
Your First Google Maps

P A R T 1

■ ■ ■

7877ch01.qxd 2/2/07 9:30 AM Page 1

7877ch01.qxd 2/2/07 9:30 AM Page 2

Google Maps and Rails

The last year or so has been an incredibly exciting time for web developers. New tools have
come out that make web development easier, more productive, and more fun. A slew of new
APIs are available that let you glue together data and services in interesting ways. As develop-
ers, we are more empowered with new and interesting technologies than ever before.

This book focuses on one API that has had a particularly profound impact: the
Google Maps API. Since you have this book in hand, you’re probably already convinced
of Google Maps’ importance. In case you need a reminder, however, visit Google Maps
Mania (http://googlemapsmania.blogspot.com) for a view into the sprawling culture of
innovation that Google Maps has fostered in the development community. The Google
Maps API has spawned a whole class of web-based applications that would have been
impossible to create without it.

You’re going to use the Google Maps API on a platform that has inspired an equally fervent
following: Ruby on Rails. The Rails framework facilitates radical improvements in productivity
within its niche: database-backed web applications. Rails is intuitive, powerful, and free. Together,
Rails and Google Maps enable you, the developer, to build impressive web-based applications
that would have been difficult or impossible two years ago.

Over the course of the coming chapters, you’re going to move from simple tasks involving
markers and geocoding to more advanced topics, such as how to acquire data, present many
data points, and provide a useful and attractive user interface.

There are many reasons why Ruby on Rails is an ideal platform to work with Google Maps.
Rails makes it trivial to produce and consume XML, which Google Maps uses extensively. Rails
also has built-in support for JSON (JavaScript Object Notation), a concise format for passing
structured data from server to browser. Finally, Ruby has some excellent libraries for screen-
scraping, which we will employ in later chapters.

We are assuming that you are coming to this book with a certain amount of Rails experi-
ence. You probably already have Ruby and Rails installed in a development environment and
know how to get an application up and running. If not, don’t fear: we list some resources in
the sidebar “Just Getting Started with Ruby and Rails?” near the end of this chapter to help
you get rolling on Rails. Whatever your current skill level vis-à-vis Rails, this book will get you
in the mapping game and tell you everything you need to create killer maps applications.
With the power of the Rails framework, the Ruby language, and the Google Maps API, you will
command a development toolkit to be reckoned with.

3

C H A P T E R 1

■ ■ ■

7877ch01.qxd 2/2/07 9:30 AM Page 3

We know you’re eager to get started on a map project, but before we dig into the code, we
want to show you two simple ways of creating ultraquickie maps: with KML (Keyhole Markup
Language) files and through the Wayfaring map site.

Both these approaches are stepping stones; we will use them as easy introductions to the
world of Google Maps. In Chapter 2, you will begin digging into code, which will of course lead
to much greater flexibility and sophistication in what you can build.

KML: Your First Map
KML is one of the easiest methods to get your own markers and content displayed on a Google
map. As you would expect, the ease is at the expense of flexibility, but it’s still a great way to get
started. In June 2006, Google announced that its official maps site would support the plotting
of KML files. You can simply plug a URL into the search box, and Google Maps will show what-
ever locations are contained in the KML file specified by the URL. We aren’t going to go in depth
on this, but we’ve made a quick example to show you how powerful the KML method is, even
if it is simple.

■Note The name Keyhole Markup Language is a nod to both its XML structure and Google Earth’s heritage
as an application called Keyhole. Keyhole was acquired by Google in late 2004.

We created a file called toronto.kml and placed the contents of Listing 1-1 in it. The para-
graph blurbs are borrowed from Wikipedia, and the coordinates were discovered by manually
finding the locations on Google Maps.

Listing 1-1. A Sample KML File

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.google.com/earth/kml/2">

<Document>

<name>toronto.kml</name>

<Placemark>

<name>CN Tower</name>

<description> The CN Tower (Canada's National Tower, Canadian National Tower),

at 553.33 metres (1,815 ft., 5 inches) is the tallest ➥

freestanding structure on land.

It is located in the city of Toronto, Ontario, Canada, and is considered the

signature icon of the city. The CN Tower attracts close to two million visitors

annually.

http://en.wikipedia.org/wiki/CN_Tower</description>

<Point>

<coordinates>-79.386864,43.642426</coordinates>

</Point>

</Placemark>

</Document>

</kml>

CHAPTER 1 ■ GOOGLE MAPS AND RAILS4

7877ch01.qxd 2/2/07 9:30 AM Page 4

In the actual file (located at http://book.earthcode.com/kml/toronto.kml), we included
two more Placemark elements that point to other well-known buildings in Toronto. To view
this on Google Maps, paste the previous URL into the Google Maps search field. Alternatively,
you can just visit the following link: http://maps.google.com/maps?f=q&hl=en&q=http://
book.earthcode.com/kml/toronto.kml.

Figure 1-1 shows what it looks like.

Figure 1-1. A custom KML data file being displayed at maps.google.com

Now, is that a quick result or what? Indeed, if all you need to do is show a bunch of loca-
tions, it’s possible that a KML file will serve your purpose. If you’re trying to link to your favorite
fishing spots, you could make up a KML file, host it somewhere for free, and be finished.

But that wouldn’t be any fun, would it? After all, as cool as the KML mapping is, it doesn’t
actually offer any interactivity to the user. In fact, most of the examples you’ll work through in
Chapter 2 are just replicating the functionality that Google provides here out of the box. But
once you get to Chapter 3, you’ll start to see things that you can do only when you harness the
full power of the Google Maps API.

Before moving on, though, we’ll take a look at one other way of getting a map online
quickly.

Wayfaring: Your Second Map
A number of services out there let you publish free maps of quick plotted-by-hand data. One of
these, which we’ll demonstrate here, is Wayfaring, shown in Figure 1-2. Wayfaring has received
attention and praise for its classy design and community features (such as commenting and
shared locations). Wayfaring is also built using Ruby on Rails.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS 5

7877ch01.qxd 2/2/07 9:30 AM Page 5

Figure 1-2. Wayfaring home page

Wayfaring is a mapping service that uses the Google Maps API and allows users to quickly
create maps of anything they like. For example, some people make maps of their vacations;
others have identified interesting aspects of their hometown or city. We’ll walk you through
making a quick map of an imaginary trip to the Googleplex in Mountain View, California.

Point your browser at http://www.wayfaring.com and follow the links to sign up for an
account (clicking Log In will bring up the option to create a new account). Once you’ve cre-
ated and activated your account, you can begin building your map by clicking the Create Map
link in the upper right.

Adding the First Point
Let’s start by adding the home airport for our imaginary journey. We’re going to use Lester B.
Pearson International Airport in Toronto, Ontario, Canada, but you could use the airport clos-
est to you. Since Pearson is an international location (outside the United States), you need to
drag and zoom the map view until you find it. If you’re in the United States, you can use the
nifty Jump To feature to search by text string. Figure 1-3 shows Pearson nicely centered and
zoomed.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS6

7877ch01.qxd 2/2/07 9:30 AM Page 6

Figure 1-3. Lester B. Pearson International Airport, Toronto, Ontario

Once you’ve found your airport, you can click Next and name the map. Click Next again
(after naming your map), and you should be back at the main Map Editor screen.

Select Add a waypoint from the list of options on the right. You’ll be prompted to name
the waypoint. We’ll call ours Lester B. Pearson International Airport. However, as you type,
you’ll find that Wayfaring suggests this exact name. This means that someone else on some
other map has already used this waypoint, and the system is giving you a choice of using their
point or making one of your own. It’s a safe bet that most of the airports you could fly from are
already in Wayfaring, so feel free to use the suggested one if you would like. For the sake of the
learning experience, let’s quickly make our own. Click Next to continue.

The next two screens ask you to tag and describe this point in order to make your map
more searchable for other members. We’ll add the tags “airport Toronto Ontario Canada” and
give it a simple description. Finally, click Done to commit the point to the map, which returns
you to the Map Editor screen.

Adding the Flight Route
The next element you’re going to add to your map is a route. A route is a line made up of as
many points as you like. We’ll use two routes in this example. The first will be a straight line
between the two airports to get a rough idea of the distance the plane will have to travel to
get us to Google’s headquarters. The second will be used to plot the driving path we intend
to take between the San Francisco airport and the Googleplex.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS 7

7877ch01.qxd 2/2/07 9:30 AM Page 7

To begin, click Add a Route, name the route (something like airplane trip), and then click
your airport. A small white dot appears on the place you click. This is the first point on your line.
Now zoom out, scroll over to California, and zoom in on San Francisco. The airport is on the
west side of the bay. Click the airport here, too. As you can see in Figure 1-4, a second white dot
appears on the airport, and a blue line connects the two points. You can see the distance of the
flight on the right side of the screen, underneath the route label. Wow, the flight seems to have
been more than 2,000 miles! If you make a mistake and accidentally click on the map a few extra
times (thereby creating extraneous midway points) in the process of getting to San Francisco,
you can use the Undo Last option. Otherwise, click Save.

Figure 1-4. Your flight landing at San Francisco International Airport

Adding the Destination Point
Now that you’re in San Francisco, let’s figure out how to get to the Googleplex directly. Click
Add a Waypoint. Your destination is Google, so the new point is called The Googleplex. Use
the address box feature to jump directly to 1600 Amphitheatre Parkway, Mountain View,
California, 94043. Wayfaring is able to determine latitude and longitude from an address
via a process called geocoding, which you’ll see a lot more of in Chapter 4.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS8

7877ch01.qxd 2/2/07 9:30 AM Page 8

To confirm you’re in the right place, click the Sat button on the top-right corner of the
map to switch it over to satellite mode. You should see something resembling Figure 1-5.

Figure 1-5. The Googleplex

Adding a Driving Route
Next, let’s figure out how far the drive is. Routes don’t really have a starting and ending point in
Wayfaring from a visual point of view, so you can start your route from the Googleplex and work
your way backward. Switch back into Map mode or Hybrid mode so you can see the roads more
clearly. From the Map Editor screen, select Add a Route and click the point you just added. Use
10 to 20 dots to carefully trace the trip from Mountain View back up the Bayshore Freeway (U.S.
Highway 101) to the airport. You’ll end up with about 23 miles of driving, as shown in Figure 1-6.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS 9

7877ch01.qxd 2/2/07 9:30 AM Page 9

Figure 1-6. The drive down the Bayshore Freeway to the Googleplex

That’s it. You can use the same principles to make an annotated map of your vacation or
calculate how far you’re going to travel; and best of all, it’s a snap to share it. To see this map
live, visit http://www.wayfaring.com/maps/show/17131.

Got Rails?
Of course, since this is a programming book, you’re probably eager to dig into the code and
make something really unique. Wayfaring may be nice, but it doesn’t give you the flexibility of
a programmatic approach. Looking forward to more programmatic interaction with the API,
let’s discuss Ruby on Rails, the server-side framework of choice.

As we mentioned at the beginning of this chapter, this book presumes you have some
experience with Ruby and Rails already—at least enough to get a basic Rails application up
and running. In particular, you should

• Have Ruby (1.8.4 or later) and Rails (1.1.5 or later) installed on your development
machine.

• Know how to use the rails command to create an application skeleton and be comfort-
able with the model/view/controller layout of a Rails application.

• Know how to start a WEBrick, Mongrel, or other server to view your pages in a browser.

• Have a local database server. We use MySQL throughout this book, but you should be
able to adapt to the DB engine of your choice.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS10

7877ch01.qxd 2/2/07 9:30 AM Page 10

• Have a development environment that you’re comfortable with—for example, Text-
Mate, RadRails, or Vim.

The following are things we don’t expect you to know (or have) coming into this book:

• You don’t need to know the details of the prototype.js JavaScript library. A lot of devel-
opers are confused by Prototype, probably due to the dearth of documentation. We’ve
made a conscious decision in this book to not rely heavily on prototype.js, although
we will be utilizing it from time to time.

• You don’t need to know RJS. RJS is a Rails template type (like RHTML) and is a conven-
ient way to build rich functionality on web pages with a minimum of JavaScript coding.
Since the Google Maps API is implemented in JavaScript, we’ll rely primarily on hand-
coded JavaScript functions for this book.

• You don’t need to be an expert in JavaScript programming. Yes, the Google Maps API
is implemented in JavaScript, but you’ll be ramping up on JavaScript techniques and
principles as you go.

• You don’t necessarily need to have a production web space for your Rails application.
Of course, you’ll want a production server so you can expose your killer app to the world,
but you can learn everything in this book using your local development server.

JUST GETTING STARTED WITH RUBY AND RAILS?

If you’re just getting started with Ruby and Rails and decided mapping applications are a fun way to learn,
you’ll probably want some additional resources to help you get up to speed. Ruby on Rails has a steeper
learning curve than PHP or ColdFusion, so you will benefit from these resources to get you started out right:

• Beginning Ruby: From Novice to Professional by Peter Cooper (http://www.apress.com/book/
bookDisplay.html?bID=10244). We recognize that many developers’ first exposure to Ruby is
through the Rails web framework. If this is the case for you, I highly recommend learning more about
the wonderful Ruby language before diving headfirst into Rails.

• Beginning Ruby on Rails: From Novice to Professional by Cloves Carneiro Jr. and Jeffrey Allan Hardy
(http://www.apress.com/book/bookDisplay.html?bID=10124).

What’s Next?
We hope you’re eager to learn how to build your own maps-based applications from the ground
up using Rails. By the end of Part 1 of this book, you’ll have the skills to do everything you’ve just
done on Wayfaring (except the polylines and distances, which are covered in Chapter 10) using
JavaScript and XHTML. By the book’s conclusion, you’ll have learned most of the concepts needed
to build your own Wayfaring clone.

So what exactly is to come? This book is divided into three parts and two appendixes. Part 1
goes through Chapter 4 and deals with the basics that a hobbyist would need to get started.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS 11

7877ch01.qxd 2/2/07 9:30 AM Page 11

You’ll make a map, add some custom pins, and geocode a set of data using freely available
services. Part 2 (Chapters 5 through 8) gets into more map development topics, such as
building a usable interface, dealing with extremely large groups of points, and finding
sources of raw information you may need to make your professional map ideas a reality.
Part 3 (Chapters 9 through 11) dives into advanced topics: building custom map overlays,
such as your own info window and tool tip; creating your own map tiles and projections;
using the spherical equations necessary to calculate surface areas on the earth; and build-
ing your own geocoder from scratch. Finally, one appendix provides a reference guide to
the Google Maps version 2 API, and another points to a few places where you can find neat
data for extending the examples here and to inspire your own projects.

CHAPTER 1 ■ GOOGLE MAPS AND RAILS12

7877ch01.qxd 2/2/07 9:30 AM Page 12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

