
Creating Mappings with
Hibernate XML Files

In the simple example programs in Chapters 1 and 3, we demonstrated how a mapping file
could be used to establish the relationship between the object model and the database
schema. A mapping file can map a single class or multiple classes to the database. The map-
ping can also describe standard queries (in HQL and SQL) and filters.

Hibernate Types
Although we have referred to the Hibernate types in passing, we have not discussed the ter-
minology in any depth. In order to express the behavior of the mapping file elements, we
need to make these fine distinctions explicit.

Hibernate types fall into three broad categories: entities, components, and values.

Entities
Generally, an entity is a POJO class that has been mapped into the database using the <class>
or <subclass> elements.

An entity can also be a dynamic map (actually a Map of Maps). These are mapped against
the database in the same way as a POJO, but with the default entity mode of the
SessionFactory set to dynamic-map.

The advantage of POJOs over the dynamic-map approach is that compile-time type safety
is retained. Conversely, dynamic maps are a quick way to get up and running when building
prototypes.

It is also possible to represent your entities as Dom4J Document objects. This is a useful
feature when importing and exporting data from a preexisting Hibernate database, but it is
not really central to the everyday use of Hibernate.

We recommend that you use the standard entity mode unless you need to sacrifice accu-
racy for timeliness, so the alternate approaches are not discussed in this chapter—however,
we give some simple examples of the Dom4J- and Map-based mappings in Appendix A.

139

C H A P T E R 7

■ ■ ■

6935ch07_final.qxd 8/2/06 9:43 PM Page 139

Components
Lying somewhere between entities and values are component types. When the class represen-
tation is simple and its instances have a strong one-to-one relationship with instances of
another class, then it is a good candidate to become a component of that other class.

The component will normally be mapped as columns in the same table that represents
most of the other attributes of the owning class, so the strength of the relationship must justify
this inclusion. In the following code, the MacAddress class might a good candidate for a com-
ponent relationship.

public class NetworkInterface {
public int id;
public String name;
public String manufacturer;
public MacAddress physicalAddress;

}

The advantage of this approach is that it allows you to dispense with the primary key of
the component and the join to its containing table. If a poor choice of component is made
(for example, when a many-to-one relationship actually holds), then data will be duplicated
unnecessarily in the component columns.

Values
Everything that is not an entity or a component is a value. Generally, these correspond to the
data types supported by your database, the collection types, and, optionally, some user-
defined types.

The details of these mappings will be vendor-specific, so Hibernate provides its own value
type names; the Java types are defined in terms of these (see Table 7-1).

Table 7-1. The Standard Hibernate 3 Value Names

Hibernate 3 Type Corresponding Java Type

Primitives and Wrappers

integer int, java.lang.Integer

long long, java.lang.Long

short short, java.lang.Short

float float, java.lang.Float

double double, java.lang.Double

character char, java.lang.Character

byte byte, java.lang.Byte

boolean, yes_no, true_false boolean, java.lang.Boolean

Other Classes

string java.lang.String

date, time, timestamp java.util.Date

calendar, calendar_date java.util.Calendar

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES140

6935ch07_final.qxd 8/2/06 9:43 PM Page 140

Hibernate 3 Type Corresponding Java Type

big_decimal java.math.BigDecimal

big_integer java.math.BigInteger

locale java.util.Locale

timezone java.util.TimeZone

currency java.util.Currency

class java.lang.Class

binary byte[]

text java.lang.String

serializable java.io.Serializable

clob java.sql.Clob

blob java.sql.Blob

In addition to these standard types, you can create your own. Your user type class should
implement either the org.hibernate.usertype.UserType interface or the org.hibernate.
usertype.CompositeUserType interface. Once implemented, a custom type can behave iden-
tically to the standard types; though depending on your requirements, it may be necessary to
specify multiple column names to contain its values, or to provide initialization parameters
for your implementation.

For one-off cases, we recommend that you use components—these have similar behavior,
but they can be “created” in the mapping file without needing to write Hibernate-specific
code. Unless you propose to make substantial use of a custom type throughout your applica-
tion, it will not be worth the effort. We do not discuss this feature further in this book.

The Anatomy of a Mapping File
A mapping file is a normal XML file. It is validated against a DTD, which can be downloaded
from http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd. You can also look
through the annotated version at http://hibernatebook.com.

The terminology used in the naming of elements and attributes is somewhat confusing at
first because it is the point of contact between the jargon of the object-oriented and relational
worlds.

The <hibernate-mapping> Element
The root element of any mapping file is <hibernate-mapping>. As the top-level element, its
attributes mostly define default behaviors and settings to apply to the child elements (see
Table 7-2).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 141

6935ch07_final.qxd 8/2/06 9:43 PM Page 141

Table 7-2. The <hibernate-mapping> Attributes

Attribute Values Default Description

auto-import true, false true By default, allows you to use the unqualified
class names in Hibernate queries. You would
normally only set this to false if the class
name would otherwise be ambiguous.

catalog The database catalog against which queries
should apply.

default-access property The default access type. If set to property, then
get and set methods are used to access the
data. If set to field, then the data is accessed
directly. Alternatively, you can provide the
class name of a PropertyAccessor implementa-
tion defining any other access mechanism.

default-cascade Defines how (and whether) direct changes to
data should affect dependent data by default.

default-lazy true, false true Defines whether lazy instantiation is used by
default. Generally, the performance benefits
are such that you will want to use lazy instanti-
ation whenever possible.

package The package from which all implicit imports
are considered to occur.

schema The database schema against which queries
should apply.

The default cascade modes available for the default-cascade attribute (and for the cas-
cade attributes in all other elements) are as follows:

create, merge, delete, save-update, evict, replicate, lock, refresh

These correspond to the various possible changes in the lifestyle of the parent object.
When set (you can include combinations of them as comma-separated values), the relevant
changes to the parent will be cascaded to the relation. For example, you may want to apply
the save-update cascade option to a class that includes Set attributes, so that when new per-
sistent classes are added to these, they will not have to be saved explicitly in the session.

There are also three special options:

all, delete-orphan, none

all specifies that all changes to the parent should be propagated to the relation, and none
specifies that none should. delete-orphan applies only to one-to-many associations, and speci-
fies that the relation should be deleted when it is no longer referenced by the parent.

The required order and cardinality of the child elements of <hibernate-mapping> are as
follows:

(meta*,
typedef*,
import*,
(class | subclass | joined-subclass | union-subclass)*,
(query | sql-query)*,
filter-def*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES142

6935ch07_final.qxd 8/2/06 9:43 PM Page 142

Throughout this book, we have assumed that the mappings are defined in one mapping
file for each significant class that is to be mapped to the database. We suggest that you follow
this practice in general, but there are some exceptions to this rule. You may, for instance, find
it useful to place query and sql-query entries into an independent mapping file, particularly
when they do not fall clearly into the context of a single class.

The <class> Element
The child element that you will use most often—indeed, in nearly all of your mapping files—is
<class>. As you have seen in earlier chapters, we generally describe the relationships between
Java objects and database entities in the body of the <class> element. The <class> element
permits the following attributes to be defined (see Table 7-3).

Table 7-3. The <class> Attributes

Attribute Values Default Description

abstract true, false false The flag that should be set if the class being
mapped is abstract.

batch-size 1 Specifies the number of items that can be
batched together when retrieving instances of
the class by identifier.

catalog The database catalog against which the
queries should apply.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 143

THE ORDER AND CARDINALITY INFORMATION FROM THE DTD

The mapping files used by Hibernate have a great many elements and are somewhat self-referential. For
example, the <component> element permits you to include within it further <component> elements, and
within those further <component> elements—and so on, ad infinitum.

While we do not quote exhaustively from the mapping file’s DTD, we sometimes quote the part of it
that specifies the permitted ordering and cardinality (number of occurrences) of the child elements of a
given element.

The cardinality is expressed by a symbol after the end of the name of the element: * means “zero
or more occurrences,” ? means “zero or one occurrences,” and no trailing symbol means “exactly one
occurrence.”

The elements can be grouped using brackets, and where the elements are interchangeable, | (the pipe
symbol) means “or.”

In practical terms, this allows us to tell from the order and cardinality information quoted for the
hibernate-mapping file that all of the elements immediately below it are, in fact, optional. We can also
see that there is no limit to the number of <class> elements that can be included.

You can look up this ordering and cardinality information in the DTD for the mapping file for all the
elements, including the ones that we have omitted from this chapter. You will also find within the DTD the
specification of which attributes are permitted to each element, the values they may take (when they are
constrained), and their default values when provided. We recommend that you look at the DTD for enlight-
enment whenever you are trying to work out whether a specific mapping file should be syntactically valid.

6935ch07_final.qxd 8/2/06 9:43 PM Page 143

Table 7-3. Continued

Attribute Values Default Description

check Defines an additional row-level check
constraint, effectively adding this as a
SQL CHECK(...) clause during table
generation (for example,
check="salary < 1000000").

discriminator-value A value used to distinguish between oth-
erwise identical subclasses of a common
type persisted to the same table. is null
and is not null are permissible values.
To distinguish between a Cat and a Dog
derivative of the Mammal abstract class,
for example, you might use discrimina-
tor values of C and D, respectively.

dynamic-insert true, false false Indicates whether all columns should
appear in INSERT statements. If the
attribute is set to true, null columns will
not appear in generated INSERT com-
mands. On very wide tables, this may
improve performance; but because
insert statements are cached,
dynamic-insert can easily produce a
performance hit.

dynamic-update true, false false Indicates whether all columns should
appear in UPDATE statements. If the
attribute is set to true, unchanged
columns will not appear in generated
UPDATE commands. As with dynamic-
insert, this can be tweaked for perform-
ance reasons. You must enable
dynamic-update if you want to use ver-
sion-based optimistic locking (discussed
in Appendix A).

entity-name The name of the entity to use in place of
the class name (therefore required if
dynamic mapping is used).

lazy true, false Used to disable or enable lazy fetching
against the enclosing mapping’s default.

mutable true, false true Used to flag that a class is immutable
(allowing Hibernate to make some per-
formance optimizations when dealing
with these classes).

name The fully qualified Java name, or
optionally unqualified if the <hibernate-
mapping> element declares a package
attribute, of the class (or interface) that
is to be made persistent.

node Specifies the name of the XML element
or attribute that should be used by the
XML relational persistence features.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES144

6935ch07_final.qxd 8/2/06 9:43 PM Page 144

Attribute Values Default Description

optimistic-lock none, version version Specifies the optimistic locking dirty,
all strategy to use. The strategy applies
at a class level, but in Hibernate 3 can
also be specified (or overridden) at an
attribute level. Optimistic locking is dis-
cussed in Appendix A.

persister Allows a custom ClassPersister object
to be used when persisting the entity.

polymorphism implicit, explicit implicit Determines how polymorphism is to be
used. The default implicit behavior will
return instances of the class if super-
classes or implemented interfaces are
named in the query, and will return
subclasses if the class itself is named in
the query.

proxy Specifies a class or an interface to use as
the proxy for lazy initialization. Hiber-
nate uses runtime-generated proxies by
default, but you can specify your own
implementation of org.hibernate.
HibernateProxy in their place.

rowid Flags that row IDs should be used (a
database-implementation detail allow-
ing Hibernate to optimize updates).

schema Optionally overrides the schema speci-
fied by the <hibernate-mapping> element.

select-before- true, false false Flags that Hibernate should carry out
update extra work to avoid issuing unnecessary

UPDATE statements. If set to true, Hiber-
nate issues a SELECT statement before
attempting to issue an UPDATE statement
in order to ensure that the UPDATE state-
ment is actually required (i.e., that col-
umns have been modified). While this is
likely to be less efficient, it can prevent
database triggers from being invoked
unnecessarily.

subselect A subselection of the contents of the
underlying table. A class can only use
a subselect if it is immutable and read-
only (because the SQL defined here can-
not be reversed). Generally, the use of a
database view is preferable.

table The table name associated with the class
(if unspecified, the unqualified class
name will be used).

where An arbitrary SQL where condition to be
used when retrieving objects of this class
from the table.

Many of these attributes in the <class> element are designed to support preexisting data-
base schemas. In practice, the name attribute is very often the only one set.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 145

6935ch07_final.qxd 8/2/06 9:43 PM Page 145

The required order and cardinality of the child elements of <class> are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
tuplizer*,
(id | composite-id),
discriminator?,
(version | timestamp)?,
(property | many-to-one | one-to-one | component | dynamic-component |
properties | any | map | set | list | bag | idbag |
array | primitive-array)*,
((join*, subclass*) | joined-subclass* | union-subclass*),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
filter*
resultset,
(query | sql-query)
)

The <id> Element
All entities need to define their primary key in some way. Any class directly defined by the
<class> element (not a derived or component class) must therefore have an <id> or a
<composite-id> element to define this (see Table 7-4). Note that while it is not a requirement
that your class implementation itself should implement the primary key attribute, it is cer-
tainly advisable. If you cannot alter your class design to accommodate this, you can instead
use the getIdentifier() method on the Session object to determine the identifier of a per-
sistent class independently.

Table 7-4. The <id> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used. The value from
the <hibernate-mapping> element will be inherited if
this is not specified.

column The name of the column in the table containing the
primary key. The value given in the name attribute
will be used if this is not specified.

length The column length to be used.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES146

6935ch07_final.qxd 8/2/06 9:43 PM Page 146

Attribute Values Default Description

name The name of the attribute in the class representing
this primary key. If this is omitted, it is assumed that
the class does not have an attribute directly repre-
senting this primary key. Naturally, the column attrib-
ute must be provided if the name attribute is omitted.

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

type The Hibernate type of the column.

unsaved-value The value that the attribute should take when an
instance of the class has been created but not yet per-
sisted to the database. This attribute is mandatory.

The <id> element requires a <generator> element to be specified, which defines how to
generate a new primary key for a new instance of the class. The generator takes a class attri-
bute, which defines the mechanism to be used. The class should be an implementation of
org.hibernate.id.IdentifierGenerator. Optional <param> elements can be provided if the
identifier needs additional configuration information, each having the following form:

<param name="parameter name">parameter value</param>

Hibernate provides several default IdentifierGenerator implementations, which can be
referenced by convenient short names, as shown in Table 7-5. These are fairly comprehensive,
so you are unlikely to need to implement your own IdentifierGenerator.

Table 7-5. The Default IdentiferGenerator Implementations

Short Name Description

guid Uses a database-generated “globally” unique identifier. This is not portable to
databases that do not have a guid type. The specific implementation, and hence
the quality of the uniqueness of this key, may vary from vendor to vendor.

hilo Uses a database table and column to efficiently and portably maintain and gen-
erate identifiers that are unique to that database. The Hibernate int, short, and
long types are supported.

identity Supports the identity column type available in some, but not all, databases. This
is therefore not a fully portable option. The Hibernate int, short, and long types
are supported.

increment Generates a suitable key by adding 1 to the current highest key value. Can apply
to int, short, or long hibernate types. This only works if other processes are not
permitted to update the table at the same time. If multiple processes are run-
ning, then depending on the constraints enforced by the database, the result
may be an error in the application(s) or data corruption.

native Selects one of sequence, identity, or hilo, as appropriate. This is a good com-
promise option since it uses the innate features of the database and is portable
to most platforms. This is particularly appropriate if your code is likely to be
deployed to a number of database implementations with differing capabilities.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 147

6935ch07_final.qxd 8/2/06 9:43 PM Page 147

Table 7-5. Continued

Short Name Description

seqhilo Uses a sequence to efficiently generate identifiers that are unique to that data-
base. The Hibernate int, short, and long types are supported. This is not a
portable technique (see sequence, following).

sequence Supports the sequence column type (essentially a database-enforced increment)
available in some, but not all, databases. This is, therefore, not a fully portable
option. The Hibernate int, short, and long types are supported.

uuid Attempts to portably generate a (cross-database) unique primary key. The key is
composed of the local IP address, the startup time of the JVM (accurate to 1⁄4 of a
second), the system time, and a counter value (unique within the JVM). This can-
not guarantee absolutely that a given key is unique, but it will be good enough
for most clustering purposes.

The child elements of the <id> element are as follows:

(meta*, column*, type?, generator?)

While this is all rather complex, Listing 7-1 shows a typical <id> element from Chapter 3,
which illustrates the simplicity of the usual case.

Listing 7-1. A Typical <id> Element

<id name="id" type="long" column="id">
<generator class="native"/>

</id>

■Note When the <id> element cannot be defined, a compound key can instead be defined using the
<composite-id> element. This is provided purely to support existing database schemas. A new Hibernate
project with a clean database design does not require this.

In addition to using the standard and custom generator types, you have the option of
using the special assigned generator type. This allows you to explicitly set the identifier for
the entities that you will be persisting—Hibernate will not then attempt to assign any iden-
tifier value to such an entity. If you use this technique, you will not be able to use the
saveOrUpdate() method on a transient entity—instead, you will have to call the appropriate
save() or update() method explicitly.

The <property> Element
While it is not absolutely essential, almost all classes will also maintain a set of properties in
the database in addition to the primary key. These must be defined by a <property> element
(see Table 7-6).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES148

6935ch07_final.qxd 8/2/06 9:43 PM Page 148

Table 7-6. The <property> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used. The value from
the <class> element or <hibernate-mapping> element
will be inherited if this is not specified.

column The column in which the property will be main-
tained. If omitted, this will default to the name of the
attribute; or it can be specified with nested <column>
elements (see Listing 7-2).

formula An arbitrary SQL query representing a computed
property (i.e., one that is calculated dynamically,
rather than represented in a column).

index The name of an index to be maintained for the
column.

insert true, false true Specifies whether creation of an instance of the class
should result in the column associated with this
attribute being included in insert statements.

lazy true, false false Defines whether lazy instantiation is used by default
for this column.

length The column length to be used.

name The (mandatory) name of the attribute. This should
start with a lowercase letter.

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

not-null true, false false Specifies whether the column is permitted to contain
null values.

optimistic-lock true, false true Determines whether optimistic locking should be
used when the attribute has been updated.

precision Allows the precision (the number of digits) to be
specified for numeric data.

scale Allows the scale (the number of digits to the right of
the decimal point) to be specified for numeric data.

type The Hibernate type of the column.

unique true, false false Indicates whether duplicate values are permitted for
this column/attribute.

unique-key Groups the columns together by this attribute value.
Represents columns across which a unique key con-
straint should be generated (not yet supported in the
schema generation).

update true, false true Specifies whether changes to this attribute in
instances of the class should result in the column
associated with this attribute being included in
update statements.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 149

6935ch07_final.qxd 8/2/06 9:43 PM Page 149

The child elements of the <property> element are as follows:

(meta*, (column | formula)*, type?)

Any element accepting a column attribute, as is the case for the <property> element, will
also accept <column> elements in its place. For an example, see Listing 7-2.

Listing 7-2. Using the <column> Element

<property name="message"/>
<column name="message" type="string"/>

</property>

This particular example does not really give us anything beyond the use of the column
attribute directly; but the <column> element comes into its own with custom types and some
of the more complex mappings that we will be looking into later in the chapter.

The <component> Element
The <component> element is used to map classes that will be represented as extra columns
within a table describing some other class. We have already discussed how components fit
in as a compromise between full entity types and mere value types.

The <component> element can take the attributes listed in Table 7-7.

Table 7-7. The <component> Attributes

Attribute Values Default Description

access Defines how the properties should be accessed:
through field (directly), through property (calling
the get/set methods), or through the name of a
PropertyAccessor class to be used

class The class that the parent class incorporates by
composition

insert true, false true Specifies whether creation of an instance of the class
should result in the column associated with this
attribute being included in insert statements

lazy true, false false Defines whether lazy instantiation is used by default
for this mapped entity

name The name of the attribute (component) to be
persisted

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features

optimistic-lock true, false true Specifies the optimistic locking strategy to use

unique true, false false Indicates that the values that represent the compo-
nent must be unique within the table

update true, false true Specifies whether changes to this attribute in
instances of the class should result in the column
associated with this attribute being included in
update statements

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES150

6935ch07_final.qxd 8/2/06 9:43 PM Page 150

The child elements of the <component> element are as follows:

(meta*,
tuplizer*,
parent?,
(property | many-to-one | one-to-one |
component | dynamic-component | any |
map | set | list | bag |
array | primitive-array)*)

We provide a full example of the use of the <component> element in the “Mapping Compo-
sition” section later in this chapter.

The <one-to-one> Element
The <one-to-one> element expresses the relationship between two classes, where each instance
of the first class is related to a single instance of the second, and vice versa. Such a one-to-one
relationship can be expressed either by giving each of the respective tables the same primary
key values, or by using a foreign key constraint from one table onto a unique identifier column
of the other. Table 7-8 shows the attributes that apply to the <one-to-one> element.

Table 7-8. The <one-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed:
field for direct field access or attribute for access
via the get and set methods.

cascade Determines how changes to the parent entity will
affect the linked relation.

check The SQL to create a multirow check constraint for
schema generation.

class The property type of the attribute or field (if omit-
ted, this will be determined by reflection).

constrained true, false Indicates that a foreign key constraint on the primary
key of this class references the table of the associated
class.

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity itself,
or only its identifier, will appear in the generated
XML tree.

entity-name The entity name of the associated class.

fetch join, select The mode in which the element will be retrieved
(outer join, a series of selects, or a series of subse-
lects). Only one member of the enclosing class can
be retrieved by outer join.

foreign-key The name to assign to the foreign key enforcing the
relationship.

formula Allows the value to which the associated class maps
its foreign key to be overridden using an SQL formula.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 151

6935ch07_final.qxd 8/2/06 9:43 PM Page 151

Table 7-8. Continued

Attribute Values Default Description

lazy true, false Overrides the entity-loading mode.

name Assigns a name to the entity (required in dynamic
mappings).

node Specifies the name of the XML element or attribute
that should be used by the XML relational persist-
ence features.

outer join true, false, Specifies whether an outer join should be used.
auto

property-ref Specifies the column in the target entity’s table that
the foreign key references. If the referenced table’s
foreign key does not reference the primary key of the
“many” end of the relationship, then property-ref
can be used to specify the column that it references.
This should only be the case for legacy designs—
when creating a new schema, your foreign keys
should always reference the primary key of the
related table.

You would select a primary key association when you do not want an additional table
column to relate the two entities. The master of the two entities takes a normal primary key
generator, and its one-to-one mapping entry will typically have the attribute name and asso-
ciated class specified only. The slave entity will be mapped similarly, but must have the
constrained attribute setting applied to ensure that the relationship is recognized.

Because the slave class’s primary key must be identical to that allocated to the master, it is
given the special id generator type of foreign. On the slave end, the <id> and <one-to-one>
elements will therefore look like this:

<id name="id" column="product">
<generator class="foreign">

<param name="property">campaign</param>
</generator>

</id>

<one-to-one name="campaign"
class="com.hibernatebook.xmlmapping.Campaign"
constrained="true"/>

There are some limitations to this approach: it cannot be used on the receiving end of
a many-to-one relationship (even when the “many” end of the association is limited by a
unique constraint), and the slave entity cannot be the slave of more than one entity.

In these circumstances, you will need to declare the master end of the association as a
uniquely constrained one-to-many association. The slave entity’s table will then need to take
a foreign key column associating it with the master’s primary key. The property-ref attribute
setting is used to declare this relationship, like so:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES152

6935ch07_final.qxd 8/2/06 9:43 PM Page 152

<one-to-one
name="campaign"
class="com.hibernatebook.xmlmapping.Campaign"
property-ref="product"/>

The format used in this example is the most common. The body of the element consists
of an infrequently used optional element:

(meta* | formula*)

We discuss the <many-to-many> element and the alternative approach of composition in
some detail in the “Mapping Collections” section later in this chapter.

The <many-to-one> Element
The many-to-one association describes the relationship in which multiple instances of one
class can reference a single instance of another class. This enforces a relational rule for which
the “many” class has a foreign key into the (usually primary) unique key of the “one” class.
Table 7-9 shows the attributes permissible for the <many-to-one> element.

Table 7-9. The <many-to-one> Attributes

Attribute Values Default Description

access Specifies how the class member should be accessed:
field for direct field access, or attribute for access
via the get and set methods.

cascade Determines how changes to the parent entity will
affect the linked relation.

class The property type of the attribute or field (if omitted,
this will be determined by reflection).

column The column containing the identifier of the target
entity (i.e., the foreign key from this entity into the
mapped one).

embed-xml true, false When using XML relational persistence, indicates
whether the XML tree for the associated entity itself,
or only its identifier, will appear in the generated
XML tree.

entity-name The name of the associated entity.

fetch join, select The mode in which the element will be retrieved
(outer join, a series of selects, or a series of
subselects). Only one member of the enclosing class
can be retrieved by outer join.

foreign-key The name of the foreign key constraint to generate
for this association.

formula An arbitrary SQL expression to use in place of the nor-
mal primary key relationship between the entities.

index The name of the index to be applied to the foreign
key column in the parent table representing the
“many” side of the association.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 153

6935ch07_final.qxd 8/2/06 9:43 PM Page 153

Table 7-9. Continued

Attribute Values Default Description

insert true, false true Indicates whether the field can be persisted.
When set to false, this prevents inserts if the
field has already been mapped as part of a
composite identifier or some other attribute.

lazy false, proxy, Overrides the entity-loading mode.
noproxy

name The (mandatory) name of the attribute. This
should start with a lowercase letter.

node Specifies the name of the XML element or attrib-
ute that should be used by the XML relational
persistence features.

not-found exception, exception The behavior to exhibit if the related entity does
ignore not exist (either throw an exception or ignore the

problem).

not-null true, false false Specifies whether a not-null constraint should
be applied to this column.

optimistic-lock true, false true Specifies whether optimistic locking should be
used.

outer-join true, false, Specifies whether an outer join should be used.
auto

property-ref Specifies the column in the target entity’s table
that the foreign key references. If the referenced
table’s foreign key does not reference the pri-
mary key of the “many” end of the relationship,
then property-ref can be used to specify the col-
umn that it references. This should only be the
case for legacy designs—when creating a new
schema, your foreign keys should always refer-
ence the primary key of the related table.

unique true, false false Specifies whether a unique constraint should be
applied to the column.

unique-key Groups the columns together by this attribute
value. Represents columns across which a
unique key constraint should be generated (not
yet supported in the schema generation).

update true, false true When set to false, prevents updates if the field
has already been mapped elsewhere.

If a unique constraint is specified on a many-to-one relationship, it is effectively converted
into a one-to-one relationship. This approach is preferred over creating a one-to-one association,
both because it results in a simpler mapping and because it requires less intrusive changes to the
database should it become desirable to relax the one-to-one association into a many-to-one.

This element has a small number of optional daughter elements—the <column> element
will be required when a composite key has to be specified:

(meta*, (column | formula)*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES154

6935ch07_final.qxd 8/2/06 9:43 PM Page 154

The following mapping illustrates the creation of a simple many-to-one association
between a User class and an Email class: each user can have only one e-mail address—but
an e-mail address can belong to more than one user.

<many-to-one
name="email"
class="com.hibernatebook.xmlmapping.Email"
column="email"
cascade="all" unique="true"/>

The simplest approach to creating a many-to-one relationship, as shown in the previous
example, requires two tables and a foreign key dependency. An alternative is to use a link table
to combine the two entities. The link table contains the appropriate foreign keys referencing
the two tables associated with both of the entities in the association. The following code shows
the mapping of a many-to-one relationship via a link table.

<join table="link_email_user" inverse="true" optional="false">
<key column="user_id"/>
<many-to-one name="email" column="email_id" not-null="true"/>

</join>

The disadvantage of the link table approach is its slightly poorer performance (it requires
a join of three tables to retrieve the associations, rather than one). Its benefit is that it requires
less extreme changes to the schema if the relationship is modified—typically, changes would
be made to the link table, rather than to one of the entity tables.

The Collection Elements
These are the elements that are required for you to include an attribute in your class that rep-
resents any of the collection classes. For example, if you have an attribute of type Set, then you
will need to use a <bag> or <set> element to represent its relationship with the database.

Because of the simplicity of the object-oriented relationship involved, where one object
has an attribute capable of containing many objects, it is a common fallacy to assume that the
relationship must be expressed as a one-to-many. In practice, however, this will almost always
be easiest to express as a many-to-many relationship, where an additional link table closely
corresponds with the role of the collection itself. See the “Mapping Collections” section later
in this chapter for a more detailed illustration of this.

All the collection mapping elements share the attributes shown in Table 7-10.

Table 7-10. The Attributes Common to the Collection Elements

Attribute Values Default Description

access Specifies how the class member should be
accessed: field for direct field access or
attribute for access via the get and set methods.

batch-size Specifies the number of items that can be
batched together when retrieving instances of
the class by identifier.

Continued

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 155

6935ch07_final.qxd 8/2/06 9:43 PM Page 155

Table 7-10. Continued

Attribute Values Default Description

cascade Determines how changes to the parent entity
will affect the linked relation.

catalog The database catalog against which the queries
should apply.

collection-type The name of a UserCollectionType class describ-
ing the collection type to be used in place of the
defaults.

check The SQL to create a multirow check constraint
for schema generation.

embed-xml true, false When using XML relational persistence, indi-
cates whether the XML tree for the associated
entity itself, or only its identifier, will appear in
the generated XML tree.

fetch join, select The mode in which the element will be retrieved
(outer-join, a series of selects, or a series of
subselects). Only one member of the enclosing
class can be retrieved by outer-join.

lazy true, false Can be used to disable or enable lazy fetching
against the enclosing mapping’s default.

mutable true, false true Can be used to flag that a class is mutable (allow-
ing Hibernate to make some performance opti-
mizations when dealing with these classes).

name The (mandatory) name of the attribute. This
should start with a lowercase letter.

node Specifies the name of the XML element or attrib-
ute that should be used by the XML relational
persistence features.

optimistic-lock true, false true Specifies the optimistic locking strategy to use.

outer-join true, false, Specifies whether an outer join should be used.
auto

persister Allows a custom ClassPersister object to be
used when persisting this class.

schema The database schema against which queries
should apply.

subselect A query to enforce a subselection of the
contents of the underlying table. A class can
only use a subselect if it is immutable and read-
only (because the SQL defined here cannot be
reversed). Generally, the use of a database view
is preferable.

table The name of the table in which the associated
entity is stored.

where An arbitrary SQL where clause limiting the linked
entities.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES156

6935ch07_final.qxd 8/2/06 9:43 PM Page 156

The set Collection
A set collection allows collection attributes derived from the Set interface to be persisted.

In addition to the common collection mappings, the <set> element offers the inverse,
order-by, and sort attributes, as shown in Table 7-11.

Table 7-11. The Additional <set> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping.

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates
the set collection.

sort Specifies the collection class sorting to be used. The
value can be unsorted, natural, or any Comparator
class.

The child elements of the <set> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

The following code shows an implementation of mapping a set of strings into a property
called titles:

<set name="titles" table="nameset">
<key column="titleid"/>
<element type="string" column="name" not-null="true"/>

</set>

A typical implementation, however, maps other entities into the collection. Here we map
Phone entities from the “many” side of a one-to-many association into a Set property, called
phoneNumbers, that belongs to a User entity:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 157

6935ch07_final.qxd 8/2/06 9:43 PM Page 157

<set name="phoneNumbers">
<key column="aduser"/>
<one-to-many class="sample.Phone"/>

</set>

If the Phone class contains a reference to a User object, it is not automatically clear whether
this constitutes a pair of unrelated associations or two halves of the same association—a
bidirectional association. When a bidirectional association is to be established, one side must
be selected as the owner (in a one-to-many or many-to-one association, it must always be the
“many” side), and the other will be marked as being the inverse half of the relationship. See the
discussion of unidirectional and bidirectional associations at the end of Chapter 4. The follow-
ing code shows a mapping of a one-to-many relationship as a reverse association.

<set name="phoneNumbers" inverse="true">
<key column="aduser"/>
<one-to-many class="sample.Phone"/>

</set>

The list Collection
A list collection allows collection attributes derived from the List interface to be persisted.

In addition to the common collection mappings, the <list> element offers the inverse
attribute, as shown in Table 7-12.

Table 7-12. The Additional <list> Attribute

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping

The child elements of the <list> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(index | list-index),
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES158

6935ch07_final.qxd 8/2/06 9:43 PM Page 158

A typical implementation of a list mapping is as follows:

<list name="list" table="namelist">
<key column="fooid"/>
<index column="position"/>
<element type="string" column="name" not-null="true"/>

</list>

The idbag Collection
An idbag collection allows for appropriate use of collection attributes derived from the List
interface. A bag data structure permits unordered storage of unordered items, and permits
duplicates. Because the collection classes do not provide a native bag implementation, classes
derived from the List interface tend to be used as a substitute. The imposition of ordering
imposed by a list is not itself a problem, but the implementation code can become depend-
ent upon the ordering information.

idbag usually maps to a List. However, by managing its database representation with
a surrogate key, you can make the performance of updates and deletions of items in a col-
lection defined with idbag dramatically better than with an unkeyed bag (described at the
end of this section). Hibernate does not provide a mechanism for obtaining the identifier
of a row in the bag.

In addition to the common collection mappings, the <idbag> element offers the order-by
element, as shown in Table 7-13.

Table 7-13. The Additional <idbag> Attribute

Attribute Values Default Description

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
collection

The child elements of the <idbag> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
collection-id,
key,
(element | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 159

6935ch07_final.qxd 8/2/06 9:43 PM Page 159

A typical implementation of an idbag mapping is as follows:

<idbag name="idbag" table="nameidbag">
<collection-id column="id" type="int">

<generator class="native"/>
</collection-id>

<key column="fooid"/>
<element type="string" column="name" not-null="true"/>

</idbag>

The map Collection
A map collection allows collection attributes derived from the Map interface to be persisted.

In addition to the common collection mappings, the <map> element offers the inverse,
order-by, and sort attributes, as shown in Table 7-14.

Table 7-14. The Additional <map> Attributes

Attribute Values Default Description

inverse true, false false Specifies that this entity is the opposite navigable end
of a relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates
the map

sort unsorted Specifies the collection class sorting to be used. The
value can be unsorted, natural, or any Comparator
class

The child elements of the <map> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(map-key | composite-map-key | map-key-many-to-many |
index | composite-index | index-many-to-many |
index-many-to-any),
(element | one-to-many | many-to-many | composite-element |
many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES160

6935ch07_final.qxd 8/2/06 9:43 PM Page 160

A typical implementation of the mapping is as follows:

<map name="map" table="namemap">
<key column="fooid"/>
<index column="name" type="string"/>
<element column="value" type="string" not-null="true"/>

</map>

The bag Collection
If your class represents data using a class derived from the List interface, but you do not want
to maintain an index column to keep track of the order of items, you can optionally use the
bag collection mapping to achieve this. The order in which the items are stored and retrieved
from a bag is completely ignored.

Although the bag’s table does not contain enough information to determine the order of
its contents prior to persistence into the table, it is possible to apply an order by clause to the
SQL used to obtain the contents of the bag so that it has a natural sorted order as it is acquired.
This will not be honored at other times during the lifetime of the object.

If the <bag> elements lack a proper key, there will be a performance impact that will mani-
fest itself when update or delete operations are performed on the contents of the bag.

In addition to the common collection mappings, the <bag> element therefore offers the
order-by as well as the inverse attribute, as shown in Table 7-15.

Table 7-15. The Additional <bag> Attributes

Attribute Values Default Description

inverse true, false false Specifies that an entity is the opposite navigable end of
a relationship expressed in another entity’s mapping

order-by Specifies an arbitrary SQL order by clause to constrain
the results returned by the SQL query that populates the
collection

The child elements of the <bag> element are as follows:

(meta*,
subselect?,
cache?,
synchronize*,
comment?,
key,
(element | one-to-many | many-to-many |
composite-element | many-to-any),
loader?,
sql-insert?,
sql-update?,
sql-delete?,
sql-delete-all?,
filter*)

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 161

6935ch07_final.qxd 8/2/06 9:43 PM Page 161

A typical implementation of a bag mapping is as follows:

<bag name="bag" table="namebag">
<key column="fooid"/>
<element column="value" type="string" not-null="true"/>

</bag>

Mapping Simple Classes
Figure 7-1 shows the class diagram and entity relationship diagram for a simple class. They are
as straightforward as you would expect.

The elements discussed so far are sufficient to map a basic class into a single table, as
shown in Listing 7-3.

Listing 7-3. A Simple Class to Represent a User

package com.hibernatebook.xmlmapping;

public class User {

public User(String username) {
this.username = username;

}

User() {
}

public int getId() {
return id;

}

public String getUsername() {
return username;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES162

Figure 7-1. Representing a simple class

6935ch07_final.qxd 8/2/06 9:43 PM Page 162

public void setId(int id) {
this.id = id;

}

public void setUsername(String username) {
this.username = username;

}

// We will map the id to the table's primary key
private int id = -1;

// We will map the username into a column in the table
private String username;

}

It’s pretty easy to see that we might want to represent the class in Listing 7-3 in a table
with the format shown in Table 7-16.

Table 7-16. Mapping a Simple Class to a Simple Table

Column Type

Id Integer

Username Varchar(32)

The mapping between the two is, thus, similarly straightforward:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="book.hibernatebook.chapter06.User">

<id name="id" type="int">
<generator class="native"/>

</id>

<property name="username" type="string" length="32"/>

</class>
</hibernate-mapping>

Aside from the very limited number of properties maintained by the class, this is a pretty
common mapping type, so it is reassuring to see that it can be managed with a minimal
number of elements (<hibernate-mapping>, <class>, <id>, <generator>, and <property>).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 163

6935ch07_final.qxd 8/2/06 9:43 PM Page 163

Mapping Composition
Figure 7-2 shows the class diagram and the entity relationship diagram for a composition rela-
tionship between two classes. Here, the Advert class is composed of a Picture class in addition
to its normal value types.

Composition is the strongest form of aggregation—in which the life cycle of each object
is dependent upon the life cycle of the whole. Although Java does not make the distinction
between other types of aggregation and composition, it becomes relevant when we choose to
store the components in the database, because the most efficient and natural way to do this
is to store them in the same table.

In our example, we will look at an Advert class that has this relationship with a Picture
class. The idea is that our advert is always going to be associated with an illustration (see
Listings 7-4 and 7-5). In these circumstances, there is a clear one-to-one relationship that
could be represented between two distinct tables, but which is more efficiently represented
with one.

Listing 7-4. The Class Representing the Illustration

package com.hibernatebook.xmlmapping;

public class Picture {
public Picture(String caption, String filename) {

this.caption = caption;
this.filename = filename;

}

Picture() {
}

public String getCaption() {
return this.caption;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES164

Figure 7-2. Representing composition

6935ch07_final.qxd 8/2/06 9:43 PM Page 164

public String getFilename() {
return this.filename;

}

public void setCaption(String title) {
this.caption = title;

}

public void setFilename(String filename) {
this.filename = filename;

}

private String caption;
private String filename;

}

Listing 7-5. The Class Representing the Advert

package com.hibernatebook.xmlmapping;

public class Advert {
public Advert(String title, String content, Picture picture) {

this.title = title;
this.content = content;
this.picture = picture;

}

Advert() {
}

public int getId() {
return id;

}

public String getTitle() {
return this.title;

}

public String getContent() {
return this.content;

}

public Picture getPicture() {
return this.picture;

}

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 165

6935ch07_final.qxd 8/2/06 9:43 PM Page 165

public void setId(int id) {
this.id = id;

}

public void setTitle(String title) {
this.title = title;

}

public void setContent(String content) {
this.content = content;

}

public void setPicture(Picture picture) {
this.picture = picture;

}

private int id = -1;
private String title;
private String content;
private Picture picture;

}

Again, Hibernate manages to express this simple relationship with a correspondingly sim-
ple mapping file. We introduce the component entity for this association. Here it is in use:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
<id name="id" type="int">

<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>
<property name="content" type="text"/>
<component name="picture" class="com.hibernatebook.xmlmapping.Picture">

<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>

</component>
</class>

In this example, we use the <property> element to describe the relationship between
Picture and its attributes. In fact, this is true of all of the rest of the elements of <class>—
a <component> element can even contain more <component> elements. Of course, this makes
perfect sense, since a component usually corresponds with a Java class.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES166

6935ch07_final.qxd 8/2/06 9:43 PM Page 166

Mapping Other Associations
In Figure 7-3, the Advert class includes an instance of a Picture class. The relationship in the
tables is represented with the Picture table having a foreign key onto the Advert table.

A one-to-one correspondence does not absolutely require you to incorporate both parties
into the same table. There are often good reasons not to. For instance, in the Picture example,
it is entirely possible that while the initial implementation will permit only one Picture per
Advert, a future implementation will relax this relationship. Consider this scenario from the
perspective of the database for a moment (see Table 7-17).

Table 7-17. The Advert Table

ID Title Contents PictureCaption PictureFilename

1 Bike Bicycle for sale My bike (you can ride it if you like) advert001.jpg

2 Sofa Sofa, comfy but used Chesterfield sofa advert002.jpg

3 Car Shabby MGF for sale MGF VVC (BRG) advert003.jpg

If we want to allow the advert for the sofa to include another picture, we would have to
duplicate some of the data, or include null columns. It would probably be preferable to set up
a pair of tables: one to represent the adverts, and one to represent the distinct tables (as
shown in Tables 7-18 and 7-19).

Table 7-18. The Refined Advert Table

ID Title Contents

1 Bike Bicycle for sale

2 Sofa Sofa, comfy but used

3 Car Shabby MGF for sale

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 167

Figure 7-3. Mapping an aggregation or composition relationship

6935ch07_final.qxd 8/2/06 9:43 PM Page 167

Table 7-19. The Picture Table

ID Advert Caption Filename

1 1 My bike (you can ride it if you like) advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 3 MGF VVC (BRG) advert003.jpg

If we decide (considering the database only) to allow additional pictures, we can then
include extra rows in the Picture table without duplicating any data unnecessarily (see
Table 7-20).

Table 7-20. The Picture Table with Multiple Pictures per Advert

ID Advert Caption Filename

1 1 My bike (you can ride it if you like) advert001.jpg

2 2 Chesterfield sofa advert002.jpg

3 2 Back of sofa advert003.jpg

4 3 MGF VVC (BRG) advert004.jpg

With the single Advert table, the query to extract the data necessary to materialize an
instance of the Advert consists of something like this:

select id,title,contents,picturecaption,picturefilename from advert where id = 1

It is obvious here that a single row will be returned, since we are carrying out the selection
on the primary key.

Once we split things into two tables, we have a slightly more ambiguous pair of queries:

select id,title,contents from advert where id = 1
select id,caption,filename from picture where advert = 1

While Hibernate is not under any particular obligation to use this pair of SQL instructions
to retrieve the data (it could reduce it to a join on the table pair), it is the easiest way of thinking
about the data we are going to retrieve. While the first query of the two is required to return a
single row, this is not true for the second query—if we have added multiple pictures, we will get
multiple rows back.

In these circumstances, there is very little difference between a one-to-one relationship
and a one-to-many relationship, except from a business perspective. That is to say, we choose
not to associate an advert with multiple pictures, even though we have that option.

This, perhaps, explains why the expression of a one-to-one relationship in Hibernate is
usually carried out via a many-to-one mapping. If you do not find that persuasive, remember
that a foreign key relationship, which is the relationship that the advert column in the Picture
table has with the id column in the Advert table, is a many-to-one relationship between the
entities.

In our example, the Picture table will be maintaining the advert column as a foreign key
into the Advert table, so this must be expressed as a many-to-one relationship with the Advert
object (see Listing 7-6).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES168

6935ch07_final.qxd 8/2/06 9:43 PM Page 168

Listing 7-6. The New Picture Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Picture">
<id name="id" type="int">

<generator class="native"/>
</id>
<many-to-one
name="advert"
class="com.hibernatebook.xmlmapping.Advert"
column="advert"/>

<property name="caption" type="string" length="255"/>
<property name="filename" type="string" length="32"/>

</class>

If you still object to the many-to-one relationship, you will probably find it cathartic to
note that we have explicitly constrained this relationship with the unique attribute. You will
also find it reassuring that in order to make navigation possible directly from the Advert to its
associated Picture, we can in fact use a one-to-one mapping entry. We need to be able to nav-
igate in this direction because we expect to retrieve adverts from the database, and then
display their associated pictures (see Listing 7-7).

Listing 7-7. The Revised Advert Mapping

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<class name="com.hibernatebook.xmlmapping.Advert">
<id name="id" type="int">

<generator class="native"/>
</id>
<property name="title" type="string" length="255"/>
<property name="content" type="text"/>
<one-to-one name="picture"

class="com.hibernatebook.xmlmapping.Picture"
property-ref="picture">

</class>

Now that we have seen how one-to-one and many-to-one relationships are expressed, we
will see how a many-to-many relationship can be expressed.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 169

6935ch07_final.qxd 8/2/06 9:43 PM Page 169

Mapping Collections
In Figure 7-4, we show the User objects as having an unknown number of Advert instances. In
the database, this is then represented with three tables, one of which is a link table between
the two entity tables.

The Java collection classes provide the most elegant mechanism for expressing the
“many” end of a many-to-many relationship in our own classes:

public Set getAdverts();

If we use generics, we can give an even more precise specification:

public Set<Advert> getAdverts();

■Note A lot of legacy code will not use generics. However, if you have the opportunity you should do so,
as it allows you to make this sort of distinction clear at the API level, instead of at the documentation level.
Hibernate 3 is compatible with Java 5 generics.

Of course, we can place values (of Object type) into collections as well as entities, and Java
5 introduced autoboxing so that we have the illusion of being able to place primitives into
them as well.

List<Integer> ages = getAges();
int first = ages.get(0);

The only catch with collection mapping is that an additional table may be required to cor-
rectly express the relationship between the owning table and the collection. Table 7-21 shows
how it should be done; the entity table contains only its own attributes.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES170

Figure 7-4. Mapping collections

6935ch07_final.qxd 8/2/06 9:43 PM Page 170

Table 7-21. The Entity Table

ID Name

1 Entity 1

A separate collection table, on the other hand, contains the actual values (see Table 7-22).
In this case, we are linking a List to the owning entity, so we need to include a column to rep-
resent the position of the values in the list, as well as the foreign key into the owning entity
and the column for the actual values that are contained within the collection.

Table 7-22. ListTable

entityid positionInList listValue

1 1 Good

1 2 Bad

1 3 Indifferent

In a legacy schema, you may quite often encounter a situation in which all the values
have been retained within a single table (see Table 7-23).

Table 7-23. EntityTable

ID Name positionInList listValue

1 Entity 1 1 Good

1 Entity 1 2 Bad

1 Entity 1 3 Indifferent

It should be obvious that this is not just poor design from Hibernate’s perspective—it’s
also bad relational design. The values in the entity’s name attribute have been duplicated need-
lessly, so this is not a properly normalized table. We also break the foreign key of the table, and
need to form a compound key of id and positionInList. Overall, this is a poor design, and we
encourage you to use a second table if at all possible. If you must work with such an existing
design, see Chapter 13 for some techniques for approaching this type of problem.

If your collection is going to contain entity types instead of value types, the approach is
essentially the same, but your second table will contain keys into the second entity table
instead of value types. This changes the combination of tables into the situation shown in the
entity relationship diagram (see Figure 7-4), in which we have a link table joining two major
tables into a many-to-many relationship. This is a very familiar pattern in properly normal-
ized relational schemas.

The following code shows a mapping of a Set attribute representing the adverts with
which the User class is associated:

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 171

6935ch07_final.qxd 8/2/06 9:43 PM Page 171

<set name="adverts"
table="user_advert_link"
cascade="save-update">

<key column="userid"/>
<many-to-many

class="com.hibernatebook.xmlmapping.Advert"
column="advertid"/>

</set>

Hibernate’s use of collections tends to expose the lazy loading issues more than most
other mappings. If you enable lazy loading, the collection that you retrieve from the session
will be a proxy implementing the relevant collection interface (in our example, Set), rather
than one of the usual Java concrete collection implementations.

This allows Hibernate to retrieve the contents of the collection only as they are required
by the user. If you load an entity, consult a single item from the collection, and then discard it,
often only a handful of SQL operations will be required. If the collection in question repre-
sents hundreds of entity instances, the performance advantages of lazy loading (compared
with the massive task of reading in all of the entities concerned) are massive.

However, you will need to ensure that you do not try to access the contents of a lazily
loaded collection at a time when it is no longer associated with the session, unless you can be
certain that the contents of the collection that you are accessing have already been loaded.

Mapping Inheritance Relationships
Figure 7-5 shows a simple class hierarchy. The superclass is Advert, and there are two classes
derived from this: a Personal class to represent personal advertisements and a Property class
to represent property advertisements.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES172

Figure 7-5. A simple inheritance hierarchy

6935ch07_final.qxd 8/2/06 9:43 PM Page 172

Hibernate can represent inheritance relationships in a relational schema in three ways,
each mapped in a slightly different way. These are as follows:

• One table for each concrete class implementation

• One table for each subclass (including interfaces and abstract classes)

• One table for each class hierarchy

Each of these techniques has different costs and benefits, so we will show you an example
mapping from each and discuss some of these issues.

One Table per Concrete Class
This approach is the easiest to implement. You map each of the concrete classes as normal,
writing mapping elements for each of its persistent properties (including those that are inher-
ited). No mapping files are required for interfaces and abstract classes.

Figure 7-6 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

While this is easy to create, there are several disadvantages; the data belonging to a parent
class is scattered across a number of different tables, so a query couched in terms of the par-
ent class is likely to cause a large number of select operations. It also means that changes to
a parent class can touch an awful lot of tables. We suggest that you file this approach under
“quick-and-dirty solutions.”

Listing 7-8 demonstrates how a derived class (Property) can be mapped to a single table
independently of its superclass (Advert).

Listing 7-8. Mapping a Property Advert with the One-Table-per-Concrete-Class Approach

<hibernate-mapping>
<class name="com.hibernatebook.xmlmapping.Property">

<id name="id" type="int">
<generator class="native"/>

</id>
<property name="title" type="string" length="255"/>

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 173

Figure 7-6. Mapping one table per concrete class

6935ch07_final.qxd 8/2/06 9:43 PM Page 173

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</class>
</hibernate-mapping>

One Table per Subclass
A slightly more complex mapping is to provide one table for each class in the hierarchy,
including the abstract and interface classes. The pure “is a” relationship of our class hierarchy
is then converted into a “has a” relationship for each entity in the schema.

Figure 7-7 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

We like this approach, as it is conceptually easy to manage, does not require complex
changes to the schema when a single parent class is modified, and is similar to how most
JVMs manage the same data behind the scenes.

The disadvantage of this approach is that while it works well from an object-oriented
point of view, and is correct from a relational point of view, it can result in poor performance.
As the hierarchy grows, the number of joins required to construct a leaf class also grows.

The technique works well for shallow inheritance hierarchies. Deep inheritance hier-
archies are often a symptom of poorly designed code, so you may want to reconsider your
application architecture before abandoning this technique. In our opinion, it should be pre-
ferred until performance issues are substantially proven to be an issue.

Listing 7-9 shows how you can map a derived class (Property) as a table joined to another
representing the superclass (Advert).

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES174

Figure 7-7. Mapping one table per subclass

6935ch07_final.qxd 8/2/06 9:43 PM Page 174

Listing 7-9. Mapping a Property Advert with the One-Table-per-Subclass Approach

<hibernate-mapping>
<joined-subclass

name="com.hibernatebook.xmlmapping.Property"
extends="com.hibernatebook.xmlmapping.Advert">

<key column="advertid"/>

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</joined-subclass>
</hibernate-mapping>

Note in the mapping that we replace class with joined-subclass to associate our map-
ping explicitly with the parent. You specify the entity that is being extended and replace the
id and title classes from the subclass with a single key element that maps the foreign key
column to the parent class table’s primary key. Otherwise, the <joined-subclass> element is
virtually identical to the <class> element. Note, however, that a <joined-subclass> cannot
contain <subclass> elements and vice versa—the two strategies are not compatible.

One Table per Class Hierarchy
The last of the inheritance mapping strategies is to place each inheritance hierarchy in its own
table. The fields from each of the child classes are added to this table, and a discriminator col-
umn contains a key to identify the base type represented by each row in the table.

Figure 7-8 shows the schema required to represent the hierarchy from Figure 7-5 using
this technique.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 175

Figure 7-8. Mapping one table per hierarchy

6935ch07_final.qxd 8/2/06 9:43 PM Page 175

This technique offers the best performance—for simple queries on simple classes even
in the deepest of inheritance hierarchies, a single select may suffice to gather all the fields to
populate the entity.

Conversely, this is not a satisfying representation of the attribute. Changes to members of
the hierarchy will usually require a column to be altered, added, or deleted from the table. This
will often be a very slow operation. As the hierarchy grows (horizontally as well as vertically),
so too will the number of columns required by this table.

Each mapped subclass must specify the class that it extends and a value that can be used
to discriminate this subclass from the other classes held in the same table. Thus, this is known
as the discriminator value, and is mapped with a discriminator-value attribute in the
<subclass> element (see Listing 7-10).

Listing 7-10. Mapping a Property Advert with the One-Table-per-Class-Hierarchy Approach

<hibernate-mapping>
<subclass

name="com.hibernatebook.xmlmapping.Property"
extends="com.hibernatebook.xmlmapping.Advert"
discriminator-value="property">

<property name="state" type="string"/>
<property name="zipCode" type="string"/>
<property name="description" type="string"/>

</subclass>
</hibernate-mapping>

Note that this also requires the specification of a discriminator column for the root of the
class hierarchy, from which the discriminator values identifying the types of the child classes
can be obtained (see Listing 7-11).

Listing 7-11. The Addition to Advert.hbm.xml Required to Support a One-Table-per-Class-
Hierarchy Approach

<discriminator column="advertType" type="string"/>

A subclass mapping cannot contain <joined-subclass> elements and vice versa—the two
strategies are not compatible.

More Exotic Mappings
The Hibernate mapping DTD is large. We have discussed the core set of mappings that you
will use on a day-to-day basis; but before we move on, we will take a very quick tour around
four of the more interesting remaining mapping types.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES176

6935ch07_final.qxd 8/2/06 9:43 PM Page 176

The any Tag
The any tag represents a polymorphic association between the attribute and several entity
classes. The mapping is expressed in the schema with a column to specify the type of the
related entity, and then columns for the identifier of the related entity.

Because a proper foreign key cannot be specified (being dependent upon multiple
tables), this is not the generally recommended technique for making polymorphic associa-
tions. When possible, use the techniques described in the previous “Mapping Inheritance
Relationships” section.

The array Tag
The array tag represents the innate array feature of the Java language. The syntax of this is
virtually identical to that used for the List collection class, and we recommend the use of
List except when primitive values are to be stored, or when you are constrained by an exist-
ing application architecture to work with arrays.

The <dynamic-component> Element
While the full-blown dynamic class approach (discussed briefly in the “Entities” section at the
beginning of the chapter) is really only suitable for prototyping exercises, the dynamic compo-
nent technique allows some of that flexibility in a package that reflects some legitimate
techniques.

The <dynamic-component> element permits you to place any of the items that can be
mapped with the normal <component> element into a map with a given key. For example,
we could obtain and combine several items of information relating to an entity’s ownership
into a single Map with named elements, as follows:

<dynamic-component name="ownership">
<property name="user" type="string" column="user"/>
<many-to-one

name="person"
class="com.hibernatebook.xmlmapping.Person"
column="person_id"/>

</dynamic-component>

The code to access this information in the entity is then very familiar:

Map map = entity.getOwnership();
System.out.println(map.get("user"));
System.out.println(map.get("person"));

The output would then be as follows:

dcminter
person: { "Dave Minter", 33, "5'10" }

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES 177

6935ch07_final.qxd 8/2/06 9:43 PM Page 177

Summary
This chapter has covered the data types supported by Hibernate 3: entities, values, and com-
ponents. You have seen how all three can be expressed in a mapping file, and how each relates
to the underlying database schema. We have listed the attributes available to the major map-
ping elements, and we have discussed some detailed examples of the elements that you will
use most frequently when working with Hibernate.

In the next chapter, we will look at how a client application communicates with the data-
base representation of the entities by using the Session object.

CHAPTER 7 ■ CREATING MAPPINGS WITH HIBERNATE XML FILES178

6935ch07_final.qxd 8/2/06 9:43 PM Page 178

