
Developing a Basic Ruby
Application

Up to this point we’ve focused on covering the basics of the Ruby language and looking
at how it works at the ground level. In this chapter we’ll move into the world of real soft-
ware development and develop a full, though basic, Ruby application with a basic set of
features. Once we’ve developed and tested the basic application, we’ll look at different
ways to extend it to become more useful. On our way we’ll cover some new facets of
development that haven’t been mentioned so far in this book.

First, we’re going to look at the basics of source code organization before moving on
to actual programming.

Working with Source Code Files
So far in this book we’ve focused on using the irb immediate Ruby prompt to learn about
the language. However, for developing anything you wish to reuse over and over, it’s
essential to store the source code in a file that can be stored on disk (or sent over the
Internet, kept on CD, and so forth).

The mechanism by which you create and manipulate source code files on your sys-
tem varies by operating system and personal preference. On Windows, you might be
familiar with the included Notepad software for creating and editing text files. At a Linux
prompt, you might be using vi, Emacs, or pico/nano. Mac users have TextEdit at their dis-
posal. Whatever you use, you need to be able to create new files and save them as plain
text so that Ruby can use them properly. In the next few sections, you’re going to look at
some specific tools available on each platform that tie in well with Ruby development.

87

C H A P T E R 4

7664 CH04.qxd 2/13/07 1:08 PM Page 87

88 CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION

Creating a Test File

The first step to developing a Ruby application is to get familiar with your text editor.
Here’s some guidance for each major platform.

If you’re already familiar with text editors and how they relate to writing and saving
source code, skip down to the section entitled “The Test Source Code File.”

Windows

If you followed the instructions in Chapter 1 for downloading and installing Ruby, you’ll
have two text editors called SciTE and FreeRIDE in the Ruby program group in your
“Start” menu. SciTE is a generic source code editing tool, whereas FreeRIDE is a Ruby-
specific source code editor, written in Ruby itself. SciTE is a little faster, but FreeRIDE is
more than fast enough for general development work and has better integration with
Ruby.

Once you load an editor, you’re presented with a blank document where you can
begin to type Ruby source code (on FreeRIDE you need to use the “File” menu to create
a new document). By using the “File” menu, you can also save your source code to the
hard drive, as you’ll do in the next section. With FreeRIDE, it’s also possible to organize
multiple files into a single project.

Mac OS X

Mac OS X has a number of text editors available. TextMate by MacroMates (http://www.
macromates.com/), as shown in Figure 4-1, tends to be the most respected in the Ruby
community, but it’s not free and costs approximately $50. Xcode, included with the OS X
Development Tools, is also a viable alternative, but requires that you know how to install
and use the development tools (these come on your OS X installation disc). Xcode can
also feel quite slow, depending on the specification of your Mac.

Included with OS X for free, however, is TextEdit. You can load TextEdit by going to
your Applications folder and double-clicking the TextEdit icon. In its default mode,
TextEdit isn’t a plain text editor, but if you go to the “Format” menu and select “Make
Plain Text,” you’ll be taken to a plain text editing mode that’s suitable for editing Ruby
source code.

7664 CH04.qxd 2/13/07 1:08 PM Page 88

89CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION

Figure 4-1. Using TextMate

At this point you can simply type or paste Ruby code and use the “File” ➤ “Save”
menu option to save your text to a location on your drive. It would probably be good to
create a folder called ruby within your home folder (the folder on the left that has your
username in it) and save your initial Ruby source code there, as this is what the instruc-
tions assume in the next section.

Linux

Linux distributions often come with varying text editors, but there will be at least one
available. If you’re working entirely from the shell or terminal, you might be familiar with
vi, Emacs, pico, or nano, and all of these are suitable for editing Ruby source code. If
you’re using Linux with a graphical interface, you might have Kate (KDE Advanced Text
Editor) and/or gedit (GNOME Editor) available. All the preceding are great text and
source code editors.

You could also download and install FreeRIDE, a cross-platform source code editor
that’s specifically designed for Ruby developers. It allows you to run your code with a sin-
gle click directly from the editor (if you’re using the X graphical user interface), and colors
in your code in a way that reflects its syntax, which makes it easier to read. You can learn
more about FreeRIDE at http://freeride.rubyforge.org/.

At this stage it would be a good idea to create a folder in your home directory called
ruby, so that you can save your Ruby code there and have it in an easily remembered
place.

7664 CH04.qxd 2/13/07 1:08 PM Page 89

The Test Source Code File

Once you’ve got an environment where you can edit and save text files, enter the
following code:

x = 2

print "This application is running okay if 2 + 2 = #{x + x}"

■Note If this code looks like nonsense to you, you’ve skipped too many chapters. Head back to Chapter 3!
This chapter requires full knowledge of everything covered in Chapter 3.

Save the code with a filename of a.rb in a folder or directory of your choice. It’s
advisable that you create a folder called ruby located somewhere that’s easy to find. On
Windows this might be directly off of your C drive, and on OS X or Linux this could be a
folder located in your home directory.

■Note RB is the de facto standard file extension for Ruby files, much like PHP is standard for PHP, TXT is
common for text files, and JPG is standard for JPEG images.

Now you’re ready to run the code.

Running Your Source Code

Once you’ve created the basic Ruby source code file, a.rb, you need to get Ruby to exe-
cute it. As always, the process by which to do this varies by operating system. Read the
particular following section that matches your operating system. If your operating system
isn’t listed, the OS X and Linux instructions are most likely to match those for your plat-
form.

Whenever this book asks you to “run” your program, this is what you’ll be doing each
time.

■Note Even though you’re going to be developing an application in this chapter, there are still times when
you’ll want to use irb to follow along with the tests or basic theory work throughout the chapter. Use your
judgment to jump between these two methods of development. irb is extremely useful for testing small con-
cepts and short blocks of code without the overhead of jumping back and forth between a text editor and the
Ruby interpreter.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION90

7664 CH04.qxd 2/13/07 1:08 PM Page 90

Windows

If you’re using the SciTE or FreeRIDE programs that came with the Ruby installer for Win-
dows, you can run Ruby programs directly from them (see Figure 4-2). In both programs
you can press the F5 function key to run your Ruby code. Alternatively you can use the
menus (“Tools” ➤ “Go” in SciTe, and “Run” ➤ “Run” in FreeRIDE). However, before you
do this, it’s important to make sure you have saved your Ruby code. If not, the results
might be unpredictable (running old code from a prior save, for example) or you’ll be
prompted to save your work.

If running the a.rb code gives a satisfactory output in the output view pane (to the
right on SciTE, and at the bottom on FreeRIDE), you’re ready to move on to the section,
“Our Application: A Text Analyzer.”

Figure 4-2. Running code in FreeRIDE on Microsoft Windows (notice the output in the
bottom pane)

Alternatively, you might prefer to run Ruby from the command prompt. To do this,
load up the command prompt (“Start” menu ➤ “Run” ➤ Type cmd and click “OK”), navi-
gate to the folder containing a.rb using the cd command, and then type ruby a.rb.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 91

7664 CH04.qxd 2/13/07 1:08 PM Page 91

However, this method is only advised if you understand how to navigate your hard drive
from the command prompt. Another option, if you’re comfortable with creating short-
cuts, is to create a shortcut to the Ruby executable file (ruby.exe) and drop your source
code file(s) onto it.

Mac OS X

The simplest method to run Ruby applications on Mac OS X is from the Terminal, much
in the same way as irb is run. The Terminal was explained in Chapter 1. If you followed
the preceding instructions, continue like so:

1. Launch the Terminal (found in Applications/Utilities).

2. Use cd to navigate to the folder where you placed a.rb like so: cd ~/ruby . This tells
the Terminal to take you to the ruby folder located off of your home user folder.

3. Type ruby a.rb and press Enter to execute the a.rb Ruby script.

4. If you get an error such as ruby: No such file or directory -- a.rb (LoadError),
you aren’t in the same folder as the a.rb source file and need to establish where
you have saved it.

If you get a satisfactory response from a.rb, you’re ready to move on to the section,
“Our Application: A Text Analyzer.”

Linux and Other Unix-Based Systems

In Linux or other Unix-based systems, you run your Ruby applications from the shell
(that is, within a terminal window) in the same way that you ran irb. The process to run
irb was explained in Chapter 1, so if you’ve forgotten how to get that far, you need to
recap yourself before continuing like so:

1. Launch your terminal emulator (xterm, for example) so you get a Linux
shell/command prompt.

2. Navigate to the directory where you placed a.rb using the cd command (for exam-
ple, cd ~/ruby takes you to the ruby directory located directly under your home
directory, usually /home/yourusernamehere/).

3. Type ruby a.rb and press Enter to make Ruby execute the a.rb script.

If you get a satisfactory response from a.rb, you’re ready to move on.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION92

7664 CH04.qxd 2/13/07 1:08 PM Page 92

Our Application: A Text Analyzer
The application you’re going to develop in this chapter will be a text analyzer. Your Ruby
code will read in text supplied in a separate file, analyze it for various patterns and statis-
tics, and print out the results for the user. It’s not a 3D graphical adventure or a fancy Web
site, but text processing programs are the bread and butter of systems administration and
most application development. They can be vital for parsing log files and user-submitted
text on Web sites, and manipulating other textual data.

Ruby is well suited for text and document analysis with its regular expression fea-
tures, along with the ease of use of scan and split, and you’ll be using these heavily in
your application.

■Note With this application you’ll be focusing on implementing the features quickly, rather than develop-
ing an elaborate object-oriented structure, any documentation, or a testing methodology. I’ll be covering
object orientation and its usage in larger programs in depth in Chapter 6, and documentation and testing are
covered in Chapter 8.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 93

TEXT EDITORS VS. SOURCE CODE EDITORS

Previously I’ve stated that source code is basically the same as plain text. This is true, and although you
can write your code in a general text editor, some benefits can be obtained by using a specialist source
code editor (or a development IDE—Integrated Development Environment).

The FreeRIDE editor is an example of an editor specifically created for Ruby developers. It edits
text, as with any other text editor, but offers extended features such as source code highlighting and
the ability to run code directly from the editor.

Some developers find source code syntax highlighting an invaluable feature, as it makes their
code easier to read. Variable names, expressions, string literals, and other elements of your source
code are all given different colors, which makes it easy to pick them out.

Whether you choose a source code editor or a basic text editor depends on your own preference,
but it’s worth trying both. Many developers prefer the freedom of a regular text editor and then running
their Ruby programs from the command line, whereas others prefer to work entirely within a single
environment.

FreeRIDE is available from http://freeride.rubyforge.org/, and a competing source code
editor for Ruby and Rails, called RadRails, is available at http://www.radrails.org/. It’s certainly
worth investigating these other editors on your platform in case they fit in more with how you wish to
work.

7664 CH04.qxd 2/13/07 1:08 PM Page 93

Required Basic Features

Your text analyzer will provide the following basic statistics:

• Character count

• Character count (excluding spaces)

• Line count

• Word count

• Sentence count

• Paragraph count

• Average number of words per sentence

• Average number of sentences per paragraph

In the last two cases, the statistics are easily calculated from each other. That is, once
you have the total number of words and the total number of sentences, it becomes a mat-
ter of a simple division to work out the average number of words per sentence.

Building the Basic Application

When starting to develop a new program, it’s useful to think of the key steps involved. In
the past it was common to draw flow charts to show how the operation of a computer
program would flow, but it’s easy to experiment, to change things about, and to remain
agile with modern tools, such as Ruby. Let’s outline the basic steps as follows:

1. Load in a file containing the text or document you want to analyze.

2. As you load the file line by line, keep a count of how many lines there were (one
of your statistics taken care of).

3. Put the text into a string and measure its length to get your character count.

4. Temporarily remove all whitespace and measure the length of the resulting string
to get the character count excluding spaces.

5. Split out all the whitespace to find out how many words there are.

6. Split on full stops to find out how many sentences there are.

7. Split on double newlines to find out how many paragraphs there are.

8. Perform calculations to work out the averages.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION94

7664 CH04.qxd 2/13/07 1:08 PM Page 94

Create a new, blank Ruby source file and save it as analyzer.rb in your Ruby folder. As
you work through the next few sections you’ll be able to fill it out.

Obtaining Some Dummy Text

Before you start to code, the first step is to get some test data that your analyzer can
process. The first chapter of Oliver Twist is an ideal piece of text to use, as it’s copyright
free and easy to obtain. It’s also of a reasonable length. You can find the text at
http://www.rubyinside.com/book/oliver.txt or http://www.dickens-literature.com/
Oliver_Twist/0.html for you to copy into a local text file. Save the file in the same folder
as where you saved a.rb and call it text.txt. Your application will read from text.txt by
default (although you’ll make it be more dynamic and able to accept other sources of
data later on).

■Tip If the preceding Web pages are unavailable at the time of reading, use your favorite search engine to
search for “twist workhouse rendered profound thingummy” and you’re guaranteed to find it. Alternatively,
use any large block of text you can obtain.

If you’re using the Oliver Twist text and want your results to match up roughly with
those given as examples throughout this chapter, make sure you only copy and paste the
text including and between these sections:

Among other public buildings in a certain town, which for many

reasons it will be prudent to refrain from mentioning

And:

Oliver cried lustily. If he could have known that he was an

orphan, left to the tender mercies of church-wardens and

overseers, perhaps he would have cried the louder.

Loading Text Files and Counting Lines

Now it’s time to get coding! The first step is to load the file. Ruby provides a comprehen-
sive set of file manipulation methods via the File class. Whereas other languages can
make you jump through hoops to work with files, Ruby keeps the interface simple. Here’s
some code that opens up your text.txt file:

File.open("text.txt").each { |line| puts line }

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 95

7664 CH04.qxd 2/13/07 1:08 PM Page 95

Type this into analyzer.rb and run the code. If text.txt is in the current directory, the
result is that you’ll see the entire text file flying up the screen.

You’re asking the File class to open up text.txt, and then, much like with an array,
you can call the each method on the file directly, resulting in each line being passed to
the inner code block one by one, where puts sends the line as output to the screen.
(In Chapter 9 you’ll look at how file access and manipulation work in more detail, along
with better techniques than are used in this chapter!)

Edit the code to look like this instead:

line_count = 0

File.open("text.txt").each { |line| line_count += 1 }

puts line_count

You initialize line_count to store the line count, then open the file and iterate over
each line, while incrementing line_count by 1 each time. When you’re done, you print the
total to the screen (approximately 121 if you’re using the Oliver Twist chapter). You have
your first statistic!

You’ve counted the lines, but still don’t have access to the contents of the file to count
the words, paragraphs, sentences, and so forth. This is easy to fix. Let’s change the code a
little, and add a variable, text, to collect the lines together as one as we go:

text=''

line_count = 0

File.open("text.txt").each do |line|

line_count += 1

text << line

end

puts "#{line_count} lines"

■Note Remember that using { and } to surround blocks is the standard style for single line blocks, but
using do and end is preferable for multiline blocks. However, this is a convention rather than a requirement.

Compared to your previous attempt, this code introduces the text variable and adds
each line onto the end of it in turn. When the iteration over the file has finished—that is,
when you run out of lines—text contains the entire file in a single string ready for you to
use.

That’s a simple-looking way to get the file into a single string and count the lines, but
File also has other methods that can be used to read files more quickly. For example, you
can rewrite the preceding code like this:

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION96

7664 CH04.qxd 2/13/07 1:08 PM Page 96

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

puts "#{line_count} lines"

Much simpler! File implements a readlines method that reads an entire file into an
array, line by line. You can use this both to count the lines and join them all into a single
string.

Counting Characters

The second easiest statistic to work out is the number of characters in the file. As you’ve
collected the entire file into the text variable, and text is a string, you can use the length
method that all strings supply to get the exact size of the file, and therefore the number
of characters.

To the end of the previous code in analyzer.rb, add the following:

total_characters = text.length

puts "#{total_characters} characters"

If you ran analyzer.rb now with the Oliver Twist text, you’d get output like this:

121 lines

6165 characters

The second statistic you wanted to get relating to characters was a character total
excluding whitespace. If you can remember back to Chapter 3, strings have a gsub
method that performs a global substitution (like a search and replace) upon the string.
For example:

"this is a test".gsub(/t/, 'X')

Xhis is a XesX

You can use gsub to eradicate the spaces from your text string in the same way, and
then use the length method to get the length of the newly “de-spacified” text. Add the
following code to analyzer.rb:

total_characters_nospaces = text.gsub(/\s+/, '').length

puts "#{total_characters_nospaces} characters excluding spaces"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 97

7664 CH04.qxd 2/13/07 1:08 PM Page 97

If you run analyzer.rb in its current state against the Oliver Twist text, the results
should be similar to the following:

121 lines

6165 characters

5055 characters (excluding spaces)

Counting Words

A common feature offered by word processing software is a “word counter.” All it does is
count the number of complete words in your document or a selected area of text. This
information is useful to work out how many pages the document will take up when
printed. Many assignments also have requirements for a certain number of words, so
knowing the number of words in a piece of text is certainly useful.

You can approach this feature in a couple of ways:

1. Count the number of groups of contiguous letters using scan.

2. Split the text on whitespace and count the resulting fragments using split and
size.

Let’s look at each method in turn to see what’s best. Recall from Chapter 3 that scan
works by iterating over a string of text and finding certain patterns over and over. For
example:

puts "this is a test".scan(/\w/).join

thisisatest

In this example, scan looked through the string for anything matching \w, a special
term representing all alphanumeric characters (and underscores), and placed them into
an array that you’ve joined together into a string and printed to the screen.

You can do the same with groups of alphanumeric characters. In Chapter 3 you
learned that to match multiple characters with a regular expression, you could follow
the character with +. So let’s try again:

puts "this is a test".scan(/\w+/).join('-')

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION98

7664 CH04.qxd 2/13/07 1:08 PM Page 98

this-is-a-test

This time, scan has looked for all groups of alphanumeric characters and placed them
into the array that you’ve then joined together into a string using - as the separation
character.

To get the number of words in the string, you can use the length or size array meth-
ods to count the number of elements rather than join them together:

puts "this is a test".scan(/\w+/).length

4

Excellent! So what about the split approach?
The split approach demonstrates a core tenet of Ruby (as well as some other lan-

guages, particularly Perl) that “There’s always more than one way to do it!” Analyzing
different methods to solve the same problem is a crucial part of becoming a good pro-
grammer, as different methods can vary in their efficacy.

Let’s split the string by spaces and get the length of the resulting array, like so:

puts "this is a test".split.length

4

As it happens, by default split will split by whitespace (single or multiple characters
of spaces, tabs, newlines, and so on), and that makes this code shorter and easier to read
than the scan alternative.

So what’s the difference between these two methods? Simply, one is looking for
words and returning them to you for you to count, and the other is splitting the string by
that which separates words—whitespace—and telling you how many parts the string was
broken into. Interestingly, these two approaches can yield different results:

text = "First-class decisions require clear-headed thinking."

puts "Scan method: #{text.scan(/\w+/).length}"

puts "Split method: #{text.split.length}"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 99

7664 CH04.qxd 2/13/07 1:08 PM Page 99

Scan method: 7

Split method: 5

Interesting! The scan method is looking through for all blocks of alphanumeric char-
acters, and, sure enough, there are seven in the sentence. However, if you split by spaces,
there are five words. The reason is the hyphenated words. Hyphens aren’t “alphanu-
meric,” so scan is seeing “first” and “class” as separate words.

Returning to analyzer.rb, let’s apply what we’ve learned here. Add the following:

word_count = text.split.length

puts "#{word_count} words"

Running the complete analyzer.rb gets these results:

122 lines

6166 characters

5055 characters (excluding spaces)

1093 words

Counting Sentences and Paragraphs

Once you understand the logic of counting words, counting the sentences and para-
graphs becomes easy. Rather than splitting on whitespace, sentences and paragraphs
have different splitting criteria.

Sentences end with full stops, question marks, and exclamation marks. They can
also be separated with dashes and other punctuation, but we won’t worry about these
rare cases here. The split is simple. Instead of asking Ruby to split the text on one type
of character, you simply ask it to split on any of three types of characters, like so:

sentence_count = text.split(/\.|\?|!/).length

The regular expression looks odd here, but the full stop, question mark, and exclama-
tion mark are clearly visible. Let’s look at the regular expression directly:

/\.|\?|!/

The forward slashes at the start and the end are the usual delimiters for a regular
expression, so those can be ignored. The first section is \. and this represents a full stop.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION100

7664 CH04.qxd 2/13/07 1:08 PM Page 100

The reason why you can’t just use . without the backslash in front is because . represents
“any character” in a regular expression (as covered in Chapter 3), so it needs to be
escaped with the backslash to identify itself as a literal full stop. This also explains why the
question mark is escaped with a backslash, as a question mark in a regular expression
usually means “zero or one of the previous character”—also covered in Chapter 3. The ! is
not escaped, as it has no other meaning in terms of regular expressions.

The pipes (| characters) separate the three main characters, which means they’re
treated separately so that split can match one or another of them. This is what allows the
split to split on periods, question marks, and exclamation marks all at the same time. You
can test it like so:

puts "Test code! It works. Does it? Yes.".split(/\.|\?|!/).length

4

Paragraphs can also be split apart with regular expressions. Whereas paragraphs in a
printed book, such as this one, tend not to have any spacing between them, paragraphs
that are typed on a computer typically do, so you can split by a double newline (as repre-
sented by the special combination \n\n—simply, two newlines in succession) to get the
paragraphs separated. For example:

text = %q{

This is a test of

paragraph one.

This is a test of

paragraph two.

This is a test of

paragraph three.

}

puts text.split(/\n\n/).length

3

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 101

7664 CH04.qxd 2/13/07 1:08 PM Page 101

Let’s add both these concepts to analyzer.rb:

paragraph_count = text.split(/\n\n/).length

puts "#{paragraph_count} paragraphs"

sentence_count = text.split(/\.|\?|!/).length

puts "#{sentence_count} sentences"

Calculating Averages

The final statistics required for your basic application are the average number of words
per sentence, and the average number of sentences per paragraph. You already have the
paragraph, sentence, and word counts available in the variables word_count,
paragraph_count, and sentence_count, so only basic arithmetic is required, like so:

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

The calculations are so simple that they can be interpolated directly into the output
commands rather than precalculated.

The Source Code So Far

You’ve been updating the source code as you’ve gone along, and in each case you’ve put
the logic next to the puts statement that shows the result to the user. However, for the
final version of your basic application, it’d be tidier to separate the logic from the presen-
tation a little and put the calculations in a separate block of code before everything is
printed to the screen.

There are no logic changes, but the finished source for analyzer.rb looks a little
cleaner this way:

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

word_count = text.split.length

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

paragraph_count = text.split(/\n\n/).length

sentence_count = text.split(/\.|\?|!/).length

puts "#{line_count} lines"

puts "#{character_count} characters"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION102

7664 CH04.qxd 2/13/07 1:08 PM Page 102

puts "#{character_count_nospaces} characters excluding spaces"

puts "#{word_count} words"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count} sentences"

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

If you’ve made it this far and everything’s making sense, congratulations are due.
Let’s look at how to extend our application a little further with some more interesting
statistics.

Adding Extra Features
Your analyzer has a few basic functions, but it’s not particularly interesting. Line, para-
graph, and word counts are useful statistics, but with the power of Ruby you can extract
significantly more interesting data from the text. The only limit is your imagination, but
in this section you’ll look at a couple other features you can implement, and how to
do so.

■Note When developing software it’s always worth considering the likelihood of the software being
extended or tweaked in the future and planning ahead for the possibility. Many development bottlenecks
have occurred when systems were designed too rigidly to cope with changing circumstances!

Percentage of “Useful” Words

Most written material, including this very book, contains a high number of words that,
although providing context and structure, are not directly useful or interesting. In the last
sentence, the words “that,” “and,” “are,” and “or” are not of particular interest, even if the
sentence would make less sense without them.

These words are typically called “stop words,” and are often ignored by computer
systems whose job is to analyze and search through text, because they aren’t words most
people are likely to be searching for (as opposed to nouns, for example). Google is a per-
fect example of this, as it doesn’t want to have to store information that takes up space
and that’s generally irrelevant to searches.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 103

7664 CH04.qxd 2/13/07 1:08 PM Page 103

■Note For more information about stop words, including links to complete lists, visit http://en.wikipedia.
org/wiki/Stop_words.

It could be assumed that more “interesting” text, or text by a more proficient author,
might have a lower percentage of stop words and a higher percentage of useful or inter-
esting words. You can easily extend your application to work out the percentage of
non–stop words in the supplied text.

The first step is to build up a list of stop words. There are hundreds of possible stop
words, but you’ll start with just a handful. Let’s create an array to hold them:

stop_words = %w{the a by on for of are with just but and to the my I has some in}

This code results in an array of stop words being assigned to the stop_words variable.

■Tip In Chapter 3, you saw arrays being defined like so: x = ['a', 'b', 'c']. However, like many
languages, Ruby has a shortcut that builds arrays quickly with string-separated text. This segment can be
shorted to the equivalent x = %w{a b c}, as demonstrated in the preceding stop word code.

For demonstration purposes, let’s write a small, separate program to test the
concept:

text = %q{Los Angeles has some of the nicest weather in the country.}

stop_words = %w{the a by on for of are with just but and to the my I has some}

words = text.scan(/\w+/)

key_words = words.select { |word| !stop_words.include?(word) }

puts key_words.join(' ')

When you run this code, you get the following result:

Los Angeles nicest weather country

Cool, right? First you put some text into the program, then the list of stop words. Next
you get all the words from text into an array called words. Then you get to the magic:

key_words = words.select { |word| !stop_words.include?(word) }

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION104

7664 CH04.qxd 2/13/07 1:08 PM Page 104

This line first takes your array of words, words, and calls the select method with a
block of code to process for each word (like the iterators you played with in Chapter 3).
The select method is a method available to all arrays and hashes that returns the ele-
ments of that array or hash that match the expression in the code block.

In this case, the code in the code block takes each word via the variable word, and
asks the stop_words array whether it includes any elements equal to word. This is what
stop_words.include?(word) does.

The exclamation mark (!) before the expression negates the expression (an exclama-
tion mark negates any Ruby expression). The reason for this is you don’t want to select
words that are in the stop_words array. You want to select words that aren’t.

In closing, then, you select all elements of words that are not included in the
stop_words array and assign them to key_words. Don’t read on until that makes sense, as
this type of single-line construction is common in Ruby programming.

After that, working out the percentage of non–stop words to all words uses some
basic arithmetic:

((key_words.length.to_f / words.length.to_f) * 100).to_i

The reason for the .to_f’s is so that the lengths are treated as floating decimal point
numbers, and the percentage is worked out more accurately. When you work it up to the
real percentage (out of 100), you can convert back to an integer once again.

You’ll see how this all comes together in the final version at the end of this chapter.

Summarizing by Finding “Interesting” Sentences

Word processors such as Microsoft Word generally have summarization features that can
take a long piece of text and seemingly pick out the best sentences to produce an “at-a-
glance” summary. The mechanisms for producing summaries have become more
complex over the years, but one of the simplest ways to develop a summarizer of your
own is to scan for sentences with certain characteristics.

One technique is to look for sentences that are of about average length and that look
like they contain nouns. Tiny sentences are unlikely to contain anything useful, and long
sentences are likely to be simply too long for a summary. Finding nouns reliably would
require systems that are far beyond the scope of this book, so you could “cheat” by look-
ing for words that indicate the presence of useful nouns in the same sentence, such as
“is” and “are” (for example, “Noun is,” “Nouns are,” “There are x nouns”).

Let’s assume that you want to throw away two-thirds of the sentences—a third that
are the shortest sentences and a third that are the longest sentences—leaving you with an
ideal third of the original sentences that are ideally sized for your task.

For ease of development, let’s create a new program from scratch, and transfer your
logic over to the main application later. Create a new program called summarize.rb and
use this code:

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 105

7664 CH04.qxd 2/13/07 1:08 PM Page 105

text = %q{

Ruby is a great programming language. It is object oriented

and has many groovy features. Some people don't like it, but that's

not our problem! It's easy to learn. It's great. To learn more about Ruby,

visit the official Ruby Web site today.

}

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|\!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

puts ideal_sentences.join(". ")

And for good measure run it to see what happens:

Ruby is a great programming language. It is object oriented and has many groovy

features

Seems like a success! Let’s walk through the program.
First, you define the variable text to hold the long string of multiple sentences, much

like in analyzer.rb. Next you split text into an array of sentences like so:

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

This is slightly different from the method used in analyzer.rb. There is an extra gsub
in the chain, as well as strip. The gsub gets rid of all large areas of whitespace and
replaces them with a single space (\s+ meaning “one or more whitespace characters”).
This is simply for cosmetic reasons. The strip removes all extra whitespace from the start
and end of the string. The split is then the same as that used in the analyzer.

Next you sort the sentences by their lengths, as you want to ignore the shortest third
and the longest third:

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

Arrays and hashes have the sort_by method that rearranges them into almost any
order you want. sort_by takes a code block as its argument, where the code block is an
expression that defines what to sort by. In this case, you’re sorting the sentences array. You
pass each sentence in as the sentence variable, and choose to sort them by their length,
using the length method upon the sentence. After this line, sentences_sorted contains an
array with the sentences in length order.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION106

7664 CH04.qxd 2/13/07 1:08 PM Page 106

Next you need to get the middle third of the length-sorted sentences in
sentences_sorted, as these are the ones you’ve deemed to be probably the most interest-
ing. To do this you can divide the length of the array by 3, to get the number of elements
in a third, and then grab that number of elements from one third into the array (note
that you grab one extra element to compensate for rounding caused by integer division).
This is done like so:

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

The first line takes the length of the array and divides it by 3 to get the quantity that
is equal to “a third of the array.” The second line uses the slice method to “cut out” a
section of the array to assign to ideal_sentences. In this case, assume that the
sentences_sorted is 6 elements long. 6 divided by 3 is 2, so a third of the array is 2 ele-
ments long. The slice method then cuts from element 2 for 2 (plus 1) elements, so you
effectively carve out elements 2, 3, and 4 (remember that array elements start counting
from 0). This means you get the “inner third” of the ideal-lengthed sentences you wanted.

The penultimate line checks to see if the sentence includes the word “is” or “are,” and
only accepts each sentence if so:

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

It uses the select method, as the “stop word” removal code in the previous section
did. The expression in the code block uses a regular expression that matches against
sentence, and only returns true if “is” or “are” are present within sentence. This means
ideal_sentences now only contains sentences that are in the middle third length-wise and
contain either “is” or “are.”

The final line simply joins the ideal_sentences together with a full stop and space
between them to make them readable:

puts ideal_sentences.join(". ")

Analyzing Files Other Than text.txt

So far your application has the filename text.txt hard-coded into it. This is acceptable,
but it’d be a lot nicer if you could specify, when you run the program, what file you want
the analyzer to process.

■Note This technique is only practical to demonstrate if you’re running analyzer.rb from a command
prompt or shell, as on Mac OS X or Linux (or Windows if you’re using the Windows command prompt). If
you’re using an IDE on Windows, this section will be read-only for you.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 107

7664 CH04.qxd 2/13/07 1:08 PM Page 107

Typically, if you’re starting a program from the command line, you can append
parameters onto the end of the command and the program processes them. You can do
the same with your Ruby application.

Ruby automatically places any parameters that are appended to the command line
when you launch your Ruby program into a special array called ARGV. To test it out, create
a new script called argv.rb and use this code:

puts ARGV.join('-')

From the command prompt, run the script like so:

ruby argv.rb

The result will be blank, but then try to run it like so:

ruby argv.rb test 123

test-123

This time the parameters are taken from ARGV, joined together with a hyphen, and
displayed on screen. You can use this to replace the reference to text.txt in analyzer.rb
by replacing "text.txt" with ARGV[0] or ARGV.first (which both mean exactly the same
thing—the first element of the ARGV array). The line that reads the file becomes the
following:

lines = File.readlines(ARGV[0])

To process text.txt now, you’d run it like so:

ruby analyzer.rb text.txt

You’ll learn more about deploying programs and making them friendly to other
users, along with ARGV, in Chapter 10.

The Completed Program
You’ve already got the source for the completed basic program, but it’s time to add all the
new, extended features from the previous few sections to analyzer.rb to create the final
version of your text analyzer.

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION108

7664 CH04.qxd 2/13/07 1:08 PM Page 108

■Note Remember that source code for this book is available in the Source Code/Download area at
http://www.apress.com, so it isn’t strictly necessary to type in code directly from the book.

Here we go:

analyzer.rb -- Text Analyzer

stop_words = %w{the a by on for of are with just but and to the my I has some in}

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

Count the characters

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

Count the words, sentences, and paragraphs

word_count = text.split.length

sentence_count = text.split(/\.|\?|!/).length

paragraph_count = text.split(/\n\n/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all_words = text.scan(/\w+/)

good_words = all_words.select{ |word| !stop_words.include?(word) }

good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).to_i

Summarize the text by cherry picking some choice sentences

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|\!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/ }

Give the analysis back to the user

puts "#{line_count} lines"

puts "#{character_count} characters"

puts "#{character_count_nospaces} characters (excluding spaces)"

puts "#{word_count} words"

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 109

7664 CH04.qxd 2/13/07 1:08 PM Page 109

puts "#{sentence_count} sentences"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count / paragraph_count} sentences per paragraph (average)"

puts "#{word_count / sentence_count} words per sentence (average)"

puts "#{good_percentage}% of words are non-fluff words"

puts "Summary:\n\n" + ideal_sentences.join(". ")

puts "-- End of analysis"

■Note If you’re a Windows user, you might want to replace the ARGV[0] reference with an explicit refer-
ence to "text.txt" to make sure it works okay from FreeRIDE or SciTE. However, if you’re running the
program from the command prompt, it should operate correctly.

Running the completed analyzer.rb with the Oliver Twist text now results in an out-
put like so:

121 lines

6165 characters

5055 characters (excluding spaces)

1093 words

18 paragraphs

45 sentences

2 sentences per paragraph (average)

24 words per sentence (average)

76% of words are non-fluff words

Summary:

' The surgeon leaned over the body, and raised the left hand. Think what it is

to be a mother, there's a dear young lamb do. 'The old story,' he said, shaking

his head: 'no wedding-ring, I see. What an excellent example of the power of

dress, young Oliver Twist was. ' Apparently this consolatory perspective of a

mother's prospects failed in producing its due effect. ' The surgeon had been

sitting with his face turned towards the fire: giving the palms of his hands a

warm and a rub alternately. ' 'You needn't mind sending up to me, if the child

cries, nurse,' said the surgeon, putting on his gloves with great deliberation.

She had walked some distance, for her shoes were worn to pieces; but where

she came from, or where she was going to, nobody knows. ' He put on his hat,

and, pausing by the bed-side on his way to the door, added, 'She was a

good-looking girl, too; where did she come from

-- End of analysis

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION110

7664 CH04.qxd 2/13/07 1:08 PM Page 110

Try analyzer.rb with some other text of your choice (a Web page, perhaps) and see if
you can make improvements to its features. This application is ripe for improvement
with the concepts you’ll learn over the next several chapters, so keep it in mind if you’re
looking for some code to play with.

CODE COMMENTS

You might notice text in source code prefixed with # symbols. These are comments and are generally
used in programs for the benefit of the original developer(s), along with anyone else that might need
to read the source code. They’re particularly useful for making notes to remind you of why you took
a particular course of action that you’re likely to forget in future.

You can place comments in any Ruby source code file on their own lines, or even at the end of a
line of code. Here are some valid examples of commenting in Ruby:

puts "2+2 = #{2+2}" # Adds 2+2 to make 4

A comment on a line by itself

As long as a comment is on a line by itself, or is the last thing on a line, it’s fine. Comment
liberally, and your code will be easier to understand.

Summary
In this chapter you developed a complete, basic application that had a set of require-
ments and desired features. You then extended it with some nonessential, but useful,
elaborations. Ruby makes developing quick applications a snap.

The application you’ve developed in this chapter has demonstrated that if you have
a lot of text to process or a number of calculations to do, and you’re dreading doing the
work manually, Ruby can take the strain.

Chapter 4 marks the end of the practical programming exercises in the first part of
this book. Next, in Chapter 5, you’ll take a look at the history of Ruby; Ruby’s community
of developers; the historical reasons behind certain features in Ruby; and learn how to
get help from, and become part of, the Ruby community. Code makes up only half the
journey to becoming a great programmer!

CHAPTER 4 ■ DEVELOPING A BASIC RUBY APPLICATION 111

7664 CH04.qxd 2/13/07 1:08 PM Page 111

7664 CH04.qxd 2/13/07 1:08 PM Page 112

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /None
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Malloy CTPv7)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 738.000]
>> setpagedevice

