PART 4

Development Tools

CHAPTER 14

Generators

Many applications are based on data stored in a database and offer an interface to access
it. Symfony automates the repetitive task of creating a module providing data manipulation
capabilities based on a Propel object. If your object model is properly defined, symfony can
even generate an entire site administration automatically. This chapter will tell you of the two
generators bundled in symfony: scaffolding and administration generator. The latter relies on
a special configuration file with a complete syntax, so most of this chapter describes the various
possibilities of the administration generator.

Code Generation Based on the Model

In a web application, data access operations can be categorized as one of the following:
¢ Creation of a record
¢ Retrieval of records
e Update of a record (and modification of its columns)
¢ Deletion of a record

These operations are so common that they have a dedicated acronym: CRUD. Many pages
can be reduced to one of them. For instance, in a forum application, the list of latest posts is a
retrieve operation, and the reply to a post corresponds to a create operation.

The basic actions and templates that implement the CRUD operations for a given table are
repeatedly created in web applications. In symfony, the model layer contains enough informa-
tion to allow generating the CRUD operations code, so as to speed up the early part of the
development or the back-end interfaces.

All the code generation tasks based on the model create an entire module, and result from
a single call to the symfony command line in the shape of the following:

> symfony <TASK NAME> <APP_NAME> <MODULE NAME> <CLASS NAME>

The code generation tasks are propel-init-crud, propel-generate-crud, and propel-
init-admin.

281

282 CHAPTER 14 GENERATORS

Scaffolding and Administration

During application development, code generation can be used for two distinct purposes:

A scaffoldingis the basic structure (actions and templates) required to operate CRUD on a
given table. The code is minimal, since it is meant to serve as a guideline for further devel-
opment. It is a starting base that must be adapted to match your logic and presentation
requirements. Scaffoldings are mostly used during the development phase, to provide a
web access to a database, to build a prototype, or to bootstrap a module primarily based
on a table.

An administration is a sophisticated interface for data manipulation, dedicated to back-
end administration. Administrations differ from scaffoldings because their code is not
meant to be modified manually. They can be customized, extended, or assembled through
configuration or inheritance. Their presentation is important, and they take advantage of
additional features such as sorting, pagination, and filtering. An administration can be
created and handed over to the client as a finished part of the software product.

The symfony command line uses the word crud to designate a scaffolding, and admin for
an administration.

Initiating or Generating Code

Symfony offers two ways to generate code: either by inheritance (init) or by code generation
(generate).

You can initiate a module, that is, create empty classes that inherit from the framework.
This masks the PHP code of the actions and the templates to avoid them from being modified.
This is useful if your data structure is not final, or if you just need a quick interface to a database
to manipulate records. The code executed at runtime is not located in your application, but in
the cache. The command-line tasks for this kind of generation start with propel-init-.

Initiated action code is empty. For instance, an initiated article module has actions
looking like this:

class articleActions extends autoarticleActions

{
}

On the other hand, you can also generatethe code of the actions and the templates so that
it can be modified. The resulting module is therefore independent from the classes of the
framework, and cannot be altered using configuration files. The command-line tasks for this
kind of generation start with propel-generate-.

As the scaffoldings are built to serve as a base for further developments, it is often best to
generate a scaffolding. On the other hand, an administration should be easy to update through
a change in the configuration, and it should remain usable even if the data model changes.
That’s why administrations are initiated only.

Example Data Model

Throughout this chapter, the listings will demonstrate the capabilities of the symfony generators
based on a simple example, which will remind you of Chapter 8. This is the well-known example of

CHAPTER 14 GENERATORS 283

the weblog application, containing two Article and Comment classes. Listing 14-1 shows its
schema, illustrated in Figure 14-1.

Listing 14-1. schema. ym1 of the Example Weblog Application

propel:
blog article:
_attributes: { phpName: Article }

id:

title: varchar(255)
content: longvarchar
created at:

blog comment:
_attributes: { phpName: Comment }

id:
article id:
author: varchar(255)
content: longvarchar
created at:
blog_article blog_comment
id id
------- [
content (0) article_id (FK)
title (0) author (0)
created_at (0) content (0)
created_at (0)

Figure 14-1. Example data model

There is no particular rule to follow during the schema creation to allow code generation.
Symfony will use the schema as is and interpret its attributes to generate a scaffolding or an
administration.

Tip To get the most out of this chapter, you need to actually do the examples. You will get a better under-
standing of what symfony generates and what can be done with the generated code if you have a view of
every step described in the listings. So you are invited to create a data structure such as the one described
previously, to create a database with a blog_article and a blog comment table, and to populate this
database with sample data.

284

CHAPTER 14 GENERATORS

Scaffolding

Scaffolding is of great use in the early days of application development. With a single command,
symfony creates an entire module based on the description of a given table.

Generating a Scaffolding

To generate the scaffolding for an article module based on the Article model class, type the
following:

> symfony propel-generate-crud myapp article Article

Symfony reads the definition of the Article class in the schema.yml and creates a set of
templates and actions based on it, in the myapp/modules/article/ directory.

The generated module contains three views. The 1ist view, which is the default view,
displays the rows of the blog_article table when browsing to http://localhost/myapp dev.php/
article as reproduced in Figure 14-2.

article
Id Title Content Created at
Wielcome to the This iz the f|r§1 pos{ of th!s weeblog. Honestly, rt izjust a S006-11-12
test to check if it works fine. Please comment it as much 277
symfony weblog! " 20:20:25
as you like.
. . The purpose of & weblog iz usually to talk about one's 2006-11-12
2 Life is beautiful mood. Mine iz grest today. How is yours? 20:20:25

create

Figure 14-2. 1ist view of thearticle module

Clicking an article identifier displays the show view. The details of one row appear in a
single page, as in Figure 14-3.

Id: 1
Title: Welcome to the symfony weblog!

This iz the first post of this weblog. Honestly, i is just a test to check if it works

Content: fine. Plesse comment it s much as you like.

Created 06 11.12 20:20:25

et list
Figure 14-3. show view of the article module

Editing an article by clicking the edit link, or creating a new article by clicking the create
link in the 1ist view, displays the edit view, reproduced in Figure 14-4.

Using this module, you can create new articles, and modify or delete existing ones. The
generated code is a good base for further developments. Listing 14-2 lists the generated actions
and templates of the new module.

CHAPTER 14 GENERATORS

Title: Welcome to the symfor

This is the first post of this A
webhlog. Honestly, it i=s just a

Content: test to check if it works
fine. Please comment it as |
save | delste cancel

Figure 14-4, edit view of thearticle module

Listing 14-2. Generated CRUD Elements, inmyapp/modules/article/

// In actions/actions.class.php

index // Forwards to the list action below

list // Displays the list of all the records of the table
show // Displays the lists of all columns of a record
edit // Displays a form to modify the columns of a record
update // Action called by the edit action form

delete // Deletes a record

create // Creates a new record

// In templates/

editSuccess.php // Record edition form (edit view)
listSuccess.php // List of all records (list view)
showSuccess.php // Detail of one record (show view)

The logic of these actions and templates is quite simple and explicit, and so rather than
reproduce and explain it all, Listing 14-3 gives just a sneak peek on the generated action class.

Listing 14-3. Generated Action Class, inmyapp/modules/article/actions/actions.class.php

class articleActions extends sfActions

{

public function executeIndex()

{

return $this->forward('article', 'list');

}

public function executelist()

{

$this->articles = ArticlePeer::doSelect(new Criteria());

}

public function executeShow()

{

$this->article = ArticlePeer::retrieveByPk($this->getRequestParameter('id"));
$this->forward404Unless($this->article);

}

285

286

CHAPTER 14 GENERATORS

Modify the generated code to fit your requirements, repeat the CRUD generation for all
the tables that you want to interact with, and you have a basic working application. Generating
a scaffolding really bootstraps development; let symfony do the dirty job for you and focus on
the interface and specifics.

Initiating a Scaffolding

Initiating a scaffolding is mostly useful when you need to check that you can access the data in
the database. It is fast to build and also fast to delete once you're sure that everything works
fine.

To initiate a Propel scaffolding that will create an article module to deal with the records
of the Article model class name, type the following:

> symfony propel-init-crud myapp article Article
You can then access the 1ist view using the default action:
http://localhost/myapp_dev.php/article

The resulting pages are exactly the same as for a generated scaffolding. You can use them
as a simple web interface to the database.

If you check the newly created actions.class.php in the article module, you will see that
it is empty: Everything is inherited from an auto-generated class. The same goes for the templates:
There is no template file in the templates/ directory. The code behind the initiated actions and
templates is the same as for a generated scaffolding, but lies only in the application cache
(myproject/cache/myapp/prod/module/autoArticle/).

During application development, developers initiate scaffoldings to interact with the data,
regardless of interface. The code is not meant to be customized; an initiated scaffolding can be
seen as a simple alternative to PHPmyadmin to manage data.

Administration

Symfony can generate more advanced modules, still based on model class definitions from the
schema.yml file, for the back-end of your applications. You can create an entire site administra-
tion with only generated administration modules. The examples of this section will describe
administration modules added to a backend application. If your project doesn’t have a backend
application, create its skeleton now by calling the init-app task:

> symfony init-app backend

Administration modules interpret the model by way of a special configuration file called
generator.yml, which can be altered to extend all the generated components and the module
look and feel. Such modules benefit from the usual module mechanisms described in previous
chapters (layout, validation, routing, custom configuration, autoloading, and so on). You can
also override the generated action or templates, in order to integrate your own features into the
generated administration, but generator.yml should take care of the most common require-
ments and restrict the use of PHP code only to the very specific.

CHAPTER 14 GENERATORS

Initiating an Administration Module

With symfony, you build an administration on a per-module basis. A module is generated
based on a Propel object using the propel-init-admin task, which uses syntax similar to that
used to initiate a scaffolding:

> symfony propel-init-admin backend article Article

This call is enough to create an article module in the backend application based on the
Article class definition, and is accessible by the following:

http://localhost/backend.php/article

The look and feel of a generated module, illustrated in Figures 14-5 and 14-6, is sophisticated
enough to make it usable out of the box for a commercial application.

article list

Id Title Content Created at
This is the first post of this weblog, Honestly, it is
welcome to the just & test to check if it works fine. Please December 1,

| .
symfony weblog! comment it &5 much s you like. 2006117 PM

The purpose of a weblog is usually to talk about Cecember 1,

2 B 0s B one's mood. Mine iz great today. How is yours? 2006117 PM

2 results

o) creste

Figure 14-5. 1ist view of the article module in the backend application

edit article

Title: Welcome to the symfony s
Cortent: This i the first post of this weblog,

Hormesztly, i iz just 5 test to check if it

wearks fine. Pleazse comment i a5 much

a5 youl like.
Crested at: 121 106 _l

= st I &) zave | (&) save and sdd
& delete I

Figure 14-6. edit view of the article module in the backend application

287

288

CHAPTER 14 GENERATORS

The difference between the interface of the scaffolding and the one of the administration
may not look significant now, but the configurability of the administration will allow you to
enhance the basic layout with many additional features without a line of PHP.

Note Administration modules can only be initiated (not generated).

A Look at the Generated Code

The code of the Article administration module, in the apps/backend/modules/article/ directory,
is empty because it is only initiated. The best way to review the generated code of this module is to
interact with it using the browser, and then check the contents of the cache/ folder. Listing 14-4 lists
the generated actions and the templates found in the cache.

Listing 14-4. Generated Administration Elements, in cache/backend/ENV/modules/article/

// In actions/actions.class.php

create // Forwards to edit

delete // Deletes a record

edit // Displays a form to modify the fields of a record
// And handles the form submission

index // Forwards to list

list // Displays the list of all the records of the table

save // Forwards to edit

// In templates/
_edit _actions.php
_edit footer.php
_edit form.php
_edit _header.php
_edit_messages.php
_filters.php
_list.php

_list actions.php
_list footer.php
_list header.php
_list messages.php
_list td actions.php
_list td stacked.php
_list td tabular.php
_list th stacked.php
_list th tabular.php
editSuccess.php
listSuccess.php

CHAPTER 14 GENERATORS

This shows that a generated administration module is composed mainly of two views, edit
and list. If you have a look at the code, you will find it to be very modular, readable, and
extensible.

Introducing the generator.yml Configuration File

The main difference between scaffoldings and administrations (apart from the fact that
administration-generated modules don’t have a show action) is that an administration relies
on parameters found in the generator.yml YAML configuration file. To see the default config-
uration of a newly created administration module, open the generator.yml file, located in the
backend/modules/article/config/generator.yml directory and reproduced in Listing 14-5.

Listing 14-5. Default Generator Configuration, in backend/modules/article/config/generator. yml

generator:
class: stPropelAdminGenerator
param:
model class: Article
theme: default

This configuration is enough to generate the basic administration. Any customization is
added under the param key, after the theme line (which means that all lines added at the bottom
of the generator.yml file must at least start with four blank spaces to be properly indented).
Listing 14-6 shows a typical customized generator.yml.

Listing 14-6. Typical Complete Generator Configuration

generator:
class: stPropelAdminGenerator
param:
model class: Article
theme: default
fields:
author_id: { name: Article author }
list:
title: List of all articles
display: [title, author_id, category id]
fields:
published on: { params: date_format='dd/MM/yy' }
layout: stacked
params: |

%%1is_published%%%%=title%%
by %%authork%

in %%category%% (%%published on%%)<p>%%kcontent summary%i</p>
filters: [title, category id, author id, is published]
max_per page: 2

289

290 CHAPTER 14 GENERATORS

edit:
title: Editing article "%%title%%"
display:
"Post": [title, category id, content]
"Workflow": [author id, is published, created on]
fields:

category id: { params: disabled=true }
is published: { type: plain}
created on: { type: plain, params: date format='dd/MM/yy' }

author_id: { params: size=5 include custom=>> Choose an author << }
published on: { credentials: [[admin, superdamin]] }
content: { params: rich=true tinymce options=height:150 }

The following sections explain in detail all the parameters that can be used in this config-
uration file.

Generator Configuration

The generator configuration file is very powerful, allowing you to alter the generated adminis-
tration in many ways. But such capabilities come with a price: The overall syntax description is
long to read and learn, making this chapter one of the longest in this book. The symfony website
proposes an additional resource that will help you learn this syntax: the administration generator
cheat sheet, reproduced in Figure 14-7. Download it from http://www.symfony-project.com/
uploads/assets/sfAdminGeneratorRefCard.pdf, and keep it close to you when you read the
following examples of this chapter.

The examples of this section will tweak the article administration module, as well as the
comment administration module, based on the Comment class definition. Create the latter with
the propel-init-admin task:

> symfony propel-init-admin backend comment Comment

CHAPTER 14 GENERATORS

= symfony admin generator efemnce card 1.0 «

Opions In this ooder: <APP <MODULE. <OBJECT:
HEg st e L .

AECHIBE 5 RN W (s B MO LS

Walkdation & Fapopuation “iainta:

» ieavbed e rad mnpanca wecyr | Paramesn

[Hhakds
i e i el i chlo oy ot a ke s el .
PR FTIra T g

Figure 14-7. The administration generator cheat sheet

Fields

By default, the columns of the 1ist view and the fields of the edit view are the columns defined
in schema.yml. With generator.yml, you can choose which fields are displayed, which ones are
hidden, and add fields of your own—even if they don’t have a direct correspondence in the
object model.

Field Settings

The administration generator creates a field for each column in the schema.yml file. Under the
fields key, you can modify the way each field is displayed, formatted, etc. For instance, the
field settings shown in Listing 14-7 define a custom label class and input type for the title
field, and alabel and a tooltip for the content field. The following sections will describe in detail
how each parameter works.

Listing 14-7. Setting a Custom Label for a Column

generator:
class: stPropelAdminGenerator
param:
model class: Article

theme: default

291

292

CHAPTER 14 GENERATORS

fields:
title: { name: Article Title, type: textarea_tag, params: class=foo }
content: { name: Body, help: Fill in the article body }

In addition to this default definition for all the views, you can override the field settings for
a given view (1list and edit), as demonstrated in Listing 14-8.

Listing 14-8. Overriding Global Settings View per View

generator:
class: sfPropelAdminGenerator
param:
model class: Article
theme: default
fields:
title: { name: Article Title }
content: { name: Body }
list:
fields:
title: { name: Title }
edit:
fields:
content: { name: Body of the article }

This is a general principle: Any settings that are set for the whole module under the fields
key can be overridden by view-specific (Llist and edit) areas that follow.

Adding Fields to the Display

The fields that you define in the fields section can be displayed, hidden, ordered, and grouped
in various ways for each view. The display key is used for that purpose. For instance, to arrange
the fields of the comment module, use the code of Listing 14-9.

CHAPTER 14 GENERATORS

Listing 14-9. Choosing the Fields to Display, in modules/comment/config/generator.yml

generator:
class:
param:
model class:
theme:

fields:

article id:
created at:

content:

list:
display:

edit:
display:
NONE :

Editable:

sfPropelAdminGenerator
Comment

default

{ name: Article }
{ name: Published on }
{ name: Body }

[id, article id, content]

[article_id]
[author, content, created at]

The 1ist will then display three columns, as in Figure 14-8, and the edit form will display
four fields, assembled in two groups, as in Figure 14-9.

comment list

Id Article Body

11 ‘Wl if this comment displays, it means that your weblog does
wark...

59 Thank you for your feedback. t really helps to see people
understanding you.

32 Mine is not bad either. I'd like to see more deers, though.

42 Howy can you be so postive? There are so many subjects to warry

ahout out there!

59 Why is it always like that, people guarreling as soon as they have

room to express themselves?

5 results

& create

Figure 14-8. Custom column setting in the 1ist view of the comment module

293

294 CHAPTER 14 GENERATORS

edit comment
Article: 1 v

Editable

Authar: ANOnymous

Body: well, if this commert displays, t means

that your weblog does woark....

Publizhed on: 124 106 |

.__I list I J SAvE J save and add
@ delste I

Figure 14-9. Grouping fields in theedit view of the comment module

So you can use the display setting in two ways:

¢ To select the columns to display and the order in which they appear, put the fields in a
simple array—as in the previous 1ist view.

¢ Togroup fields, use an associative array with the group name as a key, or NONE for a group
with no name. The value is still an array of ordered column names.

Tip By default, the primary key columns never appear in either view.

Custom Fields

As a matter of fact, the fields configured in generator.yml don’t even need to correspond to
actual columns defined in the schema. If the related class offers a custom getter, it can be used
as afield for the 1ist view; if there is a getter and/or a setter, it can also be used in the edit view.
For instance, you can extend the Article model with a getNbComments () method similar to the
one in Listing 14-10.

Listing 14-10. Adding a Custom Getter in the Model, in 1ib/model/Article.class.php

public function getNbComments()
{

return $this->countComments();

}

Then nb_comments is available as a field in the generated module (notice that the getter
uses a camelCase version of the field name), as in Listing 14-11.

CHAPTER 14 GENERATORS

Listing 14-11. Custom Getters Provide Additional Columns for Administration Modules, in
backend/modules/article/config/generator.yml

generator:
class: sfPropelAdminGenerator
param:
model class: Article
theme: default
list:
display: [id, title, nb_comments, created at]

The resulting 1ist view of the article module is shown in Figure 14-10.

article list

Id Title Hb comments Created at

1 Welcome to the symfony weblogl 2 December 1, 2006 1:17 PM
2 Life iz beautiful 5] December 1, 2006 1:17 PM
2 results

& create
Figure 14-10. Custom field in the 1ist view of the article module

Custom fields can even return HTML code to display more than raw data. For instance,
you can extend the Comment class with a getArticlelLink() method as in Listing 14-12.

Listing 14-12. Adding a Custom Getter Returning HTML, in 1ib/model/Comment.class.php

public function getArticlelLink()
{
return link to($this->getArticle()->getTitle(),
'article/edit?id=".$this->getArticleId());

You can use this new getter as a custom field in the comment/1list view with the same
syntax as in Listing 14-11. See the example in Listing 14-13, and the result in Figure 14-11,
where the HTML code output by the getter (a hyperlink to the article) appears in the second
column instead of the article primary key.

Listing 14-13. Custom Getters Returning HTML Can Also Be Used As Additional Columns,
inmodules/comment/config/generator.yml

generator:
class: stPropelAdminGenerator
param:
model class: Comment

theme: default

295

296 CHAPTER 14 GENERATORS

list:
display: [id, article link, content]

comment list

Id Article link Body

] ‘Welcome to the ‘Wl if this comment displays, it means that vour weblog
symfony weblog! does work...

5 ‘Welcome to the: Thank you for your feedback. really helps to see
symfony weblog! people understanding you.

3 Life iz beautiful Mine is not bad either. I'd like to see more deers, though.

Howy can you be so postive? There are so many
subjects to waorry about out there!

-

Life iz beautiful

Why is it always like that, people quarreling as soon as

5 |Life is beautiful they have room to express themselves?

5 results

& create
Figure 14-11. Custom field in the 1ist view of the comment module

Partial Fields

The codelocated in the model must be independent from the presentation. The example of the
getArticlelink() method earlier doesn’t respect this principle of layer separation, because
some view code appears in the model layer. To achieve the same goal in a correct way, you'd
better put the code that outputs HTML for a custom field in a partial. Fortunately, the admin-
istration generator allows it if you declare a field name prefixed by an underscore. In that case,
the generator.yml file of Listing 14-13 is to be modified as in Listing 14-14.

Listing 14-14. Partials Can Be Used As Additional Columns—Use the _ Prefix

list:
display: [id, _article_link, created at]

For this to work, an _article link.php partial must be created in the modules/comment/
templates/ directory, as in Listing 14-15.

Listing 14-15. Example Partial for the1ist View, inmodules/comment/templates/ article link.php

<?php echo link to($comment->getArticle()->getTitle(),
'article/edit?id=".$comment->getArticleId()) ?>

Notice that the partial template of a partial field has access to the current object through a
variable named by the class ($comment in this example). For instance, for a module built for a
class called UserGroup, the partial will have access to the current object through the $user _group
variable.

The result is the same as in Figure 14-11, except that the layer separation is respected.

If you get used to respecting the layer separation, you will end up with more maintainable
applications.

CHAPTER 14 GENERATORS

Ifyou need to customize the parameters of a partial field, do the same as for a normal field,
under the field key. Just don’t include the leading underscore (_) in the key—see an example
in Listing 14-16.

Listing 14-16. Partial Field Properties Can Be Customized Under the fields Key

fields:
article link: { name: Article }

If your partial becomes crowded with logic, you’ll probably want to replace it with a
component. Change the prefix to ~ and you can define a component field, as you can see in
Listing 14-17.

Listing 14-17. Components Can Be Used As Additional Columns—Use the ~ Prefix
list:
display: [id, ~article link, created at]

In the generated template, this will result by a call to the articleLink component of the
current module.

Note Custom and partial fields can be used in the 1ist view, the edit view, and for filters. If you use the
same partial for several views, the context (" 1ist', "edit’, or 'filter")is stored in the $type variable.

View Customization

To change the edit and list views’ appearance, you could be tempted to alter the templates.
But because they are automatically generated, doing so isn’t a very good idea. Instead, you
should use the generator.yml configuration file, because it can do almost everything that you
need without sacrificing modularity.

Changing the View Title

In addition to a custom set of fields, the 1ist and edit pages can have a custom page title. For
instance, if you want to customize the title of the article views, do as in Listing 14-18. The
resulting edit view is illustrated in Figure 14-12.

Listing 14-18. Setting a Custom Title for Each View, in backend/modules/article/config/
generator.yml

list:
title: List of Articles

297

298 CHAPTER 14 GENERATORS

edit:
title: Body of article %%title%%
display: [content]

Body of article Welcome to the symfony weblog!

Cortert: Thiz is the first post of this weblog.

Honestly, it iz just a test to check if it
warks fine. Please commert it & much
as you like.

.__I list I 'J SAvE 'J save and add
@ delste I

Figure 14-12. Custom title in theedit view of the article module

As the default titles use the class name, they are often good enough—provided that your
model uses explicit class names.

Tip In the string values of generator.yml, the value of a field can be accessed via the name of the field
surrounded by %%.

Adding Tooltips

In the list and edit views, you can add tooltips to help describe the fields that are displayed.
For instance, to add a tooltip to the article idfield of the edit view of the comment module, add
a help property in the fields definition as in Listing 14-19. The result is shown in Figure 14-13.

Listing 14-19. Setting a Tooltip in theedit View, inmodules/comment/config/generator.yml

edit:
fields:

article id: { help: The current comment relates to this article }

edit comment
Article: 1 v'
Figure 14-13. Tooltip in theedit view of the comment module

In the list view, tooltips are displayed in the column header; in the edit view, they appear
under the input.

CHAPTER 14 GENERATORS

Modifying the Date Format

Dates can be displayed using a custom format as soon as you use the date_format param, as
demonstrated in Listing 14-20.

Listing 14-20. Formatting a Date in the 1ist View

list:
fields:
created at: { name: Published, params: date format='dd/MM" }

It takes the same format parameter as the format_date() helper described in the previous
chapter.

ADMINISTRATION TEMPLATES ARE 118N READY

All of the text found in the generated templates is automatically internationalized (i.e., enclosed in a call to the
() helper). This means that you can easily translate a generated administration by adding the translations
of the phrases in an XLIFF file, in your apps/myapp/1i18n/ directory, as explained in the previous chapter.

List View—Specific Customization

The 1ist view can display the details of a record in a tabular way, or with all the details stacked
in oneline. It also contains filters, pagination, and sorting features. These features can be altered by
configuration, as described in the next sections.

Changing the Layout

By default, the hyperlink between the 1ist view and the edit view is borne by the primary key
column. If you refer back to Figure 14-11, you will see that the id column in the comment list
not only shows the primary key of each comment, but also provides a hyperlink allowing users
to access the edit view.

If you prefer the hyperlink to the detail of the record to appear on another column, prefix
the column name by an equal sign (=) in the display key. Listing 14-21 shows how to remove
the id from the displayed fields of the comment 1ist and to put the hyperlink on the content
field instead. Check Figure 14-14 for a screenshot.

Listing 14-21. Moving the Hyperlink for the edit View in the l1ist View, inmodules/comment/
config/generator.yml

list:
display: [article link, =content]

299

300

CHAPTER 14 GENERATORS

comment list

Article Body

‘Welcome to the Well, if this comment displays, t means that your weblog does
symfony weblog! weark...

‘Welcome to the Thank you for your feedback. t really helps to see people
symfony weblog! understanding you.

Life iz beautiful Mine is not bad either. I'd like to see more deers, though.

Howy can you be so postive? There are so many subjects to

(i 3] sweorry sbout out therel

Why is it always like that, people guarreling as s0on as they

Life is beautiful have room to express themselves?

5 results

& create

Figure 14-14. Moving the link to theedit view on another column, in the 1ist view of the comment
module

By default, the 1ist view uses the tabular layout, where the fields appear as columns, as
shown previously. But you can also use the stacked layout and concatenate the fields into a
single string that expands on the full length of the table. If you choose the stacked layout, you
must set in the params key the pattern defining the value of each line of the list. For instance,
Listing 14-22 defines a stacked layout for the 1ist view of the comment module. The result appears
in Figure 14-15.

Listing 14-22. Using a stacked Layout in the 1ist View, inmodules/comment/config/
generator.yml

list:
layout: stacked
params: |
%%=content%%

(sent by %%author%% on %%created_at%% about %%article_link%%)
display: [created at, author, content]

comment list

Published on Author Body

Well, if this comment displays, t means that your weblog does work...
(=ent by Anonymous on December 1, 2006 1:17 PM about VWelcome to the symfony
weeblogl)

Thank you for your feedback. i really helps to see people understanding you.
(=ent by Myself on December 1, 2006 1:17 PM about Welcome to the symfony wweblogh

Mine is not bad either. I'd like to see more deers, though.
(=ent by John Doe on December 1, 2006 1:17 PM about Life iz beautiful)

Howy can you be so positive? There are so many subjects to worry sbout out there!
(=ent by Anonymous on December 1, 2006 1:17 PM about Life iz beautiful)

Why is it always like that, people guarreling as soon as they have room to express
themselves?
(=ent by Myself on December 1, 2006 1:17 PM about Life is beautiful)

5 results

o create

Figure 14-15, Stacked layout in the 1ist view of the comment module

CHAPTER 14 GENERATORS 301

Notice that a tabular layout expects an array of fields under the display key, but a stacked
layout uses the params key for the HTML code generated for each record. However, the display
array is still used in a stacked layout to determine which column headers are available for the
interactive sorting.

Filtering the Results

Ina list view, you can add a set of filter interactions. With these filters, users can both display
fewer results and get to the ones they want faster. Configure the filters under the filters key,
with an array of field names. For instance, add a filter on the article_id, author, and created at
fields to the comment list view, as in Listing 14-23, to display a filter box similar to the one in
Figure 14-16. You will need to add a _toString() method to the Article class (returning, for
instance, the article title) for this to work.

Listing 14-23. Setting the Filters in the 1ist View, inmodules/comment/config/generator.yml

list:
filters: [article_id, author, created at]
layout: stacked
params: |
%k=content¥%

(sent by %%author’%% on %%created at%% about %%article link%%)
display: [created at, author, content]

comment list

Published on Author Body filters

Well, if this comment displays, t means that your weblog does work...
[=ent by Anonymous on December 1, 2006 1:17 PM about VWelcome to the symfony
weeblogl)

Article:

Thank you for your feedback. i really helps to see people understanding you. Suthar
(=ent by Myself on December 1, 2006 1:17 PM about Welcome to the symfony weblogh ’

Mine is not bad either. I'd like to see more deers, though.
(=ent by John Doe on December 1, 2006 1:17 PM about Life iz beautiful) Published on: =

Howy can you be so postive? There are so many subjects to worry about out there! =
(=ent by Anonymous on December 1, 2006 1:17 PM about Life iz beautiful)

Why is it always like that, people guarreling as soon as they have room to express
themselves? § reset I y fitter I
(=ent by Myself on December 1, 2006 1:17 PM about Life is beautiful)

5 results

o create
Figure 14-16. Filters in the 1ist view of the comment module

The filters displayed by symfony depend on the column type:

¢ For text columns (like the author field in the comment module), the filter is a text input
allowing text-based search with wildcards (*).

» For foreign keys (like the article id field in the comment module), the filter is a drop-
down list of the records of the related table. As for the regular object_select tag(), the
options of the drop-down list are the ones returned by the _ toString() method of the
related class.

302

CHAPTER 14 GENERATORS

¢ For date columns (like the created at field in the comment module), the filter is a pair of
rich date tags (text fields filled by calendar widgets), allowing the selection of a time interval.

¢ For Boolean columns, the filter is a drop-down list having true, false, and true or false
options—the last value reinitializes the filter.

Just like you use partial fields in lists, you can also use partial filters to create a filter that
symfony doesn’t handle on its own. For instance, imagine a state field that may contain only
two values (open and closed), but for some reason you store those values directly in the field
instead of using a table relation. A simple filter on this field (of type string) would be a text-
based search, but what you want is probably a drop-down list of values. That’s easy to achieve
with a partial filter. See Listing 14-24 for an example implementation.

Listing 14-24. Using a Partial Filter

// Define the partial, in templates/ state.php

<?php echo select tag('filters[state]', options for select(array(
oy
'open' => 'open',
"closed" => 'closed',

), isset($filters['state']) ? $filters['state'] : '")) 2>

// Add the partial filter in the filter list, in config/generator.yml
list:
filters: [date, _state]

Notice that the partial has access to a $filters variable, which is useful to get the current
value of the filter.

There is one last option that can be very useful for looking for empty values. Imagine that
you want to filter the list of comments to display only the ones that have no author. The problem is
thatifyou leave the author filter empty, it will be ignored. The solution is to set the filter is empty
field setting to true, as in Listing 14-25, and the filter will display an additional check box, which will
allow you to look for empty values, as illustrated in Figure 14-17.

Listing 14-25. Adding Filtering of Empty Values on the author Field in the 1ist View

list:
fields:
author: { filter is empty: true }
filters: [article id, author, created at]

CHAPTER 14 GENERATORS

filters

Article:

Authar:
[is empty

Publizhed on: =

=]

& reset I y fitter I
Figure 14-17. Allowing the filtering of empty author values

Sorting the List

Inalist view, the table headers are hyperlinks that can be used to reorder the list, as shown in
Figure 14-18. These headers are displayed both in the tabular and stacked layouts. Clicking
these links reloads the page with a sort parameter that rearranges the list order accordingly.

List of Articles

Id Titl Hb comments Created at
1 mme to the symfony weblog! 2 December 1, 2006 1:17 PM
2 Life iz beautiful 5] December 1, 2006 1:17 PM

2 results

& create
Figure 14-18. Table headers of the 1ist view are sort controls.

You can reuse the syntax to point to a list directly sorted according to a column:

<?php echo link to('Comment list by date', 'comment/list?sort=created at w
&type=desc') ?>

You can also define a default sort order for the 1ist view directly in the generator.yml file.
The syntax follows the example given in Listing 14-26.

Listing 14-26. Setting a Default Sort Field in the 1ist View

list:
sort: created at
Alternative syntax, to specify a sort order
sort: [created at, desc]

Note Only the fields that correspond to an actual column are transformed into sort controls—not the
custom or partial fields.

303

304

CHAPTER 14 GENERATORS

Customizing the Pagination

The generated administration effectively deals with even large tables, because the 1ist view
uses pagination by default. When the actual number of rows in a table exceeds the number of
maximum rows per page, pagination controls appear at the bottom of the list. For instance,
Figure 14-19 shows the list of comments with six test comments in the table but a limit of five
comments displayed per page. Pagination ensures a good performance, because only the
displayed rows are effectively retrieved from the database, and a good usability, because even
tables with millions of rows can be managed by an administration module.

comment list

Published on Author Body

Well, if this comment displays, t means that your weblog does work...
(=ent by Anonymous on December 1, 2006 1:17 PM about VWelcome to the symfony weblogl

Thank you for your feedback. i really helps to see people understanding you.
(=ent by Myself on December 1, 2006 1:17 PM about Welcome to the symfony weblogh

Mine is not bad either. I'd like to see more deers, though.
(=ent by John Doe on December 1, 2006 1:17 PM about Life iz beautiful)

Howy can you be so positive? There are so many subjects to worry about out there!
(=ent by Anonymous on December 1, 2006 1:17 PM about Life iz beautiful)

Why is it always like that, people guarreling as soon as they have room to express themselves?
(=ent by Myself on December 1, 2006 1:17 PM about Life is beautiful)

6 results Ha412p M

& create
Figure 14-19. Pagination controls appear on long lists.

You can customize the number of records to be displayed in each page with the
max_per_page parameter:

list:
max_per page: 5

Using a Join to Speed Up Page Delivery

By default, the administration generator uses a simple doSelect() to retrieve a list of records.
But, if you use related objects in the list, the number of database queries required to display the
list may rapidly increase. For instance, if you want to display the name of the article in a list
of comments, an additional query is required for each post in the list to retrieve the related
Article object. So you may want to force the pager to use a doSelectJoinXXX() method to optimize
the number of queries. This can be specified with the peer method parameter.

list:
peer method: doSelectJoinArticle

Chapter 18 explains the concept of Join more extensively.

Edit View-Specific Customization

In an edit view, the user can modify the value of each column for a given record. Symfony
determines the type of input to display according to the data type of the column. It then generates

CHAPTER 14 GENERATORS

anobject * taghelper, and passes that helper the object and the property to edit. For instance,
if the article edit view configuration stipulates that the user can edit the title field:

edit:
display: [title, ...]

then the edit page will display a regular text input tag to edit the title because this column is
defined as a varchar type in the schema.

<?php echo object input tag($article, 'getTitle') 2>

Changing the Input Type

The default type-to-field conversion rules are as follows:

e A column defined as integer, float, char, varchar(size) appears in the edit view as an
object_input_tag().

e A column defined as longvarchar appears as an object_textarea_ tag().
 Aforeign key column appears as an object_select tag().

e A column defined as boolean appears as an object checkbox_tag().

e A column defined as a timestamp or date appears as an object_input date tag().

You may want to override these rules to specify a custom input type for a given field. To
that extent, set the type parameter in the fields definition to a specific form helper name. As
for the options of the generated object * tag(), you can change them with the params parameter.
See an example in Listing 14-27.

Listing 14-27. Setting a Custom Input Type and Params for the edit View

generator:
class: stPropelAdminGenerator
param:
model class: Comment
theme: default
edit:
fields:
Drop the input, just display plain text
id: { type: plain }
The input is not editable
author: { params: disabled=true }
The input is a textarea (object textarea tag)
content: { type: textarea_tag,

params: rich=true css=user.css tinymce_options=width:330 }
The input is a select (object select tag)
article id: { params: include_custom=Choose an article }

305

306

CHAPTER 14 GENERATORS

The params parameters are passed as options to the generated object * tag(). For instance,
the params definition for the preceding article id will produce in the template the following:

<?php echo object select tag($comment, 'getArticleId', 'related class=Article’,
"include_custom=Choose an article') ?>

This means that all the options usually available in the form helpers can be customized in
an edit view.

Handling Partial Fields

Partial fields can be used in edit views just like in 1ist views. The difference is that you have to
handle by hand, in the action, the update of the column according to the value of the request
parameter sent by the partial field. Symfony knows how to handle the normal fields (corre-
sponding to actual columns), but can’t guess how to handle the inputs you may include in
partial fields.

For instance, imagine an administration module for a User class where the available fields
are id, nickname, and password. The site administrator must be able to change the password of
a user upon request, but the edit view must not display the value of the password field for
security reasons. Instead, the form should display an empty password input that the site
administrator can fill to change the value. The generator settings for such an edit view are then
similar to Listing 14-28.

Listing 14-28. Including a Partial Field in the edit View

edit:
display: [id, nickname, _newpassword]
fields:
newpassword: { name: Password, help: Enter a password to change it,
leave the field blank to keep the current one }

The templates/_newpassword.php partial contains something like this:
<?php echo input_password tag('newpassword', '') ?>

Notice that this partial uses a simple form helper, not an object form helper, since it is not
desirable to retrieve the password value from the current User object to populate the form input—
which could disclose the user password.

Now, in order to use the value from this control to update the object in the action, you
need to extend the updateUserFromRequest () method in the action. To do that, create a method
with the same name in the action class file with the custom behavior for the input of the partial
field, as in Listing 14-29.

Listing 14-29. Handling a Partial Field in the Action, inmodules/user/actions/actions.class.php

class userActions extends sfActions

{

protected function updateUserFromRequest()

{
// Handle the input of the partial field

CHAPTER 14 GENERATORS

$password = $this->getRequestParameter('newpassword');

if ($password)
{

$this->user->setPassword($password);

}

// Let symfony handle the other fields
parent: :updateUserFromRequest();

Note In the real world, a user/edit view usually contains two password fields, the second having to
match the first one to avoid typing mistakes. In practice, as you saw in Chapter 10, this is done via a validator.
The administration-generated modules benefit from this mechanism just like regular modules.

Dealing with Foreign Keys

If your schema defines table relationships, the generated administration modules take advantage
of it and offer even more automated controls, thus greatly simplifying the relationship
management.

One-to-Many Relationships

The 1-n table relationships are taken care of by the administration generator. As is depicted
by Figure 14-1 earlier, the blog_comment table is related to the blog article table through the
article_idfield. If you initiate the module of the Comment class with the administration generator,
the comment/edit action will automatically display the article id as a drop-down list showing
the IDs of the available records of the blog_article table (check again Figure 14-9 for an
illustration).

In addition, ifyou definea _toString() method in the Article object, the text of the drop-
down options use it instead of the primary keys.

If you need to display the list of comments related to an article in the article module
(n-1 relationship), you will need to customize the module a little by way of a partial field.

Many-to-Many Relationships

Symfony also takes care of n-n table relationships, but since you can’t define them in the schema,
you need to add a few parameters to the generator.yml file.

The implementation of many-to-many relationships requires an intermediate table. For
instance, if there is an n-n relation between a blog_article and a blog_author table (an article
can be written by more than one author and, obviously, an author can write more than one
article), your database will always end up with a table called blog_article_author or similar, as
in Figure 14-20.

307

308

CHAPTER 14 GENERATORS

blog_article blog_article_author blog_author
id article_id (FK) id

author_id (FK) o
title (0) name (0)
content (0) L J

Figure 14-20. Using a “through class” to implement many-to-many relationships

The model then has a class called ArticleAuthor, and this is the only thing that the admin-
istration generator needs—but you have to pass it as a through _class parameter of the field.

For instance, in a generated module based on the Article class, you can add a field to
create new n-n associations with the Author class if you write generator.yml as in Listing 14-30.

Listing 14-30. Handling Many-to-Many Relationships with a through class Parameter

edit:
fields:
article author: { type: admin double list,
params: through class=ArticleAuthor }

Such a field handles links between existing objects, so a regular drop-down list is not
enough. You must use a special type of input for that. Symfony offers three widgets to help
relate members of two lists (illustrated in Figure 14-21):

e Anadmin_double list isa set of two expanded select controls, together with buttons to
switch elements from the first list (available elements) to the second (selected elements).

e Anadmin select listisanexpanded select control in which you can select many elements.

e Anadmin_check list is alist of check box tags.

Unassociated i Associated Myself Ms.u'self
Alice 4 Myself Alice [Aice
Boh Eiok [Bok
admin_double_list admin_seled_list admin_deck_list

Figure 14-21. Available controls for many-to-many relationships

Adding Interactions

Administration modules allow users to perform the usual CRUD operations, but you can also
add your own interactions or restrict the possible interactions for a view. For instance, the
interaction definition shown in Listing 14-31 gives access to all the default CRUD actions on
the article module.

CHAPTER 14 GENERATORS

Listing 14-31. Defining Interactions for Each View, in backend/modules/article/config/
generator.yml

list:
title: List of Articles
object_actions:
_edit: ~
_delete: ~
actions:
_Create: ~
edit:
title: Body of article %%title%%
actions:
_list: ~
_save: ~
_save_and_add: ~
_delete: ~

In a 1list view, there are two action settings: the list of actions available for every object,
and the list of actions available for the whole page. The list interactions defined in Listing 14-31
render like in Figure 14-22. Each line shows one button to edit the record and one to delete it.
At the bottom of the list, a button allows the creation of a new record.

List of Articles

Id Title Hb comments Created at Actions
1 Welcome to the symfony weblogl 3 December 1, 2006 1:17 P | g
2 Life is beautiful 3 December 1, 2006 117 PM (o7 g
2 results

& create

Figure 14-22, Interactions in thelist view

In an edit view, as there is only one record edited at a time, there is only one set of actions
to define. The edit interactions defined in Listing 14-31 render like in Figure 14-23. Both the
save and the save_and_add actions save the current edits in the records, the difference being that
the save action displays the edit view on the current record after saving, while the save_and_add
action displays an empty edit view to add another record. The save_and_add action is a shortcut
that you will find very useful when adding many records in rapid succession. As for the position
of the delete action, it is separated from the other buttons so that users don’t click it by mistake.

The interaction names starting with an underscore () tell symfony to use the default icon
and action corresponding to these interactions. The administration generator understands
_edit, delete, create, list, save, save and add, and create.

309

310 CHAPTER 14 GENERATORS

Body of article Life is beautiful

Contert: The purpose of & wehlog is usually to
talk about one's mood. Mine is great
today . Howy is yours?
._-I list I J SAvE J save and add
@ delete I

Figure 14-23. Interactions in theedit view

But you can also add a custom interaction, in which case you must specify a name starting
with no underscore, as in Listing 14-32.

Listing 14-32. Defining a Custom Interaction

list:
title: List of Articles
object_actions:
_edit: -
_delete: -
addcomment: { name: Add a comment, action: addComment,
icon: backend/addcomment.png }

Each article in the list will now show the addcomment. png button, as shown in Figure 14-24.
Clicking it triggers a call to the addComment action in the current module. The primary key of the
current object is automatically added to the request parameters.

List of Articles

Id Title Hb comments Created at Actions

1 Welcome to the symfony weblogl 3 December 1, 2006 117 PM o7 | g

2 Life is beautiful 3 December 1, 2006 117 PM o7 | g ﬁ

2 results
o create

Figure 14-24. Custom interaction in thelist view
The addComment action can be implemented as in Listing 14-33.

Listing 14-33. Implementing the Custom Interaction Action, inactions/actions.class.php

public function executeAddComment()
{
$comment = new Comment();

$comment->setArticleId($this->getRequestParameter('id"));
$comment->save();

CHAPTER 14 GENERATORS

$this->redirect('comment/edit?id=".$comment->getId());

}

One last word about actions: If you want to suppress completely the actions for one category,
use an empty list, as in Listing 14-34.

Listing 14-34. Removing All Actions in the 1ist View

list:
title: List of Articles
actions: {}
Form Validation

If you take alook at the generated _edit form.php template in your project cache/ directory,
you will see that the form fields use a special naming convention. In a generated edit view, the
input names result from the concatenation of the module name and the field name between
angle brackets.

For instance, if the edit view for the article module has a title field, the template will
look like Listing 14-35 and the field will be identified as article[title].

Listing 14-35. Syntax of the Generated Input Names

// generator.yml

generator:
class: stPropelAdminGenerator
param:
model class: Article
theme: default
edit:

display: [title]

// Resulting edit form.php template
<?php echo object input tag($article, 'getTitle', array('control name' =>
‘article[title]')) >

// Resulting HTML
<input type="text" name="article[title]" id="article[title]" value="My Title" />

This has plenty of advantages during the internal form-handling process. However, as
explained in Chapter 10, it makes the form validation configuration a bit trickier, so you have
to change square brackets, [], to curly braces, { }, in the fields definition. Also, when using a
field name as a parameter for a validator, you should use the name as it appears in the gener-
ated HTML code (that is, with the square brackets, but between quotes). Refer to Listing 14-36 for
a detail of the special validator syntax for generated forms.

311

312

CHAPTER 14 GENERATORS

Listing 14-36. Validator File Syntax for Administration-Generated Forms

Replace square brackets by curly brackets in the fields list
fields:
article{title}:
required:
msg: You must provide a title
For validator parameters, use the original field name between quotes
sfCompareValidator:
check: "user[newpassword]"
compare_error: The password confirmation does not match the password.

Restricting User Actions Using Credentials

For a given administration module, the available fields and interactions can vary according to
the credentials of the logged user (refer to Chapter 6 for a description of symfony’s security
features).

The fields in the generator can take a credentials parameter into account so as to appear
only to users who have the proper credential. This works for the 1ist view and the edit view.
Additionally, the generator can also hide interactions according to credentials. Listing 14-37
demonstrates these features.

Listing 14-37. Using Credentials in generator.yml

The id column is displayed only for users with the admin credential

list:
title: List of Articles
layout: tabular
display: [id, =title, content, nb_comments]
fields:
id: { credentials: [admin] }

The addcomment interaction is restricted to the users with the admin credential
list:
title: List of Articles
object actions:
_edit: -
_delete: -
addcomment: { credentials: [admin], name: Add a comment,
action: addComment, icon: backend/addcomment.png }

Modifying the Presentation of Generated Modules

You can modify the presentation of the generated modules so that it matches any existing
graphical charter, not only by applying your own style sheet, but also by overriding the default
templates.

CHAPTER 14 GENERATORS

Using a Custom Style Sheet

Since the generated HTML is structured content, you can do pretty much anything you like
with the presentation.

You can define an alternative CSS to be used for an administration module instead of a
default one by adding a css parameter to the generator configuration, as in Listing 14-38.

Listing 14-38. Using a Custom Style Sheet Instead of the Default One

generator:
class: stPropelAdminGenerator
param:
model class: Comment
theme: default
css: mystylesheet

Alternatively, you can also use the mechanisms provided by the module view.yml to over-
ride the styles on a per-view basis.

Creating a Custom Header and Footer

The list and edit views systematically include a header and footer partial. There is no such
partial by defaultin the templates/ directory of an administration module, but you just need to
add one with one of the following names to have it included automatically:

_1ist _header.php
_list footer.php
_edit_header.php
_edit_footer.php

For instance, if you want to add a custom header to the article/edit view, create a file
called edit header.php as in Listing 14-39. It will work with no further configuration.

Listing 14-39. Example edit Header Partial, inmodules/articles/template/ edit header.php

<?php if ($article->getNbComments() > 0): ?>
<h2>This article has <?php echo $article->getNbComments() ?> comments.</h2>
<?php endif; ?>

Notice that an edit partial always has access to the current object through a variable having
the same name as the module, and that a 1ist partial always has access to the current pager
through the $pager variable.

313

314

CHAPTER 14 GENERATORS

CALLING THE ADMINISTRATION ACTIONS WITH CUSTOM PARAMETERS

The administration module actions can receive custom parameters using the query string argumentina
link to() helper. For example, to extend the previous edit header partial with a link to the comments
for the article, write this:

<?php if ($article->getNbComments() > 0): 2>
<h2>This article has
<?php echo link to($article->getNbComments().' comments', ‘comment/list’,
array('query string' => 'filter=filter&filters%5Barticle id%5D=".
$article->getId())) ?></h2>
<?php endif; ?>

This query string parameter is an encoded version of the more legible

'filter=filter8filters[article id]='.$article->getId()

It filters the comments to display only the ones related to $article. Using the query string argument,
you can specify a sorting order and/or a filter to display a custom 1ist view. This can also be useful for
custom interactions.

Customizing the Theme

There are other partials inherited from the framework that can be overridden in the module
templates/ folder to match your custom requirements.

The generator templates are cut into small parts that can be overridden independently,
and the actions can also be changed one by one.

However, if you want to override those for several modules in the same way, you should
probably create a reusable theme. A theme is a complete set of templates and actions that can be
used by an administration module if specified in the theme value at the beginning of generator.yml.
With the default theme, symfony uses the files defined in $sf_symfony data_dir/generator/
stPropelAdmin/default/

The theme files must be located in a project tree structure, in a data/generator/
sftPropelAdmin/[theme_name]/template/ directory, and you can bootstrap a new theme by copying
the files from the default theme (located in $sf_symfony data_dir/generator/sfPropelAdmin/
default/template/ directory). This way, you are sure that all the files required for a theme will
be present in your custom theme:

// Partials, in [theme_name]/template/templates/
_edit _actions.php

_edit footer.php

_edit form.php

_edit _header.php

_edit_messages.php

_filters.php

CHAPTER 14 GENERATORS

_list.php

_list actions.php
_1ist footer.php
_list header.php
_list messages.php
_list td actions.php
_list td stacked.php
_list td tabular.php
_list th stacked.php
_list th tabular.php

// Actions, in [theme name]/template/actions/actions.class.php

processFilters() // Process the request filters
addFiltersCriteria() // Adds a filter to the Criteria object
processSort()

addSortCriteria()

Be aware that the template files are actually templates of templates, that is, PHP files that
will be parsed by a special utility to generate templates based on generator settings (this is
called the compilation phase). The generated templates must still contain PHP code to be
executed during actual browsing, so the templates of templates use an alternative syntax to
keep PHP code unexecuted for the first pass. Listing 14-40 shows an extract of a default template
of template.

Listing 14-40. Syntax of Templates of Templates

<?php foreach ($this->getPrimaryKey() as $pk): 2>

[?php echo object input hidden tag($<?php echo $this->getSingularName() ?>, w»
"get<?php echo $pk->getPhpName() ?>') ?]

<?php endforeach; ?>

In this listing, the PHP code introduced by <? is executed immediately (at compilation),
the one introduced by [? is only executed at execution, but the templating engine finally trans-
forms the [? tags into <? tags so that the resulting template looks like this:

<?php echo object input hidden tag($article, 'getId') ?>

Dealing with templates of templates is tricky, so the best advice if you want to create your
own theme is to start from the default theme, modify it step by step, and test it extensively.

Tip You can also package a generator theme in a plug-in, which makes it even more reusable and easy
to deploy across multiple applications. Refer to Chapter 17 for more information.

315

316

CHAPTER 14 GENERATORS

BUILDING YOUR OWN GENERATOR

The scaffolding and administration generators both use a set of symfony internal components that automate
the creation of generated actions and templates in the cache, the use of themes, and the parsing of templates
of templates.

This means that symfony provides all the tools to build your own generator, which can look like the existing
ones or be completely different. The generation of a module is managed by the generate () method of the
stGeneratorManager class. For instance, to generate an administration, symfony calls the following internally:

$generator manager = new sfGeneratorManager();
$data = $generator manager->generate('sfPropelAdminGenerator', $parameters);

If you want to build your own generator, you should look at the APl documentation of the
sfGeneratorManager and the stGenerator classes, and take as examples the sfAdminGenerator
and sfCRUDGenerator classes.

Summary

To bootstrap your modules or automatically generate your back-end applications, the basis is
awell-defined schema and object model. You can modify the PHP code of scaffoldings, but
administration-generated modules are to be modified mostly through configuration.

The generator.yml file is the heart of the programming of generated back-ends. It allows
for the complete customization of content, features, and the look and feel of the 1ist and edit
views. You can manage field labels, tooltips, filters, sort order, page size, input type, foreign relation-
ships, custom interactions, and credentials directly in YAML, without a single line of PHP code.

If the administration generator doesn’t natively support the feature you need, the partial
fields and the ability to override actions provide complete extensibility. Plus, you can reuse your
adaptations to the administration generator mechanisms thanks to the theme mechanisms.

