
Enabling Remote Access

In the “old days,” people used telnet to access their systems remotely. Nowadays they can’t do this:
telnet sends its passwords in plain text over the network, and because too often these packets are
transmitted across an insecure network, this really is not an option. It is simple for someone with
a packet analyzer such as Ethereal to grab packets and read your username and password from the
network. Therefore, new methods of remotely accessing a server have been created. I’ll discuss two
of these techniques in this chapter. First you will learn how to use Secure Shell (SSH) to set up a
secure (read: encrypted) connection with a server. Next, you will learn how you can use VNC to get
access to the graphical display of your server remotely. VNC isn’t secure by itself, but in this chapter
you’ll learn how to combine it with SSH to make it secure.

In this chapter, I’ll cover the following subjects:

Understanding how SSH works: I’ll explain how SSH uses encryption keys to establish secure
remote sessions. Also, you will learn how to use SSH.

Configuring SSH: I’ll explain how you can use the sshd_config and ssh_config files to tune
how SSH works.

Configuring SSH key-based authentication: You will learn how to secure SSH even more by
using public/private key technology for authentication.

Tunneling traffic with SSH: I’ll explain how to establish a simple VPN connection between
hosts using SSH.

Using VNC: You’ll learn how to use VNC to get remote access to the server’s graphical display.

Understanding How Secure Shell Works
The essence of SSH is its security. Public and private keys play an important role in this security.
On first contact, the client and the server exchange public keys, the so-called host key. This host key
proves the identity of the server to which a client is connecting. When connecting, the server sends
its public key to the client. If this is the first time the client is connecting to this host, it replies with
the message shown in Listing 18-1.

Listing 18-1. Establishing an SSH Session with an Unknown Host

The authenticity of host 'localhost' (127.0.0.1)' can't be established.
RSA key fingerprint is 79:20:76:ed:93:7e:aa:d7:01:25:e5:d7:de:0b:76:87.
Are you sure you want to continue connecting (yes/no)? yes

Only if the client trusts that this is really the intended host should the client answer yes to this
request. As a result, the host is added to the file .ssh/known_hosts in the home directory of the user
who initiated the SSH session. The next time the client connects to the same host, the client checks

369

C H A P T E R 1 8

■ ■ ■

7087ch18final.qxd 11/8/06 11:48 PM Page 369

this known_hosts file to see whether the host is already known. This check is based on the public key
fingerprint of the host, which is a unique number that is related to the public key of the host. Only
if this number matches the name and public key of the server that the client is connecting to is the
connection established. If both pieces of data don’t match, it is likely that the host the client is con-
necting to is not the intended host; therefore, the connection will be refused.

Once you have established the identity of the server you want to connect to, you establish
a secured channel between the client and server. To establish this secured channel, you use a ses-
sion key. This is an encryption key that is the same on both the server and the client; it encrypts all
the data sent between the two machines. The session key is negotiated between the client and the
server based on their public keys. This negotiation, amongst others, determines the protocol that
should be used. Session keys can use 3DES, Blowfish, or IDEA, for example.

After establishing this secured channel, the user on the client is asked for its credentials. If
nothing is configured, this will be a prompt where the user is asked to enter a username and pass-
word. This, however, is not the only way it can be done, as you’ll see in the “Using Key-Based
Authentication” section. Alternatively, the user can authenticate with a public/private key pair,
thus proving that the user really is the user who he says he is.

All this may sound pretty complicated. The nice part is that the user won’t notice anything.
The user just has to enter a username and password—that’s all. If you want to go beyond simple
password-based authentication, however, it is useful to understand what is happening.

Working with Public/Private Key Pairs
The essence of SSH is the public/private key pair. By default, the client tries to authenticate using
RSA/DSA key pairs. To make this work, first the client gets the public key of the server to establish
a secure session; this happens automatically. Next, the server must get the public key of the client,
which is something that has to be configured by hand. (Later in the “Using Key-Based Authentica-
tion” section you’ll find more information about this procedure.) When the client has a public/
private key pair, it will generate an encrypted string with its private key. If the server is able to
decrypt this string using the public key of the client, the identity of the client is proved.

When using public/private key pairs, you can configure different aspects of the encryption.
First, the user needs to determine what cryptographic algorithm he wants to use. For this purpose,
he can choose between RSA and DSA; the latter is considered stronger. Next, the user has to deter-
mine whether he wants to protect his private key with a passphrase. This is because the private key
really is used as the identity of the user. Should anyone steal this private key, it would be possible to
forge the identity of the owner; therefore, it is a good idea to secure private keys with a passphrase.

Working with Secure Shell
Basically, SSH is a suite of tools that consists of three main programs and a daemon. The name of
the daemon is sshd, and it runs by default on your SUSE server. The commands are ssh, scp, and
sftp. The first, ssh, establishes a secured remote session. Let’s say that it is like telnet but then
secured with cryptography. The second, scp, is a useful command you can use to copy files to and
from another server. The third, sftp, is an FTP client interface. By using it, you can establish a
secured FTP session to a server that is running the sshd. One of the best features of these tools is
that you can use them without any preparation or setup, and you can set them up to work entirely
according to your needs. They are easy to use and are specialized tools at the same time.

CHAPTER 18 ■ ENABLING REMOTE ACCESS370

7087ch18final.qxd 11/8/06 11:48 PM Page 370

Using the ssh Command
The simplest way to work with SSH is by just entering the command ssh, followed by the name
of the host to which you want to connect. For example, to connect to the host
AMS.sandervanvugt.com, you would use the following:

ssh AMS.sandervanvugt.com

Depending on whether you have connected to that host before, SSH can ask you to check
the credentials of the host or just ask for your password. The ssh command doesn’t ask for a
username, because it assumes you want to connect to the other host with the same username
you are logged in with locally. You have two ways to indicate that you would rather log in with
another user account. First, you can specify the username followed by the @ sign and the name
of the host to which you want to connect. Alternatively, you can also use the -l option followed
by the name of the user account you want to use to connect to the other host. So basically,
ssh linda@AMS.sandervanvugt.com and ssh -l linda AMS.sandervanvugt.com are the same.
Ready to do your work on the remote host? Enter the exit command (or press Ctrl+D) to close
the session and return to your own machine.

Now, it seems like it’s a lot of trouble to log in completely on a remote host if you need to
enter just one or two commands. If this is a situation you face often, it is good to know you can
just specify the name of the command at the end of the ssh command. So, ssh -l linda@AMS.
sandervanvugt.com halt would shut down the server (if user linda is allowed to do that). Using
commands as an option to SSH is especially useful in shell scripts. If you are using SSH in a shell
script, it would help if the user could log in without entering a password. Later in this chapter, in
the “Configuring Key-Based Authentication” section, you’ll learn more about that.

Using scp to Copy Files Securely
Another part of the SSH suite you will definitely like is the scp command. You can use it to copy files
securely. If you know how the cp command works, you’ll also know how to handle scp. It is just the
same, with the only exception that it works with a complete reference including the host name and
username of the file you want to copy. Consider the following example:

scp /some/file linda@AMS.sandervanvugt.com:/some/file

This easy-to-understand command would copy /some/file to AMS.sandervanvugt.com and
would place it in the directory /some/file on that host. Of course, it is possible to do the inverse: scp
root@SFO.sandervanvugt.com:/some/file /some/file would copy /some/file from a remote host to
the local host.

Using sftp for Secured FTP Sessions
As an alternative to copying files with scp, you can use the sftp command to connect to servers
running the sshd program and establish a secured FTP session with such a server. From the sftp
command, you have an interface that really looks a lot like the normal FTP client interface. All the
commands you are used to working with in a classic FTP interface work here as well, with the only
difference that in this case it is secured. For example, you can use the ls and cd commands to
browse to a directory and see what files are available. From there, you can use the get command
to copy a file to the local current directory. Figure 18-1 shows an example of this.

CHAPTER 18 ■ ENABLING REMOTE ACCESS 371

7087ch18final.qxd 11/8/06 11:48 PM Page 371

Configuring SSH
In an SSH environment, a node can be a client and a server at the same time. So as you can imagine,
both of these aspects have a configuration file. The client is configured in /etc/ssh/ssh_config, and
the server has its configuration in /etc/ssh/sshd_config. Setting options for the server isn’t hard to
understand; just set them in /etc/ssh/sshd_config. For the client settings, however, the situation is
more complicated, because you have several ways of overwriting the default client settings:

• /etc/ssh/ssh_config is a generic file that is applied to all users initiating an SSH session.
The settings in this file can be overwritten by individual users who create an .ssh_config in
the directory .ssh in their home directory.

• An option in /etc/ssh/ssh_config has to be supported by the sshd_config file on the server
to which you are connecting. For example, if you are allowing password-based authentica-
tion from the client side but the server doesn’t allow it, it will not work.

• Options in both files can be overwritten by using command-line options.

Table 18-1 gives an overview of the most useful options for ssh_config.

CHAPTER 18 ■ ENABLING REMOTE ACCESS372

Figure 18-1. From an sftp session, you can do all the things you are used to doing from a normal
FTP session.

7087ch18final.qxd 11/8/06 11:48 PM Page 372

Table 18-1. Most Interesting Options in ssh_config

Option Description

Host This option applies the following declarations (up to the next Host key-
word) to a specific host. Therefore, this option is applied on a host to
which a user is connecting. The host name is taken as specified on the
command line. Use this parameter to add some extra security to spe-
cific hosts. It is possible to use wildcards such as * and ? to refer to
more than one host name.

CheckHostIP If this option is set to yes (which is the default value), SSH will check
the host IP address in the known_hosts file. Use this as a protection
against DNS or IP address spoofing.

Ciphers This option can have multiple values to specify the order in which the
different encryption algorithms should be tried in an SSH version 2
session.

Compression This option, which can have the values yes or no, specifies whether to
use compression. The default is no.

ForwardX11 This useful option specifies whether X11 connections will be for-
warded. If set to yes, graphical screens from an SSH session can be
forwarded over the secure tunnel. The result is that the DISPLAY
environment variable that determines where to draw graphical screens
is set correctly. If you don’t want to enable X-forwarding by default, you
can use the option -X on the command line when establishing an SSH
session.

LocalForward Specifies that a TCP/IP port on the local machine is forwarded over SSH
to the specified port on a remote machine. See the “Using Generic TCP
Port Forwarding” section later in this chapter for more details.

LogLevel Use this option to specify the verbosity level for log messages. The
default value is INFO. If this doesn’t go deep enough, VERBOSE, DEBUG,
DEBUG1, DEBUG2, and DEBUG3 will provide more information.

PasswordAuthentication Use this option to specify whether you want to use password authenti-
cation. By default, you can use password authentication. In a secure
environment where keys are used for authentication, you can safely set
this option to no to disable password authentication completely.

Protocol This option specifies the protocol version that SSH should use. The
default value is set to 2,1; version 2 is used first and if that doesn’t work,
version 1 is tried. It is a good idea to disable version 1 completely,
because it has some known security issues.

PubkeyAuthentication Use this option to specify whether you want to use public key–based
authentication. This option should always be set to the default value
yes, because public key–based authentication is the safest way of
authenticating.

The counterpart of ssh_config on the client computer is the /etc/ssh/sshd_config file on the
server. Many options that are used in the ssh_config file can be used in the sshd_config file as well.
Some options, however, are specific for the server side of SSH. Table 18-2 gives an overview of some
of these options.

CHAPTER 18 ■ ENABLING REMOTE ACCESS 373

7087ch18final.qxd 11/8/06 11:48 PM Page 373

Table 18-2. Most Important Options in sshd_config

Option Description

AllowTcpForwarding Use this option to specify whether you want to allow clients to do TCP
port forwarding. Since this is a useful feature, you probably want to
leave it to its default value, yes.

Port Specifies the port on which the server is listening. By default, sshd is lis-
tening on port 22.

PermitRootLogin Use this option to specify whether you want to allow root logins. To add
additional security to your server, consider setting this option to no. If
set to no, the root user has to establish a connection as a regular user
and from there use su to become root or use sudo to perform certain
tasks with root permissions.

PermitEmptyPasswords This option specifies whether you want to accept users coming in with
an empty password. From a security perspective, this might not be a
good idea; therefore, the default value no suits in most cases. If you
want to run SSH from a script and establish a connection without
entering a password, however, it can be useful to change the value
of this parameter to yes.

X11Forwarding Use this option to specify whether you want to allow clients to use
X11-forwarding. On SUSE, the default value for this parameter is yes.

Using Key-Based Authentication
Now that you know all about the basic use of SSH, it’s time to look at some of the more advanced
options. One of the most important of these options is key-based authentication. To use this kind
of authentication, SSH uses public/private key–based authentication. Before diving into the con-
figuration of key-based authentication, you’ll learn how you can use these keys.

Introducing Cryptography
In general, you can use two methods for encryption: symmetric and asymmetric encryption. Sym-
metric encryption is fast, but not so secure. Asymmetric encryption is slower but more secure. In
a symmetric key environment, both parties use the same key to encrypt and decrypt messages.
In an asymmetric key environment, a public/private key pair is used. The latter is the important
technique that is used for SSH.

If asymmetric keys are used, every user needs his own public/private key pair, and every server
needs a pair of them as well. Of these keys, the private key must be protected by all means. If the
private key gets compromised, the identity of the owner of the private key gets compromised as
well. Therefore, a private key ordinarily is stored in a secure place where no one can access it
besides the owner of the key. The public key on the contrary is available to everyone.

You can use public/private keys, generally speaking, for two purposes. The first of them is to
send encrypted messages. In this scenario, the sender of the message encrypts the message with the
public key of the receiver of the message, and the receiver of the message is the only one who can
decrypt the message with the matching private key. This scenario requires of course that before
sending an encrypted message, you need to have the public key of the person to whom you want
to send the message.

The other option is to use public/private keys for authentication or to prove that a message has
not changed since it was created. The latter is also known as nonrepudiation. In the example of
authentication, the private key generates an encrypted token, the salt. If this salt can be decrypted

CHAPTER 18 ■ ENABLING REMOTE ACCESS374

7087ch18final.qxd 11/8/06 11:48 PM Page 374

with the public key of the person who wants to authenticate, then there is enough proof that
a server is really dealing with the right person; therefore, access can be granted. This technique
requires the public key to be copied to the server before any authentication can happen, however.

Using Public/Private Key–Based Authentication in an
SSH Environment
When you use SSH key-based authentication, you have to make sure that, for all users who need to
use this technology, the public key is available on the servers where they want to log in. When log-
ging in, the user creates an authentication request that is signed with his private key. This authenti-
cation request is matched to the public key of the same user on the server where that user wants to
authenticate. If it matches, the user is allowed to come in; if it doesn’t, the user is denied access.

Public/private key–based authentication is enabled by default on SUSE Linux Enterprise
Server; therefore, only when no keys are present will the server prompt the user for a password. The
following summarizes what happens when a user tries to establish an SSH session with a server:

1. If public key authentication is enabled, which by default is the case, SSH checks the .ssh
directory in the user’s home directory to see whether a private key is present.

2. If a private key is found, SSH creates a packet with some data in it (the salt), encrypts that
packet with the private key, and next sends it to the server. With this packet, the public key
is sent as well.

3. The server now checks whether a file with the name authorized_keys exists in the home
directory of the user. If it doesn’t, the user cannot authenticate with his keys. If this file does
exist and the public key is an allowed key and also is identical to the key that was previously
stored on the server, the server uses this key to check the signature.

4. If the signature could be verified, the user is granted access. If it didn’t work out, the server
will prompt the user who tries to connect for his password.

All this sounds pretty complicated, but it isn’t. Everything is happening transparently, if every-
thing has been set up correctly. Also, you won’t even notice a delay. All this ordinarily happens in
less than a second.

Setting Up SSH for Key-Based Authentication
The best way to explain how to set up SSH for key-based authentication is by showing an example.
In the following procedure, key-based authentication is enabled for the user root:

1. On the desktop where root is working from, use the command ssh-keygen -t dsa -b 1024.
This generates a 1,024-bit public/private key pair. Listing 18-2 shows what happens.

Listing 18-2. Generating a Public/Private Key Pair with ssh-keygen

workstation # ssh-keygen -t dsa -b 1024
Generating public/private dsa key pair.
Enter file in which to save the key (/root/.ssh/id_dsa) :
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
59:63:b5:a0:c5:2c:b5:b8:2f:99:80:5b:43:77:3c:dd root@workstation

CHAPTER 18 ■ ENABLING REMOTE ACCESS 375

7087ch18final.qxd 11/8/06 11:48 PM Page 375

I’ll explain what happens now. The user in this example uses the ssh-keygen command to
generate a public key and a private key. The type encryption algorithm used to generate this
key is DSA, which is considered more secure than its alternative RSA. The option -b 1024
specifies that 1,024-bit encryption should be used for this key. The longer this number, the
more secure it will be. Notice, however, that a many-bits encryption algorithm will also
require more system resources to use it. After generating the keys, the command asks you
where to save it. By default, it will create a directory with the name .ssh in your home direc-
tory, and in this directory it creates the file id_dsa. This file contains the private key.

Next, you are prompted to enter a passphrase. This passphrase is an extra layer of protec-
tion that you can add to the key. Since anyone who has access to your private key (which
isn’t that easy to do) can forge your identity, your private key should always be passphrase
protected. After entering the same passphrase twice, the private key is saved, and the
related public key is generated and saved in the file /root/.ssh/id_dsa.pub. Also, a key
fingerprint is generated. This fingerprint is a summary of your key, a checksum that is
calculated on the key to see whether anything has happened with the key.

2. After creating the public/private key pair, you must transfer the public key to the server.
The ultimate goal is to get the contents of the id_dsa.pub file in the file /root/.shh/
authorized_keys. You can, however, not simply copy the file to the destination file
authorized_keys; this is because other keys may already be stored in that file. Therefore,
first use scp to copy the file to a temporary location. The command scp /root/.ssh/
id_dsa.pub root@server:/root/from_workstation_key.pub will do the job.

3. Now that the public key is on the server, you have to put it in the authorized_keys file.
Before doing this, make sure the directory .ssh exists on the server in the home directory
of the user root, that is, has user and group root as its owner and the permission mode
700. Then, on the server with the directory /root as your current directory, use cat
from_workstation_key.pub >> .ssh/authorized_keys. This appends the content of the
public key file to the authorized_keys file, thus not overwriting any file that may have
been there already.

4. If no errors occurred, you were successful! Return to your workstation, and start an SSH ses-
sion to the server where you have just copied your public key to the authorized_keys file.
You will notice that you aren’t prompted for a password anymore; you are prompted for
a passphrase instead. This proves you were successful. Notice, however, that you need to
repeat this procedure for every server you want to be able to establish a session with that is
secured with keys.

Working with keys as described is an excellent way to make SSH authentication more secure.
It has a drawback, though: if from a shell script or cron job you need to establish an SSH session
automatically, it is not practical to be prompted for a key first. Therefore, you need some method to
execute such jobs automatically. One solution is to create a special user account with limited per-
missions. If you have such an account, it doesn’t hurt if that user account is using a public/private
key pair without a passphrase assigned to the private key. Another solution is to run ssh-agent,
which caches the keys before they are used. In the next section, you will learn how that works.

Caching Keys with ssh-agent
To prevent yourself from entering private keys all the time, you can use ssh-agent. This useful pro-
gram caches keys for a given shell environment. After starting ssh-agent for a given shell, you need
to add the passphrase for the private key you want to use. This is something you will do for a spe-
cific shell, so after you close that specific shell or load another shell, you need to add the passphrase
to that shell again.

CHAPTER 18 ■ ENABLING REMOTE ACCESS376

7087ch18final.qxd 11/8/06 11:48 PM Page 376

After adding a passphrase to ssh-agent, the passphrase is stored in RAM. It is stored in a way
that it cannot be accessed; only the user who added the key to RAM is able to read it from there.
Also, ssh-agent listens only to the ssh and scp processes that were started locally, so you have no
way to access a key that is kept by ssh-agent over the network. So, you can be sure that using ssh-
agent is pretty secure. Apart from being secure, it is pretty easy to do as well. Enabling ssh-agent and
adding a passphrase to it is just a simple two-step procedure:

1. From the shell prompt, use ssh-agent, followed by the name of the shell you want to use
it for. For example, use ssh-agent /bin/bash to activate ssh-agent for the bash shell.

2. Now type ssh-add. This will prompt you for the passphrase of your current private key.
As the result of this action, you’ll see the message identity added, followed by the private
key of which the passphrase is added to ssh-agent.

■Tip SSH is a great method to get access to other hosts. But did you know you can also use it to mount a file
system on a remote system? All modern versions of SSH support this feature: just use sshfs, which gives access to
all files and directories on the remote server that as a normal user on that server you can access. If you know how
to mount a directory with mount, working with sshfs is easy; for example, the command sshfs linda@AMS:/
data /mnt/AMS would give access to the /data directory on the remote server and connect that directory to
/mnt/AMS on the local server.

Tunneling Traffic with SSH
Apart from establishing remote login sessions, copying files, and executing commands on remote
hosts, it is possible to use SSH for TCP port forwarding. This way, SSH is used as a simple VPN solu-
tion, with the capability of tunneling almost any nonsecured protocol over a secured connection.
In the following sections, I’ll first talk about X-forwarding and then you can read how to forward
almost any protocol using SSH.

Using X-Forwarding
Wouldn’t it be useful if you could start an application on a server, where all the workload is
performed by the server while you can do the work itself from your client? You can with SSH X-
forwarding. When using X-forwarding, you first establish an SSH session to the server to which you
want to connect. Next, from this SSH session, you’ll start the graphical application. This application
will draw its screen on your workstation while doing all the work on the server.

Sound good? Establishing such an environment has only two requirements:

• Make sure the option X11Forwarding is set to yes in /etc/ssh/sshd_config on the server.

• Connect to the server with the ssh -X command from your client. Alternatively, you can set
the option X11Forwarding in the client configuration file /etc/ssh/ssh_config, which allows
you to forward graphical sessions by default. Since, however, this poses a minor security
threat, this setting is not enabled by default on SUSE Linux Enterprise Server.

Now that you have established the SSH session with your server, start any command you want
to use. This even allows you to run YaST from a Debian workstation!

CHAPTER 18 ■ ENABLING REMOTE ACCESS 377

7087ch18final.qxd 11/8/06 11:48 PM Page 377

■Note Forwarding X sessions with SSH is really cool, but it has a limitation. You need an X-server on the
client from which you are establishing the SSH session. On Linux, Unix, or the Mac, this is not a problem since
an X-server is available for each of these operating systems. On Windows, however, this is a problem. The
most-used SSH client for Windows is putty, which a useful client, but it doesn’t contain an X-server. If you
want to use an X-server that runs on Windows, use Cygwin/X. You can find this free X-server for Windows at
http://x.cygwin.com.

Using Generic TCP Port Forwarding
X is the only service for which port forwarding is hard-coded in the SSH software. For everything
else, you need to do it by hand, using the -L or the -R option. Refer to the example in Figure 18-2.

The example network shown in Figure 18-2 has three nodes. Node AMS is the node where the
administrator is working. ATL is the node in the middle. AMS has a direct connection to ATL but not
to SLC, which is behind a firewall. ATL, however, does have a direct connection, not hindered by any
firewall, to SLC.

An easy example of port forwarding is the command:

linda@AMS:~> ssh -L 4444:ATL:110 linda@ATL

In this example, user linda forwards connections to port 4444 on her local host to port 110
on the host ATL as user linda on that host. This is what you would use, for example, to establish
a secure session to the insecure POP service on that host. The local host first establishes a connec-
tion to the SSH server running on ATL. This SSH server connects to port 110 at ATL, whereas SSH
binds to port 4444 on the local host. Now an encrypted session is established between local port
4444 and server port 110; everything sent to port 4444 on the local host would really go to port 110
at the server. For example, if you would configure your POP mail program to get its mail from local
port 4444, it would really get it from port 110 at ATL. Notice this example uses a nonprivileged port.
Only user root can connect to a privileged port with a port number less than 1024. No matter what
port you are connecting to, you should always check in the configuration file /etc/services, where
port numbers are matched to names of services if the port number is already in use by some other
process, and use netstat -patune | grep <your-intended-port> to make sure the port is not
already in use.

CHAPTER 18 ■ ENABLING REMOTE ACCESS378

Figure 18-2. Example network

7087ch18final.qxd 11/8/06 11:48 PM Page 378

A little variation on the local port forwarding shown earlier is remote port forwarding. If you
wanted to do that, you would forward all the connections to a given port on the remote port to
a local port on your machine. For example, use the -R option as in the following example:

linda@AMS:~> ssh -R 4444:AMS:110 linda@ATL

In this example, user linda connects to host ATL (see the last part of the command). On this
host, port 4444 is addressed by using the construction -R 4444. This remote port is redirected to
port 110 on the local host. As a result, anything going to port 4444 on ATL is redirected to port 110
on AMS. This example would be useful if ATL were the client and AMS were the server running
a POP mail server to which linda wants to connect.

Another useful example is when the host you want to forward to cannot be reached directly,
for example because it is behind a firewall. In that case, you can establish a tunnel to another host
that is reachable with SSH. Imagine that in the example in Figure 18-2, the host SLC is running a
POP mail server that user linda wants to connect to; this user would use the following command:

linda@AMS:~> ssh -L 4444:SLC:110 linda@ATL

In this example, linda forwards connections to port 4444 on her local host to server ATL that is
running SSH. This server would forward the connection to port 110 on server SLC. Note that in this
scenario, the only requirement is that ATL has the SSH service activated; no sshd is needed on SLC
for this to work. Also note that there is no need for host AMS to get in direct contact with SLC,
because this would happen from host ATL.

In the previous examples, you learned how to use the SSH command to do port forwarding.
This isn’t your only way of doing it. If you need to establish a port-forwarding connection all the
time, you can put it in the SSH configuration file on the client computer. Put it in .ssh/config in
your home directory if you want it to work for your user account only or in /etc/ssh/ssh_config if
you want it to apply for all users on your machine. The parameter you should use as an alternative
to ssh -L 4444:ATL:110 is as follows:

LocalForward 4444 ATL:110

Using Other Methods for Remote Access
Although certainly it’s the most secure and reliable method for remote access, SSH isn’t the only
way you can manage your server remotely. Another method that is rather popular is VNC, which
allows you to take over a complete desktop remotely. In the following sections, you’ll learn how
to configure your server for VNC, how to use VNC remotely, and how to use screen to establish
a remote session in which screens are synchronized, which is an ideal solution for helping
people remotely.

Using VNC for Remote Access to Graphical Screens
Enabling VNC is easy: the YaST Remote Administration option in the Network Services section
allows you to set up VNC access quickly. As shown in Figure 18-3, this module gives access to two
choices: Allow Remote Administration and Do Not Allow Remote Administration. Want to enable
remote administration for your server? Just click Allow Remote Administration, and you are almost
there. If you have an active firewall protecting your server, don’t forget to select Open Port in Fire-
wall. This option is available only if the firewall on your server is really enabled; if it isn’t, the option
is disabled. Then click Finish to complete the setup for remote administration.

CHAPTER 18 ■ ENABLING REMOTE ACCESS 379

7087ch18final.qxd 11/8/06 11:48 PM Page 379

Clicking Finish isn’t the final step to make remote administration possible for your server. This
is because the component that is used to log in to your server has to be enabled for remote adminis-
tration as well. Depending on the graphical desktop environment you are using, this component is
xdm (generic for X), kdm (for KDE), or gdm (for the GNOME desktop environment). Remote admin-
istration of your server is possible only after this component is restarted. On SUSE Linux Enterprise
Server, you can accomplish this by using the command rcxdm restart from a shell command line.
Next, your server is enabled for VNC remote access.

You can now connect with a Java-enabled web browser to VNC port 5801 on your server by
going to http://yourserver:5801. As an alternative, you can use a dedicated VNC client from either
Linux or Windows to connect to port 5901 at the remote server. As a result, you will see a login
prompt that you can connect to, and that will give you access to the remote server (see Figure 18-4).

You should note that there are some small differences between the normal login interface that
XDM is offering you and the interface offered when accessing a server via VNC. The latter option
offers an Administration button. If you click this button, you are asked for the password of user
root. After entering it, you are redirected to YaST, which is available as your only option to admin-
ister the remote system.

CHAPTER 18 ■ ENABLING REMOTE ACCESS380

Figure 18-3. You can easily set up VNC remote administration using YaST.

7087ch18final.qxd 11/8/06 11:48 PM Page 380

Enabling VNC via xinetd
Using the remote administration option from YaST is one way to enable VNC. There is also another
way that offers some more advantages, and that is to enable VNC via xinetd. Since xinetd is the sub-
ject of the next chapter; I will not cover the details of this configuration here. You should, however,
know that there are some advantages when using xinetd to configure access to VNC. The most
important of these is that some more access control is possible. When combining xinetd with TCP
Wrapper, you can specify exactly what hosts you do want to give access to and what hosts you don’t.
Check Chapter 19 for more details on how this works.

Securing VNC Remote Access with SSH
Setting up your server for remote administration is one thing; making sure this remote administra-
tion happens in a secure way is another thing. By default, VNC traffic is sent over the network
unencrypted. Tunneling VNC over SSH is an easy solution for that problem:

CHAPTER 18 ■ ENABLING REMOTE ACCESS 381

Figure 18-4. VNC gives access to the graphical login of a server from a browser or a dedicated VNC
client.

7087ch18final.qxd 11/8/06 11:48 PM Page 381

1. On your workstation, use the command ssh -X root@yourserver -L 5901:yourserver:5901.
This makes sure that all traffic addressed to local port 5901 is forwarded to port 5901 on
your server.

2. Now from your workstation, use a tool like vncviewer to connect to the local VNC port. Note
that you shouldn’t connect to port 5901 but to port 1, which is an internal VNC port.

You can now access VNC, just like you did when connecting to it without encryption. The only
difference is that when the tool asks for passwords, they aren’t sent in plain text over the network
anymore.

Using screen to Synchronize Remote Sessions
Ever tried to imagine what someone is seeing while working on a remote system? Don’t imagine!
With screen, you can see just what happens. The idea is simple: the user on the remote server uses
the screen command. Next, you use screen -x from an SSH session to attach to that screen. The
next step is that everything the user in question types into his console is displayed in your SSH ses-
sion as well, and everything you are typing shows up on his screen. You are in fact sharing the same
screen in this scenario. The next procedure shows how to set this up. Note that this is just one of the
many uses of screen. Check its man page for more information about this versatile utility:

1. On the server, just type screen in a terminal window.

2. From a client, establish an SSH session to the server. Any plain SSH session will do fine.

3. Now from the client, type screen -x. This gives a list of screens to which you can connect
(see Listing 18-3).

Listing 18-3. Example of Screen Usage

AMS:~ # screen -x
There are several suitable screens on:

7068.pts-1.AMS (Attached)
7188.pts-6.AMS (Attached)

Type "screen [-d] -r [pid.]tty.host" to resume on of them.

4. Read the message that screen -x is giving you, and next connect to one of the screen ses-
sions that are mentioned. In this example, you can do that by using the command screen
-x -r 7068.pts-1.AMS. This command will connect you to the console window where
screen is running on the server. Enjoy!

Summary
If people are talking about remote administration or remote access, they are probably talking
about SSH, which is the real standard for remote administration on Linux. In this chapter, you
learned everything you should know to manage your server remotely with SSH. However, SSH
isn’t the only option you can use to manage your server remotely. Another popular solution is
VNC, which you can enable from YaST easily. You not only learned how to do this but also how to
use VNC securely by tunneling it with SSH. Finally, you read about another useful tool, the screen
command. In the next chapter, you will read how to enable lots of network services by using the
Xinetd “superdaemon.”

CHAPTER 18 ■ ENABLING REMOTE ACCESS382

7087ch18final.qxd 11/8/06 11:48 PM Page 382

