CHAPTER 3

Ogre Design Overview

A quick glance at the list of classes and methods provided by Ogre can quickly make your eyes
cross. Luckily, you do not have to deal with Ogre on that basis. Ogre is an object-oriented class
library, and its sophisticated hierarchical design allows you to deal with it on as simple or

involved a basis as you need. It is possible to create a running Ogre-based application in

a dozen lines of code or less, but you don't get to see much along the way, and you are restricted
by several assumptions made on your behalf.

Design Philosophy

Ogre provides an object-oriented method of access to what inherently is procedural data
processing: rendering simple geometric primitives to a render target (usually a screen buffer
displayed on a CRT or LCD device). Traditionally, when using OpenGL or Direct3D to render
your scenes and objects, you would follow a series of steps—procedural processing flow, in
other words: set up render state with various API calls, send geometry information with vari-
ous API calls, and tell the API and GPU to render your geometry with another API call. Lather,
rinse, repeat until a frame is fully rendered, then start it all over for the next frame.

With an object-oriented approach to rendering geometry, the need to deal with geometry
is removed entirely, and you can instead deal with your scene in terms of the objects that make
up the scene: movable objects in the scene, static objects that make up the world geometry,
lights, cameras, and so on. No 3D API calls needed; just place the objects in the scene, and
Ogre takes care of the messy details. Furthermore, you get to manipulate the objects in your
scene using far more intuitive methods than managing transformation matrices: it is simpler
to instruct an object to rotate and translate in terms of degrees (or radians) and world units
(with local-, world-, or parent-space qualifiers) than it is to try to work up the proper transfor-
mation matrix that makes all the rotations and translations happen. In short, you can deal with
objects, their properties, and intuitive methods of manipulation instead of trying to manage
them in terms of vertex lists and triangle lists and rotation matrices and so on.

Ogre provides an object-oriented framework that involves all parts of the rendering process
in the object model. Render systems abstract the complexities of the underlying 3D APIs (OpenGL
and Direct3D, for example) into a common interface to their functionality; scene graph func-
tionality is abstracted into another interface that allows simple plug-and-play usage of different
scene graph management algorithms; all renderable objects in a scene, whether movable or
static, are abstracted by a common interface that encapsulates the actual rendering operations
such as techniques and their contained passes; movable objects are represented in the scene
by a common interface that allows robust methods of manipulation.

37

38

CHAPTER 3 © OGRE DESIGN OVERVIEW

Design Highlights

For the experienced developer, the architecture of Ogre might be self-evident. For those new
to object-oriented design, or new to software engineering in general, design decisions in Ogre
might make a bit less sense. Let’s go over some of the design features at a high level.

Intelligent Use of Common Design Patterns

Ogre makes good use of many useful and common design patterns. Design pattern simply
refers to a common and well-tested solution for a particular type of software problem, and the
name “design pattern” more or less was immortalized in the popular “Gang of Four” book,
Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson,
and Vlissides (Addison-Wesley, 1995).

Design patterns in Ogre are employed to enhance the usability and flexibility of the library.
For example, Ogre is rather eager to inform the application of everything it does via the Observer
pattern, in which client code registers to receive notifications of events or state changes within
various parts of Ogre (such as the ubiquitous FramelListener in the Ogre demo applications, which
is how the application is notified of frame-started and frame-ended events). The Singleton
pattern is used to enforce the notion of a “single” instance of a class, and the Iferator pattern is
used to walk the contents of a data structure. The Visitor pattern is used to enable operations
to be performed on an object, without having to alter the object (for instance, all nodes in a scene
graph). The Fagade pattern is used to consolidate access to commonly used operations, imple-
mented in many different subsystems, within a single class interface. And finally, the Factory
(and cousin, Abstract Factory) are widely used for creation of concrete instances of abstract
interfaces.

Scene Graph Decoupled from Scene Contents

The decision to decouple the scene graph from the scene contents was probably one of the
most brilliant, yet underappreciated, design features in the entire Ogre project. This is such
a simple design to understand, yet one of the hardest to comprehend for those used to more
“traditional” scene graph designs.

Traditional designs (as used in many commercial and open source 3D engines) typically
couple the scene contents and the scene graph in an inheritance hierarchy that forces the
subclassing of content classes as types of scene nodes. This turns out to be an incredibly poor
design decision in the long run, as it makes it virtually impossible to change graph algorithms
later, without forcing a lot of code changes at the leaf-node level if the base node interfaces
change at all (and they usually do). Furthermore, this “all nodes derive from a common node
type” design is, in the long run, inherently inflexible and nonextensible (at least from a main-
tenance standpoint): functionality invariably is forced up the inheritance hierarchy to the root
nodes, and myriad subclasses are required, and typically end up as minor adjustments to base
functionality. This is, at the very least, a poor object-oriented design practice, and those who
adopt this design philosophy almost always end up wishing they had done it a different way in
the beginning.

Ogre did. First of all, Ogre operates on its scene graph(s) at an interface level; Ogre makes
no assumption as to what sort of graph algorithm is implemented. Instead, Ogre operates on
the scene graph only through its signature (its methods, in other words) and is completely igno-
rant of the underlying graph algorithm implementation. Second, Ogre’s scene graph interface
is concerned only with the graph structure. Nodes do not contain any inherent content access

CHAPTER 3

OGRE DESIGN OVERVIEW

or management functionality. Instead, Ogre pushes that down into what it calls renderable,

from which all bits of geometry in your scene (movable or otherwise) are derived. The render-
ing properties (also known as materials) for these renderables are contained in Entity objects,
which in turn contain one or more SubEntity objects. These subentities are the actual render-
able objects. See Figure 3-1 for a visual description of the relationship between the scene graph
structure and contents. Note that even the scene nodes are attached to the scene graph; the
scene graph does not manipulate the nodes’ state directly.

Scene Graph

(attached)

Scene Node

(attached)

Scene Node

Movable
Object

(implements)

Movable
Object

(contains)

Subentity

(implements)

A

Renderable

Figure 3-1. Relationship between the scene graph structure and content management objects in Ogre

All of this geometry and these rendering properties are made available to the scene graph
via MovableObject. Instead of subclassing the movable object from a scene node, it is attached
to the scene node. This means that scene nodes can exist without anything renderable actually
attached to them, if your application has a need for that. It also means that extending, chang-
ing, refactoring, or otherwise altering the scene graph implementation has no impact on the
design and implementation of the implementation and interface of the content objects; they
are entirely independent of the scene graph. The scene graph interface can even change com-

Subentity

A

Renderable

Scene Node
S
g
E
Movable <
Object @
2
7'y 2

Entity

Subentity =2
A E
=]
&
[a'=
Renderable S
=]
&
jun)

pletely and the content classes would not be affected in the least.

39

40

CHAPTER 3 © OGRE DESIGN OVERVIEW

The reverse is also true: the scene graph has no need to know about any changes to your
content classes, so long as they implement a simple interface that the scene graph does know
about. Ogre even allows you to attach arbitrary “user-defined” content to scene nodes, so if
you want to carry around, say, audio cue information in your scene graph, you can do that as
well. You do not need to subclass anything, you simply need to implement a very simple inter-
face on your custom data object in order to attach it to the scene graph nodes.

This decoupling has turned out to be one of the best, yet sometimes most often misunder-
stood, design decisions in the history of the library.

Plug-In Architecture

Ogre is designed to be extensible. Contrary to many other rendering API designs, Ogre does not
force any particular implementations on the user. Ogre accomplishes this through a contract-
based design, which is a fancy way of saying that Ogre is designed as a set of cooperating
components that communicate with each other through a known interface.

This allows incredible freedom in creating new or different implementations of various bits
of functionality. For example, Ogre itself deals with its scene graph at an interface level, which
means that the user is not limited to one or two choices of scene graph algorithm, choices made
by the Ogre developers. Instead, scene graph implementations can be “plugged into” the Ogre
library as needed, as discussed in the previous section. If a kd-tree implementation is required
for a particular application, then it is simply a matter of creating a kd-tree scene graph that
conforms to the interface defined by Ogre and making that scene graph plug-in available to
Ogre (and therefore your application).

The same is true for all pluggable functionality: file archives and render systems are the
most common forms of plug-in, but alternate functionalities such as the Ogre Particle system
are also implemented as plug-ins.

One of the most attractive aspects of plug-ins is the fact that they do not require rebuilding
of the Ogre library in order to be incorporated. Ogre provides a simple means of loading
plug-in libraries at runtime and initializing them in order to expose their contained classes
and functionality. Pluggable functionality supports a registration mechanism that allows an
entirely code-free plug-in incorporation process. Each pluggable mechanism defines its own
particular syntax or protocol for loading plug-ins at runtime, but typically it is simply a matter
of telling Ogre “this is what I am called” or “this is what sort of resource I am here to handle”
and providing a reference or pointer to the main class within the plug-in.

Hardware-Accelerated Renderer Support

Ogre is designed, on purpose, to support only hardware-accelerated graphics rendering. This
means that Ogre requires a graphics coprocessor (such as those made by NVIDIA and ATI); direct
software rendering is not an option. This design decision allows Ogre the freedom to work, in
an optimized fashion, with hardware buffers, which are areas of memory shared between the
graphics hardware and the application (Ogre).

This decision has a great impact on Ogre’s capabilities. Since it is a hardware-based
rendering API, it can take full advantage of all hardware acceleration capabilities, including
programmable shaders. The integration between the programmable graphics pipeline and
Ogre puts Ogre on the same level of capability as most commercial 3D rendering engines:
since much of the “fancy” graphics processing in modern 3D applications and games is done
via the programmable GPU pipeline, anything that, say, the Unreal Engine or CryENGINE can

CHAPTER 3 © OGRE DESIGN OVERVIEW

do, Ogre can do. The bits of additional functionality not present in Ogre (for example, direct
engine support for advanced global illumination solutions such as Ambient Occlusion or
Precomputed Radiance Transfer) still have to be done by the application. However, since com-
putation of many advanced algorithms is still done “offline” at this time (not in real time, in other
words), this is hardly a limiting factor.

Currently, Ogre offers two choices for render system support: Direct3D 9 and OpenGL.
Given that there are no other hardware acceleration APIs of any consequence (on the plat-
forms currently supported by Ogre), it is likely that for the foreseeable future, Direct3D and
OpenGL will remain the only two render system options supported within Ogre.

Flexible Render Queue Architecture

Ogre’s design takes a somewhat novel approach to the problem of ordering the rendering of
various parts of a scene. The standard process (at a coarse, high level) typically works as follows:
render terrain and/or world geometry, render movable objects, render effects, render overlays,
then render backgrounds and/or skyboxes. However, as typically implemented (meaning, as

a monolithic procedural block), this process is difficult to change if needed. For example, your
application might need to render static world geometry in multiple “layers,” interleaved with
3D scene objects, perhaps in a “fighting” game like Mortal Kombat or Street Fighter. Or perhaps
you need to render various bits of geometry “out of order,” so to speak, to create certain effects
(such as with real-time shadowing algorithms). It is difficult in many cases to alter the order of
rendering, or to effect “conditional rendering” directly in the main loop; the result is often a ton
of hard-to-maintain special-case code and an inflexible design.

Ogre overcomes this inflexibility with the use of render queues. The concept is not hard to
grasp: Ogre will render the contents of several ordered queues, one at a time, and will render the
queues in order as well.

Figure 3-2 visually describes the render queue organization in Ogre. Queues themselves
have an order, or priority, and objects within a queue have their own priority as well. For exam-
ple, Ogre will render the set of queues in Figure 3-2 from back to front (from lower to higher
priority, or order). Within each queue, Ogre will render in order as well. For example, in the
Overlays queue in Figure 3-2, Ogre will render the HUD objects, and then the reticle objects,
and then the UI menu objects, in that order.

Background - Queue 0 |
Skybox - Queue 20 |

World Geometry - Queue 30 |
Movable Objects - Queue 50 |

Overlays - Queue 100

HUD Reticle Chat Text| | Ul Menu

Figure 3-2. Conceptual render queue organization in Ogre

41

42

CHAPTER 3 © OGRE DESIGN OVERVIEW

The flexibility of this design is in the fact that reorganizing rendering order is as simple as
reassigning queue priorities. Render queues can be created at custom priorities, and the objects
within any queue can be ordered at will as well. Entire queues can be turned on and off, and
objects within a queue likewise can be turned on and off.

Finally, each queue provides notifications of events within the queue (such as prerender
and postrender), so that the application has the opportunity to alter the rendering of the objects
within the queue if needed. In terms of code development and maintenance, this is invaluable
for the encapsulation of render queue management into small, easily understood chunks of
code, as opposed to trying to figure out what bits of a huge monolithic procedural block are
responsible for rendering which bits of the scene.

In other words, Ogre’s render queue design provides an elegant object-oriented solution
to what, in many complex applications, typically fast becomes an intractable and unmanage-
able problem.

Robust Material System

It is possible to create and render objects in a scene without ever touching a single line of code
(beyond the obvious work involved in actually loading the objects in the first place). Ogre’s
material scripting system is one of the most flexible and powerful available in its class of software.

Ogre materials are composed of one or more techniques, which are simply collections of
passes. Pass refers to a rendering pass, and is the unit of rendering at the material level within
Ogre. In other words, a single pass on an object will result in exactly one draw call to the graph-
ics hardware for the geometry being rendered. You can have as many passes in a technique as
you like, but understand that in most cases, each pass will cause a completely new rendering
operation (complete with full render state changes on the hardware for each pass). This has
what should be obvious implications on performance, but in some cases there simply is no
other way to create a particular rendering effect.

The most impressive feature of Ogre’s material system is its automatic fallback design; Ogre
can automatically apply the “best” technique available in a material, and will search “downwards”
through the list of techniques until it finds one that is compatible with the graphics hardware
being used. Ogre will also do its best to reorganize passes within a technique if the hardware
cannot support even the least technically demanding technique in a material. For example, if
a particular set of graphics hardware supports only a single texture unit in its fixed-function
pipeline, and your least-complex technique requires a minimum of two texture units, then
Ogre will break up the pass into two separate passes and blend the two renderings to achieve
the same effect.

Ogre materials also support the notion of schemes. A material scheme can best be understood
as support for the common “Ultra High, High, Medium, Low” graphics settings. In this case, you
would define four schemes and assign material techniques to each as you see fit (each technique
obviously would be developed to fit the particular scheme). Then you can limit Ogre’s tech-
nique fallback search to stay within the techniques that belong to a particular scheme, making
material management for your application that much easier.

You are not limited only to scripting for material management. All classes and methods
that Ogre uses to create a material from the script are fully available to the application; you
can create a material completely in code, procedurally, and in fact this is commonly done. The
same material scheme feature and technique fallback processing are just as available to pro-
cedurally created materials as they are to scripted materials. Of course, with material scripting,
no code changes are required (and in fact, material creation can be placed entirely in the

CHAPTER 3 © OGRE DESIGN OVERVIEW

hands of your artists, since material scripts typically are exported from 3D modeling packages
along with mesh and animation data).

Native Optimized Geometry and Skeleton Format

Ogre utilizes a single format for its mesh and skeleton data. As a result, it does not have the
ability to load third-party mesh formats, such as those used for character data in commercial
games. Community-developed converters may exist for such items, but they are not part of
the Ogre library.

Ogre uses this format to allow for fast, efficient loading of its mesh and skeleton data. This
efficiency is enabled by the ability for Ogre to preoptimize the layout of the binary mesh and
skeleton files in an exporter or offline tool (the command-line OgreXMLConverter tool,
discussed in Appendix A). Of course, the classes used in the OgreXMLConverter tool are avail-
able for use in your application if you wish to employ them (for example, if you wish to export
binary mesh data files directly from a 3D modeling package). One method of creating binary
mesh and skeleton files is first to export your scene or character data from your 3D tool into
an intermediate, human-readable XML format (Ogre XML), and then convert this data to
binary format with the command-line tool. Exporters exist for most current modeling tools
(both commercial and open source), such as Softimage|XSI, Autodesk 3D Studio Max and Maya,
and Blender (as well as many others).

Along similar lines, the notion of loading raw XML at runtime is a performance nightmare.
XML is an incredible format for exchanging data between disparate systems (which is exactly
how it is used in Ogre: exchanging data between an arbitrary 3D modeling tool and the Ogre
binary mesh and skeleton serializer), but it is a horrible format for any sort of performance-
oriented application . . . which describes precisely the requirements of runtime asset loading.
An additional bonus of the intermediate XML format is the ability to inspect or change the
exported data. The inspection ability makes it much simpler to debug an exporter, as well as
verify the structure and composition of an exported scene or object. Plus, you can easily insert
additional tools into your asset pipeline if you wish; it often is easier to deal with the textual
XML format for minor systematic tweaking than it is to work with a serialized binary file.

The optimization of the binary format is primarily in the ordering of vertex, geometry,
and skeleton data, but the offline process also has other features, such as available automatic
LoD (level of detail) and object tangent generation for the meshes. Performing these processes
offline removes the need to perform them at runtime, enabling reduced load times.

Multiple Types of Animation

Ogre supports three types of animation: skeletal, morph, and pose.

Skeletal animation refers to the binding of vertices to bones in a skeleton (also known as
palette matrix skinning, or just skinning for short). Each vertex in an object can have up to four
independent bone influences. Each influence is assigned a weight along with its bone, so that
when that bone moves, its influence on the position of the vertex is weighted by that amount.
This is useful for realistic deformation of vertices, approximating, say, the effect that moving
your arm might have on the shape of your shoulders (that is, how the muscles bunch up over
your shoulder socket when you raise your arm). Skeletal animation is performed in keyframed
forward kinematic mode only; Ogre does not support inverse kinematics (IK) at this time; if
you modeled your animation using IK in a 3D tool, you must sample the positions of the bones

43

44

CHAPTER 3 © OGRE DESIGN OVERVIEW

at arbitrary intervals (a process known as keyframing). Typically, the Ogre exporter for your
modeling tool does this for you.

Morph animation is a vertex animation technique that stores absolute vertex locations each
keyframe, and interpolates between those positions at runtime. It differs from pose animation
in that pose animation stores vertex offsets instead of absolute positions, and therefore multi-
ple pose tracks in an animation can be blended to create complex vertex-based animations.
Morph animation is far more limited than pose animation, as it cannot be blended with other
morph animations due to the use of absolute vertex positions. Both types can be blended with
skeletal animation.

All animation types can be performed in software or on the GPU hardware using a vertex
program. For straight skeletal animation, the positions of the bones are passed to the vertex
program in a separate block of program constants, along with the positions of the vertices and
the blend weights and indices. Morph animations do not have overbearing data requirements
when performed on the hardware; only a second vertex buffer is required to be passed to the
vertex shader. For pose animations, the amount of data passed can be considerable, especially
since each additional pose requires an additional vertex buffer be passed to the shader.

For the same reason that morph animations cannot be blended together, morph anima-
tion cannot be blended with pose animation, and vice versa. Both types of vertex animation
can be blended with skeletal animation, however.

Ogre’s animation system operates on the principle of controllers; that is, objects that man-
age a changing value as a function of another value (in the case of animations, that “other” value
is time). As mentioned, Ogre’s animation system is keyframed; it will interpolate between keys
in an animation track on two selectable bases: linear or cubic spline. You should match the
type of interpolation used in your application to the type used in the modeling/animation
package, or compensate by using a higher sampling frequency in your exporter.

Compositor Postprocessing

A relatively new addition to the Ogre feature package is the Compositor framework, which allows
the user the ability to create sophisticated two-dimensional, full-screen postprocessing effects
on a viewport. For example, a viewport can be enhanced with a full-screen glow or bloom effect,
or the viewport can be postprocessed into a black-and-white or sepia-toned rendering, or the
viewport can be transformed into a line-art drawing with hard edges, and so on. Anything you
can think of to do to a viewport can be done with the Compositor framework.

The framework operates on much the same principles as the material scripting system.
Compositor techniques are, like with materials, different ways of achieving a particular effect.
Compositor passes are similar to material passes in that multiple calculations and/or refine-
ments can be done to a viewport before the final output is created. And like material fallbacks,
the Compositor framework provides fallback handling for cases where a desired output pixel
format is not available.

The easiest way to think of the Compositor framework in Ogre is as an extension of the
fragment program (pixel shader) pipeline. In fact, the Compositor framework utilizes the frag-
ment processing features of the graphics hardware to perform its processing; Compositor passes
are defined in terms of fragment programs defined in material scripts. The difference is that
while the conventional graphics pipeline only allows one fragment program per material pass,
the Compositor framework will “ping-pong” pixel buffers back and forth as many times as needed
to perform all of the passes required of the particular Compositor script. Granted, you could
do this processing yourself and handle the management of the multiple pixel buffers needed

CHAPTER 3 © OGRE DESIGN OVERVIEW

to accomplish complex postprocessing effects, but with the introduction of the Compositor
framework, there is no need.

Compositor scripts operate on viewports. As a result, they can target any render target,
whether render textures or the main or secondary render windows. The final result is always
drawn into a full-viewport quad overlay, whether or not geometry is rendered underneath the
quad. As aresult, you find yourself often rendering your geometry to offscreen buffers and dis-
playing it in what essentially is a rendered texture applied to a quad.

As with the material system, you are not limited to scripting for Compositor effects: you
can certainly create the effects entirely in code, using the same classes and methods that the
Compositor parser uses. Also like materials, the Compositor supports material schemes the same
way that materials do directly; in fact, schemes in the Compositor framework refer to material
schemes.

Extensible Resource Management

Resources in Ogre are defined as “anything that is needed to render geometry to a render target.”
This obviously includes meshes, skeletons, and materials, but also includes overlay scripts and
fonts, as well as ancillary material items such as Compositor scripts, GPU programs, and
textures.

All of these types of resources have their own manager in Ogre. This manager is responsi-
ble primarily for controlling the amount of memory that a particular type of resource occupies
in memory; that is, the resource manager controls a resource instance’s lifetime. Actually, the
resource manager controls this lifetime only to a point: first, it can only store as many instances
of a particular resource type as there is memory allocated to that resource type (defined when
the resource manager for that type starts up); second, Ogre will never remove from memory
resources that are actively referenced by part of your application.

Resources themselves are actually responsible for loading themselves. This is to support
a design feature of the resource system: manual resource loading. “Manual” refers to the fact
that a resource is loaded, procedurally or otherwise, as a result of a method call on a class
interface rather than an implicit load from the file system. Fonts and meshes are examples of
manually loaded resources, as they typically require a bit of extra processing during load and
initialization (compared to, say, a texture file that is already in its needed form when loaded
from the file system).

A resource in Ogre can exist in one of four states at any given time. It can be undefined
(which means Ogre knows nothing about it); it can be declared, which means the resource has
been indexed in its archive, but that’s about it; it can be unloaded, which means that the resource
has been initialized (if it is a script, then the script was parsed) and a reference to it was created;
or it can be loaded, which means that it actually occupies space in its resource manager’'s mem-
ory pool.

Ogre organizes its resources, at the highest level of management, into named groups. This
is to facilitate the loading, unloading, creation, and initialization of resources in terms of a log-
ically related collection. The relationship between the resources in a group is entirely up to
you: they can be resources used in a particular game level; they can be all resources that are
used to create your application’s GUT; they can be all resources that begin with the letter A.
A group’s name and purposes really is completely arbitrary, entirely up to you and not in any
way meaningful to Ogre (other than the name of the default “catch-all” resource group: General).
When your application goes searching for a resource, Ogre can find it (if a reference to it has
been created) regardless of the group in which it exists (if you tell Ogre to search all resource

45

46

CHAPTER 3 © OGRE DESIGN OVERVIEW

groups). This demarcation between groups is another useful feature of resource groups: you
can use resource group names as a sort of “namespace” for same-named resources (if your
application design needs this sort of thing).

Non-manually loaded resources in Ogre exist solely in archives. The archive in Ogre is
simply an abstraction of a generic file container. The archive can be searched (using file name
wildcards), both recursively and nonrecursively; it can return a reference to a file within itself;
it can be opened and closed. Sounds a lot like a file system, doesn’t it? As you might expect, the
file system is just another type of archive to Ogre. The two types of archive that Ogre understands
are the FileSystem and the Zip archive (the latter is a simple file in PKZIP format, compressed
or otherwise). You can implement any type of archive you like. For instance, if your application
uses a custom archive format for its assets, you can create an implementation of an Ogre
archive that reads and manipulates this file format, to provide Ogre with access to the assets
within it.

Ogre will index archives based on known file extensions, such as .material, .mesh, .overlay,
and so on. Unknown file types are ignored, so you can mix Ogre- and non-Ogre-related resources
in the same file if you like.

Subsystem Overview

The design highlights and philosophy outlined previously are implemented in numerous classes
within the Ogre API. Luckily, you do not need to be familiar with all of them in order to be pro-
ductive with Ogre. With basic knowledge of just a few bits of Ogre (and of course some available
art assets), you can have a 3D application running in no time at all.

Let’s briefly tour the most basic and common systems with which you will interact in
a typical Ogre application. These systems and classes will be covered in more detail later in this
book, but in the interests of fostering familiarity early in your experience with Ogre, I will
introduce them here. You may see some things in this section that do not make immediate
sense; that’s OK, more specific coverage occurs in later chapters.

Root Object

The main point of access to an Ogre application is through the Root object. As pointed out
earlier, this is a facade class, and it provides a convenient point of access to every subsystem in
an Ogre application.

The Root object is the simplest way to fire up and shut down Ogre; constructing an instance
of Root starts Ogre, and destructing it (either by letting it go out of scope or executing the delete
operator on it) shuts down Ogre cleanly. For all objects whose lifetime Ogre is responsible, it will
clean them up in an orderly fashion.

Resource Management

Anything that Ogre needs in order to render a scene is known as a resource, and all resources
ultimately are managed by a single object: ResourceGroupManager. This object is responsible
for locating resources (within search paths defined by the application to the manager) and ini-
tializing (but not necessarily loading) the known types of resources that it finds.

By default, Ogre recognizes the following types of resources:

CHAPTER 3 © OGRE DESIGN OVERVIEW 47

* Mesh: Ogre supports a single binary mesh format, one that is optimized for fast loading
and is generated typically by the OgreXMLConverter command-line tool provided with
Ogre. While you can create your own geometry on the fly (or provide a manual mesh loader
if you have reason to do so), typically these resources will exist on the file system, and
must be named with a .mesh extension for Ogre to recognize them as mesh data. Mesh
files also contain animation data for morph and pose animations.

» Skeleton: Skeleton resources typically are referenced within a .mesh file (but can be
used by themselves if you need) and define the bone hierarchy and keyframe data used
with skeletal animation. These files use a . skeleton extension and also are created typi-
cally by the OgreXMLConverter command-line tool.

* Material: Material script files define the render state used when rendering a batch of
geometry. Material scripts are referenced by mesh data either in a .mesh file or manually
using the Ogre renderable object methods. These scripts are output by a 3D modeling
tool exporter, and Ogre recognizes them by their .material extension.

¢ GPU program: High-level GPU programs (HLSL, GLSL, Cg) are recognized by their
.program extension. Low-level ASM programs are recognized by an .asm extension. Ogre
will parse (but not compile) these files prior to parsing any .material files, so that the
programs defined within the .progranm files are available before being referenced in
a material.

» Texture: 2D texture data can exist in any format supported by Ogre (actually, by the
OpenlL image library, which means an extremely wide variety of image formats). These
files are recognized by their particular extensions.

* Compositor: Ogre’s Compositor framework uses Compositor scripts the same way that
the material system uses .material files; the difference is that Compositor scripts use
the . compositor extension.

* Font: Ogre uses font definition files to define the fonts it uses in overlays. These files use
a .fontdef extension.

Each of these types of resources has its own particular ResourceManager (for example,
MaterialManager, FontManager, and so on), but unless you are writing new plug-ins or adding
new types of resources to Ogre’s resource management system, you will not need to deal with
ResourceManager at all.

The ResourceGroupManager is responsible for finding your resources when you ask for
them by name. It does not perform the actual memory management tasks required of an actual
resource manager (such as unloading old resources to make room for new ones when needed);
that is handled by the ResourceManager base class. The ResourceGroupManager instead
allows you to load and unload groups of resources by their group name (such as unloading all
Font resources to free up some memory).

By default, Ogre expects its resources to exist as disk files. However, certain types of
resources can be manually managed; currently only the mesh and font resource types have
manual resource loader implementations in Ogre, but if you have a need to create manual
resource loaders for a particular type of resource, the framework is there to do so.

48

CHAPTER 3 © OGRE DESIGN OVERVIEW

Scene Management

The scene graph design discussed earlier is part of a larger concept in Ogre known as the scene
manager. All scene graph implementations are derivations of the SceneManager class. You
will interact quite often with the active SceneManager in your application. Actually, you might
interact with the active “scene managers,” since Ogre supports multiple simultaneous active
scene managers. However, the vast majority of applications will create and use only a single
scene manager at a time.

Your scene manager is the source for your SceneNode objects. Scene nodes are the struc-
tural element in the Ogre scene graph design; they are what you actually move around in the
scene. They can also be related hierarchically (you can have parent and child nodes, in other
words); therefore you can translate them, scale them, and rotate them in world, parent, or
local (object) space. Scene nodes can exist independent of the scene graph; one simple means
of preventing the rendering of content in your scene is simply to detach a part of the scene graph
hierarchy: the contents are unaffected, and you can reattach it at will.

Your content is, in turn, attached to these scene nodes. Almost all of your content will
exist in the form of Entity instances, which are implementations of MovableObject, and also
created by the scene manager. Once you have a valid entity, you can attach it to an existing
scene node. An entity most often is loaded from disk, where it exists as a binary .mesh file.
However, it is possible to create “manual” content objects, as well as procedural objects such
as a movable plane (the only intrinsic procedural object supported currently in Ogre). Since
your content is attached to a scene node, it is the node that is moved around the scene, and
not the content.

You can also attach other noncontent objects to scene nodes. For example, you might
have a reason to want to attach a camera to a scene node. You can also attach lights to scene
nodes if you wish.

Render Systems and Render Targets

You typically will not need to interact directly with a render system. RenderSystem is a gener-
alization of the interface between Ogre and the underlying hardware API (OpenGL or Direct3D).
You will, however, likely interact, at least somewhat, with an object created by the render sys-
tem: the RenderTarget. RenderTarget is a generalization of two important objects in Ogre: the
render window and the render texture. The former is what nearly every Ogre application will
use; render textures are a more specialized (yet still commonly used) object for performing
more advanced rendering magic.

The render window in Ogre is your application’s main window (among others; multiple
render windows are supported). In some cases, the render window can be embedded within
another window (useful for creating Ogre-based 3D tools), but in nearly all cases, if you want
to see your scene rendered to the screen, you will need at least one render window. Exceptions
to this rule would be applications that render to offscreen render targets and then display the
results via another mechanism; this could be useful for a 3D tool that wanted a non-real time
render preview using the 3D accelerated graphic pipeline.

The render window can be created automatically (the easy way) through the Root object
facade, or more manually through Root or via RenderSystem. Manual creation obviously
allows more customization of the render window properties, but not all applications need
a great deal of customization; for those applications, automatic render window creation is
more than enough.

CHAPTER 3 © OGRE DESIGN OVERVIEW

Ogre Managers

A manager in Ogre is simply a class that manages access to or lifetimes of other related types

of objects, hence the name. For example, the ArchiveManager in Ogre manages the creation

and registry of Archive implementations, as well as access to registered Archive implementa-
tion instances. Each of the managers, including Root (which can be said to be a manager itself,

the “Ogre Operations Center” if you will), exists as stand-alone “singleton” objects. One of the
side-effects of the creation of Root is the initial instancing of all of Ogre’s manager objects.

Note The Singleton design pattern is commonly used for classes designed to have only a single existence
throughout an application. For this reason, Manager classes are commonly implemented as singletons, since
they typically are responsible for managing access to specific types of application data and resources. The
Singleton pattern allows access to the Manager classes’ single instance from anywhere in the global name-
space of an application, a property often used to avoid having to pass around pointers to their instances, but
mostly the Singleton pattern allows control over the lifetime of the class instance. Singletons are widely
subclassed by Ogre managers.

I will give a brief description here of what each of those managers is responsible for man-
aging. The more detailed discussion of each of these managers is what the rest of this book
contains.

¢ LogManager: Sends logging messages to output streams for Ogre as well as for any code
that wishes to use it.

¢ ControllerManager: Manages controllers, which are classes that produce state values
for other classes based on various inputs; most commonly used for animating textures
or materials.

* DynLibManager: Manages dynamic link libraries (DLLs on Windows, shared objects on
Linux), which makes this class central to the plug in-based design of Ogre. Will also cleanly
unload loaded libraries at shutdown.

» PlatformManager: Provides abstract access to details of the underlying hardware and
operating system, such as timers and windowing system specifics (such as the Ogre
configuration and error dialogs).

* CompositorManager: Provides access to, and management of, the Compositor frame-
work, which in turn supports typical 2D composition and postprocessing tasks in screen
space.

¢ ArchiveManager: Provides to the resource management system the correct type of class
to handle file “containers” such as ZIP files or file system directories.

¢ ParticleSystemManager: Manages the details and implementations of various particle
systems, emitters, and affectors.

e MaterialManager: Maintains all loaded Material instances in the application, allowing
reuse of Material objects of the same name.

49

50

CHAPTER 3 © OGRE DESIGN OVERVIEW

» SkeletonManager: Maintains all loaded Skeleton instances in the application, allowing
reuse of Skeleton objects of the same name.

e MeshManager: Maintains all loaded Mesh instances in the application, allowing reuse
of Mesh objects of the same name.

¢ HighLevelGpuProgramManager: Maintains, loads, and compiles all high-level GPU
shader and vertex programs used in the application (i.e., GPU programs written in HLSL,
GLSL, or Cg).

¢ GpuProgramManager: Maintains and loads low-level GPU programs (i.e., those written in
assembler), as well as high-level GPU programs previously compiled down to assembler.

* ExternalTextureSourceManager: Manages external texture source class instances, such
as those that implement video streaming.

* FontManager: Manages and loads defined and available fonts for use in Overlay text
rendering.

* ResourceGroupManager: Serves as the main “point of contact” for loading and lifetime
management of all registered application resources, such as mesh and material.

* OverlayManager: Manages loading and creation of 2D Overlay class instances, used
typically for HUD, GUI, or other 2D content that is rendered on top of a scene.

* HardwareBufferManager: Manages lifetime of and access to shared hardware buffers
(pixel buffers, vertex buffers, index buffers, and so on).

» TextureManager: Manages lifetime of and access to all textures referenced, loaded, and
used in the application.

As you can see, there are few stones left unturned in the Ogre class design, and this is just
the top-level class list. Each of these manager classes allows access to (or provides access to, in
the case of custom implementations) dozens more classes that do the actual work in Ogre.

Conclusion

This chapter was not intended to cover everything about Ogre. At this point, you should be
familiar with the most common Ogre objects, as well as have a passing familiarity with some
of the less common ones as well. The rest of the book will cover each major area of Ogre func-
tionality in much greater detail, but at least now you have a working base of knowledge about
Ogre on which you can build as you work through the book.

If you just want to dive in and make graphics on the screen, you should carry straight on
to the next chapter. However, if you are less reckless and want to get to know Ogre a bit better
before becoming so intimate, you can skip Chapter 4 and come back to it when you are ready.
Either way, it will be a fun ride!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

