
289

■ ■ ■

C H A P T E R 1 1

Refactoring

Refactoring capabilities are very important when working in the software industry. Anyone
who has ever had to overhaul an existing code base has run into issues with changing code.
One of the most common examples is moving classes between packages and having to manu-
ally edit the package statements at the top of each file. Another example is wanting to delete an
element in code (such as a class member, an old utility method, and so on) and not knowing if
code in your application still uses that element.

Manually performing these types of operations can be time-consuming and error-prone.
In the days before advanced development environments, programmers used simpler tools like
basic text editors, vi, or Emacs. While some of these tools allow you to search, match, and replace
text, they are not Java-aware and thus produce incorrect results.

With the advanced capabilities available in IDE tools like NetBeans, developers have tool
sets for refactoring code. With access to parsed source files and near real-time syntax valida-
tion, NetBeans can intelligently allow a developer to alter source code.

In this chapter, we’ll review the NetBeans refactoring options.

Using NetBeans Refactoring Options
NetBeans provides many refactoring options on its Refactor menu:

• Move Class

• Rename

• Safely Delete

• Use Supertype Where Possible

• Move Inner to Outer Level

• Encapsulate Fields

• Pull Up

• Push Down

• Convert Anonymous to Inner

• Extract Method

Myatt_788-5.book Page 289 Monday, March 5, 2007 8:02 PM

290 C H A P T E R 1 1 ■ R E F A C T O R I N G

• Extract Interface

• Extract Superclass

• Change Method Parameters

• Query and Refactor

When you execute a refactoring operation, a dialog box appears with options for the corre-
sponding refactoring. All of them include a Preview All Changes check box, which is selected
by default.

When it comes to refactoring, no tool is perfect, so I recommend always previewing
changes before applying them. As shown in Figure 11-1, the preview window allows you to
review each and every change that will be made to your code before it is applied.

Figure 11-1. Previewing changes for the Move Class refactoring

The icons along the left side of the preview window let you work with the preview as follows:

• The top icon refreshes the refactoring changes listed in the window.

• The second icon collapses or expands the tree hierarchy of the changes. This can be very
useful when the list of changes is long.

• The third icon displays the logical view of the refactoring actions that will be performed.

• The fourth icon displays the physical view of the refactoring actions that will be performed.

• The last two icons let you navigate up and down to each change.

As you navigate up and down the changes in the preview window, the source file opens in
the Source Editor and highlights the line to be changed. This lets you examine each change if you
are concerned about the validity of the refactoring. You can click the Do Refactoring button to
apply the changes, or click Cancel if you don’t want the changes to be made.

Now let’s look at how each of the refactoring options works.

Move Class Refactoring
Moving a Java class from one package to another seems like a simple task at first glance.
A developer can manually copy and paste a source file into the new directory, and then edit
the package statement at the top of the file. However, if other classes import or reference that
class, then the developer must also search through and modify those files as well.

Myatt_788-5.book Page 290 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 291

In NetBeans, the Move Class refactoring does exactly as the name implies. It allows you to
move a Java class to a different project, different package hierarchy, or between source and test
packages. It also corrects the references to the moved class that exist in other classes.

To use the Move Class option, select a class, and then choose Refactor ➤ Move Class or use
the keyboard shortcut Alt+Shift+V. You will see the Move Class dialog box, as shown in Figure 11-2.
In the Move Class dialog box, you can choose to move the class to a different project, location,
or package.

■Tip If you move one or more classes to the wrong package and apply the changes, don’t panic. Most
refactorings can be undone in NetBeans. From the main Refactoring menu just select the Undo option.

Figure 11-2. The Move Class dialog box

You can also activate the Move Class refactoring by dragging-and-dropping a class in the
Projects window into a different location. The only difference in using the refactoring in this
manner is that an additional option appears in the Move Class dialog box: Move Without
Refactoring. If this option is checked, NetBeans moves the class without scanning additional
classes to correct references to the moved class. You might want to use this option if you need
to move a class out of a package temporarily, and move it back later. For example, while testing
a package or running some analysis tool against a package, you may want to quickly exclude a
class under development.

Rename Refactoring
The Rename refactoring can be used for two main purposes:

Renaming Java classes: Using the Rename refactoring will not only change the name of the
class, but also any constructors, internal usages, and references to the renamed class by
other classes. If you need to rename a Java class, this is definitely the way to do it.

Renaming entire package structures: This can be useful if a programmer named a package
incorrectly or misspelled a word that appears in the package structure. Rather than having
to manually make the corrections, the Rename option can correct the errors all at once
across the entire project.

To rename a class or package, select it and choose Refactor ➤ Rename. Enter the new
name in the Rename Refactoring dialog box. Figure 11-3 shows an example of the pending

Myatt_788-5.book Page 291 Monday, March 5, 2007 8:02 PM

292 C H A P T E R 1 1 ■ R E F A C T O R I N G

changes in the preview window for a Rename operation. In the example, the com.pronetbeans.
examples package is being renamed to com.pronetbeans.examples2.

Figure 11-3. The preview window for the Rename refactoring

Safely Delete Refactoring
During the software development process, programmers frequently revisit previously written
code. During that time, they review what was written and decide what can and cannot be
cleaned up and removed. One common mistake is removing a class member variable that you
think is not used, only to discover that it does indeed appear in your code, and now your class
does not compile.

Using the Safely Delete refactoring, you can identify each usage of a class, method, or field
in code before deleting it. This functionality can be invaluable, especially if you are removing a
class method that may be used by multiple classes. For example, consider the following code
fragment, which is a sample method that declares several method local variables and performs
some nonsense operations.

public void calc() {

 int y = 2;
 int x = 0;
 int z = 0;

 z = x + y;

 if(z>3) {
 System.out.println("Z was greater than 3");
 }
 else if(y==2){
 System.out.println("x = " + x);
 }
}

Myatt_788-5.book Page 292 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 293

During a review of this class, you decide to delete the variable x. You could visually scan
the class to see if the x variable is being used anywhere. In this example, it is pretty easy to find
x being output in the System.out.println statement. However, if this method were 100 lines
long and contained multiple nested statements, spotting x would be much more difficult.

To execute the Safely Delete refactoring, highlight the variable you want to delete (x in the
example) and select Safely Delete. In the Safely Delete dialog box, the Search in Comments
check box makes sure that the element is also deleted in any Javadoc comments in which it
may appear. The only other option is the standard Preview All Changes check box, allowing you
to review each change before it is made.

If an element is not used anywhere in your code, it is safe to delete. However, if the
element you are attempting to delete is used somewhere in your code, some additional steps
may be necessary. After clicking the Next button in the initial Safely Delete dialog box, a list of
errors and warnings will appear, as shown in Figure 11-4. As long as there are only warnings
displayed, you can proceed with the refactoring.

Figure 11-4. List of errors and warnings for the Safely Delete refactoring

If you see errors in the list, you’ll need to do a bit of work. The Show Usages button is key
to resolving any sections in your code that reference the variable being deleted. Click the Show
Usages button to open the Usages window, as shown in Figure 11-5.

Figure 11-5. Viewing usages of the element to delete

The Usages window displays each usage of the element you are trying to delete. Click a
usage in the window, and the exact line in the source code will open in the Source Editor

Myatt_788-5.book Page 293 Monday, March 5, 2007 8:02 PM

294 C H A P T E R 1 1 ■ R E F A C T O R I N G

window. After navigating to each usage and manually correcting the code to not use the vari-
able being deleted, you can click the Rerun Safe Delete button.

The Safely Delete refactoring may seem like a waste of time in certain circumstances. For
instance, you may not need to use it if you are deleting a local variable in a method that is five
or ten lines long. It is most useful if you have a class member variable or method that is used
across numerous classes. The Safely Delete option allows you to review each usage and make
sure you do not delete the element until there are no more references to it.

Use Supertype Where Possible Refactoring
The Use Supertype Where Possible refactoring converts usage of a subclass to a superclass.
Suppose you have the following code in a source file:

ArrayList myarray = new ArrayList();

If you want to convert it to use a specific superclass, double-click or highlight the object
type ArrayList and select Refactor ➤ Use Supertype Where Possible. You’ll see the Use Super-
type dialog box, which allows you to select a superclass or interface, as shown in Figure 11-6.

Figure 11-6. The Use Supertype Where Possible dialog box for java.util.ArrayList

Obviously, this is a ridiculously simple example, but it demonstrates the core function-
ality. This method can also be used in conjunction with the Extract Superclass refactoring,
described later in this chapter.

Move Inner to Outer Level Refactoring
The Move Inner to Outer Level refactoring converts an inner class to a separate external class
declared in its own file. Suppose you have the following code, in which the InnerClass class is
declared inside the OuterClass class.

public class OuterClass {
 public class InnerClass {
 public void execute() {
 System.out.println("execute...");
 }
 }
}

Myatt_788-5.book Page 294 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 295

To move the InnerClass class to its own source file, highlight the class name and select
Refactor ➤ Move Inner to Outer Level. In the Move Inner to Outer Level dialog box, you can
specify a new name for the class that is being moved, as shown in Figure 11-7. This can be
convenient, especially since inner classes are often named to make sense within the context of
the containing outer class. Optionally, you can select to declare a field for the current outer
class and enter a name for that field.

Figure 11-7. The Move Inner to Outer Level dialog box

If you apply the refactoring using the default settings, when you click the Next button, the
code that results is as follows:

 public class InnerClass {
 public void execute() {
 System.out.println("execute…");
 }
 }

The InnerClass code is moved to its own individual source file of the same name in the
same package as OuterClass.

If you select the Declare Field for the Current Outer Class option and name a variable, the
refactored code looks like this:

 public class InnerClass {

 private final OutClass myvar;

 public void execute(OuterClass newvar) {
 this.newvar = newvar;

 System.out.println("execute...");
 }
 }

This option can be useful when separating the classes, especially if the InnerClass class
used the members or methods of the OuterClass class.

Myatt_788-5.book Page 295 Monday, March 5, 2007 8:02 PM

296 C H A P T E R 1 1 ■ R E F A C T O R I N G

Encapsulate Fields Refactoring
When writing applications, it is often useful to represent objects in the real world as classes
with attributes. For example, you may choose to represent the fields for an employee as an
Employee class with first name and last name public members:

public class Employee {
 public String FirstName;
 public String LastName;
}

Of course, you might also include address, phone number, organizational, and personal
fields in the class.

Such an Employee class is quick and easy to work with, such as in the following code:

public class NewHire {
 public static void main(String[] args) {
 Employee newemp = new Employee();
 newemp.FirstName = args[0];
 newemp.LastName = args[1];
 saveEmployee(newemp);
 }
}

In the NewHire class, an instance of Employee is instantiated and the FirstName and LastName
fields are set from the arguments passed on the command line. (Obviously, there are a lot of
problems with the code in the NewHire class, such as no parameter or error checking, but here
we are just focusing on the topic of encapsulation.)

As a programmer, you should be starting to realize this approach has some negative design
features. For example, suppose your client has requested that the employee name be stored in
the database with initial capital letters, such as John Smith. However, in the application, the
values need to be processed in uppercase. You could rewrite the entire application to add the
usage of String.toUpperCase() anywhere the Employee.FirstName and Employee.LastName fields
are output or processed throughout the entire code base. You could also encapsulate the fields.

Encapsulation involves controlling access to a class member variable using getter and
setter methods. The class member variable is set to private, so that no code outside the class
can interact with it. The getter and setter methods are usually given a public accessor, so that
any code can retrieve or set the value of the member variable.

In the following code, the Employee class has been modified to use getters and setters for
the FirstName and LastName member variables.

 public class Employee {
 private String FirstName;
 private String LastName;

 public void setFirstName(String FirstName) {
 this.FirstName = FirstName;
 }

Myatt_788-5.book Page 296 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 297

 public String getFirstName() {
 return this.FirstName;
 }

 public void setLastName(String LastName) {
 this.LastName = LastName;
 }

 public String getLastName() {
 return this.LastName;
 }
}

You can also modify the code in the NewHire class to interact with the updated Employee
class. The NewHire class must now use the getter and setter methods.

public class NewHire {
 public static void main(String[] args) {

 Employee newemp = new Employee();
 newemp.setFirstName(args[0]);
 newemp.setLastName(args[1]);

 saveEmployee(newemp);
 }
}

Using this type of design, you are in a better position to modify the code to handle special
conditions. In the example, the code in the Employee class can be modified to convert the member
variables to uppercase when they are set using Employee.setFirstName and Employee.setLastName.

public class Employee {
 private String FirstName;
 private String LastName;

 public void setFirstName(String FirstName) {
 if(FirstName!=null) {
 this.FirstName = FirstName.toUpperCase();
 } else {
 this.FirstName = null;
 }
 }

 public String getFirstName() {
 return this.FirstName;
 }

Myatt_788-5.book Page 297 Monday, March 5, 2007 8:02 PM

298 C H A P T E R 1 1 ■ R E F A C T O R I N G

 public void setLastName(String LastName) {
 if(LastName!=null) {
 this.LastName = LastName.toUpperCase();
 } else {
 this.LastName = null;
 }
 }

 public String getLastName() {
 return this.LastName;
 }
}

■Note It is usually preferable to perform any data conversion, checking, or modification in the setter
method for a member variable, rather than in the getter method. If the data conversion is implemented in the
getter, each time the data is retrieved, the data conversion will take place, thus slightly reducing performance.

Generally, it is a common best practice to never have a public member of a class for which
you write other code to set or get the value. Arguably, the only exception to the rule is using
static constants.

Now that you have read a quick review of a key object-oriented concept, we can discuss
how NetBeans can assist in encapsulation. (I apologize to those of you groaning about now, but
this is one of the most frequent mistakes I see programmers make, so it deserves some review.)

The Encapsulate Fields refactoring in NetBeans allows you to easily implement the design
paradigm of encapsulation. It helps you to generate getter and setter methods for the members
of a class to enforce good design.

Suppose you have the simple Employee class shown at the beginning of this section:

public class Employee {
 public String FirstName;
 public String LastName;
}

If you highlight the name of the class and select Refactor ➤ Encapsulate Fields, the Encapsu-
late Fields dialog box will list all the class fields, all selected by default. If you highlight specific
class fields and select the Encapsulate Fields option, the dialog box will still display the entire
list of fields in the class, but only the field or fields you highlighted will be selected by default.
For example, if you highlighted the FirstName and LastName fields (the entire line for each field),
the dialog box will list both the fields, as shown in Figure 11-8.

You can disable or enable creation of the getter and setter methods using the check boxes
next to each one. In this dialog box, you can also manually alter the names of the getter and
setter methods. The Fields’ Visibility and Accessors’ Visibility drop-down lists allow you to set
the access level to the original fields (should be private) and to the getters and setters (should
be public), respectively.

Myatt_788-5.book Page 298 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 299

Figure 11-8. The Encapsulate Fields dialog box

In my opinion, the Use Accessors Even When Field is Accessible option should always
remain checked. Then the refactoring procedure attempts to correct code in other classes that
use the class member variables and convert it to use the accessors (getters and setters). The
only time you might want to disable this option is when you set the Fields’ Visibility option to
anything other than private. The refactoring will then perform the Encapsulate Fields opera-
tion, but will not convert code to use the accessors.

Once the overall refactoring is complete, the Employee class should look like this:

public class Employee {
 private String FirstName;
 private String LastName;

 public String getFirstName()
 {
 return FirstName;
 }

 public void setFirstName(String FirstName)
 {
 this.FirstName = FirstName;
 }

 public String getLastName()
 {
 return LastName;
 }

 public void setLastName(String LastName)
 {
 this.LastName = LastName;
 }
}

Myatt_788-5.book Page 299 Monday, March 5, 2007 8:02 PM

300 C H A P T E R 1 1 ■ R E F A C T O R I N G

Pull Up Refactoring
The Pull Up refactoring is useful when dealing with classes and superclasses. It allows you to
move class members and methods from a subclass up into the superclass.

For example, suppose you have a Vehicle class and a Truck class that extends Vehicle:

public class Vehicle
{
 public void start()
 {
 // start the vehicle
 }
}

public class Truck extends Vehicle
{
 public void stop()
 {
 // stop the vehicle
 }
}

If you want to move the stop() method from the Truck subclass to the Vehicle superclass,
select the stop() method and select Refactor ➤ Pull Up. In the Pull Up dialog box, select the
destination supertype, the exact list of members to pull up, and whether or not to make them
abstract, as shown in Figure 11-9.

Figure 11-9. The Pull Up dialog box

Once the refactoring changes have been applied, the Truck and Vehicle classes look like this:

public class Vehicle
{
 public void start()
 {
 // start the vehicle
 }

Myatt_788-5.book Page 300 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 301

 public void stop()
 {
 // stop the vehicle
 }
}

public class Truck extends Vehicle
{
}

Push Down Refactoring
The Push Down refactoring is exactly the opposite of the Pull Up refactoring. It pushes an inner
class, field, or method in a superclass down into a subclass. For example, suppose that you
added a lowerTailgate() method to the Vehicle class shown in the previous example:

public class Vehicle
{
 public void start()
 {
 // start the vehicle
 }

 public void stop()
 {
 // stop the vehicle
 }

 public void lowerTailgate()
 {
 // lower tailgate of vehicle
 }
}

public class Truck extends Vehicle
{
}

However, since many vehicles (such as cars, planes, and boats) do not have tailgates, you
want to push the lowerTailgate() method down to the Truck subclass.

Select the lowerTailgate() method and choose Refactor ➤ Push Down. In the Push Down
dialog box, select which class members you want to push down into the subclass, as shown in
Figure 11-10. You can also choose whether you would like to keep them abstract if they already
are abstract.

Myatt_788-5.book Page 301 Monday, March 5, 2007 8:02 PM

302 C H A P T E R 1 1 ■ R E F A C T O R I N G

Figure 11-10. The Push Down dialog box

After you have applied the code changes, you can view the result. As expected, the
lowerTailgate() method will now be in the Truck subclass.

public class Truck extends Vehicle
{
 public void lowerTailgate()
 {
 // do something
 }
}

If the superclass has multiple subclasses (which is usually the case), you could still perform
a Push Down refactoring of a method from a particular class. For example, if you had a Car
subclass that extended Vehicle, you could still push down a method from the Vehicle class.
Suppose the Truck, Car, and Vehicle classes were defined as follows:

public class Vehicle
{
 public void changeTire()
 {
 // general method for changing tire
 }
}

public class Car extends Vehicle
{
 // car class
}

public class Truck extends Vehicle
{
 // truck class
}

Myatt_788-5.book Page 302 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 303

The Truck class represents a large tractor-trailer. Changing a tire for this type of vehicle will
most likely involve a different procedure than for a car. Thus, you might want to have the
changeTire() method in the Car and Truck classes override the one in the Vehicle superclass.
The changeTire() method in the Vehicle class should also be left as abstract (even though
some vehicles, like boats, do not have tires that need changing).

In the Push Down dialog box, you need to select the check box to keep the changeTire()
method abstract in the Vehicle class. Preview the changes to make sure the code is modified as
you expect. In Figure 11-11, notice the third suggested operation is altering Vehicle.changeTire()
to make it abstract. If the Keep Abstract option is not selected during the refactoring operation,
then the line in the preview window would say “Remove changeTire() element.” You could
prevent it from being removed from the Vehicle class by unselecting the check box next to this
option.

Figure 11-11. Push Down refactoring with one superclass and two subclasses

Convert Anonymous to Inner Refactoring
The Convert Anonymous to Inner refactoring is used to separate an anonymous inner class
into an actual inner class. There are several varieties of anonymous inner classes:

• Inner class for defining and instantiating an instance of an unnamed subclass

• Inner class for defining and instantiating an anonymous implementation of an interface

• Anonymous inner class defined as an argument to a method

For this section, we will focus on the first type: unnamed subclasses. Suppose you have the
following code:

public class Item {
 public void assemble() {
 System.out.println("Item.assemble");
 }
}

Myatt_788-5.book Page 303 Monday, March 5, 2007 8:02 PM

304 C H A P T E R 1 1 ■ R E F A C T O R I N G

public class Factory {
 public void makeStandardItem(int type) {
 if(type==0) {
 // make extremely unusual item .01% of the time
 Item myitem = new Item() {
 public void assemble() {
 System.out.println("anonymous Item.assemble");
 }
 };
 myitem.assemble();
 } else {
 // make standard item 99.9% of the time
 Item myitem = new Item();
 myitem.assemble();
 }
 }
}

The code declares a class Item with a method named assemble(). The Factory class defines
a variable myitem of type Item and instantiates an anonymous subclass of Item that overrides
the assemble() method.

Why would you bother using an anonymous inner class instead of a normal inner or outer
class? In this example, if the one-off case where the anonymous inner class is used were the
only area it is needed, you might not want to create a separate class. However, if you find that
you need the code in the anonymous subclass in multiple areas, you might want to convert it
to an inner class.

To convert the code to an inner class, click anywhere inside the anonymous class or high-
light the name of the Item class constructor in the following section of the code:

Item myitem = new Item() {
 public void assemble() {
 System.out.println("anonymous Item.assemble");
 }
};

Then select Refactor ➤ Convert Anonymous Class to Inner. In the Convert Anonymous
Class to Inner dialog box, you’ll see the default class name of NewClass, as shown in Figure 11-12.
You can set the name of the new inner class that will be created, the access level, and whether
it should be declared static. If the constructor for the anonymous class has any parameters, the
dialog box will also list them.

Myatt_788-5.book Page 304 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 305

Figure 11-12. The Convert Anonymous Class to Inner dialog box

Suppose you named the new inner class StrangeItem. The refactored code would look
like this:

private class StrangeItem extends Item {

 public void assemble() {
 System.out.println("anonymous Item.assemble");
 }
}

This class would be declared inside the Factory class, since that is where the original anon-
ymous inner class resides.

In the following code, notice that the creation of the anonymous inner class has been
altered to create an instance of the new inner class.

public void makeStandardItem(int type) {
 if(type==0) {
 // make extremely unusual item .01% of the time
 Item myitem = new StrangeItem();
 myitem.assemble();
 } else {
 // make standard item 99.9% of the time
 Item myitem = new Item();
 myitem.assemble();
 }
}

The purpose of using this refactoring is to make your code more reusable and modular.
Extracting the anonymous inner class into its own inner class helps improve many aspects of
your code. It makes no sense to redefine the same anonymous inner class in multiple places in
the Factory class, and the Convert Anonymous to Inner refactoring can help correct the situation.

Myatt_788-5.book Page 305 Monday, March 5, 2007 8:02 PM

306 C H A P T E R 1 1 ■ R E F A C T O R I N G

Extract Method Refactoring
As you review code in a project, you may notice that certain sections of code, even small ones,
contain similar looking blocks of code. These blocks of code can be extracted out into a separate
method that can then be called. Separating out blocks of code makes your code more readable,
more reusable, and easier to maintain.

As a simple example, suppose you have the following code:

public void processArray(String[] names)
{
 for(int i=0;i < names.length; i++)
 {
 names[i] = names[i].toUpperCase();
 }
 // rest of method here
}

This block of code contains a loop that iterates through a String array and converts each
String to uppercase. You might want to put this code into a separate method. The Extract
Method refactoring can do this for you.

To activate the refactoring, highlight the code you want to convert to a method and
select Refactor ➤ Extract Method. In this example, highlight the entire for loop in the
processArray(String[]) method.

In the Extract Method dialog box, you can set the name of the new method, the access
level, and whether it should be declared static, as shown in Figure 11-13. The refactoring is
even smart enough to assume that a String array should be passed into the method and lists it
as a parameter for the new method.

Figure 11-13. The Extract Method dialog box

Myatt_788-5.book Page 306 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 307

After applying the refactoring, the resulting code has the loop split out:

public void processArray(String[] names)
{
 ConvertArrayToUpper(names);
 // other method code here
}

private void ConvertArrayToUpper(final String[] names)
{
 for(int i=0;i < names.length; i++)
 {
 names[i] = names[i].toUpperCase();
 }
}

You can see that not only has the selected code been extracted out into a separate method,
but it was also replaced with the correct call to the new method with the correct parameter.

Extract Interface Refactoring
The Extract Interface refactoring allows you to select public non-static methods and move them
into an interface. This can be useful as you attempt to make your code more reusable and
easier to maintain.

For example, suppose that you want to extract two public non-static methods in the
following Item class into an interface.

public class Item {
 public void assemble() {
 System.out.println("Item.assemble");
 }

 public void sell() {
 System.out.println("sell me");
 }
}

You can activate the refactoring by highlighting the class in the Projects window (or by
simply having the class open in the Source Editor) and selecting Refactor ➤ Extract Interface.

As shown in Figure 11-14, the options for the Extract Interface refactoring are quite
straightforward. You can specify the name of the new interface that will be created. You can
also select exactly which methods you want to include in the interface.

Myatt_788-5.book Page 307 Monday, March 5, 2007 8:02 PM

308 C H A P T E R 1 1 ■ R E F A C T O R I N G

Figure 11-14. The Extract Interface dialog box

After applying the refactoring, the code for the interface looks like this:

public interface ItemInterface {
 void assemble();
 void sell();
}

public class Item implements ItemInterface {
 public void assemble() {
 System.out.println("Item.assemble");
 }

 public void sell() {
 System.out.println("sell me");
 }
}

The original Item class has been modified to implement the ItemInterface.

Extract Superclass Refactoring
The Extract Superclass refactoring is nearly identical to the Extract Interface refactoring. The
only difference is that Extract Superclass pulls methods into a newly created superclass and
extends the refactored class. Using the refactored code from the previous section as an example,
you might want to modify the Item class to have a superclass.

public class Item implements ItemInterface {
 public void assemble() {
 System.out.println("Item.assemble");
 }

 public void sell() {
 System.out.println("sell me");
 }
}

Myatt_788-5.book Page 308 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 309

Starting with the Item class selected, select Refactor ➤ Extract Superclass. As shown in
Figure 11-15, the Extract Superclass dialog box allows you to set the name of the new super-
class that will be created. You can select which members you wish to extract and place them in
the superclass. Since the Item class implements the ItemInterface, you can decide if you want
to extract the implements clause into the superclass. You can also select whether or not the methods
that are extracted are made abstract in the superclass. Selecting this option inserts abstract
methods into the superclass and leaves the concrete implementations in the Item subclass.

Figure 11-15. The Extract Superclass dialog box

For this example, select all the members for extraction. Then select the Make Abstract field
only for the Item.sell() method. Preview the changes and apply the refactoring. The following
code will be generated:

public interface ItemInterface {
 void assemble();
 void sell();
}

public abstract class ItemSuperclass implements ItemInterface {

 public void assemble() {
 System.out.println("Item.assemble");
 }

 public abstract void sell();
}

public class Item extends ItemSuperclass {

 public void sell() {
 System.out.println("sell me");
 }
}

Now you have an Item class with a concrete implementation of the sell() method. It extends
the ItemSuperclass. ItemSuperclass implements ItemInterface, and contains an abstract

Myatt_788-5.book Page 309 Monday, March 5, 2007 8:02 PM

310 C H A P T E R 1 1 ■ R E F A C T O R I N G

sell() method and a concrete implementation of the assemble() method. ItemInterface
contains the definitions of the assemble() and sell() methods.

Using refactoring options like Extract Method, Extract Interface, and Extract Superclass,
you can attempt to structure your code to take full advantage of good design principles. Ideally,
for new code projects, you would design classes correctly and wouldn’t need refactoring. However,
many programmers take over projects that have been implemented poorly and need refactoring.

Change Method Parameters Refactoring
The Change Method Parameters refactoring is one of the most useful options in NetBeans.
I have made extensive use of it on projects that I have inherited from other developers.

In the old days of development, changing a method signature was time-consuming. You
would need to modify the method and then search through all your code to make sure all the
references to it were updated. No sooner would you finish that task then you would decide to
change the data types on the arguments or rearrange their ordering in the method. The Change
Method Parameters refactoring can reduce time spent on such operations.

Suppose you had the following code:

public class Item extends ItemSuperclass {

 public void sell() {
 System.out.println("sell me");

 System.out.println("Price(12345) : " + findPrice(12345));
 }

 public double findPrice(long itemNumber) {

 double price = 0.00;
 // look up itemNumber in database and set price variable
 return price;
 }
}

The Item class contains a findPrice(long) method. The method accepts an item number,
looks it up in a database, and returns a price to the calling sell() method. If your client decided
he wants to also be able to return the price and the currency in which it is specified, you would
need to alter the findPrice(long) method.

Assume you need to add a String argument to the findPrice(long) method that allows
you to specify the type of currency. Highlight the name of the method and select Refactor ➤
Change Method Parameters. In the Change Method Parameters dialog box, you can add and
remove parameters to the method. You can also change the order of the parameters and specify
the method’s new access level.

Myatt_788-5.book Page 310 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 311

■Tip You don’t have to actually alter the parameters of a method to reorder them. You can use the Change
Method Parameters refactoring just to reorder parameters—a task I find myself doing often when I am devel-
oping code.

To add the new parameter, click the Add button. A new line appears in the parameters
grid. Change the name, type, and default value fields, as shown in Figure 11-16. Then click
the Next button, preview the changes, and apply the refactoring.

Figure 11-16. The Change Method Parameters dialog box

Your refactored code will look like this:

public class Item extends ItemSuperclass {

 public void sell() {
 System.out.println("sell me");

 System.out.println("Price(12345) : " + findPrice(12345, "USD"));
 }

 public double findPrice(long itemNumber, String currencyType) {

 double price = 0.00;
 // look up itemNumber in database and set price variable
 return price;
 }
}

Notice that the findPrice(long) method has been altered to include the new parameter.
The sell() method has also been altered to call the modified method and pass it the default
value of "USD", which was specified during the refactoring operation.

Myatt_788-5.book Page 311 Monday, March 5, 2007 8:02 PM

312 C H A P T E R 1 1 ■ R E F A C T O R I N G

Refactoring Keyboard Shortcuts
At the time of this writing, NetBeans provides only three refactoring keyboard shortcuts, as
listed in Table 11-1.

■Tip You can add your own shortcut for each refactoring option by selecting Tools ➤ Options ➤ Keymap ➤
Refactor. Make sure to explore the existing key mappings to get an idea of what is already used. NetBeans will
prevent duplicates from being added.

Refactoring with Jackpot
The Jackpot project was announced by Sun at the JavaOne 2006 conference. For NetBeans 5.0
and 5.5, it is a separate module that needs to be installed. As of NetBeans 6.0, the Jackpot refac-
toring engine is more tightly integrated with the IDE.

Jackpot provides an impressive set of refactoring capabilities. It is not just a refactoring
engine, but provides type-aware modeling, querying, and transformation of Java source files.
Jackpot queries can run against large bases of Java source and intelligently manipulate elements,
all while maintaining the original code formatting. While this sounds simple, it is actually quite
an advanced set of capabilities that makes Jackpot unique. It does not simply use a parsed model
of the data, but integrates tightly with the information provided by the Java compiler javac.

Adding a Jackpot Refactoring Query
The main way to interface with Jackpot is to write queries in the Jackpot rule language. Written
by James Gosling, this rule language is similar to Java’s regular expression library, but is type-
and Java semantic-aware. Here is the general format of a Jackpot query:

pattern expression => replacement expression :: guard/filter expression;

The pattern expression is the element or expression you want to attempt to replace. It
should be no surprise that the replacement expression is what you want to replace it with. The
guard expression is used to match the pattern expression and provide type-aware filtering of
matched results. If the guard expression is satisfied, the pattern is substituted with the replace-
ment expression.

Table 11-1. Refactoring Keyboard Shortcuts

Option Shortcut

Move Class Alt+Shift+V

Rename Alt+Shift+R

Extract Method Ctrl+Shift+M

Myatt_788-5.book Page 312 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 313

You can also use meta-variables to provide wildcard matching in your query expression.
A meta-variable is simply a regular Java identifier preceded by a $ character.

Another element of a Jackpot query is a meta-list. A meta-list is essentially the same as a
meta-variable, but a meta-list starts and ends with the $ character. Meta-lists also allow more
than one expression to be matched.

These topics can be a little confusing at first, but you can go online and read more about
Jackpot at the official site, http://jackpot.netbeans.org/.

Let’s start with a simple example. The following is an old piece of date formatting code
I once found in an application:

Date objStartDate = new Date();
String sDate = objStartDate.toLocaleString();
System.out.println("Date is : " + sDate);

In this code fragment, the developer defined and instantiated an instance of the Date class.
A String representation of the system local date was then retrieved and written to the standard
output stream. The only problem with this code is that the toLocaleString() method is depre-
cated as of JDK 1.1. It has since been replaced by DateFormat.format(Date).

If you were a developer who was tasked with updating this entire project so it did not use
deprecated elements, you could start by adding a Jackpot query through the Refactoring
Manager. The Refactoring Manager is the main user interface for working with Jackpot query
sets, or groups of related queries, as shown in Figure 11-17. You can open it by selecting Tools ➤
Refactoring Manager.

Figure 11-17. The Jackpot Refactoring Manager

Initially, Jackpot has two query sets: Default and Effective Java Items. Select a query set to
see its queries listed in the Refactoring Manager.

You can create your own set of queries by clicking the Duplicate button next to the query
set name and assigning a name to the new query set. Then you can add, edit, and delete queries
in whatever manner you wish.

To add a new query, click the New Query button. Fill in the query name, refactoring name,
and description, as shown in Figure 11-18.

Myatt_788-5.book Page 313 Monday, March 5, 2007 8:02 PM

314 C H A P T E R 1 1 ■ R E F A C T O R I N G

Figure 11-18. The Jackpot New Query dialog box

Once you click the OK button, the query name is added to the list in the Refactoring Manager.
To actually add the query rule, highlight the query name and click the Edit Query button. At
this point, a new code window will open in the Source Editor. The name of the file open in the
Source Editor is the name you assigned in the New Query dialog box (Pro NetBeans Example 1 in
the example in Figure 11-18), with the file extension of .rules (Pro NetBeans Example 1.rules).

Enter the query expression you would like the new query to contain, such as the following:

$object.toLocaleString() => java.text.DateFormat.format($object) :: ➥

$object instanceof java.util.Date;

This query rule replaces the deprecated method Date.toLocaleString() with a more
correct way to format the Date object using DateFormat.format(Date). The pattern expression
to search for is $object.toLocaleString. If the $object is an instance of the java.util.Date
class, the fragments that use the toLocaleString() method will be replaced with the DateFormat.
format(Date) method.

After you’ve entered the query rule, save the file and close the code window. You now have
a valid Jackpot query that can be run against your code.

Running a Jackpot Refactoring Query
To use Jackpot refactoring, with a Java project open and selected, choose Refactoring ➤ Query
and Refactor. In the Query and Refactor dialog box, you can choose to apply an entire query set
or just a single query to the project code. Select the query and click the Query button.

Jackpot then runs the refactoring query against your code. If no results are found, a status
message appears in the lower-left status bar. If the query matched code in your project, you’ll
see a list of pending changes. None of the refactorings are applied until you click the Do Refac-
toring button.

Click the Do Refactoring button to apply the changes. Once the refactoring has been executed,
you can review the source code. The example shown at the beginning of this section would
now look like this:

Myatt_788-5.book Page 314 Monday, March 5, 2007 8:02 PM

C H A P T E R 1 1 ■ R E F A C T O R I N G 315

Date objStartDate = new Date();
String sDate = DateFormat.format(objStartDate);
System.out.println("Date is : " + sDate);

This is a very simple example. You can use Jackpot queries to refactor poorly designed
code and help apply good design principles to your project.

As you become more experienced with Jackpot, you will find it easier to write query rules
to scan for bad sections of code. The benefits of this refactoring capability are well worth the
time you spend learning the Jackpot rule language and writing queries.

Summary
In this chapter, you saw the wide variety of refactoring options available in the NetBeans IDE.
You can use them to rework existing code or to make your new coding smoother.

Some of these refactorings will obviously be used more often than others, but you should
become familiar with when and how to use each one. Using these refactoring options when
working with large code bases can be a lifesaver.

Myatt_788-5.book Page 315 Monday, March 5, 2007 8:02 PM

Myatt_788-5.book Page 316 Monday, March 5, 2007 8:02 PM

