
11

■ ■ ■

C H A P T E R 2

Creating the
Sudoku Application

Now that you have a firm grounding in the basic rules of Sudoku, it is time for us to start
the journey into solving Sudoku puzzles using computer programming. For this task, you

will build a Windows application that represents a Sudoku puzzle. The application that
you build in this chapter will act as a rule enforcer, helping you to make sure that a value

inserted into a cell does not violate the rules of Sudoku. We aren’t concerned about how
to solve a Sudoku puzzle yet; we leave that for the next few chapters.

In this chapter, I walk you through the various steps to construct a Sudoku puzzle board
using a Windows application. This is the foundation chapter that all future chapters will

build on. While the application that you build in this chapter lacks the intelligence required
to solve a Sudoku puzzle, it will provide you with many hours of entertainment. Moreover,

it will provide some aid to beginning Sudoku players, because it helps to check for the
rules of Sudoku. Your Sudoku application will have the capabilities to do the following:

• Load and save Sudoku puzzles

• Ensure that only valid numbers are allowed to be placed in a cell

• Check whether a Sudoku puzzle has been solved

• Keep track of the time needed to solve a Sudoku puzzle

• Undo and redo previous moves

As in all large software projects, I will be breaking the functionalities of the Sudoku

application into various functions and subroutines. The following are the major tasks in
this chapter:

Lee_662-5C02.fm Page 11 Tuesday, February 14, 2006 3:10 PM

12 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

• Creating the user interface of the Sudoku application

• Using arrays to represent values in the grid

• Storing the moves using the stack data structure

• Generating the grid dynamically using Label controls

• Handling click events on the Label controls

• Checking whether a move is valid

• Checking whether a puzzle is solved

• Updating the value of a cell

• Undoing and redoing a move

• Saving a game

• Opening a saved game

• Ending the game

At the end of this chapter, you will have a functional Sudoku application that you can
use to solve your Sudoku puzzles!

Creating the Sudoku Project
The application that you will build in this chapter is a Windows application. Figure 2-1
shows how the application will look at the end of this chapter.

Using this application, users will be able to load and save puzzles to disk. The applica-
tion will act as a rule enforcer, ensuring that the user cannot place a number in a cell that

will violate the rules of Sudoku. This is useful for beginners who are learning Sudoku.

■Note The application in this chapter will not have the intelligence to solve a Sudoku puzzle yet. You will

begin building the intelligence in Chapter 3.

Lee_662-5C02.fm Page 12 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 13

Figure 2-1. The Sudoku application you will build in this chapter

Creating the User Interface

For the Sudoku application, you will create a Windows application using Microsoft Visual
Studio 2005. Launch Visual Studio 2005. Choose File ➤ New Project, select the Windows

Application template, and name the project Sudoku.

■Note Throughout this book, I will use Visual Basic 2005 as the programming language. C# programmers

should not have any major problem understanding/translating the code.

The project contains a default Windows form named Form1. Set the properties of Form1
as shown in Table 2-1. To change the property of a control in Visual Studio 2005, right-

click the control and select Properties to open the Properties window.

Table 2-1. Properties of Form1

Property Value

FormBorderStyle FixedToolWindow

Size 551, 445

Text Sudoku

Lee_662-5C02.fm Page 13 Tuesday, February 14, 2006 3:10 PM

14 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Figure 2-2 shows how Form1 will look like after applying the properties listed in Table 2-1.
Essentially, you are creating a fixed-size window.

Figure 2-2. Modifying Form1

Adding a MenuStrip Control

In the Toolbox, double-click the MenuStrip control located on the Menus & Toolbars tab
to add a menu to Form1. In the MenuStrip Tasks menu (also known as a Smart Tag), click

Insert Standard Items to insert a list of standard menu items.

SMART TAGS IN VISUAL STUDIO 2005

A Smart Tag is a panel that is displayed next to a control (by clicking the arrow icon at the top-right corner
of the control), containing a list of commonly used properties. By saving you a trip to the Properties window

for some of the more common properties you need to set, Smart Tags can improve development productivity.
Smart Tags are a new feature in Visual Studio 2005.

Lee_662-5C02.fm Page 14 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 15

Once the standard menu items are inserted, you can customize the menu by removing
menu items that are not relevant (use the Delete key to remove menu items) and inserting

new items. Figure 2-3 shows the different menu items that you will add for this application.

Figure 2-3. The menu items for the Sudoku application

■Tip The standard menus by default include a Tools menu rather than a Level menu. You can simply replace
the Tools menu with the Level menu. In addition, you can change the menu items to Easy, Medium, Difficult,

and Extremely Difficult. For the File, Edit, and Help menus, if you want to delete any menu items, simply select
the unwanted item and press the Delete key.

To assign shortcuts to the different levels of difficulty, click each of the Level menu

items and enter the values as shown in Table 2-2 (see also Figure 2-4).

Figure 2-4. Setting the values for the Level menu and its menu items

Table 2-2. Values to Set for the Level Menu and Its Menu Items

Menu/Item Value

Level &Level

Easy &Easy

Medium &Medium

Difficult &Difficult

Extremely Difficult Ex&tremely Difficult

Lee_662-5C02.fm Page 15 Tuesday, February 14, 2006 3:10 PM

16 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

After you set the values, the Level menu looks like Figure 2-5.

Figure 2-5. The Level menu and its menu items

Adding a ToolStrip Control

You will now add a ToolStrip control to the Windows form so that users can choose a
number to insert into the cells. In the Toolbox, double-click the ToolStrip control (also

located on the Menus & Toolbars tab) to add it onto Form1. You need to add Label and
Button controls to the ToolStrip control; Figure 2-6 shows how to add controls to a

ToolStrip control.

Figure 2-6. Adding controls to the ToolStrip control

Add a Label control to the ToolStrip control, and set the Text property of the Label control
to Select number.

Next, add ten Button controls to the ToolStrip control. Set the DisplayStyle property of
each Button control to Text. Set the Text property of the ten Button controls to 1, 2, 3, 4, 5,

6, 7, 8, 9, and Erase, respectively, as shown in Figure 2-7, which depicts how the finished
ToolStrip control should look.

Lee_662-5C02.fm Page 16 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 17

Figure 2-7. The finished ToolStrip control

Adding a StatusStrip Control

You will also add to the bottom of the form a StatusStrip control (also located on the Menus &
Toolbars tab). Click the StatusStrip control on the form and insert two StatusLabel controls

(see Figure 2-8).

Figure 2-8. Populating the StatusStrip control

Figure 2-9 shows the form at this stage.

Figure 2-9. The form with the various menu controls

Lee_662-5C02.fm Page 17 Tuesday, February 14, 2006 3:10 PM

18 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Adding Other Controls

The last step in creating the graphical user interface (GUI) of the Sudoku application is to

add the various controls, as shown in Figure 2-10.

■Note What about drawing the Sudoku grid? Well, I will be using Label controls to represent the cells within

a Sudoku grid. And since there are 81 of them, I will generate them dynamically. I will show you how to do
this in the next section.

Figure 2-10. Adding the various controls to Form1

The txtActivities control is used to display the various moves played by the user. Set the
properties of these controls as shown in Table 2-3.

Finally, add a Timer control (located on the Components tab in the Toolbox) to the
form. Set its Interval property to 1000 (the unit is in milliseconds). The Timer control is

used to keep track of the time taken to solve a Sudoku puzzle.

Lee_662-5C02.fm Page 18 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 19

Declaring the Member Variables

Now that you have added the various controls to the form, it is time to switch to the code-

behind of Form1 to add the various functionalities. In Solution Explorer, select Form1.vb
and click the View Code button to switch to the code-behind of Form1 (see Figure 2-11).

Figure 2-11. Switching to code view

In the Form1 class, add the following member variables (in bold):

Public Class Form1

 '---dimension of each cell in the grid---

 Const CellWidth As Integer = 32

 Const cellHeight As Integer = 32

Table 2-3. Properties of the Various Controls

Control Property Value

Label (Label1) Location 332, 53

Label (Label1) Text Activities

TextBox (txtActivities) Location 329, 69

TextBox (txtActivities) Multiline True

TextBox (txtActivities) Size 203, 321

TextBox (txtActivities) Scrollbars Vertical

Button (btnHint) Text Hint

Button (btnHint) Location 12, 367

Button (btnHint) Size 142, 23

Button (btnSolvePuzzle) Text Solve Puzzle

Button (btnSolvePuzzle) Location 160, 367

Button (btnSolvePuzzle) Size 142, 23

Lee_662-5C02.fm Page 19 Tuesday, February 14, 2006 3:10 PM

20 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---offset from the top-left corner of the window---

 Const xOffset As Integer = -20

 Const yOffset As Integer = 25

 '---color for empty cell---

 Private DEFAULT_BACKCOLOR As Color = Color.White

 '---color for original puzzle values---

 Private FIXED_FORECOLOR As Color = Color.Blue

 Private FIXED_BACKCOLOR As Color = Color.LightSteelBlue

 '---color for user-inserted values---

 Private USER_FORECOLOR As Color = Color.Black

 Private USER_BACKCOLOR As Color = Color.LightYellow

 '---the number currently selected for insertion---

 Private SelectedNumber As Integer

 '---stacks to keep track of all the moves---

 Private Moves As Stack(Of String)

 Private RedoMoves As Stack(Of String)

 '---keep track of filename to save to---

 Private saveFileName As String = String.Empty

 '---used to represent the values in the grid---

 Private actual(9, 9) As Integer

 '---used to keep track of elapsed time---

 Private seconds As Integer = 0

 '---has the game started?---

 Private GameStarted As Boolean = False

As you can see from the declaration, you first declared some constants to store the

dimension of each cell in the Sudoku grid. You also declared some variables to store the
various colors in the grid—all original values in the grid will have a blue background,

while values placed by the user will have a yellow background. Empty cells have a white
background.

Next, you declared two stack data structures—Moves and RedoMoves. A stack is a data
structure that works on the last-in, first-out (LIFO) principle. This means that the last item

pushed into a stack is the first item to be taken off. You use the Stack class to remember

Lee_662-5C02.fm Page 20 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 21

the moves you made so that if you need to undo the moves, you can do so. I will discuss
this issue in more detail later in the chapter, in the section “Storing Moves in Stacks.”

If you observe the declaration of the stack, you will notice that there is a new keyword,
Of. This keyword is used when declaring a generic type. Support for generic types is a new

feature in .NET Framework 2.0. In our case, the Stack class is a generic class. During decla-
ration time, you use the Of keyword to indicate to the compiler that you can only push and

pop string data types (and not other data types) into and from the Stack class. This helps
to make your application safer and reduces the chance that you inadvertently push or pop

the wrong types of data into the stack.

Representing Values in the Grid

A standard Sudoku puzzle consists of a grid of nine rows and nine columns, totaling 81
cells. A good way to represent a Sudoku grid is to use a two-dimensional array. As an

example, the grid in Figure 2-12 will be represented in the array as follows (recall that a
cell in a Sudoku puzzle is referenced by its column number followed by its row number):

actual(1,1) = 4

actual(2,1) = 0

actual(3,1) = 2

actual(4,1) = 0

actual(5,1) = 3

...

actual(1,2) = 7

...

Each empty cell in the grid is represented by the value 0.

Figure 2-12. Representing cells in a Sudoku grid using an array

However, note that arrays in Visual Basic 2005 are zero-based. That is, when you declare

the actual variable to be actual(9,9), there are actually 100 elements in it, from actual(0,0)
to actual(9,9). For our application, the elements in row 0 and column 0 are left unused,

as shown in Figure 2-13.

Lee_662-5C02.fm Page 21 Tuesday, February 14, 2006 3:10 PM

22 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

Figure 2-13. Unused cells (shaded) in the array

Naming Cells

Each cell in the grid will be represented using a dynamically generated Label control. You
will need to assign a name to each Label control so that individual cells can be identified.

For simplicity, in our application each cell will be identified based on its column and row
numbers. For example, the Label control representing cell (1,1) will be named 11, cell (2,1)

will be named 21, and so on.

Erasability of a Cell

A cell may contain a value set by the user or set originally as part of the puzzle. If the value

is set by the user, it can be erased so that other values can be assigned to it. As such, there
must be a way to identify if a particular cell value can be erased. For this purpose, you can

use the Tag property of the Label control. As an example, if the value in cell (4,5) can be
erased, you will set its Tag property to 1. If its value cannot be erased, then its Tag property

would be 0.

Storing Moves in Stacks

To allow the user to undo and redo his moves, every time a number is placed in a cell, its
coordinates and values are placed in a stack. When the user undoes his move, a value is

popped from the stack and pushed into another stack. The value pushed into the stack is
a three-digit string. For example, 349 means that cell (3,4) has been assigned the value 9.

Figure 2-14 shows that when a user undoes a move, the value from the Moves stack is
popped and pushed into the RedoMoves stack. Similarly, when the user redoes a move,

a value is popped from the RedoMoves stack and re-pushed into the Moves stack.

Lee_662-5C02.fm Page 22 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 23

Figure 2-14. Using stacks for undo and redo options

Generating the Grid Dynamically

The first thing to do when the application loads is to generate the grid of a Sudoku puzzle.

The DrawBoard() subroutine dynamically creates 81 Label controls to represent each cell

in the 9×9 grid:

 '==

 ' Draw the cells and initialize the grid

 '==

 Public Sub DrawBoard()

 '---default selected number is 1---

 ToolStripButton1.Checked = True

 SelectedNumber = 1

 '---used to store the location of the cell---

 Dim location As New Point

 '---draws the cells

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 location.X = col * (CellWidth + 1) + xOffset

 location.Y = row * (cellHeight + 1) + yOffset

 Dim lbl As New Label

Lee_662-5C02.fm Page 23 Tuesday, February 14, 2006 3:10 PM

24 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 With lbl

 .Name = col.ToString() & row.ToString()

 .BorderStyle = BorderStyle.Fixed3D

 .Location = location

 .Width = CellWidth

 .Height = cellHeight

 .TextAlign = ContentAlignment.MiddleCenter

 .BackColor = DEFAULT_BACKCOLOR

 .Font = New Font(.Font, .Font.Style Or _

 FontStyle.Bold)

 .Tag = "1"

 AddHandler lbl.Click, AddressOf Cell_Click

 End With

 Me.Controls.Add(lbl)

 Next

 Next

 End Sub

Note that as you type the line AddHandler lbl.Click, AddressOf Cell_Click, you will
get a compiler error, because the method has not been defined yet. For now, let’s add an

empty Cell_Click() method stub so that the compiler does not complain:

 Private Sub Cell_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs)

 '---content to be populated later---

 End Sub

Each Label control is hooked to the Cell_Click() event handler, which is fired when

the user clicks each Label control (we will declare in it a later section).
The board is first drawn when the form loads, in the Form1_Load() event (you can simply

double-click an empty portion of Form1 to create this event handler):

 Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 '---initialize the status bar---

 ToolStripStatusLabel1.Text = String.Empty

 ToolStripStatusLabel2.Text = String.Empty

 '---draw the board---

 DrawBoard()

 End Sub

Figure 2-15 shows what the form looks like when it loads.

Lee_662-5C02.fm Page 24 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 25

Figure 2-15. Dynamically generating the Label controls

One feature is missing, however. In a Sudoku puzzle, nine minigrids are contained

within the bigger grid. You need a way to outline the nine minigrids. You do that by actually
drawing the lines—four horizontally and four vertically. The Form1_Paint() event is the

event that you use to insert the code to draw the eight lines:

 '==

 ' Draw the lines outlining the minigrids

 '==

 Private Sub Form1_Paint(_

 ByVal sender As Object, _

 ByVal e As System.Windows.Forms.PaintEventArgs) _

 Handles Me.Paint

 Dim x1, y1, x2, y2 As Integer

 '---draw the horizontal lines---

 x1 = 1 * (CellWidth + 1) + xOffset - 1

 x2 = 9 * (CellWidth + 1) + xOffset + CellWidth

 For r As Integer = 1 To 10 Step 3

 y1 = r * (cellHeight + 1) + yOffset - 1

 y2 = y1

 e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)

 Next

Lee_662-5C02.fm Page 25 Tuesday, February 14, 2006 3:10 PM

26 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---draw the vertical lines---

 y1 = 1 * (cellHeight + 1) + yOffset - 1

 y2 = 9 * (cellHeight + 1) + yOffset + cellHeight

 For c As Integer = 1 To 10 Step 3

 x1 = c * (CellWidth + 1) + xOffset - 1

 x2 = x1

 e.Graphics.DrawLine(Pens.Black, x1, y1, x2, y2)

 Next

 End Sub

Figure 2-16 shows the effect of drawing these eight lines on the grid.

Figure 2-16. The grid with the eight lines

Starting a New Game

To start a new game, the user will select File ➤ New. For now, you will simply clear the

board and reset a few variables. In Chapter 6, you will be more adventurous and learn how
to generate a new Sudoku puzzle of varying levels of difficulty.

When a user starts a new game, be sure to ask if she wants to save the current game.
If she does, save the current game before you start a new game. To add an event handler

for the New menu item, double-click the New menu item in design view of Visual Studio
and the event handler for the New menu item will appear. Code the following:

Lee_662-5C02.fm Page 26 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 27

 '==

 ' Start a new game

 '==

 Private Sub NewToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles NewToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MessageBox.Show("Do you want to save current game?", _

 "Save current game", _

 MessageBoxButtons.YesNoCancel, _

 MessageBoxIcon.Question)

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 StartNewGame()

 End Sub

As usual, to prevent the compiler from complaining about the missing

SaveGameToDisk() subroutine, add a stub for this subroutine:

 Public Sub SaveGameToDisk(ByVal saveAs As Boolean)

 '---content to be populated later---

 End Sub

The StartNewGame() subroutine simply resets a few variables and updates a Label

control located in the status bar. It also calls the ClearBoard() subroutine, which clears
the values in the grid. The code follows:

 '==

 ' Start a new game

 '==

 Public Sub StartNewGame()

 saveFileName = String.Empty

 txtActivities.Text = String.Empty

 seconds = 0

 ClearBoard()

Lee_662-5C02.fm Page 27 Tuesday, February 14, 2006 3:10 PM

28 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 GameStarted = True

 Timer1.Enabled = True

 ToolStripStatusLabel1.Text = "New game started"

 End Sub

The ClearBoard() subroutine prepares the Sudoku grid for a new game and creates a

new instance of the Moves and RedoMoves stack objects:

 '==

 ' Draws the board for the puzzle

 '==

 Public Sub ClearBoard()

 '---initialize the stacks---

 Moves = New Stack(Of String)

 RedoMoves = New Stack(Of String)

 '---initialize the cells in the board---

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 SetCell(col, row, 0, 1)

 Next

 Next

 End Sub

Notice that when a new game is started, the Timer control is also enabled so that the

clock can start running to keep track of the time elapsed. The Timer1_Click() event is fired
every 1 second (which is equivalent to 1000 milliseconds, as set in the Interval property).

The elapsed time is displayed in the Label control located in the status bar. To display the
elapsed time, add the following event to your code:

■Tip Double-click the Timer control at the bottom of Form1 to reveal this code-behind.

 '==

 ' Increment the time counter

 '==

 Private Sub Timer1_Tick(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Timer1.Tick

 ToolStripStatusLabel2.Text = "Elapsed time: " & _

 seconds & " second(s)"

 seconds += 1

 End Sub

Lee_662-5C02.fm Page 28 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 29

Selecting the Numbers to Insert

Once a new game is started, the user will select a number to insert into the cells. You need

to ensure that only one number is selected in the toolbar. The SelectedNumber variable
keeps track of which number is currently selected, and if the user clicks the Erase button,

the number is saved as a 0. To highlight the number selected by the user in the toolbar,
create the ToolStripButton_Click() event:

 '==

 ' Event handler for the ToolStripButton controls

 '==

 Private Sub ToolStripButton_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles _

 ToolStripButton1.Click, _

 ToolStripButton2.Click, _

 ToolStripButton3.Click, _

 ToolStripButton4.Click, _

 ToolStripButton5.Click, _

 ToolStripButton6.Click, _

 ToolStripButton7.Click, _

 ToolStripButton8.Click, _

 ToolStripButton9.Click, _

 ToolStripButton10.Click

 Dim selectedButton As ToolStripButton = _

 CType(sender, ToolStripButton)

 '---uncheck all the Button controls in the ToolStrip---

 '---ToolStrip1.Items.Item(0) is "Select Number"

 '---ToolStrip1.Items.Item(1) is "1"

 '---ToolStrip1.Items.Item(2) is "2", etc

 '---ToolStrip1.Items.Item(10) is "Erase", etc

 For i As Integer = 1 To 10

 CType(ToolStrip1.Items.Item(i), ToolStripButton).Checked = False

 Next

 '---set the selected button to "checked"---

 selectedButton.Checked = True

Lee_662-5C02.fm Page 29 Tuesday, February 14, 2006 3:10 PM

30 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---set the appropriate number selected---

 If selectedButton.Text = "Erase" Then

 SelectedNumber = 0

 Else

 SelectedNumber = CInt(selectedButton.Text)

 End If

End Sub

Notice that the ToolStripButton_Click() event handles multiple events. You can make
it handle multiple events by separating with commas the events of each control that you

want to handle.
Figure 2-17 shows a number selected in the toolbar.

Figure 2-17. Selecting a number in the toolbar

Handling Click Events on the Label Controls

When the user has selected a number in the toolbar and clicks a cell on the grid, the
Cell_Click() event is fired. If a cell already contains a fixed value that was part of the orig-

inal puzzle (as indicated by a Tag property value of 0, which is not erasable), then there is
no need to go further. If the Tag property value is 1, you need to determine the cell that was

clicked (through converting the Sender object into a Label control and identifying its Name
property) and then assign it the appropriate value. You will also push the move into a

stack data structure so that the user can undo the move later on. Lastly, you need to also
check if the puzzle is solved after the value is placed. All these will be serviced by the

Cell_Click() event, which is coded as follows:

 '==

 ' Click event for the Label (cell) controls

 '==

 Private Sub Cell_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs)

Lee_662-5C02.fm Page 30 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 31

 '---check to see if game has even started or not---

 If Not GameStarted Then

 DisplayActivity("Click File->New to start a new" & _

 " game or File->Open to load an existing game", True)

 Return

 End If

 Dim cellLabel As Label = CType(sender, Label)

 '---if cell is not erasable then exit---

 If cellLabel.Tag.ToString() = "0" Then

 DisplayActivity("Selected cell is not empty", False)

 Return

 End If

 '---determine the col and row of the selected cell---

 Dim col As Integer = cellLabel.Name.Substring(0, 1)

 Dim row As Integer = cellLabel.Name.ToString().Substring(1, 1)

 '---If erasing a cell---

 If SelectedNumber = 0 Then

 '---if cell is empty then no need to erase---

 If actual(col, row) = 0 Then Return

 '---save the value in the array---

 SetCell(col, row, SelectedNumber, 1)

 DisplayActivity("Number erased at (" & _

 col & "," & row & ")", False)

 ElseIf cellLabel.Text = String.Empty Then

 '---else set a value; check if move is valid---

 If Not IsMoveValid(col, row, SelectedNumber) Then

 DisplayActivity("Invalid move at (" & col & _

 "," & row & ")", False)

 Return

 End If

Lee_662-5C02.fm Page 31 Tuesday, February 14, 2006 3:10 PM

32 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---save the value in the array---

 SetCell(col, row, SelectedNumber, 1)

 DisplayActivity("Number placed at (" & col & _

 "," & row & ")", False)

 '---saves the move into the stack---

 Moves.Push(cellLabel.Name.ToString() _

 & SelectedNumber)

 '---check if the puzzle is solved---

 If IsPuzzleSolved() Then

 Timer1.Enabled = False

 Beep()

 ToolStripStatusLabel1.Text = "*****Puzzle Solved*****"

 End If

 End If

 End Sub

If the puzzle is solved, a beep will sound and a message will be displayed at the bottom

of the screen.

Checking Whether a Move Is Valid

Before a value can be assigned to a cell, you must ensure that the value does not violate the
rules of Sudoku. That is, it must be the unique number in its column, row, and minigrid.

Figure 2-18 shows the checking that must be performed before a cell can be assigned a
value. The square indicates the position to insert the value and the shaded regions indicate

the cells to check to ensure that the number is unique in its column, row, and minigrid.

Figure 2-18. Checking whether a value placed in a location violates the rules of Sudoku

Lee_662-5C02.fm Page 32 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 33

The IsMoveValid() function checks if a number is valid:

 '==

 ' Check if move is valid

 '==

 Public Function IsMoveValid(_

 ByVal col As Integer, _

 ByVal row As Integer, _

 ByVal value As Integer) As Boolean

 Dim puzzleSolved As Boolean = True

 '---scan through column

 For r As Integer = 1 To 9

 If actual(col, r) = value Then '---duplicate---

 Return False

 End If

 Next

 '---scan through row

 For c As Integer = 1 To 9

 If actual(c, row) = value Then '---duplicate---

 Return False

 End If

 Next

 '---scan through minigrid

 Dim startC, startR As Integer

 startC = col - ((col - 1) Mod 3)

 startR = row - ((row - 1) Mod 3)

 For rr As Integer = 0 To 2

 For cc As Integer = 0 To 2

 If actual(startC + cc, startR + rr) = value Then

 '---duplicate---

 Return False

 End If

 Next

 Next

 Return True

 End Function

Lee_662-5C02.fm Page 33 Tuesday, February 14, 2006 3:10 PM

34 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

The IsMoveValid() function first scans the nine columns to see if the number to be
inserted has already been used. It then proceeds to scan the nine rows, and finally the

nine mingrids. At any point in the scan, if a duplicate is detected, the move is deemed to
be invalid and the function returns a False.

Checking Whether a Puzzle Is Solved

After a value is assigned to a cell, you need to check if the puzzle is now solved. The

IsPuzzleSolved() subroutine checks the entire grid to determine if the puzzle is solved:

 Public Function IsPuzzleSolved() As Boolean

 '---check row by row---

 Dim pattern As String

 Dim r, c As Integer

 For r = 1 To 9

 pattern = "123456789"

 For c = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(),String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 '---check col by col---

 For c = 1 To 9

 pattern = "123456789"

 For r = 1 To 9

 pattern = pattern.Replace(actual(c, r).ToString(),String.Empty)

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 '---check by minigrid---

 For c = 1 To 9 Step 3

 pattern = "123456789"

 For r = 1 To 9 Step 3

 For cc As Integer = 0 To 2

 For rr As Integer = 0 To 2

 pattern = pattern.Replace(_

 actual(c + cc, r + rr).ToString(), String.Empty)

Lee_662-5C02.fm Page 34 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 35

 Next

 Next

 Next

 If pattern.Length > 0 Then

 Return False

 End If

 Next

 Return True

 End Function

The IsPuzzledSolved() function performs checks on the rows, columns, and minigrids.
As long as any one of the rows, columns, or minigrids does not have all the numbers from

1 to 9, the subroutine returns a False.

Updating the Value of a Cell

The SetCell() subroutine assigns a value to a cell by specifying its column and row number,
the value to set, and whether it is erasable. Because the cells are represented by Label

controls generated dynamically, you need to locate a specific cell by using the Find() method
in the Controls class. The SetCell() subroutine also sets the cells using the appropriate

colors. Code the SetCell() subroutine as follows:

 '==

 ' Set a cell to a given value

 '==

 Public Sub SetCell(_

 ByVal col As Integer, ByVal row As Integer, _

 ByVal value As Integer, ByVal erasable As Short)

 '---Locate the particular Label control---

 Dim lbl() As Control = _

 Me.Controls.Find(col.ToString() & row.ToString(), True)

 Dim cellLabel As Label = CType(lbl(0), Label)

 '---save the value in the array---

 actual(col, row) = value

 '---set the appearance for the Label control---

 If value = 0 Then '---erasing the cell---

 cellLabel.Text = String.Empty

 cellLabel.Tag = erasable

 cellLabel.BackColor = DEFAULT_BACKCOLOR

Lee_662-5C02.fm Page 35 Tuesday, February 14, 2006 3:10 PM

36 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 Else

 If erasable = 0 Then '---means default puzzle values---

 cellLabel.BackColor = FIXED_BACKCOLOR

 cellLabel.ForeColor = FIXED_FORECOLOR

 Else '---means user-set value---

 cellLabel.BackColor = USER_BACKCOLOR

 cellLabel.ForeColor = USER_FORECOLOR

 End If

 cellLabel.Text = value

 cellLabel.Tag = erasable

 End If

 End Sub

Figure 2-19 shows the different color coding used to represent different types of values.

The lighter shade indicates values set by the user, while the darker shade represents cells
set in the original puzzle.

Figure 2-19. Setting values in the cells

The DisplayActivity() subroutine displays a message in the TextBox control. It also
accepts an additional parameter indicating if a beep should be sounded. This is useful

for displaying error messages to alert the user. Code the DisplayActivity() subroutine
as follows:

 '==

 ' Displays a message in the Activities text box

 '==

 Public Sub DisplayActivity(_

 ByVal str As String, _

 ByVal soundBeep As Boolean)

 If soundBeep Then Beep()

 txtActivities.Text &= str & & Environment.NewLine

 End Sub

Figure 2-20 shows some messages displayed in the Activities TextBox control.

Lee_662-5C02.fm Page 36 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 37

Figure 2-20. Displaying messages in the TextBox control

Undoing and Redoing a Move

The user can undo a move by selecting Edit ➤ Undo. To undo a move, you simply need to

pop an item from the Moves stack and then push it into the RedoMoves stack. That way, if
the user chooses to redo his move, you can retrieve it from the RedoMoves stack as shown

in the following event handler for the Undo menu item:

 '==

 ' Undo a move

 '==

 Private Sub UndoToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles UndoToolStripMenuItem.Click

 '---if no previous moves, then exit---

 If Moves.Count = 0 Then Return

 '---remove from the Moves stack and push into

 ' the RedoMoves stack---

 Dim str As String = Moves.Pop()

 RedoMoves.Push(str)

Lee_662-5C02.fm Page 37 Tuesday, February 14, 2006 3:10 PM

38 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '---save the value in the array---

 SetCell(Integer.Parse(str(0)), Integer.Parse(str(1)), 0, 1)

 DisplayActivity("Value removed at (" & _

 Integer.Parse(str(0)) & "," & _

 Integer.Parse(str(1)) & ")", False)

 End Sub

To redo a move, a user selects Edit ➤ Redo. This is similar to undoing a move—instead
of popping from the Moves stack, you now pop an item from the RedoMoves stack and push

it into the Moves stack. The following event handler for the Redo menu item shows how to
redo a move:

 '==

 ' Redo the move

 '==

 Private Sub RedoToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles RedoToolStripMenuItem.Click

 '---if RedoMove stack is empty, then exit---

 If RedoMoves.Count = 0 Then Return

 '---remove from the RedoMoves stack and push into the

 ' Moves stack---

 Dim str As String = RedoMoves.Pop()

 Moves.Push(str)

 '---save the value in the array---

 SetCell(Integer.Parse(str(0)), Integer.Parse(str(1)), _

 Integer.Parse(str(2)), 1)

 DisplayActivity("Value reinserted at (" & _

 Integer.Parse(str(0)) & "," & _

 Integer.Parse(str(1)) & ")", False)

 End Sub

Saving a Game

Saving a Sudoku puzzle is surprisingly easy. You can save a Sudoku puzzle as a string of
digits. For example, the puzzle shown at the beginning of the chapter in Figure 2-1 is saved in

a plain text file containing the following string:

Lee_662-5C02.fm Page 38 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 39

402000008

000006240

810940007

080697031

006050900

750020080

600213759

003400006

970000400

■Note I have formatted the string in groups of nine for easy reading. In actual fact, this series of digits is

saved in the text file as a one-line string.

The SaveGameToDisk() subroutine first determines if the game has already been saved
previously. If it has not been saved before (or if the user selects File ➤ Save As), the Save

File dialog box is displayed to allow the user to choose a filename. If the file selected already
exists, the SaveGameToDisk() subroutine will delete the file and then create a new one to

save the string of digits. Code the SaveGameToDisk() subroutine as follows:

 '==

 ' Save the game to disk

 '==

 Public Sub SaveGameToDisk(ByVal saveAs As Boolean)

 '---if saveFileName is empty, means game has not been saved

 ' before---

 If saveFileName = String.Empty OrElse saveAs Then

 Dim saveFileDialog1 As New SaveFileDialog()

 saveFileDialog1.Filter = _

 "SDO files (*.sdo)|*.sdo|All files (*.*)|*.*"

 saveFileDialog1.FilterIndex = 1

 saveFileDialog1.RestoreDirectory = False

 If saveFileDialog1.ShowDialog() = _

 Windows.Forms.DialogResult.OK Then

 '---store the filename first---

 saveFileName = saveFileDialog1.FileName

Lee_662-5C02.fm Page 39 Tuesday, February 14, 2006 3:10 PM

40 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 Else

 Return

 End If

 End If

 '---formulate the string representing the values to store---

 Dim str As New System.Text.StringBuilder()

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 str.Append(actual(col, row).ToString())

 Next

 Next

 '---save the values to file---

 Try

 Dim fileExists As Boolean

 fileExists = _

 My.Computer.FileSystem.FileExists(saveFileName)

 If fileExists Then _

 My.Computer.FileSystem.DeleteFile(saveFileName)

 My.Computer.FileSystem.WriteAllText(saveFileName, _

 str.ToString(), True)

 ToolStripStatusLabel1.Text = "Puzzle saved in " & _

 saveFileName

 Catch ex As Exception

 MsgBox("Error saving game. Please try again.")

 End Try

 End Sub

■Note Realize that I used the StringBuilder class for string operation. When manipulating strings in a
loop (especially for string concatenation), it is always much more efficient to use a StringBuilder class

than to append String objects directly. Also, the My namespace is a new feature in Visual Basic 2005. It is
used as a shortcut to the many methods nested deep within the .NET Framework class library.

To save a game, the user can choose File ➤ Save As. The following shows the event

handler for the Save As menu item:

Lee_662-5C02.fm Page 40 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 41

 '==

 ' Save as... menu item

 '==

 Private Sub SaveAsToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles SaveAsToolStripMenuItem.Click

 If Not GameStarted Then

 DisplayActivity("Game not started yet.", True)

 Return

 End If

 SaveGameToDisk(True)

 End Sub

If a game has previously been saved, the user can just choose File ➤ Save. The following
shows the event handler for the Save menu item:

 '==

 ' Save menu item

 '==

 Private Sub SaveToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles SaveToolStripMenuItem.Click

 If Not GameStarted Then

 DisplayActivity("Game not started yet.", True)

 Return

 End If

 SaveGameToDisk(False)

 End Sub

Opening a Saved Game

To open a previously saved game from disk, you first ask the user if she wants to save the
current game. You then invoke the StartNewGame() subroutine and prompt the user to

specify the filename of the saved game. You then initialize the individual cells of the grid
based on the content of the file opened. The following shows the event handler for the

Open menu item:

Lee_662-5C02.fm Page 41 Tuesday, February 14, 2006 3:10 PM

42 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 '==

 ' Open a saved game

 '==

 Private Sub OpenToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles OpenToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MessageBox.Show("Do you want to save current game?", _

 "Save current game", _

 MessageBoxButtons.YesNoCancel, _

 MessageBoxIcon.Question)

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 '---load the game from disk---

 Dim fileContents As String

 Dim openFileDialog1 As New OpenFileDialog()

 openFileDialog1.Filter = _

 "SDO files (*.sdo)|*.sdo|All files (*.*)|*.*"

 openFileDialog1.FilterIndex = 1

 openFileDialog1.RestoreDirectory = False

 If openFileDialog1.ShowDialog() = _

 Windows.Forms.DialogResult.OK Then

 fileContents = _

 My.Computer.FileSystem.ReadAllText(_

 openFileDialog1.FileName)

 ToolStripStatusLabel1.Text = openFileDialog1.FileName

 saveFileName = openFileDialog1.FileName

 Else

 Return

 End If

Lee_662-5C02.fm Page 42 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 43

 StartNewGame()

 '---initialize the board---

 Dim counter As Short = 0

 For row As Integer = 1 To 9

 For col As Integer = 1 To 9

 Try

 If CInt(fileContents(counter).ToString()) <> 0 Then

 SetCell(col, row, _

 CInt(fileContents(counter).ToString()), 0)

 End If

 Catch ex As Exception

 MsgBox(_

 "File does not contain a valid Sudoku puzzle")

 Exit Sub

 End Try

 counter += 1

 Next

 Next

 End Sub

Ending the Game

To end the game, the user simply chooses File ➤ Exit. Before exiting the application,

prompt the user to save the game. The following shows the event handler for the Exit
menu item:

 '==

 ' Exit the application

 '==

 Private Sub ExitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles ExitToolStripMenuItem.Click

 If GameStarted Then

 Dim response As MsgBoxResult = _

 MsgBox("Do you want to save current game?", _

 MsgBoxStyle.YesNoCancel, "Save current game")

Lee_662-5C02.fm Page 43 Tuesday, February 14, 2006 3:10 PM

44 C H A P T E R 2 ■ C R E A T I N G T H E S U D O K U A P P L I CA T I O N

 If response = MsgBoxResult.Yes Then

 SaveGameToDisk(False)

 ElseIf response = MsgBoxResult.Cancel Then

 Return

 End If

 End If

 '---exit the application---

 End

 End Sub

Testing the Application
Now that the application is all wired up, it is time to test the application. In Visual Studio 2005,

press F5 to debug the application.
Save the following in a text file and save it as C:\Easy.sdo:

005400180146080500070013000451008706080000010603700948000390070004070269019006400

In the Sudoku application, load the Easy.sdo file by choosing File ➤ Open and selecting
C:\Easy.sdo. The Sudoku puzzle should now look like Figure 2-21.

Figure 2-21. Loading a Sudoku puzzle

Try solving the puzzle and see how long it takes.

Lee_662-5C02.fm Page 44 Tuesday, February 14, 2006 3:10 PM

C H A P T E R 2 ■ C R E AT I N G T H E S U D O K U A P P L I C A T I O N 45

■Tip This is an easy Sudoku puzzle.

Give up? Figure 2-22 shows the solution for the puzzle!

Figure 2-22. The solution to the Sudoku puzzle

Summary
In this chapter, you have walked through the various steps to construct a Sudoku puzzle
board using a Windows application. This is the foundation chapter that all future chapters

will build on. Although the application in this chapter lacks the intelligence required to
solve a Sudoku puzzle, it does allow you to play Sudoku on the computer. Moreover, the

application that you built in this chapter provides some aid to beginning Sudoku players
because it checks for compliance with the rules of Sudoku. Go find a Sudoku puzzle and load

it using this application. You will gain a better appreciation of the game after a few rounds.
In the next chapter, you are going to discover the first steps toward programmatically

solving a Sudoku puzzle. You will be surprised to learn that a lot of Sudoku puzzles can
actually be solved by using the simple logic detailed in Chapter 3.

Lee_662-5C02.fm Page 45 Tuesday, February 14, 2006 3:10 PM

Lee_662-5C02.fm Page 46 Tuesday, February 14, 2006 3:10 PM

