
Rails Solutions
Ruby on Rails Made Easy

Justin Williams

Rails Solutions: Ruby on Rails Made Easy
Copyright © 2007 by Justin Williams

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-752-1

ISBN-10 (pbk): 1-59059-752-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,

or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,

or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits

Lead Editor
Chris Mills

Technical Reviewers
Ashish Bansal

Ryan J. Bonnell

Editorial Board
Steve Anglin

Ewan Buckingham
Gary Cornell

Jason Gilmore
Jonathan Gennick
Jonathan Hassell

James Huddleston
Chris Mills

Matthew Moodie
Dominic Shakeshaft

Jim Sumser
Keir Thomas

Matt Wade

Project Manager
Beth Christmas

Copy Edit Manager
Nicole Flores

Copy Editor
Nancy Sixsmith

Assistant Production Director
Kari Brooks-Copony

Production Editor
Katie Stence

Compositor
Molly Sharp

Artist
April Milne

Proofreader
Linda Seifert

Indexer
Michael Brinkman

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

4 GETTING STARTED WITH RAILS

Figure 4-1. The railslist architecture

Now it’s time to get your hands dirty and create your first Rails application. This chapter
focuses on the basics of using Ruby on Rails: creating projects, adding models and con-
trollers to your application, and writing some basic code that gets your application off the
ground and running. Before you begin, let’s go over what exactly you will be building.

Throughout the course of the book, you will be spending the majority of your time work-
ing on a classified ad application similar to craigslist. The application, cleverly titled railslist,
will enable users to post their classified ads on the site, assign them to a category, add
photos, and create their own user accounts to track their listings. Users will also be able to
search through listings to find what they are looking for. The architecture of the applica-
tion is shown in Figure 4-1.

RAILS SOLUTIONS: RAILS MADE EASY

54

The application has a basic architecture and will be built using three ActiveRecord models
to describe the types of data that is stored:

Classified, which describes an actual listing

Category, which is used to group classified ads together

User, which is used for user accounts

Each time you create an ActiveRecord model object, it is built from a row in the MySQL
database. You need to be concerned only with creating the database fields and assigning
some validation rules to the models; ActiveRecord handles all the heavy lifting.

Besides the models, there are three controllers—User, Category, and Classified—which
enable you to work with each of the model objects. You could use a single controller for
the application, but it would not follow the Model-View-Controller (MVC) paradigm well.

The Classified controller enables you to perform the basic create, read, update, delete (CRUD)
functionality on your classified ads and enables users to contact the seller to purchase an
item. The Category controller enables you to manipulate categories that you can then associ-
ate with classified ads. Finally, you have the User controller that enables users to sign up for
accounts and then log in to that account. The controllers are where you will write most of
your Ruby code (you got the foundation you need to do that in the previous chapter).

The user front-end will be the views that you create for each of the actions in the con-
troller. In terms of the actual users of the railslist application, the front-end is the only
thing they are concerned with.

Luckily, Rails makes everything you want to do incredibly easy to accomplish.

The goal of building railslist is to introduce you to as much of the Ruby on Rails framework
as possible. As you work through the book, my goal is to show you how easy it is to itera-
tively develop an application from something very basic into something that can easily be
used by anyone around the Web.

There are a few basic steps that are followed each time you create a new Rails application:

1. Use the rails command to create the basic skeleton of the application.

2. Create a database on the MySQL server to hold your data.

3. Configure the application to know where your database is located and the login
credentials for it.

4. Start the web server inside the Rails application.

5. Build and test the application.

I’ll discuss more of the internals of the application as you proceed through the book.

You’ll be writing a lot of code in this chapter and subsequent chapters. If you aren’t too
keen on all that typing, you can visit this book’s website and download all the sample code.
There's a separate folder for each chapter that contains the completed code as it stands at
the end of that chapter.

Let’s get started.

GETTING STARTED WITH RAILS

55

4

Creating a Rails project
The first task that any Rails developer has to do when starting a new project is create the
application, which can be done by using one of the many command-line tools available
when the framework is installed. The command-line tools can be used with the Mac OS X
Terminal application (found in /Application/Utilities/) or the Windows command
prompt (Start ➤ Run ➤ cmd).

1. The rails command is used to create the skeleton of a new Rails application. Open
up a new Terminal or command prompt window and navigate to the directory in
which you want to store your application. It doesn’t matter where it goes, but I sug-
gest somewhere in the home folder for Mac users and at the root of the c:\ drive
for Windows users.

2. After you select a directory, type rails railslist at the command prompt and press
Enter. Your output should look similar to Figure 4-2.

3. Type cd railslist and press Enter.

4. Type ls on Mac OS X or dir on Windows.

Figure 4-2. The output when you use the rails command to create a new application
skeleton

RAILS SOLUTIONS: RAILS MADE EASY

56

The rails command created a lot of directories that are a part of the application. Let’s go
through each directory and define its purpose.

app: Home to all MVC code.

components: Miniapplications that can bundle controllers, models, and views
together. (This subject is covered in Chapter 13.)

config: Database configuration, routing configuration, and environment settings.

db: Database schema files and Rails migration files.

doc: Documentation for an application.

lib: Application-specific custom code that doesn’t belong in controllers, models, or
helpers (for instance, background processes that work in conjunction with an appli-
cation are put here). For example, if you were running a stock market tracker, you
could write a background process that would ping your stock quote provider for
data and put it in this directory.

log: Error and access log files for an application.

public: Cascading Style Sheets (CSS), JavaScript, and other static files.

script: Generator scripts, debugging tools, and performance utilities.

test: Files for testing an application, including unit, fixture, and integration test
code. (This subject is covered in Chapter 5.)

tmp: Holds cache files, session information, and socket files used by the web
server.

vendor: Where Rails plug-ins are installed. (This subject is covered in Chapter 13.)

Configuring the web server

Rails bundles a web server called WEBrick in the script folder, which makes the barrier to
entry as low as possible for any platform. Since WEBrick is built using Ruby, anyone who
has the Ruby language installed (as shown in Chapter 2) can run it. Included in the script
directory is a tool called server. By default, server launches the WEBrick web server that is
bundled with Ruby, but if it detects Lighttpd, it instead creates a default lighttpd config-
uration file and uses Lighttpd instead of WEBrick.

If you’re using Locomotive or InstantRails to work through this book, all
you need to do is use walk through each application’s specific project cre-
ation wizards to create your new application. You can also skip the forth-
coming "Configuring the web server" section because your web server is
built in.

GETTING STARTED WITH RAILS

57

4

That said, to launch WEBrick or Lighttpd, go back to the Terminal or command prompt
window you used to create your Rails application and type ruby script/server and execute
the command. You should get an output that looks like this:

Zoey:~/railslist justin$ ruby script/server
=> Booting lighttpd (use 'script/server webrick' to force WEBrick)
=> Rails application started on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server (see config/lighttpd.conf for options)

What the server just did was create a basic lighttpd.conf file in the application’s config
directory and then launch lighttpd using that file if you are using Lighttpd. If you are on
Windows, WEBrick was launched instead. There is no configuration file for it since it is a
fairly basic (yet functional) browser.

You will use the lighttpd.conf file in Chapter 13 when you deploy the application to a
production server.

Viewing the application
Open up a web browser and go to http://localhost:3000. You should see a Rails wel-
come screen like the one shown in Figure 4-3.

If you’re a Mac user, you might ask why I had you go through the process of
installing Lighty if Rails is bundled with a web server. The reasoning is that
I want you to have experience with a production web server such as
Lighttpd when developing your applications so that you can have your
development environment as close to production quality as possible. Since
a majority of Rails applications are deployed using Lighttpd, it only makes
sense to show you how to use it in conjunction with developing with Ruby
on Rails.

Unfortunately, it is not yet easy enough to configure Lighttpd to work with
Windows and Ruby on Rails, so I recommend using WEBrick if you are
developing on that platform. The Rails code you write works the same way
in both environments.

RAILS SOLUTIONS: RAILS MADE EASY

58

Figure 4-3. Default Rails application page

This is the default page for your Rails application. It gives you some pointers on how to get
started in developing your Rails application and some links for documentation and sup-
port. More importantly, the page shows that your server is working properly. Let’s follow
its suggestions on how to get started and create the MySQL database.

Creating the database

Your database server should still be running if you are running either Mac OS X or
Windows. If you aren’t sure that it is running, you can check it via the following methods:

Windows: Open the Windows Control Panel and go to Administrative Tools. Open
the Services application and find the MySQL service. If it does not say it is started,
double-click it and push the Start button.

Mac OS X: Open the System Preferences application and go to the MySQL prefer-
ence pane. Click the Start MySQL Server button if it does not already say that the
MySQL server instance is running.

GETTING STARTED WITH RAILS

59

4

When working with Rails, you need to define a separate database for each environment in
which you run the application. In this case, it is three environments: development, test,
and production. The development database is what you will work with most of the time,
but having a production copy on the local machine can be beneficial if you want to test
how the application works in a simulated production environment. The test database will
be used by Rails’ testing framework (covered in Appendix B).

The easiest way to create and manipulate the databases is by using the graphical user
interface (GUI) tools you learned about in Chapter 2. For Mac users, it is CocoaMySQL
(http://cocoamysql.sourceforge.net/); for Windows users, it is SQLyog (http://
www.sqlyog.com/). If you didn’t install the applications before, I recommend downloading
and installing them now. The installation process is straightforward for both applications.
SQLyog has a basic setup.exe file to walk you through the installation, and CocoaMySQL
is an easy drag-and-drop install like most other Mac applications.

Windows
To create a database using SQLyog on Windows, launch the application and follow these
steps:

1. In the Connect To MySQL window, enter localhost as the MySQL host address.

2. Enter root as the User Name and your MySQL password in the Password field.

3. Click the Test Connection button to ensure your login credentials work.

4. Under the DB menu, select Create Database.

5. Enter railslist_development in the Create Database popup window.

6. Under the Open Session window, double-click the new Rails Development session.

Mac OS X
For Mac users using CocoaMySQL, the instructions are similar. After launching CocoaMySQL,
follow these steps:

1. In the sheet that pops up, enter localhost as your host, root as your username, and
the password to be what you set in Chapter 2. Leave everything else blank so it
picks up the default values.

2. Click the Connect button.

Figure 4-4.
Setting the name of
the railslist databases
on Windows.

RAILS SOLUTIONS: RAILS MADE EASY

60

3. Under Databases in the top-left corner, click the Add database button, as shown in
Figure 4-5.

4. A dialog box appears. Type railslist_development and click Add.

5. Repeat this process two more times, creating the railslist_test and railslist_production
databases, respectively.

Using the command line
If the thought of using GUIs insults your inner geek, you can also create your database using
the mysql command-line tool.

1. In Windows, go to Start Menu ➤ All Programs ➤ MySQL ➤ MySQL Server 5.0 ➤

MySQL Command Line Tool (Mac users should just open up a new Terminal window
and type mysql –u root -p).

2. When prompted for your password, enter it.

The MySQL command prompt is not too exciting; it is just a blank screen with
mysql> preceding it.

3. At the prompt, type the following three commands (shown in Figure 4-6):

create database railslist_development;
create database railslist_test;
create database railslist_deployment;

Figure 4-6. Creating the databases by using the command prompt instead
is not too difficult.

You just created three blank databases that will be the home of the application data.

Figure 4-5.
Adding a database in
CocoaMySQL on Mac OS X.

GETTING STARTED WITH RAILS

61

4

Telling Rails about the databases
The final step of creating the databases is to tell Rails about them. Database information is
stored in the database.yml file in the application’s config directory.

4. Open the file in your text editor of choice and take a few moments to examine it.

The database.yml file is written using YAML. YAML, which stands for YAML Ain’t
Another Markup Language, is used to develop configuration files for scripting lan-
guages such as Ruby. Notice that the file is pretty human-readable, and configura-
tion information is stored in key:value pairs. It defines the three execution
environments and the database information for each one, respectively.

Since you took some care in the way you named the databases, the only area you
need to change in the YAML file is the password for each database.

5. Change all three password fields to contain the MySQL password. When you’re
done, your file should look similar to Figure 4-7.

Figure 4-7. Updating your YAML file to point to your databases

You might be wondering about creating the database tables—don't worry about this
for now. Later in this chapter, you’ll handle this easily using Rails!

RAILS SOLUTIONS: RAILS MADE EASY

62

Creating the model
With the database creation out of the way, you can start focusing on building the applica-
tion. My recommended workflow (see Figure 4-8) is to first define the model classes
because they are the business objects you’ll be working with in your controllers. The
model also gives you an idea of how to define the fields in your database.

Figure 4-8. Recommended workflow for creating Rails applications

To create a model, you simply use the generate model command to create the basic skele-
ton. Generators, which are a major part of Rails development, enable you to call a single
command and perform several tasks at once. Generators are found throughout Rails: cre-
ating models, controllers, database migrations, and more.

1. To use the model generator for this example, open up a command prompt or
Terminal window, go to the directory in which the application is located, and then
type ruby script/generate model Classified. You should see the following:

Zoey:~ justin$ cd ~/railslist/
Zoey:~/railslist justin$ ruby script/generate model Classified

exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/classified.rb
create test/unit/classified_test.rb
create test/fixtures/classifieds.yml
create db/migrate
create db/migrate/001_create_classifieds.rb

You’re telling the generator to create a model called Classified to store instances of
classified ads. Each time you create a Classified model, you’re pulling a row from
the database table. Notice that you are capitalizing Classified and using the singular
form. This is a Rails paradigm that you should follow each time you create a model.

GETTING STARTED WITH RAILS

63

4

When you use the generate tool, Rails creates the actual model file that holds all
the methods unique to the model and the business rules you define, a unit test file
for performing test-driven development, a sample data file (called fixtures) to use
with the unit tests, and a Rails migration that makes creating database tables and
columns easy. (Appendix B covers the unit test and fixtures files.) Right now, let’s
focus on the model itself and the migrations file.

Rails migrations

Web developers used to have it really hard having to know multiple languages. Besides the
basic HTML and CSS knowledge, their tool belts usually included PHP, SQL, and JavaScript
as a bare minimum. Rails aims to eliminate two of those languages from the tool belt by
making it incredibly easy to write SQL and JavaScript using Ruby. (Rails’ solution for com-
plex JavaScript, called RJS, is covered in later chapters.) For now, let’s focus on the Rails
way of making SQL and database management a snap: migrations.

Migrations were created because the developers of Ruby on Rails realized that data mod-
els for an application can change over time and that deploying those changes can some-
times be a difficult task. They also didn’t want to have to work with complex SQL queries
that could sometimes take line upon line of code.

A migration file contains basic Ruby syntax that describes the data structure of a database
table. Let’s describe the Classified model using the migration created when you gener-
ated it.

2. Go to your railslist directory and open up the 001_create_classifieds.rb file
in the db/migrate folder.

3. After the file is open, look at the first line. Notice that a migration is just another
class that inherits from ActiveRecord, which is why you can use many of the luxu-
ries of Rails to manipulate the data structure. A migration file starts with two
methods: self.up and self.down. With Rails you can migrate to specific versions
of the data model at any point in time. The code in the self.up method is exe-
cuted when migrating forward while self.down is executed when migrating back-
ward (that is, creating a new version of the database or rolling back to a previous
version).

An easy way to think about it is that self.up is the action you want to perform in
the migration file, and self.down is the exact opposite. It is just like using the Undo
command in Word or some other application—you’re just undoing the changes
you made. So, for example, if you want to create a table called classifieds, you cre-
ate it in the self.up method and then destroy it in self.down. Let’s look at how
you do that.

If you are using TextMate on Mac OS X, drag your entire railslist folder onto
the TextMate icon. A project window displays, which contains all your applica-
tion’s files in a single window. I find this a much easier way to work.

RAILS SOLUTIONS: RAILS MADE EASY

64

4. Replace the default code in your 001_create_classifieds.rb migration file with
the following and save your changes:

class CreateClassifieds < ActiveRecord::Migration
def self.up
create_table :classifieds do |t|
t.column :title, :string
t.column :price, :float
t.column :location, :string
t.column :description, :text
t.column :email, :string
t.column :created_at, :timestamp
t.column :updated_at, :timestamp

end
end

def self.down
drop_table :classifieds

end
end

When you think about a basic classified ad, it contains only a minimal amount of data: a
title for the item, a price for the item, a location for the item, a description of the item,
and a way to contact the seller. You just created it in this migration. The self.up method
calls create_table, which lets Rails know that it should create this table and then add any
columns that are defined between the create_table structure.

Migrations support all the basic data types: :string, :text, :integer, :float, :datetime,
:timestamp, :time, :date, :binary and :boolean:

:string is for small data types such as a classified title

:text is for longer pieces of textual data, such as the description

:integer is for whole numbers

:float is for decimals

:datetime and :timestamp store the date and time into a column

:date and :time store either the date only or time only

:binary is for storing data such as images, audio, or movies

:boolean is for storing true or false values

Rails tables should always be named the pluralized version of your model’s name. In the
case of the Classified model, the table was named classifieds. If you had a model called
Food, you would create a table called foods. Rails is even smart enough to know com-
mon pluralizations for words like People, so it will create a table called persons. If you
have trouble figuring out the pluralized version of your model, you'll be pleased to
know that Geoffrey Grosenbach has created Pluralizer to assist you. It can be found at
http://nubyonrails.com/tools/pluralize.

GETTING STARTED WITH RAILS

65

4

You are making use of many of these data types in the table. Code was written to create a
column for each of the pieces of data you want to store as well as two special columns:
created_at and updated_at. They are two special database columns that Rails can modify
on its own. The created_at column is modified only when the row is created with the cur-
rent time stamp. On the other hand, updated_at is modified with the current timestamp
each time the row’s data is manipulated.

Looking back at the self.up method, the create_table call is followed by do |t|, which
enables you to easily define the columns that are a part of this table inside the
create_table call. The t between the goalposts is stuck at the beginning of each column
definition, so Rails knows for sure that this column belongs to the classifieds table. The
basic structure of a column definition is t.column :column_name, :data_type.

The self.down method is incredibly simple because it has only one line. All it does is
remove the classifieds table from the database. If you’re familiar with basic SQL, it is the
same as drop table classifieds.

Now that you have created the migration file, you can execute it against the database.

5. To do this, go to a command prompt and go to the railslist directory, in which
the application is located, and then type rake migrate.

Zoey:~/railslist justin$ rake migrate
(in /Volumes/Data/Users/justin/railslist)
== CreateClassifieds: migrating ======================================
-- create_table(:classifieds)

-> 0.1674s
== CreateClassifieds: migrated (0.1678s)
======================================

Rake is a Ruby build program similar to the Unix make program that Rails takes advantage
of to simplify the execution of complex tasks (such as updating a database’s structure, for
example). Over the course of reading this book, you will become very familiar with exe-
cuting tasks via Rake.

The database now has a table in which to store the classified ad data, and you didn’t have
much work to do to accomplish this. Just for comparison, this is what the SQL query looks
like if you want to create your table by hand-writing the SQL statement:

CREATE TABLE classifieds (
`id` int(11) DEFAULT NULL auto_increment
PRIMARY KEY, `title` varchar(255), `price` float,
`location` varchar(255), `description` text, `email` varchar(255),
`created_at` datetime, `updated_at` datetime) ENGINE=InnoDB

I don’t know about you, but I’d rather write a few lines of Ruby than try to match the syn-
tax and data types of that SQL statement.

RAILS SOLUTIONS: RAILS MADE EASY

66

The next time you want to modify the data model, you can create a new migration file and
then run rake migrate again. Each time you run the migrate command, it starts at the first
migration file (based on the number at the beginning of the filename) and checks to see
whether it has been executed. If it has been run, it skips to the next file until it finds a
starting point to begin executing. After it finds that point, it runs that migration and all
migrations after that until it reaches the end.

Creating the controller
Aside from defining and running the migration, you won’t work with the model just yet.
Instead, you’ll focus on writing the basic code to manipulate the model. That code is
stored in a controller class, as you learned in the discussion of MVC in Chapter 1. As out-
lined before, Ruby on Rails is built using the MVC paradigm, which separates the business
objects from the code that manipulates them and hides it all behind a user interface that
is visible to your users.

1. To create a controller, open up a command prompt and go to the directory in
which the application is located; then type ruby script/generate controller Classified.

Zoey:~/railslist justin$ ruby script/generate controller Classified
exists app/controllers/
exists app/helpers/
create app/views/classified
exists test/functional/
create app/controllers/classified_controller.rb
create test/functional/classified_controller_test.rb
create app/helpers/classified_helper.rb

Creating controllers is just as easy as models because they both use the generate
command-line tool. Besides the controller itself, generate also creates a classified
folder under views that will be where you store the RHTML views (the pages that the
user actually sees), a functional test in the test folder for test-driven development,
and a helper file that interfaces with your views (more on that in future chapters).

2. Let’s first take a look at the classified_controller.rb file. It is located under
app/controllers.

class ClassifiedController < ApplicationController
end

Controller classes inherit from ApplicationController, which is the other file in
the controllers folder: application.rb. The ApplicationController contains code
that can be run in all your controllers and it inherits from Rails’ ActionController::Base
class. You don’t need to worry with the ApplicationController yet, so let’s go back
to classified_controller.rb and define a few method stubs.

GETTING STARTED WITH RAILS

67

4

3. Modify the file to look like the following and save your changes:

class ClassifiedController < ApplicationController
def list
end

def show
end

def new
end

def create
end

def edit
end

def update
end

def delete
end

end

These are all the methods that will be a part of the ClassifiedController. First,
concentrate on the reading methods: list and show. The list method gives you a
printout of all the classifieds in the database, while show displays only further
details on a single classified ad.

4. Modify your code so that the show and list methods look like the following and
then save again:

def list
@classifieds = Classified.find(:all)

end

def show
@classified = Classified.find(params[:id])

end

You added only a single line of code to each method, and that’s all you need so far. The
@classifieds = Classified.find(:all) line in the list method tells Rails to search the
classifieds table and store each row it finds in the @classifieds instance object. The show
method’s @classified = Classified.find(params[:id]) line tells Rails to find only the
classified ad that has the id defined in params[:id]. The params object is a container that
enables you to pass values between method calls. For example, when you’re on the page

RAILS SOLUTIONS: RAILS MADE EASY

68

called by the list method, you can click a link for a specific classified ad, and it passes the
id of that ad via the params object so show can find the specific ad. You can then output
that ad's information to the screen (more on this later).

Creating the views
Let’s see what happens when you try to execute the list method via the web browser.

1. Open up a browser and go to http://localhost:3000/classified/list. You’ll
probably see the message shown in Figure 4-9.

Figure 4-9. You created some application code, but you don’t yet have anything to display
the data!

Rails lets you know that you need to create the view file for the new method. Each
method you define in the controller needs to have a corresponding RHTML file,
with the same name as the method, to display the data that the method is collect-
ing. Unfortunately, Rails can’t read your mind, so it can’t create a view file for each
of the controller’s methods. It’s not a big deal, though. Do the following:

2. Create a file called list.rhtml using your favorite text editor and save it to
app/views/classified.

3. After creating and saving the file, refresh your web browser. You should see a blank
page; if you don’t, check the spelling of your file and make sure that it is the exactly
the same as your controller’s method.

GETTING STARTED WITH RAILS

69

4

4. A blank screen is rather boring, so put some code into the list.rhtml file.

<% if @classifieds.blank? %>
<p>There are not any ads currently in the system.</p>

<% else %>
<p>These are the current classified ads in our system</p>

<ul id="classifieds">
<% @classifieds.each do |c| %>

<%= link_to c.title, {:action => 'show', :id => c.id} -%>
<% end %>

<% end %>
<p><%= link_to "Add new ad", {:action => 'new' }%></p>

This is a lot to digest, so let’s go through it line by line. The first line is enclosed in
<% %>, which lets Rails know that this is Rails code that should be interpreted. The
code to be executed is to check whether the @classifieds array has any objects in
it. The .blank? method returns true if the array is empty and false if it contains
any objects.

The next line outputs a line of HTML if the @classifieds array is blank. The third line
is a continuation of the line 1 if statement and gives the else clause (that is, if
@classifieds is not blank).

The first two lines after the else clause print some basic HTML tags. After that,
things get interesting. You have an each iterator that loops through each item in
the @classifieds array. Each loop prints out a list item () that contains a
link to the item.

Notice that the list item line contains <%= %> instead of <% %>. By appending the
= sign to the escape clause, you tell Rails that you want to display the output of this
Ruby code. The code between the <%= %> tags is a link_to method call. The first
parameter of link_to is the text to be displayed between the <a> tags. The second
parameter is what action is called when the link is clicked. In this case, it is the show
method. The final parameter is the id of the classified item that is passed via the
params object.

By using <%= %>, Rails puts each output on its own new line, which can cause a
bit of clutter in your HTML source. If you are a tidy person, you can use <%= -%>,
which keeps the code on the same line as the previous line of code.

Figure 4-10.
A link is converted into a
standard HTML tag, with the
title and href values mapped
accordingly.

RAILS SOLUTIONS: RAILS MADE EASY

70

5. Refresh your browser window; you should see a single line that says there are no
ads in the system and an Add new ad link. (This link currently doesn't go anywhere,
but you'll be creating the page it targets in the next section, so never fear.) If not,
check your code syntax to make sure that everything looks exactly as it does here.

Creating the first objects

Having an application that doesn’t have any classifieds is boring, so you need to start pop-
ulating the application with some real data.

1. Go back to your classified_controller.rb file in app/controllers and edit the
new method to look like this:

def new
@classified = Classified.new

end

2. The line you added to the new method lets Rails know that you will create a
new object in this view. Create the corresponding new.rhtml file in app/views/
classified.

3. You’ll create a basic input form to accept new classified postings. Add the following
code to the new.rhtml file and save it:

<h1>Post new classified</h1>

<%= start_form_tag :action => 'create' %>

<p><label for="classified_title">Title</label>

<%= text_field 'classified', 'title' %></p>

<p><label for="classified_price">Price</label>

<%= text_field 'classified', 'price' %></p>

<p><label for="classified_location">Location</label>

<%= text_field 'classified', 'location' %></p>

<p><label for="classified_description">Description</label>

<%= text_area 'classified', 'description' %></p>

<p><label for="classified_email">Email</label>

<%= text_field 'classified', 'email' %></p>

<%= submit_tag "Create" %>
<%= end_form_tag %>

<%= link_to 'Back', {:action => 'list'} %>

GETTING STARTED WITH RAILS

71

4

There are a few new Rails method calls in this template that should be discussed.
The first one you will encounter is start_form_tag(). This method interprets the
Ruby code into a regular HTML <form> tag using all the information supplied to it.
This tag, for example, outputs the following HTML:

<form action="/classified/create" method="post">

Two lines below that is a text_field method that outputs an <input> text field.
The parameters for text_field are object and field name. In this case, the
object is classified and the name is title. The next new tag you encounter is
submit_tag, which outputs an <input> button that submits the form. Finally,
there is the end_form_tag method that simply translates into </form>.

After creating the form, you need to edit the create method so it can take the data
submitted by the user and turn it into a row of data in the database.

4. Edit the create method in the classified_controller.rb to match the following:

def create
@classified = Classified.new(params[:classified])
if @classified.save
redirect_to :action => 'list'

else
render :action => 'new'

end
end

The first line creates a new instance variable called @classified that holds a
Classified object built from the data the user submitted. The data was passed
from the new method to create using the params object (which is why the text
fields had their object set to classified).

The next line is a conditional that redirects the user to the list method if the
object saves correctly to the database. If it doesn’t save, the user is sent back to the
new method. The redirect_to method is similar to performing a meta refresh on a
web page: it automatically forwards you to your destination without any user inter-
action.

Since the create method called a redirect_to and render method for both of the
if statement conditionals, you don’t need to create a template for the create
method because it will never have any output on the screen.

5. Go to your browser and visit http://localhost:3000/classified/new, enter
some data into the form (as seen in Figure 4-11), and submit it.

RAILS SOLUTIONS: RAILS MADE EASY

72

Figure 4-11. The form to create a new classified ad

The data should submit successfully and redirect you to the list page, in which you now
have a single item listed. If you click the link, you should see another Template is missing
error since you haven’t created the template file yet.

Why should you bother learning new methods such as start_form_tag, text_field,
and submit_tag instead of just writing straight HTML? Simplicity. Rails has made it
very easy to create complex forms more rapidly by simply defining a keyword plus its
parameters and then having Rails output the valid HTML for it. Take a look at the
source code output by the form you just created and compare it with the code you
wrote. You get a lot of payoff for less effort by using Rails’ built-in form methods.
Unfortunately, not all tags have Rails helpers, which is why you use regular <label>
tags. Check out http://www.rubyonrails.org/docs for more information.

GETTING STARTED WITH RAILS

73

4

6. Create a show.rhtml file under app/views/classified and populate it with the
following code:

<h1><%= @classified.title %></h1>

<p>Price: $<%= @classified.price %>

Location: <%= @classified.location %>

Date Posted: <%= @classified.created_at %>

Last updated: <%= @classified.updated_at %>

</p>

<p><%= @classified.description %></p>

<hr />

<p>Interested? Contact <%= mail_to @classified.email -%></p>

<%= link_to 'Back', {:action => 'list'} %>

There’s not much new to this view other than the use of mail_to to display the e-mail
address. It is similar to link_to, but instead creates a mailto: link. Also of note is the use
of the created_at and updated_at fields. They are pretty ugly right now, but in later chap-
ters you will do some things to make the display more appealing.

Updating existing ads

The final pieces of the basic implementation of railslist include allowing the user to edit
and delete listings from the application. Let’s tackle editing first.

1. Modify the classified_controller.rb edit and update methods to look like the
following:

def edit
@classified = Classified.find(params[:id])

end

def update
@classified = Classified.find(params[:id])
if @classified.update_attributes(params[:classified])
redirect_to :action => 'show', :id => @classified

else
render :action => 'edit'

end
end

Notice that the edit method looks nearly identical to the show method. Both
methods are used to retrieve a single object based on its id and display it on a
page. The only difference is that the show method is not editable.

RAILS SOLUTIONS: RAILS MADE EASY

74

The update method has a bit more going on, but it is strikingly similar to the create
method you detailed before. The only difference is in line 3 of the method: if
@classified.update_attributes(params[:classified]). The update_attributes
method is similar to the save method used by create but instead of creating a new
row in the database, it overwrites the attributes of the existing row (described in the
@classified object) with the new data provided.

Now let’s create the view for the edit method.

2. Create a new file called edit.rhtml and save it in app/views/classified. Populate
it with the following code:

<h1>Editing Classified: <%= @classified.title -%></h1>

<%= start_form_tag :action => 'update', :id => @classified %>

<p><label for="classified_title">Title</label>

<%= text_field 'classified', 'title' %></p>

<p><label for="classified_price">Price</label>

<%= text_field 'classified', 'price' %></p>

<p><label for="classified_location">Location</label>

<%= text_field 'classified', 'location' %></p>

<p><label for="classified_description">Description</label>

<%= text_area 'classified', 'description' %></p>

<p><label for="classified_email">Email</label>

<%= text_field 'classified', 'email' %></p>

<%= submit_tag "Save changes" %>
<%= end_form_tag %>

<%= link_to 'Back', {:action => 'list' } %>

Other than line 1 printing the title of the classified ad and modifying the
start_form_tag action to be update instead of create and defining an id, it is
exactly the same form as the new method. You need to provide the user with an
outlet for editing the classifieds, so let’s edit the list.rhtml file.

3. Go to the element and modify it to look like the following:

<%= link_to c.title, {:action => "show", :id => c.id} -%>
<small> <%= link_to 'Edit', {:action => "edit",
:id => c.id} %></small>

All you did was add a link called Edit that takes the user to the edit form.

GETTING STARTED WITH RAILS

75

4

4. Point your browser to http://localhost:3000/classified/list and test the new
functionality. The list page should now look like Figure 4-12.

Figure 4-12. The list page, updated with the new edit link

Removing an ad

Removing information from a database using Ruby on Rails is almost too easy. Before you
dive into the controller code, let’s modify list.rhtml again and add a delete link.

1. Go to the element and modify it to look like the following:

<%= link_to c.title, {:action => 'show', :id => c.id} -%>
<small> <%= link_to 'Edit', {:action => 'edit', :id => c.id} %></small>
<small> <%= link_to "Delete", {:action => 'delete',
:id => c.id} %></small>

2. Open classified_controller.rb and modify the delete method as follows:

def delete
Classified.find(params[:id]).destroy
redirect_to :action => 'list'

end

The first line finds the classified based on the parameter passed via the params
object and then deletes it using the destroy method. The second line redirects the
user to the list method using a redirect_to call. This is almost too easy, and you
should probably add a confirmation process to protect users against deleting items
accidentally. Let’s modify list.rhtml to confirm the deletions before proceeding.

RAILS SOLUTIONS: RAILS MADE EASY

76

3. Go back to the element and edit it to be like the following:

<%= link_to c.title, {:action => 'show', :id => c.id} -%>
<small> <%= link_to 'Edit', {:action => 'edit',
:id => c.id} %></small>
<small> <%= link_to "Delete", {:action => 'delete', :id => c.id},
:confirm => "Are you sure you want to delete this item?" %></small>

The main difference is that you added a :confirm parameter that presents a JavaScript
confirmation box asking if you really want to perform the action. If the user clicks OK, the
action proceeds, and the item is deleted.

Adding some style
Since this is a friends of ED book, and most of us are designers at heart, it is probably mak-
ing you cringe that there isn’t much style on the railslist application. Before wrapping up this
chapter, let’s work on implementing a layout and some CSS to the application. Ruby on Rails
supports the use of layouts for defining a standard layout that is rendered for all actions.

Most websites make use of a layout or templating system. If you look at www.apress.com,
as seen in Figure 4-13, you can see that on most pages there is a standard feature set: a
logo at the top, navigation bar, and so on. In the main content area, the content changes
depending on the book (or set of books) you look at.

GETTING STARTED WITH RAILS

77

4

Figure 4-13.
In this screenshot,
the darkened areas
are part of the
template. The
lighter area is
changing content
per page.

Rails has built-in support for easily adding templating to your applications. The process
involves defining a layout template and then letting the controller know that it exists and
to use it. First, let’s create the template.

1. Add a new file called standard.rhtml to app/views/layouts. You let the con-
trollers know what template to use by the name of the file, so following a sane
naming scheme is advised.

2. Add the following code to the new standard.rhtml file and save your changes:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;➥

charset=iso-8859-1" />
<meta http-equiv="Content-Language" content="en-us" />
<title>railslist</title>

<%= stylesheet_link_tag "style" %>
</head>
<body id="rails-list">
<div id="container">
<div id="header">
<h1>Railslist</h1>
<h3>Classifieds powered by Ruby on Rails</h3>

</div>
<div id="content">
<%= yield -%>

</div>
<div id="sidebar"></div>

</div>
</body>
</html>

Everything you just added were standard HTML elements, except line 7 and 15,
which each have a single line of Rails code. Line 7 uses the stylesheet_link_tag
helper method that outputs a stylesheet <link>. On line 15, the yield command
lets Rails know that it should put the RHTML for the method called here.

Next, you need to let the Classified controller know about the new template.

3. Open up the classified_controller.rb file in app/controllers and add the fol-
lowing line just below the first line:

layout 'standard'

You are telling the controller that you want to use the layout in the standard.rhtml
file.

4. If you go to http://localhost:3000/classified/list you should see that the
template is now implemented, as shown in Figure 4-14.

RAILS SOLUTIONS: RAILS MADE EASY

78

Figure 4-14. The template is now applied to the application.

By creating the stylesheet link using the Rails helper method, the fonts were con-
verted to a sans-serif, even though you did not create a stylesheet for the applica-
tion. This is because Rails defaults to linking to an internal stylesheet when it
cannot find the actual CSS file you are referencing. Let’s create the CSS file now.

5. Create a new file called style.css and save it in /public/stylesheets.

Anything you store in the /public directory is viewable by anyone who accesses
the application from the web browser. So after you create the style.css file, you
can access it via the Web at http://localhost:3000/stylesheets/style.css.

6. Add the following code to the CSS file and save your changes:

* {
margin: 0;
padding:0;

}

body {
font-family: Helvetica, Geneva, Arial, sans-serif;
font-size: small;
font-color: #000;
background-color: #fff;

}

a:link, a:active, a:visited {
color: #CD0000;

}

GETTING STARTED WITH RAILS

79

4

a:hover {
color: #F70000;

}

input { margin-bottom: 5px;}

p { line-height: 150%; }

div#container {
width: 760px;
margin: 0 auto;

}

div#header {
text-align: center;
padding-bottom: 15px;

}

div#content {
float: left;
width: 450px;
padding: 10px;

}

div#content h3 {
margin-top: 15px;

}

ul#classifieds {
list-style-type: none;

}

ul#classifieds li {
line-height: 140%;

}

div#sidebar {
width: 200px;
margin-left: 480px;

}

7. Refresh your browser and you should see your application displayed with a bit
more style, as shown in Figure 4-15.

RAILS SOLUTIONS: RAILS MADE EASY

80

Figure 4-15. railslist in style!

Summary
This chapter covered a lot of territory. You started by creating the basics of your first Ruby
on Rails application, which gave you a valuable hands-on introduction to the Rails way of
doing things. You created your model and database migration, and then added a con-
troller and methods with corresponding views to allow users to view and modify data.
Next, you styled the application using a template and a stylesheet.

In the next chapter, you will begin to expand on your Rails knowledge by introducing
model validations to the data model and learning some basic debugging skills.

GETTING STARTED WITH RAILS

81

4

