
113

■ ■ ■

C H A P T E R 4

Book Catalog Browsing

In this chapter, we’ll work through setting up the basic functionality of a book catalog from the
customer’s perspective. We’ll build the chapter around four user stories where Jill, George’s
book-hogging customer, plays the starring role.

For the Emporium book catalog, we will create a simple catalog page for the books, along
with pages that display details for individual titles. The interface also will need a way to search
for books by their titles and descriptions. We will use Ferret, a full-text search engine written in
Ruby, to supply this functionality. Additionally, we will create a latest books page and RSS feed,
so that Jill can follow what’s new at Emporium.

Getting the Book Catalog Requirements
If there’s one person keeping Emporium going, that’s Jill. Jill lives just a couple of blocks away
from the store. When she rushes through the door with her plasma-TV-sized goggles, George
knows that the day is saved.

However, Jill’s health is not as it used to be. Her visits have gotten fewer and fewer lately.
She would love to support George and buy a lot of new books, but it’s just too much effort for
her to come over daily. Jill is a smart lady, though, and she’s found out that this new thing
called the Internet can work as an intermediary between her and her beloved book supply.

7362.book Page 113 Tuesday, October 17, 2006 5:03 PM

114 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

To make Jill a happy online customer, George comes up with four user stories for this sprint:

• Browse books: Jill needs a way to browse the books in the shop. We will keep the list
really simple at this point, just letting her shuffle through the supply and find out about
new titles.

• View book details: After browsing through titles in the first story or getting a list of match-
ing titles in the second one, Jill needs a way to get specific information about a particular
title. As a former librarian, she is obsessed about knowing even the most mundane
details of every book she is thinking about buying.

• Search books: Sometimes Jill finds out about an interesting topic and wants to know
more about the subject. She needs to be able to write a few keywords and get a list of all
the titles that match her search.

• Get latest books: As a book addict, Jill needs a way to keep current about all new books.
She would like to find out about new titles with a single look on the Emporium site. What
would make her really happy, however, would be an RSS feed that she could follow on
her shiny white iBook without even visiting the website. That would leave her more time
for her real pleasure, perusing her precious tomes.

We will tackle these user stories in this chapter, one by one, using the already familiar
TDD method.

Implementing the Book Catalog Interface
To be able to really test browsing a list of titles, we need to have a number of books avail-

able for viewing. Therefore, we need to expand our authors.yml, publishers.yml, books.yml,
and authors_books.yml fixture files in test/fixtures. You can download the files from the
Source Code/Downloads section of www.apress.com.

As in the previous chapter, we’ll use integration tests for this sprint, because they work
well to exercise the book catalog browsing system from end to end. First, we’ll create a test stub
by using the Rails test generator:

$ script/generate integration_test BrowsingAndSearching

 exists test/integration/
 create test/integration/browsing_and_searching_test.rb

Again, we’ll delete the test_truth from the test file and replace it with our real test, as
shown in Listing 4-1.

7362.book Page 114 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 115

Listing 4-1. First Version of the Integration Test for the Book Catalog Interface

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 end

 private

 module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

7362.book Page 115 Tuesday, October 17, 2006 5:03 PM

116 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

In the test case, we create a DSL module, as in the previous chapter. We first test that
requesting "/catalog" works and that we get the default index template rendered. Then we
check that there is a list of books (laid out with an HTML definition list) on the page and that a
book called The Idiot exists in that list.

Our test fails magnificently, in plain old TDD way, so it’s time to implement the functionality.
First, we need to create the controller for the catalog. We’ll name it catalog so that it will

match the URL requested in the browse_site test method. Once again, use the familiar
script/generate command and give the needed action names (for all our projected user sto-
ries) as parameters.

$ script/generate controller Catalog index show search latest

 exists app/controllers/
 exists app/helpers/
 create app/views/catalog
 exists test/functional/
 create app/controllers/catalog_controller.rb
 create test/functional/catalog_controller_test.rb
 create app/helpers/catalog_helper.rb
 create app/views/catalog/index.rhtml
 create app/views/catalog/show.rhtml
 create app/views/catalog/search.rhtml
 create app/views/catalog/latest.rhtml

Implementing the Browse Books User Story
Now that we have the controller in place, we’re ready to begin with the Browse Books user story.

Modifying the Controller

At this point, we’re interested in only the index action and the corresponding view. Open
app/controllers/catalog_controller.rb, which was just created by the generator command.
Modify the index method so that it looks as follows:

def index
 @page_title = "Book List"
 @book_pages, @books = paginate :books,
 :per_page => 10,
 :include => [:authors, :publisher],
 :order => "books.id desc"
end

7362.book Page 116 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 117

In the index action, we first set the page title so that the layout file will pick it up and show it
in the headers of the resulting page. Additionally, the action contains a normal pagination call,
just as in Chapter 3. However, this time, we use the include parameter for the paginate call.

The include parameter is used in the ActiveRecord find method (which is used internally by
paginate) to make ActiveRecord build up a join query. This single SQL query will be used not only
to find the books, but also to fetch the associated authors and publishers from the database. If we
omitted the parameter, our code would end up calling a new SQL query each time we needed to
get the author or publisher details for a given book. In our case, it would result in 2n+1 (where n
is the number of books) queries instead of just one. When the site gets more traffic, that could
become a huge performance bottleneck.

■Note We can hear you ask, “Where does the 2n+1 come from?” The first query is the one where all the
books are fetched. Then, when we iterate over all the n books and call their authors and publisher meth-
ods, each call will result in an additional SQL query, resulting in two additional queries for each book. The
resulting amount of queries is thus 2 queries × n books + the original query, or 2n+1.

Modifying the View

Next, open app/views/catalog/index.rhtml and replace its contents with the following code.

<dl id="books">
 <% for book in @books %>
 <dt><%= book.title %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

<%= link_to 'Previous page', { :page => @book_pages.current.previous } if ➥

@book_pages.current.previous %>
<%= link_to 'Next page', { :page => @book_pages.current.next } if ➥

@book_pages.current.next %>

In the view, we iterate over all the books we got from the controller and show their titles,
authors, prices, page counts, and publishers. The pluralize helper will show the word “page”
in either singular or plural, depending on the value of book.page_count. In the end, we show
links to next and/or previous page in case there are more than ten books in the @books array.

7362.book Page 117 Tuesday, October 17, 2006 5:03 PM

118 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Running the Integration Test

Now that we have our simple browsing functionality implemented, we can run our test case.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
.
Finished in 0.514885 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

The test passes, but browsing is really not browsing if it involves only a single page. So, let’s
create another test case that checks that the pagination in our catalog works as expected. Make
the following changes to test/integration/browsing_and_searching_test.rb:

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 end

 private

 module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 end

7362.book Page 118 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 119

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 end
 end

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

In go_to_second_page, we first fetch the second catalog page. We then check that we get a
normal response and the correct template in return. Finally, we check that the first one of the
books in our books.yml fixture file is on this page, since the books are ordered in a descending
chronological order on the catalog page. Running the tests again confirms that the catalog
page is working as expected:

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
.
Finished in 0.110837 seconds.

1 tests, 7 assertions, 0 failures, 0 errors

Now that we have a working catalog page, it would be nice to make it the home page of the
whole book store. We already briefly mentioned Rails routes in Chapter 2, and now we’re going
to take advantage of them again. Open config/routes.rb and change the line for default root
url to look like this:

You can have the root of your site routed by hooking up "
-- just remember to delete public/index.html.
map.connect ", :controller => "catalog"

This means that all the requests for the root url are routed to the default action (index) of
CatalogController.

7362.book Page 119 Tuesday, October 17, 2006 5:03 PM

120 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Implementing the View Book Details User Story
Having a catalog page for a series of books is nice, but it’s not suitable for excruciating details
about every item. Therefore, the next thing for us to do is to implement a page for individual
titles. As always, we start by writing a test for this story.

We already have a test case, so we can just extend that. In test/integration/
browsing_and_searching_test.rb, we’ll add another chapter to the story of Jill, right
below test_browsing_the_site:

def test_getting_details
 jill = enter_site(:jill)
 jill.get_book_details_for "Pride and Prejudice"
end

Then we add a new method to our BrowsingTestDSL module to keep the test code clean:

def get_book_details_for(title)
 @book = Book.find_by_title(title)
 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
end

The get_book_details_for method simply fetches a book with the given name from the
database, then requests the corresponding show page and checks that both the book title and
the names of the authors are correctly displayed on the resulting page.

When we created CatalogController, we specified that we want to have an action
called show at hand. Therefore, we already have a stub method show in app/controllers/
catalog_controller.rb and a pretty much empty view file app/views/catalog/show.rhtml.
Let’s now add some flesh around these bones.

7362.book Page 120 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 121

Modifying the Controller

Implementing the show action in CatalogController is a simple two-liner. Add the following to
app/controllers/catalog_controller.rb:

def show
 @book = Book.find(params[:id]) rescue nil
return render(:text => "Not found", :status => 404)➥

unless @book
@page_title = @book.title

end

All we do is to assign the @book instance variable with the book that matches the id we get
from the browser. If the book is not found, we show a very simple 404 Not Found page. Then
we put the title of the book in the @page_title instance variable to make it show in the layout.

Modifying the View

In the view file, we’ll show the details of the book at hand (remember that the book title is
shown by the layout file inside an h1 element). Add the following to app/views/catalog/
show.rhtml:

<h2>by <%= @book.authors.map{|a| a.name}.join(", ") %></h2>
<%= image_tag url_for_file_column(:book, :cover_image) ➥

 unless @book.cover_image.blank? %>
<dl>
 <dt>Price</dt>
 <dd>$<%= sprintf("%0.2f", @book.price) -%></dd>
 <dt>Page count</dt>
 <dd><%= @book.page_count -%></dd>
 <dt>Publisher</dt>
 <dd><%= @book.publisher.name %></dd>
 <dt>Blurb</dt>
 <dd><%= @book.blurb %></dd>
</dl>

<p><%= link_to "Back to Catalog", :action => "index" %></p>

7362.book Page 121 Tuesday, October 17, 2006 5:03 PM

122 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Now the view will show the names of all the authors of a book separated by a comma. We
also show the cover image of the book if one has been added, and other details of the book. We
run the test again, and see that everything works just fine.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
..
Finished in 0.231862 seconds.

2 tests, 11 assertions, 0 failures, 0 errors

Figure 4-1 shows a book detail page in action.

Figure 4-1. Book detail page

Adding Links

Now that we have pages for individual books, it would be a good idea to link to them from the
catalog list page. Let’s make sure that a link exists for each book on the catalog/index page. We
create a separate method for checking the links, and then call that method from both the

7362.book Page 122 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 123

browse_index and go_to_second_page methods. Add the following new method and calls for it
to the BrowsingTestDSL module in test/integration/browsing_and_searching_test.rb:

module BrowsingTestDSL
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 check_book_links
 end

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 check_book_links
 end

 def get_book_details_for(title)
 @book = Book.find_by_title(title)
 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
 end

 def check_book_links
 for book in assigns(:books)
 assert_tag :tag => "a", :attributes =>
 { :href => "/catalog/show/#{book.id}"}
 end
 end
end

7362.book Page 123 Tuesday, October 17, 2006 5:03 PM

124 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

The next thing to do is to create the links on the index page. Open app/views/catalog/
index.rhtml and add the highlighted code:

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

Run the tests again. See for yourself the results in Figure 4-2, and bathe in the glory of hav-
ing implemented yet another user story.

Figure 4-2. Catalog list page with links

7362.book Page 124 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 125

Implementing the Search Books User Story
An online bookstore, or any other e-commerce site for that matter, would be nothing without
search functionality. For simple cases and low loads, it would be enough to just create SQL
SELECT queries from the search terms to find matching items. However, when the load gets
higher and there is more than one table involved in the search, it is worthwhile to use a real full-
text search engine for the search. In this chapter, we will use a full-text engine written in Ruby
called Ferret (http://ferret.davebalmain.com/trac).

Using the Ferret Search Engine

Ferret is open source and uses the MIT license, so it should be a safe choice for any kind of
Rails project. There are a couple of other engines available (notably Hyper Estraier and the
acts_as_searchable Rails plugin that uses it), but we’ll use Ferret in this chapter for several
reasons:

• Using the acts_as_ferret Rails plugin makes integrating Ferret with Rails applications
really simple.

• Ferret is a full port of the more famous Java search engine Apache Lucene (http://
lucene.apache.org/), supporting its whole API. That makes Ferret an easy choice for
former Java developers.

• Ferret is reasonably fast, even though it’s written in a scripting language. Also, there are
versions of Ferret where parts or all of the code are written in C, making it suitable for
even the most challenging situations.

Installing Ferret is as easy as a single command:

$ sudo gem install ferret

The next step is to install the acts_as_ferret plugin. We could use Ferret directly, but
why duplicate proven and tested code, especially since using the plugin also makes our own
code a lot cleaner and less error-prone? You can install the plugin with the normal Rails plugin
command:

$ script/plugin install ➥
svn://projects.jkraemer.net/acts_as_ferret/trunk/plugin/acts_as_ferret

A /home/george/projects/emporium/vendor/plugins/acts_as_ferret
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/LICENSE
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/rakefile
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/init.rb
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/lib
A /home/george/projects/emporium/vendor/plugins/ ➥

acts_as_ferret/lib/acts_as_ferret.rb
A /home/george/projects/emporium/vendor/plugins/acts_as_ferret/README
Exported revision 59.

7362.book Page 125 Tuesday, October 17, 2006 5:03 PM

126 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Now that both Ferret and acts_as_ferret are installed, the only thing we need to make our
books searchable is one line in app/models/book.rb:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 acts_as_ferret :fields => [:title, :author_names]
 # lots of omitted code

end

With that single line, we have made it possible to do fast searches on books according to
their titles and authors. acts_as_ferret now intercepts all create, update, and delete opera-
tions of the Book class and updates its full-text index accordingly.

But wait a minute! There is no attribute author_names in the books table. That is correct. For-
tunately, acts_as_ferret can index even objects’ instance method values, so we’ll add a method
called author_names to the Book model class. Change app/models/book.rb as shown here:

class Book < ActiveRecord::Base
 has_and_belongs_to_many :authors
 belongs_to :publisher

 acts_as_ferret :fields => [:title, :author_names]
 file_column :cover_image

 validates_length_of :title, :in => 1..255
 validates_presence_of :publisher
 validates_presence_of :authors
 validates_presence_of :published_at
 validates_numericality_of :page_count, :only_integer => true
 validates_numericality_of :price
 validates_format_of :isbn, :with => /[0-9\-xX]{13}/
 validates_uniqueness_of :isbn

 def author_names
 self.authors.map do |a|
 a.name
 end.join(", ") rescue ""
 end
end

7362.book Page 126 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 127

The author_names method iterates over all of the authors for a given book and returns their
names separated by a comma. If there are no authors, it returns an empty string to avoid data
type problems in the indexing code.

acts_as_ferret stores its indices in index/[environment] inside your Rails application
directory, so your tests won’t affect the indices used in development and production. That said,
let’s create a unit test for the Book class to make sure that the search works correctly. Open
test/unit/book_test.rb and paste the following code after the existing tests:

def test_ferret
 Book.rebuild_index

 assert Book.find_by_contents("Pride and Prejudice")

 assert_difference Book, :count do
 book = Book.new(:title => 'The Success of Open Source',
 :published_at => Time.now, :page_count => 500,
 :price => 59.99, :isbn => '0-674-01292-5')
 book.authors << Author.create(:first_name => "Steven", :last_name => "Weber")
 book.publisher = Publisher.find(1)
 assert book.valid?

book.save

 assert_equal 1, Book.find_by_contents("Open Source").size
 assert_equal 1, Book.find_by_contents("Steven Weber").size
 end
end

In the beginning of the test, we make sure that the Ferret index is up-to-date. Rails unit
tests empty the test database before each test run, but the same doesn’t hold true for the index.
Therefore it’s better to rebuild it so that we can be sure that we always have a similar index
before we start running the tests.

Next, we use the class method Book.find_by_contents to search for a book that has “Pride
and Prejudice” in either its title or authors. The result should be positive because there is a book
with that name in the fixtures we created at the beginning of this chapter.

find_by_contents is a class method created automatically by acts_as_ferret. It is the work-
horse of the plugin, taking as its parameters a string of search terms, and returning an array of
zero or more objects, just like the normal ActiveRecord find(:all) and find_all_by_* methods.

The last part of the test case tests that a new book is correctly added to the index and is
found when searched. We have put this code inside an assert_difference block, just as we did
in Chapter 2, to make sure that the book is also saved to the database. We run the test and see
that our search engine is working like a dream.

Now that our Book model supports fast search, it’s time to implement a search interface for
our bookstore.

7362.book Page 127 Tuesday, October 17, 2006 5:03 PM

128 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Updating the Integration Test

We start by extending our integration test to span searching, too. We do this by adding a new
method, searches_for_tolstoy, to the BrowsingTestDSL module in test/integration/
browsing_and_searching_test.rb, as shown in Listing 4-2.

Listing 4-2. Test Method for Book Searches

require "#{File.dirname(__FILE__)}/../test_helper"

class BrowsingAndSearchingTest < ActionController::IntegrationTest
 fixtures :publishers, :authors, :books, :authors_books

 def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.searches_for_tolstoy
 end

 def test_getting_details
 jill = enter_site(:jill)
 jill.get_book_details_for "Pride and Prejudice"
 end

 private

 module BrowsingTestDSL
 include ERB::Util
 attr_writer :name

 def browse_index
 get "/catalog"

 assert_response :success
 assert_template "catalog/index"
 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 assert_tag :tag => "dt", :content => "The Idiot"
 check_book_links
 end

7362.book Page 128 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 129

 def go_to_second_page
 get "/catalog?page=2"
 assert_response :success
 assert_template "catalog/index"
 assert_equal Book.find_by_title("Pro Rails E-Commerce"),
 assigns(:books).last
 check_book_links
 end

 def get_book_details_for(title)
 @book = Book.find_by_title(title)

 get "/catalog/show/#{@book.id}"
 assert_response :success
 assert_template "catalog/show"

 assert_tag :tag => "h1",
 :content => @book.title
 assert_tag :tag => "h2",
 :content => "by #{@book.authors.map{|a| a.name}}"
 end

 def searches_for_tolstoy
 leo = Author.find_by_first_name_and_last_name("Leo", "Tolstoy")

 get "/catalog/search?q=#{url_encode("Leo Tolstoy")}"
 assert_response :success
 assert_template "catalog/search"

 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => leo.books.size, :only =>
 {:tag => "dt"}}

 leo.books.each do |book|
 assert_tag :tag => "dt", :content => book.title
 end
 end

 def check_book_links
 for book in assigns(:books)
 assert_tag :tag => "a", :attributes =>
 { :href => "/catalog/show/#{book.id}"}
 end
 end
 end

7362.book Page 129 Tuesday, October 17, 2006 5:03 PM

130 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

 def enter_site(name)
 open_session do |session|
 session.extend(BrowsingTestDSL)
 session.name = name
 yield session if block_given?
 end
 end
end

Our new test method makes Jill search for Leo Tolstoy with a search form and checks that
the resulting result list will have exactly as many books as Leo has provided the shop, namely
two. We use the url_encode method to escape white space from the search string. It is provided
by the ERB::Util library, so we need to require it at the beginning of our module. Last, we test
that the books in the resulting list have the correct names by going through all the books writ-
ten by Leo and checking that there is a dt element containing the book’s title.

Creating a Search Form Template

Now that we have the integration test made, we can start implementing the thing for real. We
first create a simple search form template. Save the following code in app/views/catalog/_
search_box.rhtml:

<%= form_tag({:action => "search"}, {:method => "get"}) %>
<%= text_field_tag :q %>
<%= submit_tag "Search" %>
<%= end_form_tag %>

Saving it as a partial makes it possible for us to easily embed the search form in other
pages.

In the code, we create a simple form that points to the search action and uses the get
method. Using get instead of post will make the query string be a part of the URL. That way, Jill
can circulate a link to her search results to all of her friends. Our form has only two elements: a
text field q and the submit button.

In the actual search template, we display the partial using the render method. Save the
following line to app/views/catalog/search.rhtml:

<%= render :partial => "search_box" %>

7362.book Page 130 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 131

Modifying the Controller

Next, open app/controllers/catalog_controller.rb and implement the search action.

def search
 @page_title = "Search"
 if params[:commit] == "Search" || params[:q]
 @books = Book.find_by_contents(params[:q].to_s.upcase)
 unless @books.size > 0
 flash.now[:notice] = "No books found matching your criteria"
 end
 end
end

In the search action, we first specify the title for the page. Then we continue in two differ-
ent directions, depending on whether the search form was already submitted or the search
page was just requested normally. We do the separation by checking if either the value of a
query parameter commit is "Search" or the query variable q is specified. From the _search.rhtml
partial view, q contains the search text that was submitted by the search form.

If our code determines that the form has been submitted, it executes the search using the
find_by_contents class method and the query parameter q. Furthermore, if there are no books
found with the terms, it sets the flash notice to show a message to the user.

Modifying the View

Now we need to extend our search view so that it shows either the books found or the “Not
found” notice. Add the following to app/views/catalog/search.rhtml:

<%= render :partial => "search_box" %>

<% if @books %>
<p>Your search "<%= params[:q] %>" produced
<%= pluralize @books.size, "result" %>:</p>
<%= render(:partial => "books") %>
<% end %>

If the search was successful, we also tell how many hits there were. We use the pluralize
helper to show the number of books, and the word “result” in singular or plural depending on
the count. Last, we render a partial to show a list of matching books.

7362.book Page 131 Tuesday, October 17, 2006 5:03 PM

132 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

We don’t have a partial view called books yet, so we need to create it. In the index action,
we also showed a list of books, so it is a good place to extract the list. Move the following code
from app/views/catalog/index.rhtml to app/views/catalog/_books.rhtml.

<dl id="books">
 <% for book in @books %>
 <dt><%= link_to book.title.t, :action => "show", :id => book %></dt>
 <% for author in book.authors %>
 <dd><%= author.last_name %>, <%= author.first_name %></dd>
 <% end %>
 <dd><%= pluralize(book.page_count, "page") %></dd>
 <dd>Price: $<%= sprintf("%.2f", book.price) %></dd>
 <dd><small>Publisher: <%= book.publisher.name %></small></dd>
 <% end %>
</dl>

Now we can just replace the moved code in index.rhtml with a similar render call that we
have in the end of the search.rhtml template, and that’s it! We have a functioning search form
in the bookstore.

If you have already added some books to your development system, you can point your
browser to /catalog/search on your development site and see the result for yourself, as shown
in Figure 4-3. (First, you will need to restart your web server, so it will pick up the introduced
Ferret code.)

Figure 4-3. Search interface

7362.book Page 132 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 133

We also need a link to our search functionality, so add the following to app/views/catalog/
index.rhtml:

<p><%= link_to "Search", :action => "search" %></p>

<%= render(:partial => "books") %>

<%= link_to 'Previous page'.t, { :page => @book_pages.current.previous } if ➥
@book_pages.current.previous %>
<%= link_to 'Next page'.t, { :page => @book_pages.current.next } if ➥
@book_pages.current.next %>

The search functionality is now implemented

Implementing the Get Latest Books User Story
So far, we have created a book catalog that lets Jill browse and search books, and see their
details. The last part of the sprint is to implement the ultimate desire of a book-lover: a list
of the latest books. We’ll implement this feature both as a normal web page and as an RSS feed,
so that Jill can skip the step of using a browser altogether. Again, we’ll start by writing a test for
the latest books page.

Updating the Integration Test

Add another method to the BrowsingTestDSL module in test/integration/
browsing_and_searching_test.rb:

def views_latest_books
 get "/catalog/latest"
 assert_response :success
 assert_template "catalog/latest"

 assert_tag :tag => "dl", :attributes =>
 { :id => "books" },
 :children =>
 { :count => 10, :only =>
 {:tag => "dt"}}
 Book.latest.each do |book|
 assert_tag :tag => "dt", :content => book.title
 end
 check_book_links
end

7362.book Page 133 Tuesday, October 17, 2006 5:03 PM

134 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

You can see that the method is similar to browse_index and go_to_second_page, but it has
a different URL and desired template. The only thing special here is that we iterate over the
Book objects returned by Book.latest and check that there is a dt element for each book. To
make this work, we first need to create a latest class method for our Book class. Add the follow-
ing method to app/models/book.rb:

def self.latest
 find :all, :limit => 10, :order => "books.id desc",
 :include => [:authors, :publisher]
end

We could have used the find method as such in our test. However, we’re going to need the
exact same code later, so it’s a good idea to wrap it inside a class method. We also need to add
a call to our new method in the actual test case:

def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.get_book_details_for "Pride and Prejudice"
 jill.searches_for_tolstoy
 jill.views_latest_books
end

Now that we have a (failing, but you guessed that) test in place, the next thing to do is to
update the controller.

Modifying the Controller

Open app/controllers/catalog_controller.rb and fill the latest action with content:

def latest
 @page_title = "Latest Books"
 @books = Book.latest
end

There’s nothing special in there. We just set the page title and then use the Book.latest
class method we just created to fetch the ten latest books.

7362.book Page 134 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 135

Modifying the View

The view file, app/views/catalog/latest.rhtml, is even simpler:

<%= render :partial => "books" %>

We can fire our test case and see that everything works oh so smoothly.

$ ruby test/integration/browsing_and_searching_test.rb

Loaded suite test/integration/browsing_and_searching_test
Started
..
Finished in 0.478978 seconds.

2 tests, 56 assertions, 0 failures, 0 errors

We double-check in the browser to see the page shown in Figure 4-4. Filled with self-
confidence, we rush on to the final task of this code sprint.

Figure 4-4. Latest books page

7362.book Page 135 Tuesday, October 17, 2006 5:03 PM

136 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Creating an RSS Feed
Creating an RSS feed in Rails is painstakingly easy. RSS feeds are essentially just XML files
served like normal HTML pages. Rails supports three kinds of template files out of the box. You
are already familiar with the HTML templates with the .rhtml suffix. The second type is the
Builder XML template, with an .rxml suffix, which we will use for this case. The third type? You
will learn about that in the next chapter, and boy will that be fun. But first we’ll create an RSS
feed for Jill.

Once more, we’ll create another method in our integration test. Add the following method
to the BrowsingTestDSL module in test/integration/browsing_and_searching_test.rb:

def reads_rss
 get "/catalog/rss"
 assert_response :success
 assert_template "catalog/rss"
 assert_equal "application/xml", response.headers["type"]

 assert_tag :tag => "channel",
 :children =>
 { :count => 10, :only =>
 {:tag => "item"}}
 Book.latest.each do |book|
 assert_tag :tag => "title", :content => book.title
 end
end

The method follows the familiar scheme. However, this time we also check that the
response type is XML instead of HTML. It is also worth noting that we can use the same
assert_tag methods here that we used for HTML documents, even though the output is XML.

Just as before, we call our new method from the test_browsing_the_site test method:

def test_browsing_the_site
 jill = enter_site(:jill)
 jill.browse_index
 jill.go_to_second_page
 jill.get_book_details_for "Pride and Prejudice"
 jill.searches_for_tolstoy
 jill.views_latest_books
 jill.reads_rss
end

7362.book Page 136 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 137

Implementing the controller method is straightforward. We use the same information as
in the latest action, so we can call it the same way we call any other method. After that, we just
render our action normally, only this time, we don’t want to use the layout file (because we’re
rendering XML).

def rss
 latest
 render :layout => false
end

The view file is where the most difference between a normal HTML page and a Rails-
powered RSS feed lies. This time, we don’t use the standard .rhtml templates, but rather .rxml
templates powered by the Builder library. With Builder, XML output is specified using nested
code blocks. For our RSS feed, we’ll create the app/views/catalog/rss.rxml file, as shown in
Listing 4-3.

Listing 4-3. app/views/catalog/rss.rxml

xml.instruct! :xml, :version=>"1.0", :encoding=>"UTF-8"

xml.rss("version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/") do
 xml.channel do
 xml.title @page_title
 xml.link(url_for(:action => "index", :only_path => false))
 xml.language "en-us"
 xml.ttl "40"
 xml.description "Emporium: Books for people"

 for book in @books
 xml.item do
 xml.title(book.title)
 xml.description("#{book.title} by #{book.author_names}")
 xml.pubDate(book.created_at.to_s(:long))
 xml.guid(url_for(:action => "show", :id => book, :only_path => false))
 xml.link(url_for(:action => "show", :id => book, :only_path => false))
 end
 end
 end
end

7362.book Page 137 Tuesday, October 17, 2006 5:03 PM

138 C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G

Every code block started by an xml.tag command in a Builder template will result in a
<tag> element in the output. Thus, the output of the code in Listing 4-3 would look something
like this:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel>
 <title>Latest Books</title>
 <link>http://0.0.0.0:3000/catalog</link>
 <language>en-us</language>
 <ttl>40</ttl>
 <description>Emporium: Books for people</description>

 <item>
 <title>The Idiot</title>
 <description>The Idiot by Fyodor Dostoyevsky</description>
 <pubDate>April 26, 2006 20:18</pubDate>
 <guid>http://0.0.0.0:3000/catalog/show/17</guid>
 <link>http://0.0.0.0:3000/catalog/show/17</link>
 </item>

 ... more items ...

 </channel>
</rss>

Note that we can use all the normal Rails helper methods, like url_for, in .rxml templates,
just as in normal .rhtml views. However, because we’re not creating the XML code by hand, we
can be sure that the output is always well-formed XML.

Running the integration test reveals that everything works fine. Encouraged, we open
http://localhost:3000/catalog/rss in a browser that supports RSS feeds (such as Safari on
Mac OS X or Firefox on other platforms) and show George how the feed functionality works for
Jill, as shown in Figure 4-5. George is excited, and we can pat ourselves on the back. Another
sprint is completed.

7362.book Page 138 Tuesday, October 17, 2006 5:03 PM

C H A P T E R 4 ■ B O O K C A T A L O G B R O W S I N G 139

Figure 4-5. Working RSS feed

Summary
In this chapter, we implemented the basic functionality of the online bookstore that is visible
to a normal user like Jill. This consisted of four user stories: browsing the list of books, search-
ing books, visiting pages for individual books, and seeing lists of latest books in the store in
both a web page and an RSS form.

During the course of the chapter, we showed you how to use the include parameter in
ActiveRecord finder methods to avoid unnecessary SQL queries and use layouts to avoid
repeating view code. We also integrated the Ferret full-text search engine with our Rails appli-
cation using the acts_as_ferret plugin. Finally, we created RSS feeds using Builder XML
templates, which saved us a lot of time. In the next chapter we will create a shopping cart for Jill
to fill.

7362.book Page 139 Tuesday, October 17, 2006 5:03 PM

7362.book Page 140 Tuesday, October 17, 2006 5:03 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

