Dates and Numbers

As you might be able to guess from the name, the packages in this section allow you
to deal with dates and numbers. The Date package has an extensive API that allows you
to compare dates, add and subtract time spans, convert time zones, and perform just
about every other date-related function you can imagine. The Date_Holidays package
allows you to see if a given date is a holiday, to list all holidays between two dates, and
to find out what the date is for a given holiday. It works with a variety of different holiday
drivers, including those for Christian, Jewish, US, and United Nations Organization (UNO)
holidays, to name a few. Numbers_Roman has a small API, but has the useful purpose of
converting given numbers into Roman numerals and converting Roman numerals into
numbers. Finally, Numbers_Words is capable of printing the text representation of numbers.

90

Date

The Date package provides a Date class that offers many methods for dealing with dates. The
Date constructor accepts a string representation of a Date and builds an object that can be
formatted, added to, subtracted from, and compared to other dates. The Date package includes
two other useful classes, Date_Span and Date_TimeZone, which are also detailed in the API docu-
mentation in this chapter. The Date_Span class allows you to build time spans easily that can be
added or subtracted to and from Date values. The Date_TimeZone class allows you to get the
information about a time zone, including its offset from Coordinated Universal Time (UTC),
and to get daylight saving time information using a short name for the time zone.

Common Uses

The Date package is used for the following purposes:
¢ Formatting dates
¢ Adding and subtracting dates

¢ Comparing dates

Related Packages

The following package is related because it depends on this one:

Date_Holidays

Dependencies

The Date package has the following dependencies.

Required Packages

None

Optional Packages

None

DATES AND NUMBERS

Date API

Date Constructor

Creates a new instance of a Date object, with the current date and time if no parameter is passed.
You can provide a date to the constructor in a couple different formats, including ISO 8601
(for example, 1997-08-29 02:14:00), timestamp (for example, 19970829021400), or Unix time (for
example, 872820840) formats. You may also pass in another Date object.

Date Date ([mixed $date = null])

Parameter Type Description
$date mixed A string representation of a date.
addSeconds()

Adds the given number of seconds to the current date and time, changing the value.

void addSeconds(integer $sec)

Parameter Type Description
$sec integer The number of seconds to add to the Date.
addSpan()

Adds the given Date_Span object (the API of which is detailed later in this chapter) to the
current date.

void addSpan(Date_Span $span)

Parameter Type Description

$span Date_Span A Date_Span object that contains the specification for a unit of
time that can be added to the Date.

after()

Returns true if the Date object is chronologically after the given date.

boolean after(Date $when)

Parameter Type Description

$when Date Another Date object to compare to the Date.

91

92

DATES AND NUMBERS

before()

Returns true if the Date object is chronologically before the given date.

boolean before(Date $when)

Parameter Type Description
$when Date Another Date object to compare to the Date.
compare()

Returns a signed integer that indicates the relationship between the two dates. If $d1 is greater
than $d2, the method will return 1. If $d1 is less than $d2, the method will return -1. compare()
returns 0 if the Date objects are equal. This is a good method to use for sorting dates.

integer compare(Date $d1, Date $d2)

Parameter Type Description

$d1 Date One Date object in the comparison.

$d2 Date The other Date object in the comparison.
convertTZ()

Converts the Date’s time zone to the time zone represented by the Date_TimeZone.

void convertTZ(Date TimeZone $tz)

Parameter Type Description

$tz Date_TimeZone An object that represents a time zone.

Caution This method uses a function called putenv () to obtain the time zone information, especially
when getting information about whether or not the current time zone is in daylight saving time. This method
might not work on all operating systems (such as Microsoft Windows) because it relies on underlying calls for
the information.

DATES AND NUMBERS

convertTZbyID()

Converts the Date’s time zone to the time zone represented by the given string identifier.

void convertTZbyID(string $id)

Parameter Type Description

$id string An identifier for a time zone: CST, DST, MST.

Caution The same limitations with convertTZ() apply to convertTZbyID().

copy()

Copies the value of $date into the Date object.

void copy(Date $date)

Parameter Type Description

$date Date Another Date from which to copy the values into the Date object.

equals()

Returns true if the provided Date is equal to the instantiated Date object.

boolean equals(Date $when)

Parameter Type Description

$when Date Another Date to compare for determining if the two Date objects
are equal.

format()

Formats the Date into a string that can include many different date parts.

string format(string $format)

Parameter Type Description

$format string The format in which the Date will be printed.

93

94

DATES AND NUMBERS

The following table lists the format string objects, along with what they represent.

Format Strings for Formatting Date Objects

Format Description Example

%a Short weekday name. Sun, Mon, Tue, Wed

oA Long weekday name. Sunday, Monday, Tuesday, Wednesday

%b Short month name. Jan, Feb, Mar, Apr

%B Long month name. January, February, March, April

%C Century 18, 19, 20 (1800s, 1900s, and 2000s,
respectively).

%d Day of month. 00,01,02,03...31

%D Short date format. 03/04/05 (shortcut for %m/%d/%y)

%e Single digit day of month. 0,1,2,3...31

%E Number of days since epoch. 3223, 23333, 34333

%H Hour as number. 00, 01,02,03...23

%I Hour as number (12-hour). 01,02,03...12

%] Day of year. 001, 002, 003 .. . 366

%m Month as number. 01,02,03...12

%M Minute as number. 00,02,03...59

%n Newline character. \n

%0 Time zone offset. -06:00, -05:00, -04:00

%0 Time zone offset, corrected for -06:00, +05:00

daylight saving time.

%p p-m. or a.m. on a 12-hour clock. pm, am

%P AM or PM on a 12-hour clock. PM, AM

%r Time for 12-hour clock. 12:00 PM (shortcut for $I:%M:%S %P)

%R Time for 24-hour clock. 23:30 (shortcut for %H: %M)

%s Seconds, including tenths. 30.10,59.99

%S Seconds as a number. 00,01, 02,03...59

%t Tab character. \t

*T Time. 12:00:01, 21:32:00 (same as %H: %M:%S)

Jow Weekday as a number. 0,1,2,3...6

%U Number of the week in the year. 0,1,2,3...51

%y Year. 00,01,02...99

*Y Year, including century. 1999, 2000, 2001

Literal.

%

DATES AND NUMBERS

getDate()

Returns the date in one of a couple predetermined formats. When passed the DATE_FORMAT _ISO
constant, the date returns in a string that looks like 2006-04-10 13:00:00.

string getDate([integer $format = DATE_FORMAT ISO])

Parameter Type Description
$format integer A value that specifies the format in which to return the date.
Date Formats
Constant Date Format Example
DATE_FORMAT_ISO YYYY-MM-DD 1997-08-29 02:14:00
HH:MM:SS
DATE_FORMAT _ YYYYMMDDw= 19970829T02:10:00Z-0400
ISO_BASIC THHMMSS
(ZI(+/-)HHMM)?
DATE_FORMAT _ YYYY-MM-DDTHH:MM: 1997-08-29T02:14:00Z-04:00
ISO_EXTENDED SS(ZI(+/-)HH:MM)?
DATE_FORMAT_ISO_ YYYY-MM-SSTHH:MM: 1997-08-29T02:14:00.0000000Z-04:00
EXTENDED_MICROTIME SS(.§")?2(ZI(+/-)HH:MM)?
DATE_FORMAT_TIMESTAMP YYYYMMDDHHMMSS 19970829021400
DATE_FORMAT UNIXTIME long integer 872820840
getDay()

Returns an integer that represents the number of the day in the month.

integer getDay()

getDayName()

Returns the name of the day in the week, such as Monday, Tuesday, Wednesday.

string getDayName([boolean $abbr = false] [, mixed $length = 3])

Parameter Type Description
$abbr boolean true if the day’s name should be shortened.
$length mixed If specified, determines the maximum length of the day

name returned.

95

96

DATES AND NUMBERS

getDayOfWeek()

Returns the number of the day in the week, starting with 0 on Sunday.

integer getDayOfWeek()

getDaysInMonth()

Returns the number of total days in the current month.

integer getDaysInMonth()

getHour()

Returns the Date’s hour as an integer from 00 to 23.

integer getHour()

getJulianDate()

Returns the Julian date as an integer, which is the number of days since Monday, January 1,

4713 BC. You can find more information about Julian dates at http://en.wikipedia.org/wiki/

Julian_date.

integer getJulianDate()

getMinute()

Returns the minute as an integer between 00 and 59.

integer getMinute()

getMonth()

Returns the month as an integer between 01 and 12.

integer getMonth()

getMonthName()

Returns the name of the month in the Date.

string getMonthName([boolean $abbr = false])

Parameter Type Description

$abbr boolean If true, the name of the month is abbreviated. An example is Jan
instead of January.

DATES AND NUMBERS

getNextDay/()

Returns a Date object that represents the day immediately following this one chronologically.
The time portion of the new Date object is the same as the original object’s time.

Date getNextDay()

getNextWeekday()

Returns a Date object that represents the weekday that follows this one chronologically. If the
current Date object is a Friday, this method will return the following Monday represented as a
Date object. The time portion of the new Date object is the same as the original object’s time.

Date getNextWeekday()

getPrevDay()

Returns a Date object that represents the date immediately preceding this one chronologically.
The time portion of the new Date object is the same as the original object’s time.

Date getPrevDay()

getPrevWeekday()

Returns a Date object that represents the weekday (Monday through Friday) that immediately
precedes this one. The time portion of the new Date object is the same as the original object’s time.

Date getPrevileekday()

getQuarterOfYear

Returns the Date’s quarter of the year as an integer, 1 through 4.

integer getQuarterOfYear()

getSecond()

Returns the second in the Date’s time as an integer between 00 and 59.

integer getSecond()

getTime()

Returns the time as an integer expressing the number of seconds since January 1, 1970.

integer getTime()

97

98

DATES AND NUMBERS

getWeekOfYear()

Returns the number of the current week in the year. The numbering starts at 1 with the first
Sunday in the year.

integer getWeekOfYear()

getWeeksInMonth()

Returns the number of weeks in the current month.

integer getWeeksInMonth()

getYear()

Returns the current year as an integer. For April 1, 2007, the returned value is 2007.

integer getYear()

inDaylightTime()
Returns true if the Date is in daylight saving time, taking time zone into account.

boolean inDaylightTime()

Gaution See the sections “convertTZ()” and “convertTZbyID()” for limitations on time zones with different
operating systems. Because this method takes time zone into account, it’s subject to the same limitations.

isFuture()

Returns true if the Date represents a date and time that are in the future.

boolean isFuture()

isLeapYear()

Returns true if the Date represents a leap year.

boolean isleapYear()

isPast()

Returns true if the Date represents a date and time that are in the past.

boolean isPast()

DATES AND NUMBERS

setDate()
Sets the value of the Date given the string, and optionally the format of the string.

void setDate(string $date [, integer $format = DATE_FORMAT ISO])

Parameter Type Description
$date string A string representation of a date, such as 2005-04-11 12:00:00.
$format integer A constant that describes the format of the given string. See the

section “getDate()” for a list of these constants.

setDay()

Sets the day of the Date, expecting an integer 0 through 31. If you specify a number outside this
range, the value is set to 1.

void setDay(integer $d)

Parameter Type Description
$d integer The number of the day in the month.
setHour()

Sets the hour of the Date, expecting an integer value 00 through 23. If you specify a number out
of that range, the hour is set to 00.

void setHour(integer $h)

Parameter Type Description
$h integer The number of the hour in a 24-hour day.
setMinute()

Sets the minutes portion of the Date, expecting an integer with the value 0 through 59. If you
specify out of that range, the minute is set to 00.

void setMinute(integer $m)

Parameter Type Description

$m integer The minute in the hour.

99

100

DATES AND NUMBERS

setMonth()

Sets the month of the Date, expressed as an integer between 0 and 12. If you specify a number
out of this range, the value is set to 1.

void setMonth(integer $m)

Parameter Type Description
$m integer The month of the Date object.
setSecond()

Sets the second portion of the Date, expressed as an integer 0 through 59. If you specify a
number that’s out of this range, the value is set to 0.

void setSecond(integer $s)

Parameter Type Description
$s integer The second in the minute.
setTZ()

Sets the time zone of the Date. The date and time are both left unmodified. See the section
“convertTZ()” to change the date and time to a different value. This method will call setTZbyID()
if the parameter specified isn’t a Date_TimeZone object.

void setTZ(Date TimeZone $tz)

Parameter Type Description

$tz Date_TimeZone ADate_TimeZone object that contains all the time
zone information.

setTZbyID()

Sets the time zone using a string identifier that indicates which time zone to set. Values might
be CST, PST, EST, or EDT. If you specify a value that isn’t valid, the system’s default time zone
is used.

void setTZbyID(string $id)

DATES AND NUMBERS

Parameter Type Description
$id string An identifier that indicates which time zone to set on the Date.
setYear()

Sets the year part of the Date.

void setYear(integer $y)

Parameter Type Description
$y integer The year to set on the Date.
subtractSeconds()

Subtracts the given number of seconds from the Date, modifying it and setting the Date’s value
to the result.

void subtractSeconds(integer $sec)

Parameter Type Description
$sec integer The number of seconds to subtract from the Date.
subtractSpan()

Subtracts the given Date_Span from the Date and sets the Date to the new value. Date_Span
objects can be easier to use than subtracting seconds when subtracting large amounts of time,
such as days, weeks, and so on.

void subtractSpan(Date Span $span)

Parameter Type Description
$span Date_Span The Date_Span object to subtract from the Date.
toUTC()

Sets the Date to UTC time and sets the time zone to “UTC.”

void toUTC()

101

102

DATES AND NUMBERS

toUTCbyOffset()

Sets the UTC time by using an offset, such as -06:00, +04:00, +0800, and -1200.

void toUTCbyOffset(mixed $offset)

Parameter Type Description

$offset mixed A string that indicates the time to offset first, then set the
Date’s time zone to UTC.

Date_Span API

Date_Span Constructor

Creates a new instance of a Date_Span object, and initializes the value to the time given as
an argument.

Date Span(mixed $time [, mixed $format = null])

Parameter Type Description

$time mixed Avalue representing a time. Most commonly, this is a string
formatted in either the default input format or the one
specified by $format.

$format mixed The format used by $time.

add()

Adds the provided Date_Span object to the current Date Span.

void add(Date_Span $time)

Parameter Type Description

$time Date_Span The Date_Span to add.

DATES AND NUMBERS

compare()

Compares two Date_Span objects. If $time1 is longer than $time2, the resultis 1. If $time2 is
longer than $time1, the resultis -1. The result is 0 if they’re equal, which makes this method
ideal for sorting algorithms.

integer compare(Date_Span $timel, Date_Span $time2)

Parameter Type Description

$timel Date_Span The first Date_Span to compare.
$time2 Date_Span The second Date_Span to compare.
copy()

Copies the value of the Date_Span into the given Date_Span object and returns true if the oper-
ation was successful.

boolean copy(Date Span $time)

Parameter Type Description
$time Date_Span The Date_Span that the current Date_Span will be copied into.
equal()

Returns true if the Date_Span is equal to the provided Date_Span.

boolean equal(Date Span $time)

Parameter Type Description
$time Date_Span The Date_Span to compare.
format()

Formats the Date_Span as a string.

string format([string $format = null])

Parameter Type Description

$format string The format to use when representing the Date_Span as a string.

103

104

DATES AND NUMBERS

Format strings for Date_Span

Format Description Example
%C Days with time, same as %D, %H:%M:%S. 2,02:15:30
%d Total days as a float number. 1.25 (1 day, 6 hours)
%D Days as a decimal number. 2 (2 days)
%e Total hours as a float number. 23.25
as Total minutes as a float number. 2.5 (2 minutes, 30 seconds)
%g Total seconds as a decimal number. 75 (1 minute, 15 seconds)
%h Hours as a decimal number. 3
%H Hours as a decimal number limited to two digits. 03s
m Minutes as a decimal number. 5
M Minutes as a decimal number limited to 05
two digits.
%n Newline character (\n). \n
%p Either “am” or “pm”—case insensitive— pm
depending on the time. If “pm” is detected,
it adds 12 hours to the resulting time span
without any checks.
%r Time in am/pm notation, same as %H:%M:%S %p. 02:15:30 pm
%R Time in 24-hour notation, same as %H: %M. 14:15
%s Seconds as a decimal number. 50
%S Seconds as a decimal number limited to 03
two digits.
%t Tab character (\t). \t
xT Current time equivalent, same as %H:%M:%S. 04:22:00
%% Literal “%.” %
getDefaultFormat()

Returns the default format of the Date_Span.

mixed getDefaultFormat()

getDefaultInputFormat()

Returns the default input format of the Date_Span.

mixed getDefaultInputFormat()

DATES AND NUMBERS

greater()

Returns true if this Date_Span is greater than the provided Date_Span.

boolean greater(Date Span $time)

Parameter Type Description
$time Date_Span The Date_Span to compare.
greaterEqual()

Returns true if this Date_Span is either greater than or equal to the provided Date_Span.

boolean greaterEqual(object Date Span $time)

Parameter Type Description
$time Date_Span The Date_Span to compare.
isEmpty()

Returns true if the Date_Span is empty.

boolean isEmpty()

lower()

Returns true if this Date_Span represents a shorter amount of time than the provided Date_Span.

boolean lower(object Date Span $time)

Parameter Type Description
$time Date_Span The Date_Span to compare.
lowerEqual()

Returns true if this Date_Span contains a shorter or equal time span than the Date_Span provided.

boolean lowerEqual(object Date Span $time)

Parameter Type Description

$time Date_Span The Date_Span to compare.

105

106

DATES AND NUMBERS

set()

Sets the Date_Span using the given time and optional format.

boolean set(mixed $time [, mixed $format = null])

Parameter Type Description
$time mixed A value representing the time for the Date_Span.
$format mixed The format to use when parsing $time into the Date_Span value.

See the format () method for available formats. Optional.

setDefaultFormat()

Sets the default format to use when returning the value of the Date_Span as a formatted string.
It returns the last used format.

mixed setDefaultFormat(mixed $format)

Parameter Type Description

$format mixed The format to use as the new default. The default is %C.
For more information about the formats, see the
format() method.

setDefaultinputFormat()

Sets the default input format to use when providing strings to set the value of the Date_Span.

mixed setDefaultInputFormat(mixed $format)

Parameter Type Description
$format mixed The default input format to use.
setFromArray/()

Sets the value of the Date_Span using the items in the provided array. The first element in the
array holds seconds, the second minutes, the third hours, and the fourth days. Zeros are used
for any elements that are missing.

boolean setFromArray(array $time)

Parameter Type Description

$time array The new Date_Span value to set as an array.

DATES AND NUMBERS

setFromDateDiff()

Sets the value of the Date_Span to be equal to the difference between the two Date objects
provided. true is returned if the method is successful.

boolean setFromDateDiff(object Date $datel, object Date $date2)

Parameter Type Description
$datel Date The first Date to use in the difference.
$date2 Date The Date to subtract from the first date to get a time span value

to set the Date_Span.

setFromDays()

Sets the value of the Date_Span to the number of days provided. Returns true on success.

boolean setFromDays(float $days)

Parameter Type Description
$days float The number of days to use for the value of the Date_Span.
setFromHours()

Sets the value of the Date_Span to the number of hours provided. Returns true on success.

boolean setFromHours(float $hours)

Parameter Type Description
$hours float The number of hours to use for value of the Date_Span.
setFromMinutes()

Sets the value of the Date_Span to the number of minutes provided. Returns true on success.

boolean setFromMinutes(float $minutes)

Parameter Type Description

$minutes float The number of hours to use for the value of the Date_Span.

107

108

DATES AND NUMBERS

setFromSeconds()

Sets the value of the Date_Span to the number of seconds provided. Returns true on success.

boolean setFromSeconds(integer $seconds)

Parameter Type Description
$seconds integer The number of seconds to use for the value of the Date_Span.
setFromString()

Sets the value of the Date_Span given a formatted string. The format is optional, and if it’s not
provided, the Date_Span will use the default input string format.

boolean setFromString(string $time [, string $format = null])

Parameter Type Description
$time string The time duration for the Date_Span expressed as a string.
$format string A string that describes the format of the $time string.

Note The setFromString() method always uses the last provided values. This is important when
providing times that might override each other, such as setFromString('06, 1', '%M %m"). In this
case, the time span is one minute. The method doesn’t add time to the existing values.

subtract()

Subtracts the value of the Date_Span provided from the current Date_Span. If the time span to
subtract is larger than the original, the result is zero.

void subtract(Date_ Span $time)

Parameter Type Description
$time Date_Span The value to subtract from the current Date_Span.
toDays()

Returns the Date_Span as a value in days.

float toDays()

DATES AND NUMBERS

toHours()

Returns the Date_Span as a value in hours.

float toHours()

toMinutes()

Returns the Date_Span as a value in minutes.

float toMinutes()

toSeconds()

Returns the Date_Span as a value in seconds.

integer toSeconds()

Date TimeZone API

Date_TimeZone Constructor

Creates anew Date_TimeZone object using the given identifier. The identifier is a name that
uniquely identifies the time zone. You can obtain the list of IDs using the getAvailableIDs()
method.

Date TimeZone Date TimeZone(string $id)

Parameter Type Description

$id string An identifier for the time zone. See the getAvailableIDs ()
method to get a list of the available IDs.

getAvailableIDs()

Returns a list of the available identifier strings that you can use to create new Date_TimeZone
objects.

mixed getAvailableIDs()

getDefault()

Returns a Date_TimeZone with the same time zone as the system’s default time zone.

Date TimeZone getDefault()

109

110

DATES AND NUMBERS

getDSTLongName()

Returns the long name of the of the time zone, including the daylight saving time information,
such as Mountain Daylight Time.

string getDSTLongName()

getDSTSavings()

Returns the number of milliseconds of time offset for daylight saving time. It’s always 3600000.

integer getDSTSavings()

getDSTShortName()

Returns the short name of the time zone, including the daylight saving time information; for
example, PDT for Pacific Daylight Time.

string getDSTShortName()

getID()

Returns the string identifier of the Date_TimeZone object.

string getID()

getLongName()

Returns the long name of the Date_TimeZone object.

string getlLongName()

getOffset()

Returns the offset from UTC for the time zone, taking into account the offset for daylight saving
time, if applicable.

integer getOffset(Date $date)

Parameter Type Description
$date Date The Date from which to get the offset.
getRawOffset()

Returns the offset from UTC for the time zone, without taking into account daylight saving time.

integer getRawOffset()

DATES AND NUMBERS

getShortName()
Returns the short name of the Date_TimeZone object. Example: CST, DST, GMT-12:00, WST.

string getShortName()

hasDaylightTime()

Returns true if the time zone observes daylight saving time.

boolean hasDaylightTime()

inDaylightTime()

Returns true if the date is in daylight saving time. This method isn’t necessarily reliable on
Windows systems because it uses OS calls to get the result.

boolean inDaylightTime(Date $date)

Parameter Type Description
$date Date The Date to test to see if it's observing daylight saving time.
isEqual()

Returns true if the Date_TimeZone object is equal to the provided Date_TimeZone.

boolean isEqual(Date TimeZone $tz)

Parameter Type Description
$tz Date_TimeZone The Date_TimeZone to test.
isEquivalent()

Returns true if the Date_TimeZone has an offset that’s equal and offset of the provided
Date_TimeZone. For them to be equivalent, both must have the same observation of daylight
saving time (either they both do, or both don’t observe it).

boolean isEquivalent(Date TimeZone $tz)

Parameter Type Description

$tz Date_TimeZone The Date_TimeZone to test.

1

112

DATES AND NUMBERS

isValidID()

Returns true if the provided string is a valid identifier for one of the time zones stored in the
Date_TimeZone data.

boolean isValidID(string $id)

Parameter Type Description
$id string The identifier to look for in the list of available identifiers.
setDefault()

Sets the default time zone.

void setDefault(string $id)

Parameter Type Description

$id string The identifier of the time zone to set as default.

Examples

Converting UTC to a Different Time Zone

This example shows how to create a new Date object given a formatted string that represents a
date and time, then use a Date_TimeZone object to convert the time zone on the Date. The format ()
method shown at the end of the example demonstrates how to show the Date in a somewhat
user-friendly output string.

<?php
/* Converting a UTC date to a time zone */

require_once 'Date.php’;

$date = new Date('2006-04-10 13:00:00");

$date->toUTC();

/* This will print the date out, which is now a UTC date */
echo $date->getDate(DATE_FORMAT ISO) . "\n";

$cst = new Date TimeZone('CST');

/* Now convert the date to the new time zone. */
$date->convertTZ($cst);

/* This will print that date again, this time in CST (UTC -6) */
echo $date->getDate(DATE_FORMAT ISO) . "\n";

DATES AND NUMBERS

/* This will print the same date, but in a more friendly

* format. The date will look like: Monday, April 4 2006 at 07:00 am.
*/

echo $date->format("%A, %B %e %Y at %I:%M %phn");

2>

When you run the preceding example, the output will look like this:

2006-04-10 13:00:00
2006-04-10 07:00:00
Monday, April 10 2006 at 07:00 am

Adding Dates and Times

This example demonstrates how to do a little bit more than simply add a few days to a given
date. In this example, a Date_Span object is used to add a certain number of days, but then the
getNextWeekday() method is called to get the weekday that falls on the next weekday (Monday
through Friday) after the dates have been added. Why go to all this trouble? It’s handy if you're
calculating times, such as for payroll processing, which might be done on the third business
day after month closing.

<?php
/* Adding Dates and Times. */

require once 'Date.php’;
require once 'Date/Span.php';

$date = new Date('2006-04-05");
$date->setTZbyID('CST');
echo $date->format("Original date: %A, %B %e %Y %n");

/* Now add three days to the current day */
$span = new Date_Span();
$span->setFromDays(3);

$date->addSpan($span);
echo $date->format("Three days later: %A, %B %e %Y %n");

/* Now find the next business day */

$nextBusinessDate = $date->getNextWeekday();

echo $nextBusinessDate->format("The next weekday: %A, %B %e %Y %n");
>

You'll see the following output when you run the preceding example:

113

114

DATES AND NUMBERS

Original date: Wednesday, April 5 2006
Three days later: Saturday, April 8 2006
The next weekday: Monday, April 10 2006

Comparing Dates

This example contains a potpourri of different date comparison methods. First, the isPast()
method is used to compare the date to today’s date. Then, the Date: : compare() method is used
to show the integer value of comparing two dates.

<?php
/* Comparing dates */
require once 'Date.php’;

$date = new Date('2006-02-10");

echo $date->format("Date is: %D%n");

echo sprintf("The date is %s today.\n",
$date->isPast() ? "before" : "after");

/* Set the year to something in the future */

$date->setYear(2015);

echo $date->format("Date is: %D%n");

echo sprintf("The date is %s today.\n",
$date->isPast() ? "before" : "after");

$now = new Date();

/* Compare the future date with now. */
$result = Date::compare($now, $date);
echo sprintf('Comparing $now with $date: %s', $result) . "\n";

$result = Date::compare($date, $now);
echo sprintf('Comparing $date with $now: %s', $result) . "\n";
>

The output of running the preceding example looks like this:

Date is: 02/10/2006

The date is before today.

Date is: 02/10/2015

The date is after today.
Comparing $now with $date: -1
Comparing $date with $now: 1

Date_Holidays

The Date_Holidays package contains classes that allow you to get information about holidays
during the course of a year. The Date_Holidays class includes a factory() method that returns
aDate Holidays Driver. This driver class contains methods you can use to see if a particular
date is a holiday, grab the holidays that fall within date ranges, and more.

Common Uses

Following are common uses of the Date_Holidays package:
 Printing out the dates of holidays throughout the year

* Checking to see if a given date falls on a holiday

Related Packages

The following related package is found in this book:

Date

Dependencies

Following are the dependencies for the Date_Holidays package.

Required Packages

XML_Serializer

Optional Packages

Console_Getargs

115

116

DATES AND NUMBERS

Date_Holidays API

Date_Holidays Constructor

Creates a new instance of a Date_Holidays object. Instead of using the constructor to create a
new instance of the object, use the factory() method.

Date Holidays Date Holidays()

errorsOccurred()

Returns true if errors have occurred while attempting to create the Date Holidays Driver class.

boolean errorsOccurred()

factory()

Builds and returns an instance of an object that inherits the Date_Holidays Driver class with
the specified driver ID.

Date_Holidays Driver factory(string $driverId [, string $year = null]
[, string $locale = null] [, mixed $external = false])

Parameter Type Description

$driverld string A string that identifies the driver to load. See the
getInstalledDrivers() method to get alist of the
drivers you can use.

$year string The year you’d like to use for the holidays.
$locale string The locale to use, such as en_US.
$external mixed true if the specified driver ID is for a driver that isn’t loaded

with the base installation of the package.

factoryISO3166()

Builds and returns an instance of an object that inherits from the Date Holiday Driver
class that conforms to the given International Standards Organization (ISO) code. The ISO
codes are documented at http://www.iso.org/iso/en/prods-services/iso3166ma/
021s0-3166-code-lists/list-en1.html.

Date Holidays factoryIS03166(string $isoCode [, string $year = null]
[, string $locale = null] [, mixed $external = false])

DATES AND NUMBERS

Parameter Type Description

$isoCode string The ISO 3166 code to use for loading the driver. Examples are FR,
GB, and US for France, the United Kingdom, and the United States,
respectively.

$year string The year for the holidays that are found by the driver.

$locale string The language locale to use, such as en_US.

$external mixed true if the specified locale is not in the standard package.

getErrors()

Returns an array of errors.

array getErrors([boolean $purge = false])

Parameter Type Description
$purge boolean If true, the existing errors are purged after they're returned.
getErrorStack()

Returns the error stack.

PEAR ErrorStack &getErrorStack()

getInstalledDrivers()

Returns an array of the available driver names. The getInstalledDrivers() method does this
by looking into its Driver directory and returning the files found, minus the . php extension.

array getInstalledDrivers([string $directory = null])

Parameter Type Description

$directory string The directory to look in for the drivers.

getInstalledFilters()

Similar to the getInstalledDrivers() method, this one parses through the Filters directory
and returns the filters contained in it. Both these methods are handy if you don’t have access
to the file system, and therefore can’t determine the names of the drivers and files.

117

118

DATES AND NUMBERS

array getInstalledFilters([string $directory = null])

Parameter Type Description
$directory string The directory to look in for the filters.
isError()

Returns true if the object passed in is an error object.

boolean isError(mixed $data [, integer $code = null])

Parameter Type Description

$data mixed The object to inspect to see if it is an error.
$code integer The error code to look for in the object.
raiseError()

Raises an error with the specified code and optional message.

PEAR Error raiseError(integer $code [, string $msg = null])

Parameter Type Description

$code integer The code to use for the error.

$msg string The message that will be included in the new error.
staticGetProperty()

Returns the value of the given property without having an instance created of the Date Holidays
class.

mixed staticGetProperty(string $prop)

Parameter Type Description
$prop string The name of the property to return.
staticSetProperty()

Assigns the value of the given property without having an instance of the Date_Holidays
class created.

DATES AND NUMBERS

void staticSetProperty(string $prop, string $value)

Parameter Type Description
$prop string The name of the property to set.
$value string The value that the property should be set to.

Date_Holidays_Driver API

Date_Holidays_Driver Constructor

Don'’t use the constructor to create an instance of the driver—instead use the factory()
method on the Date_Holidays class.

Date Holidays Driver Date Holidays Driver()

addCompiledTranslationFile()

Makes the contents of the given file available to the driver.

boolean addCompiledTranslationFile(string $file, string $locale)

Parameter Type Description

$file string The name of the translation file.

$locale string The name of the locale for the translation.
addDriver()

Adds a driver.

void addDriver(object Date Holidays Driver $driver)

Parameter Type Description

$driver Date_Holidays_Driver A driver object that’s added to load holidays.

Note The Date_Holidays package is in alpha status, so some of the methods are only partially implemented.
As of the time of this writing, the addDriver () method is blank.

119

120

DATES AND NUMBERS

addTranslationFile()

Adds a file’s content. The information in the file is available for the specified locale.

boolean addTranslationFile(string $file, string $locale)

Parameter Type Description

$file string The name of the file to load.
$locale string The locale contained in the file.
getHoliday()

Returns a Date Holidays Holiday object that’s identified by the internal name.

Date Holidays Holiday getHoliday(string $internalName [, string $locale = null])

Parameter Type Description

$internalName string The internal designation for a holiday.

$locale string The locale to use when loading holiday information.
getHolidayDate()

Returns a Date that represents the given holiday name. The Date includes the month, day, and
year of the holiday. If an error occurs, the method returns PEAR_Error.

Date getHolidayDate(string $internalName)

Parameter Type Description
$internalName string An internal designation for the holiday.
getHolidayDates()

Returns an array of Date objects using the specified filter.

array getHolidayDates([Date Holidays Filter $filter = null])

Parameter Type Description

$filter Date_Holidays_Filter ADate Holidays Filter object to use when
retrieving the holidays.

DATES AND NUMBERS

getHolidayForDate()

Returns a Date Holidays Holiday object for the given date.

object getHolidayForDate(mixed $date [, string $locale = null]
[, boolean $multiple = false])

Parameter Type Description

$date mixed A string or object that contains a date.

$locale string The locale to use when loading the holiday information.
$multiple boolean If true, the method will load more than one holiday.

getHolidayProperties()

Returns an array of properties for the holiday identified by $internalName, or an empty array if
properties are found.

array getHolidayProperties(string $internalName [, string $locale = null])

Parameter Type Description

$internalName string The internal name for the holiday.

$locale string The locale to use when loading information about the holiday.
getHolidays()

Returns an array of Date_Holidays Holiday objects that match the specified filter, or a
PEAR_Error object if an error occurred.

array getHolidays([Date Holidays Filter $filter = null] [, string $locale = null])

Parameter Type Description
$filter Date_Holidays_Filter The filter to use when retrieving holiday information.
$locale string The name of the locale to use when loading infor-

mation about the holidays.

getHolidaysForDatespan()

Returns an array of Date_Holidays Holiday objects for the holidays that occur between the two
specified dates. If no holidays are found, then an empty array will be returned.

121

122 DATES AND NUMBERS

array getHolidaysForDatespan(mixed $start, mixed $end
[, Date Holidays Filter $filter = null]
[, string $locale = null])

Parameter Type Description

$start mixed The starting date of the time span.

$end mixed The end date of the time span.

$filter Date_Holidays_Filter The filter to use for loading holidays.

$locale string The locale to use when loading holiday
information.

getHolidayTitle()

Returns the title of the holiday.

string getHolidayTitle(string $internalName [, string $locale = null])

Parameter Type Description

$internalName string An internal designation for the holiday.

$locale string The name of the locale to use for holiday information.
getHolidayTitles()

Returns an array of holiday titles that match the specified filter.

array getHolidayTitles([Date Holidays Filter $filter = null]
[, string $locale = null])

Parameter Type Description
$filter Date_Holidays_Filter The filter to use when retrieving holiday titles.
$locale string The locale to use for holiday information.

getInternalHolidayNames()

Returns an array of internal holiday names for the driver that’s loaded.

array getInternalHolidayNames()

DATES AND NUMBERS

getISO3166Codes()
Returns an array of ISO 3166 codes for the holidays known by the driver that’s loaded.

array getIS03166Codes()

Note The Date_Holidays package is in alpha status, so some of the methods are only partially imple-
mented. As of the time of this writing, the get1S03166Codes () method simply returns an empty array.

getYear()

Returns the year for the current driver. When the factory loads the driver, you can specify a
year. The driver loads the holidays that occur during that year.

integer getYear()

isHoliday()

Returns true if the given date is a holiday, or PEAR_Error if an error occurs.

boolean isHoliday(mixed $date [, Date Holidays Filter $filter = null])

Parameter Type Description

$date mixed The date that’s being checked for holidays.
$filter Date_Holidays_Filter The filter to apply when checking the date.
removeDriver()

Removes the specified driver from the list of loaded drivers.

boolean removeDriver(Date Holidays Driver $driver)

Parameter Type Description

$driver Date_Holidays_Driver The driver to remove from the list of holiday drivers.

Note As of the time of this writing, the removeDriver () method is blank.

123

124

DATES AND NUMBERS

setLocale()

Allows you to set the locale for which the driver will find and name holidays.

void setlocale(string $locale)

Parameter Type Description
$locale string The name of the locale to use for holiday information.
setYear()

Sets the year for holidays that are found by the driver, rebuilding the holidays for the given year.

boolean setYear(integer $year)

Parameter Type Description

$year integer The year during which the holidays will occur. If 2003 is
specified, the methods for the driver will return holidays
that are specific to the year 2003.

Examples

Determining the Date of a US Holiday

This example demonstrates how to determine the dates for two US holidays in a particular
year. The first holiday is formatted to display the long month name and the date. The second
holiday is formatted to display the weekday on which the holiday falls.

<?php
/* Determining the date of a US holiday */

require_once 'Date/Holidays.php';

$holidays = 8Date Holidays::factory('USA', 2007, 'en EN');
if (Date_Holidays::isError($holidays)) {
die('Factory was unable to produce driver-object');

}

$mlkDay = &$holidays->getHoliday('mlkDay', 'en EN');
$date = $mlkDay->getDate();

echo $date->format("In %Y, Martin Luther King Day is on %B %d.%n");

DATES AND NUMBERS

$independenceDay = &$holidays->getHoliday('independenceDay', "en_EN");

$idDate = $independenceDay->getDate();
echo $idDate->format("In %Y, Independance Day is on a %A.%n");

7>

The output of this example is as follows:

In 2007, Martin Luther King Day is on January 15.
In 2007, Independance Day is on a Wednesday.

Determining If a Day Is a Holiday

Using a specific date, this example checks to see if the date is a holiday.

<?php
/* Determining if a day is a holiday */

require once 'Date/Holidays.php';

$holidays = &Date Holidays::factory('Christian', 2008, 'en EN');
if (Date Holidays::isError($holidays)) {
die('Factory was unable to produce driver-object');

}
$date = new Date('2008-12-25");

if ($holidays->isHoliday($date)) {
echo $date->format('%D is a holiday!%n');
} else {
echo $date->format('%#D is NOT a holiday!%n');

}

>

The output is as follows:

12/25/2008 is a holiday!

Getting the Holidays Between Two Dates

This example uses a range of dates to find out which holidays are within the date range. The
getTitle() method displays the title of the holiday, and the format() method displays the day

the holiday occurs.

125

126 DATES AND NUMBERS

<?php
/* Getting the holidays between two dates. */
require once 'Date/Holidays.php’;

$holidays = 8Date Holidays::factory('USA');
if (Date Holidays::isError($holidays)) {
die('Factory was unable to produce driver-object');

}
$holidays->setlocale('en EN');

$dates = $holidays->getHolidaysForDatespan('2006-04-01", '2006-08-01");
$limit = count($dates);

echo "Looking for holidays between '2006-04-01' and '2006-08-01':\n";
for ($i = 0; $i < $limit; $i++) {

$date = $dates[$i]->getDate();

printf("\t\"%s\" is on %s\n",

$dates[$i]->getTitle(),
$date->format("%B %d"));

>

The output of this example is as follows:

Looking for holidays between '2006-04-01' and '2006-08-01":
"Memorial Day" is on May 29
"Independence Day" is on July 04

Numbers Roman

The Numbers_Roman package, although smaller in APJ, is handy for making the translation
between Roman numerals and decimal numbers.

Common Uses

The Numbers_Roman package is useful for the following purposes:
 Interesting display of copyright dates
* Using Roman numerals in titles and text

e Parsing Roman numerals into decimal numbers

Related Packages

The following package found in this book is related to Numbers_Roman:

Numbers_Words

Dependencies

Numbers_Roman depends on the following packages.

Required Packages

None

Optional Packages

None

127

128

DATES AND NUMBERS

API

toNumber()

Converts a given string, expressed as a Roman numeral such as IV or XII, into a decimal
number such as 4 or 12.

integer toNumber(string $roman)

Parameter Type Description
$roman string A Roman numeral as a string.
toNumeral()

Converts a decimal number into a string that represents a Roman numeral; for example, 6 is
converted to VI.

string toNumeral(integer $num, [boolean $uppercase = true], [boolean $html = true])

Parameter Type Description
$num integer A decimal number, such as 10, 100, or 1211.
$uppercase boolean If true, the Roman numeral string that’s returned will be

in uppercase.

$html boolean If true, the string that is returned will use HyperText Markup
Language (HTML) formatting to place the bars above and
below the numbers.

Examples

Converting to Roman Numerals

This example shows how you can convert decimal numbers into Roman numerals, in this case
allowing you to be fancy with displaying a copyright notice by converting the year into a
Roman numeral.

DATES AND NUMBERS

<?php
/* Converting to Roman Numbers */

require_once 'Numbers/Roman.php’;
/* Getting fancy with turning years into Roman numerals. */
printf("Copyright (c) %s\n",

Numbers Roman::toNumeral(2006, true, false));

>

Following is the output of the example:

Copyright (c) MMVI

Converting Roman Numerals to Decimal Numbers

One of the authors of this book is not known for being a sports fanatic. This example shows
how to convert the Roman numerals, as used in the name of some famous sporting event in the
US, into a decimal number.

<?php
/* Convert Roman Numerals to numbers */

require_once 'Numbers/Roman.php’;
/* What was that Super Bowl, anyway? */

printf("Super Bowl XXXIV is number %s\n",
Numbers Roman: :toNumber ("XXXIV'));

>

Here’s the output of the preceding example:

Super Bowl XXXIV is number 34

129

Numbers Words

The Numbers_Words package converts decimal numbers into words.

Common Uses

You can use Numbers_Words for the following purposes:
* Converting a number such as 100 into its text equivalent: one hundred

¢ Converting currency into text

Related Packages

The following package in this book is similar to Numbers_Words:

Numbers_Roman

Dependencies

Numbers_Words depends on the following other packages.

Required Packages

None

Optional Packages

None

API

raiseError()

Raises a PEAR error with the specified message. For performance reasons, the PEAR. php file is
dynamically included in this method.

void raiseError(string $msg)

130

DATES AND NUMBERS

toCurrency()

Returns a string that represents the currency that’s passed as an argument to the method,
given the locale.

string toCurrency(float $num [, string $locale = 'en US']

[, string $integer curr = ''])
Parameter Type Description
$num float The currency expressed as a number, such as 1.50, 1,200. 50,
or 1,000.
$locale string The locale to use when interpreting the currency.
$integer_curr string A three-digit international currency code to use, as defined
by the ISO 4217 standard.

toWords()

Returns a string that represents the number in words.

string toWords(integer $num [, string $locale = 'en US'])

Parameter Type Description
$num integer The number to convert to words.
$locale string The name of the locale to use when assembling the words.

Examples

Converting Numbers into Words

This example demonstrates how to turn numbers into words.

<?php
/* Converting numbers to words */
require once 'Numbers/Words.php';

/* Print a bunch of different numbers out to see what they

* say...

*/
printf("%s\n", Numbers Words::toWords(1));
printf("%s\n", Numbers Words::toWords(10));
printf("%s\n", Numbers Words::toWords(100));
printf("%s\n", Numbers Words::toWords(1000));

131

132

DATES AND NUMBERS

printf("%s\n", Numbers Words::toWords(1002));
printf("%s\n", Numbers Words::toWords(1357));

>

The output of the example is as follows:

one
ten

one hundred

one thousand

one thousand two

one thousand three hundred fifty-seven

Converting Currency into Words

The example here shows how to turn numbers into words, using the toCurrency() method.

<?php
/* Converts currency to words */
require_once 'Numbers/Words.php';

printf
printf
printf
printf

"%s\n", Numbers Words::toCurrency(1.50));
"%s\n", Numbers Words::toCurrency(10.99));
"%s\n", Numbers Words::toCurrency(100.20));
"%s\n", Numbers Words::toCurrency(17999.99));

P~~~ o~

>

Here’s the output:

one dollar fifty cents

ten dollars ninety-nine cents

one hundred dollars twenty cents

seventeen thousand nine hundred ninety-nine dollars ninety-nine cents

