listener being the first thing called in our sequence diagram. This
listener is called only at the start of a new session. This will set ServletContext and Session
to the Lifecycle object for manipulation later.

Now you see the next object called is SeamPhaseListener. The SeamPhaselListener object
is called in connection with FacesServlet. As you saw in faces-config.xml earlier, the
SeamPhaselistener is part of the life cycle for FacesServlet. This again is used to control
much of the context and to store the request state. This listener is needed to help move

140

CHAPTER 5 © INTRODUCTION TO SEAM

the data from the presentation to the business logic tier. In a typical JSF life cycle, you
would use backing beans. Now instead of having to worry about your backing beans
needing to translate the data and call E]Bs, Seam will handle this directly for us.

Seam’s Integration with the EJB3

Figure 5-6 represents the integration of Seam with the EJB3 POJO.

Seaminterceptors
Component

POJO
@DataModel
@In
@O0ut
@Factory

Figure 5-6. Representation of the layers of the EJB POJO

So now that you understand the web tier’s integration, you're ready to learn about
the business logic tier EJB integration. The business logic tier integration uses
SeamInterceptor to wrap around its call to the EJB. This interceptor wraps around any call
to the POJO EJB. This indirectly accesses a Component object stored in the Application con-
text, all the while wrapping the call in Lifecycle. This Component object contains in it the
EJB that you are accessing. It is much more than a simple wrapper object. This is the
object that holds all the field-level objects—from the injected fields, to the data model
objects, to the validators—basically, anything associated with the POJO’s attribute-level
Seam annotations. Also, another big extra is the inclusion of additional default intercep-
tors. These interceptors handle everything from bijection to validation to transaction
management. Additionally, you are able to add your own interceptors into the POJOs or
even additional default interceptors. The interceptors are defined in the
org.jboss.seam.interceptors package.

Put It All Together

Putting it all together, you have the ability to initiate calls from the JSP page to the EJB
without having to worry about the middle-management bean. At the same time, you are
also not losing any functionality.

CHAPTER 5 © INTRODUCTION TO SEAM

JSF PAGES

| have discussed the changes to the business logic tiers. Now | want to briefly mention the presentation
tier. All the JSF tags you are currently using can be kept without any modifications. There are some
custom tag libraries from Seam; in general, these are tied to components used on the business logic
tier (for example, DataModel). Throughout this chapter and the rest of the book, we will be using a mix-
ture of JSF tags and Seam tags for our pages.

Components

Hopefully by now you have a very basic understanding of using Seam with the code you
have created in Chapters 3 and 4. This section covers additional tools to help you create
your Seam pages, including logging and debugging. In addition, I am going to introduce
Seam-level components that will help make your pages more robust—for example, data
models and validation components. By the end of this section, you will know enough to
start writing even more-complex Seam pages.

Seam Configuration Options

As you may have noticed, these JSF pages tend to get alot of annotations at the class
level, and this can get quite messy. What is worse is that some of those annotations are
quite repetitive. The interceptor is required on every single page that you want to
become a Seam page. In addition, the JNDI name has to be defined on each page, and
worse yet, the JNDI name is application server—specific. So take a look at the following
code in Listing 5-10.

Listing 5-10. The Standard Code We Have Been Using for Our Classes

@Stateless

@Name("houseManager")

@IndiName("garage-sale/HouseManagerAction/local™)

@Interceptors(SeamInterceptor.class)

public class HouseManagerAction implements HouseManager {
// Add the rest of the code here

By modifying two configuration files, we can eliminate having to use @IndiName and
@Interceptors.

141

142

CHAPTER 5 © INTRODUCTION TO SEAM

JNDI Name

You can define the JNDI name in components.xml, which is placed in the WEB-INF directory.
You are going to use a wildcard expression for the pattern of the EJB name. Listing 5-11
contains an example of defining a jndiPattern to be used for JBoss. Consult your docu-
mentation if you plan to use a different application server.

Listing 5-11. Our components.xml file with the JNDI Name Pattern

<components>
<component name="org.jboss.seam.core.init">
<property name="debug">true</property>
<property name="myFacesLifecycleBug">true</property>
<property name="jndiPattern">garage-sale/#{ejbName}/local</property>
</component>
</components>

Seam Interceptor

There is a rather easy way to define the Seam interceptor, and unfortunately it uses a file
that you may have thought you had gotten rid of: ejb-jar.xml. Because we define most
EJB configurations now in annotations (optionally still definable in ejb-jar), we use a
new attribute for EJB3: interceptor-binding. Here we just define SeamInterceptor for all
the EJBs. Of course, if you wanted Seam to work only on a specific subset, you could
specify that in Listing 5-12 as well.

Listing 5-12. The ejb-jar.xml File with the Seam Interception

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar 3_0.xsd"
version="3.0">
<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.SeamInterceptor</interceptor-class>
</interceptor>
</interceptors>

CHAPTER 5 © INTRODUCTION TO SEAM

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>
org.jboss.seam.ejb.SeamInterceptor
</interceptor-class>
</interceptor-binding>
</assembly-descriptor>
</ejb-jar>

So from now on in the examples, assume that we are using these two optional
configurations.

Logging

One good habit that many, from beginners to experts, forget is proper logging. Logging is
such a core fundamental to good programming that [wanted to include it sooner rather
than later. One of the issues some people have is which logger to use. The main two are
Log4] and Apache commons-logging. Another issue with logging is how to properly do it.
Listing 5-13 shows an example of logging.

Listing 5-13. Logging by Using LogFactory

private static final Log log = LogFactory.getlog(SaleManagerAction.class);

public String addHouse() {
if (log.isDebugEnabled()) {
log.debug("House address to add is "+ house.getAddress());
}
em.persist(house);
return "/homeSuccess.jsp";

That is the proper way to write a debug or info log message. Not only does creat-
ing the debug statement add many lines, but many developers (even experienced
ones) screw up the instantiation of it. Often they will forget to declare the Log static or
have to change the class name and forget to change it on the logger as well. This can
cause all sorts of problems. Also, when debugging, you use isDebugEnabled mainly
because creating the string that is accessing the object requires processing time, so
often people forgo using isDebugEnabled and just use the debug statement.

So as you can see, there is a lot of extra effort here and room for mistakes. Fortu-
nately, Seam realized this in advanced and used annotations and scriptlets, which

143

144

CHAPTER 5 © INTRODUCTION TO SEAM

has made logging much simpler. Listing 5-14 shows the previous code written with
Seam logging.

Listing 5-14. Logging with Seam

@Logger
private Log log;

public String addHouse() {
log.debug("House address to add is #{house.address}");
em.persist(house);
return "/homeSuccess.jsp";

Well, look at that—not only did we cut down on code, but we made it simpler. Now the
obvious question is, “Did we lose any of the functionality?” The answer is no. Seam uses
Apache commons-logging for its logging behind the scenes. The annotation itself then
defines the static log element to be used in the page. Also, you notice that isDebugEnabled is
no longer there either. This happens because, as you can see, the debug method is not retriev-
ing the address via string concatenation of the object. So this way, the object is not being
forced to resolve until well within the debug method; hence the isDebugEnabled method is no
longer needed. All in all, this is a smooth way to perform debugging. Try adding some debug
statements to your code now and check the server.log file for the output.

Debug Mode

Another nice feature of Seam is its debug mode. This idea of having easily debuggable
abilities via the container is something that is catching on. Tapestry has an error page
that details the error and stack trace and all the variables associated with the request.
This is a bit different. Both are displayed on a web page built into the debugging software.
With Seam, you merely go to an independent web page that shows you all the informa-
tion. This is more for debugging complex problems that arrive with an application of this
nature. As I said before, there are many Conversation contexts to use, so consequently
knowing all of them and keeping track of them can be tricky. So what does the debug
mode tell you? It tells you the following:

¢ Conversations
¢ Component
¢ Conversation context

¢ Business Process context

¢ Session context

¢ Application context

CHAPTER 5 © INTRODUCTION TO SEAM

These are all associated with the current session you are in—which makes sense,
because you would not necessarily want to see all the sessions. Figure 5-7 shows the

debug screen.

JBoss Seam Debug Page

+ | @ http://localhost:B080 /garage-sale/debug.seam

% Qr Google I

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seamn context associated with the current session.

Conversations

Mo long-running conversations exist

- Component (None selected)

Select a component from one of the contexts below

- Conversation Context (None selected)
Empty conversation context

- Business Process Context

Empty business process context

- Session Context

house

javax.faces.request.charset
localeSelector

org. jboss.seam. core.manager. conversationldEntryMap

resourceBundle

+ Application Context

Figure 5-7. Screen shot of Seam in debug mode

How to Make This Work

Well hopefully you are thinking, “Wow;, this is neat! How do I do it?” Well, it is quite sim-
ple. It requires one change to your web.xml file and the addition of four other JARs. The

debug addition to web.xml is shown in listing 5-15.

145

146

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-15. Add This to web.xml to Turn On Seam Debugging

<context-param>
<param-name>org.jboss.seam.core.init.debug</param-name>
<param-value>true</param-value>

</context-param>

The JAR files are located in two areas. First, from the base of the download, you will
find jboss-seam-debug.jar. You will take all the JAR files from the facelets/1ib directory as
well. Figure 5-8 shows the directory structure.

B jboss—seam-1.0.1.GA

(= bin

» (= doc

» [drools

» (=7 embedded-ejb v [>garage-sale.war

» (7 examples » (= >META-INF

v [facelets v [>WEB-INF
v = lib v = >lib

[el-apljar —| [} >el-apljar (Binary)

[el-rijar » [} >elrijar (Binary)

0 jsf—facelets.@ » [>jboss-seam—debug.jar (Binary)
> [lib [} >jboss-seam-ui.jar (Binary)
» (= microcontainer D, >jsf—facelets.jar (Binary)

» [src [X} >components.xml (ASCIl -kk)
[X] .classpath [X) >faces—config.xml (ASCII -kk)
[X] .project [X) >web.xml (ASCI —kk)
build.properties
&) build.xml
changelog.txt

[jboss—seam.jar
[] jboss—seam-debug.jar
[jboss—seam-ui.jar

Igpl.ixt
readme.txt

Figure 5-8. Diagram of where to add the extra JAR files from and to

Now all you have to do is open a separate web browser in the same session and call
http://localhost:8080/garage-sale/debug.seam. The localhost:8080 represents where you
configured the server to run, garage-sale is the context root, debug is specified by default,
and .seam is what you specified in the URL pattern for your Faces servlet mapping in the
web.xml file. Listing 5-16 defines the additional entry for the URI.

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-16. Web Configuration for the application.xml File

<web>
<web-uri>garage-sale.war</web-uri>
<context-root>/garage-sale</context-root>
</web>

Listing 5-17 provides the definition for the web suffix.

Listing 5-17. Configuration for web.xml

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

Data Model

The data model is a useful set of Seam annotations and JSP tag libraries for processing
lists on the presentation tier. Quite often you will have a list of items for a page and you
will need to either edit parts of the list or delete parts of the list. This is actually quite
simple. You get a list of items from the database. Then you display the list on the presen-
tation tier with a link and an ID. When you click the link, you are taken back to the
action page, where you can use that ID to either look up the item from the list or from
the database. This is a basic operation that happens throughout many web applications
the world over. This tends to become a routine, cumbersome process. Fortunately, Seam
has some components to help you with it.

For our example, we will display a list of addresses and a Delete button for each to
remove them from the database.

Seam has made this much simpler by adding framework pieces into an SFSB that
makes life easier for the developer. All you have to do is specify three items in the SB.
Specify the item that is the list, the individual item you want selected to be injected, and
the factory method to instantiate the list.

In this example, we want to get a list of houses back and be able to edit them one at
a time. The page will display with a list of text boxes that each have a Delete button. The
user can hit the Delete button and delete any address desired. This code is built onto the
same Garage Sale application we used earlier. Let’s start off with the SFSB, which is a
new item we have not discussed before.

147

148

CHAPTER 5 © INTRODUCTION TO SEAM

P0OJO Service

Listing 5-18 shows our stateful session bean.

Listing 5-18. The SFSB for Our Edit Action

@Stateful

@Name ("houseManagerEdit")

@Scope(ScopeType.SESSION)

public class HouseManagerEditAction implements HouseManagerEdit {
/...

This style should look fairly familiar by now for defining our Seam Session objects.
The new part this time is the @Stateful annotation, which of course denotes that we are
using an SFSB.

The @Scope annotation is a Seam-specific annotation that sets the context for binding
the instance of the POJO. In this case, we are binding to the Session context. The combi-
nation of making it stateful and setting the scope to Session is necessary to allow us to
persist the list objects, so when we go back to the server we know which object of the list
that the user selected. If we did not persist this in Session, the list would be lost and we
could not persist it.

Now that we have our code to create the bean, let’s add the guts of it, which gives
the real functionality. We are going to define two objects to use: DataModel and
DataModelSelection. The DataModel object will represent the list of items, and the
DataModelSelection object will represent the selected item. Listing 5-19 displays the
DataModel selection.

Listing 5-19. The DataModel Selection Example

@Stateful
@Name ("houseManagerEdit")
public class HouseManagerEditAction implements HouseManagerEdit {

@PersistenceContext
private EntityManager em;

@DataModelSelection
@0ut(required=false)
private House house;

@ataModel
private List<House> houses;

CHAPTER 5 © INTRODUCTION TO SEAM

@Factory("houses")

public void findHomes() {
List list = em.createQuery("From House hs order by hs.houseId").getResultlList();
houses = list;

@ataModel is a Seam annotation that allows us to use java.util.Collections from the
EJB in the JSF <h:dataTable> tag on the front side. This is achieved by having Seam con-
vert the list into an instance of javax.faces.model.DataModel. This can be a powerful
component for use in an SFSB by allowing us to select and bring back objects into the
bean for processing. However, the question remains, “How does the page know to popu-
late that object?”

The @Factory annotation comes into play in telling the page how to initialize the
houses bean. Seam uses this to tell it to instantiate the houses object and run this method
when the presentation tier requests the houses object. As you can see, this method then
sets our houses object by using a simple query from our entity bean. Note that this
method will be called upon each request to it, regardless of whether you have a stateless
or stateful bean.

The @DataModelSelection annotation tells Seam that this is the object to be injected
from the list that is selected on the presentation tier. This object then can be used in your
method that wants to use it and that is called from the JSF page. Listing 5-20 shows the
method for performing the deletion.

Listing 5-20. SFSB Delete

public String remove() {
em.remove (house);
return null;

Here is our method we will call from the JSF page that will call for the deletion of the
house from the database.
Listing 5-21 shows our change to make the persistence context extended.

Listing 5-21. The Change of Our Persisentece Context

import static javax.persistence.PersistenceContextType.EXTENDED;

@PersistenceContext(type=EXTENDED)
private EntityManager em;

149

150

CHAPTER 5 © INTRODUCTION TO SEAM

We change EntityManager to type=EXTENDED in order to give it an extended persistence
context. This keeps our house list in a managed state, and therefore subsequent calls to
the page will not need to requery the list to get the full data.

JSF Presentation Tier

Now that we have covered the business logic object, let’s go over the JSP that is going to
display the list of houses in Listing 5-22.

Listing 5-22. The JSP to Display the List of Addresses

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>

<frview>
<h:dataTable var="house" value="#{houses}" rendered="#{houses.rowCount>0}">

<h:column>
<f:facet name="header">
<h:outputText value="Address"/>
</f:facet>
<h:outputText value="#{house.address}"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Action"/>
</f:facet>
<s:link value="Delete" action="#{houseManagerEdit.update}"
linkStyle="button"/>
</h:column>
</h:dataTable>
</f:view>

This JSF is doing quite a bit here. As you can see, we use the dataTable discussed in
Chapter 3. However, we introduce our first use of one of the Seam tag libraries. This cre-
ates a button link that will reference the specific list item. When the user clicks on this tag
library, the page will call the SFSB, setting the house property with the item from that row
selected. The action defines the name of the SFSB and the method on it to call. The
method is a simple delete, as you would have had in any standard SFSB. This JSF page
rendered with example data will produce the output in Figure 5-9.

CHAPTER 5 © INTRODUCTION TO SEAM

ttp://localhost:8080/garage-sale/houseListDelete.s:
<. http://localhost:B080/garage-sale /houseListDelete.seam

=l Q- Google

Address Action

Our New House
Our 2nd House

Figure 5-9. The display of our JSF page

Bringing this all together, you should be able to see how easy it is to use Seam to create a
presentation tier that display lists and allow us to perform operations on each individual
item in that list.

Validation

Validation is an intricate part of any application, especially a web application. Unfortu-
nately, the EJB3 specification alone does not contain any validation specs. However,
the Hibernate framework does. The Hibernate validation framework is already part of
JBoss, so we are able to easily use it. Figure 5-10 steps through our validation process
for the garage sale house addition.

This is the validation for Seam, making use of the Hibernate validator. It is a rela-
tively simple concept. You apply the Hibernate @valid annotation to any attribute that
needs to be validated on the POJO. If the action method you call from the JSF page has
the @IfInvalid annotation on the method, Seam will attempt to validate all those
Hibernate validations. If any of the validations error out, a message for the JSF page will
be displayed. Now let’s dive into the code changes.

151

CHAPTER 5

Validate
interception

Find method
to be called

Check for invalid
annotation

Invalid
annotation?

No

INTRODUCTION TO SEAM

Yes-

Y

Retrieve all
attributes marked
with valid
annotation

Validate the
attributes

Retrieve list of
invalid attributes

Number of

Figure 5-10. Activity diagram of the validation mechanism in Seam

Y

N

>0 -

Iterate through
attributes

Refresh entity
checked?

Yes

v

Refresh entity

Add message for
front end

== 0
Redisplay .,
front end N

CHAPTER 5 © INTRODUCTION TO SEAM

Validation on the Domain Model

The validation specification works by allowing validation annotations on the domain-
level objects. Because we are using a full EJB cadre for our framework, the EBs would be
the domain-level objects. Thus, in order to implement the validation, all you would have
to do is annotate the EB as in Listing 5-23.

Listing 5-23. An Example of an Entity Bean with NotNull Validations

import org.hibernate.validator.NotNull;

@Entity
public class House implements Serializable {

private static final long serialVersionUID = -3823531857349759805L;

private long houseld;
private String address;

@Id @GeneratedValue

public long getHouseId() {
return houseld;

}

public void setHouseId(long houseId) {
this.houseId = houseld;

@NotNull(message="Address required”)
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;

As you can seg, it is a fairly simple process. Just attach the validation on the getter of
the value that you wish to validate. This then allows the framework to be able to deter-
mine whether this is a valid object. Table 5-1 shows the possible Hibernate validations.

153

154

CHAPTER 5 © INTRODUCTION TO SEAM

Table 5-1. Validation Annotations in Hibernate

Annotation Description

@Length(min=, max=) Checks whether the string length matches the range
@Max (value=) Checks that the value is less than or equal to the max
@Min(value=) Checks that the value is greater than or equal to the min
@NotNull Checks that the value is not null

@Past For a date object, checks that the date is in the past
@Future For a date object, checks that the date is in the future
@Pattern(regex="regexp", flag=) For a string, checks that the string matches this pattern
@Range(min=, max=) Checks whether the value is between the min and the max
@Size(min=, max=) For collections, checks that the size is between the two
@AssertFalse Asserts that the evaluation of the method is false
@AssertTrue Asserts that the evaluation of the method is true

@valid For a collection or a map, checks that all the objects

they contain are valid

@Email Checks whether the string conforms to the email
address specification

You will notice that in Listing 5-23 we also added a message= parameter to our
@NotNull annotation. This allows us to pass a message back to the presentation tier
specifying the error message.

Calling the Validator from the Business Tier

We have gone over how to define the validation on the domain objects, but have not yet
gone over how to tell Seam when to validate the domain objects. The Hibernate valida-
tor can be called from different layers, thus making it so we can perform checks on the
domain bean from layers not near the validator. This will work well for our needs.

The validation on the business logic tier is accomplished in two steps. First, you
define what properties should be validated, and then you define which methods will
trigger validation to be performed. Listing 5-24 defines the validation.

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-24. A SLSB That Will Validate the House Before Adding It

import org.hibernate.validator.Valid;
import org.jboss.seam.annotations.Outcome;

@Stateless

@Name("salesManager")

@Interceptors(SeamInterceptor.class)
@IndiName("garage-sale/SaleManagerAction/local")

public class SaleManagerAction implements Serializable, SaleManager {

private static final long serialVersionUID = -5814583678795046052L;

@PersistenceContext
private EntityManager em;

@valid
@In @Out
private House house;

public String addHouse() {
em.persist(house);
return "/homeSuccess.jsp";

}

The @valid annotation tells Seam which object needs to be validated. This annota-
tion is not Seam specific; this is another Hibernate validator that Seam uses to determine
that this object needs to be validated.

Note Earlier versions of Seam used the @IfInvalid annotation. This has been semi-deprecated in favor
of using <s:validateAll/> in the JSF page.

Validation on the JSF Pages

So now you know how to set the domain objects to validate and how to trigger the valida-
tion on the business tier. Now let’s go over how to add the code to our JSP to display the
validation error. Listing 5-25 shows our modified code with validation.

155

156

CHAPTER 5 © INTRODUCTION TO SEAM

Listing 5-25. The JSP for Our houseAdd.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<frview>
<h:messages/></div>

<h:form>
<s:validateAll>
Please enter your address:

<h:inputText value="#{house.address}" size="15"/>

<h:commandButton value="Add House" action="#{salesManager.addHouse}"/>
</s:validateAll>

</h:form>

</f:iview>

The only major addition you can see is the <h:messages/> tag, which will allow the
display of any errors that occur. The Seam <s:validateAll> tag has also been added, to
signify that these elements need validating.

Figure 5-11 shows the display that occurs when a user tries to add a house that
doesn’'t meet the minimal validation rules.

» Address should be between 5 and 15

Please enter your address:

| One

Figure 5-11. House Add Page with an error

CHAPTER 5 © INTRODUCTION TO SEAM

Schema Generation

One final positive side about the validator mechanisms is in its use for schema gener-
ation. If you are having your schema automatically generated, the validation
framework will add the appropriate not-nulls, lengths, and so forth to it. Obviously,
not all the validations will be there, because constraints such as @EmailChecks are not
normal database checks.

Summary

At this point, we have gone over the basics of MVC, JSE EJB3, and now Seam. So you
should have a basic understanding of how Seam works and how to write a basic Seam-
enabled Java EE application. You have also learned about the different contexts that Seam
uses to manage state. Although some of that information may be confusing right now, as
you read the next two chapters, you will understand the usefulness of these contexts.

This chapter also covered a few additional components such as logging, data models,
and debugging. These are all tools specific to Seam to help with web application develop-
ment. There are of course many more, and some are tied to more-complex processes that
you will read about later in this book. Most of these components are tied to higher-end
processing.

In the next few chapters, you will learn about some progressively more-complex
Seam processing.

157

