
Getting Started

Apache Geronimo is an open source Java 2 Platform, Enterprise Edition (J2EE) application
server from the Apache Software Foundation. It is a framework that integrates a large base of
open source projects to provide a J2EE 1.4–compliant, production-quality container for J2EE
applications. With Geronimo, you can deploy and run your web, Enterprise JavaBeans (EJB),
and enterprise applications. You can create your enterprise applications by using servlets,
JavaServer Pages (JSPs), and EJBs; access your database by using Java Database Connectivity
(JDBC) connectors; access the directory services through Java Naming and Directory Interface
(JNDI); and so on.

At its core, Geronimo is more than a J2EE server; it provides an Inversion of Control (IOC)
platform. Many other applications can also make use of this platform to build their services
and servers. As a platform, Geronimo provides a modular infrastructure for building any sys-
tem by implementing the common basic facilities, including service life cycle and service
modules (configurations).

Although many open source J2EE servers already exist, Geronimo is unique because of its
Apache license. The Apache license is the most liberal of all the open source licenses. You can
use Geronimo as it is or even modify and use it in your commercial and noncommercial appli-
cations. The only requirement from the user is an acknowledgement of the source.

In Chapter 1, I’ll summarize Geronimo’s history and present an overview of its features.
I’ll then explain how to install Geronimo. Last, I’ll demonstrate how to start and stop the
server.

History
Geronimo started as an Apache Incubator project in the summer of 2003, and by May 2004,
it had become a top-level Apache project. In June 2004, the Geronimo Milestone 4 release
passed the automated J2EE Technology Compatibility Kit (TCK) 1.4.1a test suite. The Mile-
stone 4 release had many significant advantages over the Milestone 3 release, including full
support for EJB, Java Specification Request (JSR) 77, and web services.

In October 2005, Apache released Milestone 5, which is a fully certified J2EE 1.4 appli-
cation server. This milestone contains a number of enhancements, including a complete
Tomcat integration, a more flexible and dynamic service configuration, and a developer
preview of a portlets-based management console. In January 2006, Apache announced the
Geronimo 1.0 release.

A good number of Geronimo committers were from a company called Gluecode, which
built a Geronimo-based portal product, JOE. Recently, IBM took over this company and has

1

C H A P T E R 1

■ ■ ■

6420_c01_final.qxd 3/24/06 12:57 AM Page 1

since been a significant contributor to the Apache Geronimo project. IBM has also released
WebSphere Application Server Community Edition, which is based on the core Geronimo
technology.

Features
The goal in creating Geronimo was to provide the best open source, fully certified application
server, a J2EE platform for high-end production use, and a high-performance J2EE server. To
meet this goal, Geronimo’s designers focused on the following aspects:

• Manageability of all services and components

• Flexible configuration capabilities

• Full support for J2EE specifications through integration of open source components

• Custom-developed components that meet Geronimo’s stringent performance goals

Geronimo’s features match those of any other commercial application server on the market.
The sections that follow describe Geronimo’s key features.

IOC Container As the Core Geronimo Platform
Geronimo is based on an IOC framework for service components called GBeans. In addition,
Geronimo integrates with other popular IOC containers, like Spring.

GBean-Based Modular Services
One or more GBeans implement a specific service, like a web container, an EJB container, or
the security infrastructure. Most GBean-based services are either wrappers over an open source
component or custom implementations. For instance, the GBeans that provide the web con-
tainer functionality are wrappers over a Jetty or a Tomcat Hypertext Transfer Protocol (HTTP)
server. In short, the Geronimo J2EE server is a set of GBeans deployed and run in the Geronimo
platform that implement and provide the J2EE services as required by the J2EE specification.
Even J2EE applications are also deployed and run as GBeans.

JSR 77 Support
Geronimo implements JSR 77, which is the J2EE management specification. JSR 77 is based
on the Java Management Extension (JMX) specification and defines a standard model for J2EE-
managed objects. It abstracts the manageable parts of a J2EE server (including deployed J2EE
applications) and defines a standard interface for clients and management consoles to access
management information. Geronimo implements the JSR 77 management EJB and exposes
all its deployed GBean services to JSR 77 clients. Geronimo’s JMX implementation utilizes the
open source MX4J product.

CHAPTER 1 ■ GETTING STARTED2

6420_c01_final.qxd 3/24/06 12:57 AM Page 2

JSR 88 Support
Geronimo also supports JSR 88, a standard application programming interface (API) that enables
tools to interact with any application server to configure and deploy J2EE applications. Applica-
tion configuration involves creating the required deployment descriptors, including standard
and application server–specific deployment descriptors for J2EE components. Many tools use a
graphical user interface (GUI) to collect relevant information from the user, generate required
deployment descriptors, and package the component ready for deployment. Application deploy-
ment involves application server interactions to deploy, undeploy, start, and stop applications.

J2EE Application Containers
Geronimo implements containers for all the J2EE application module types: web applications,
EJB applications, J2EE Application Clients, and Connectors.

Web Applications
Geronimo 1.0 offers one of two open source web containers—Jetty or Apache Tomcat—that
can host and run web applications packaged as Web Archive (WAR) files. The web container
supports Servlets 2.4 and the JSP 2.0 specification. The Geronimo Milestone 5 release includes
both web containers. Jetty is the default web container, but you can manually reconfigure
Milestone 5 to use Tomcat.

EJB and Enterprise Applications
Geronimo uses the OpenEJB container to host and run EJB applications. It supports session,
entity, and message-driven beans. It also supports advanced J2EE features like timers and web
services. Currently, it implements the EJB 2.1 specification.

You can deploy EJBs as a standard EJB Java Archive (JAR) file. You can also package your
enterprise application consisting of one or more web applications (packaged as WAR files), one
or more EJB applications (packaged as EJB JAR files), and one or more connectors (packaged
as Resource Archive [RAR] files) into Enterprise Archive (EAR) files and deploy these elements as
a single unit.

J2EE Client Applications
Geronimo has a client container for J2EE application clients. Geronimo uses custom code to
implement and provide the client container. Client applications can access and use all server
resources available through JNDI.

J2EE Connectors
Geronimo has a J2EE Connector Architecture (J2CA) container that can host and run J2EE con-
nectors. Connectors are J2EE application components that run within the application server
environment and provide Enterprise Information System (EIS) connectivity to other J2EE appli-
cation components, like EJB. Geronimo uses custom code to implement the Java Connector
Architecture (JCA) container and supports both inbound and outbound connectors. Inbound
connectors pass information from the EIS to the application server, and outbound connectors
pass information from the application server to the EIS.

CHAPTER 1 ■ GETTING STARTED 3

6420_c01_final.qxd 3/24/06 12:57 AM Page 3

Web Services
Geronimo uses Apache Axis and custom code to support web services. It implements the
enterprise web services specification (JSR 109) and can export Plain Old Java Object (POJO)–
based and EJB-based service endpoints as web services.

Java Message Service (JMS) and Messaging Services
Geronimo uses the ActiveMQ JMS provider to enable JMS applications. You can deploy JMS
destinations (queues and topics) as part of a server configuration or as part of an application
configuration. Serverwide JMS destinations are available to all applications on the server, and
application-wide JMS destinations are available to a specific application only.

ActiveMQ is an open source messaging server, released under the Apache license, that
implements the JMS 1.1, J2EE 1.4, JCA 1.5, and XA standards. It supports many different trans-
port mechanisms, including HTTP, Transmission Control Protocol (TCP), and User Datagram
Protocol (UDP).

J2EE Security
The Geronimo security infrastructure is based on the Java Authentication and Authorization
Service (JAAS) framework and the Java Authorization Contract for Containers (JACC) specifica-
tion. JAAS defines a mechanism for supporting pluggable login modules for authentication and
a standard mechanism for authorization. The JACC specification defines a standard contract
between the security policy provider implementations and the J2EE containers. Geronimo
comes with a generic security realm implementation and a variety of login modules, including
file-based and database-based implementations.

Transactions
Geronimo uses ObjectWeb’s Java Open Transaction Manager (JOTM) for providing its transac-
tion support. JOTM is a transaction manager that allows resource managers to participate in
global distributed transactions by coordinating the transactions and implementing the two-
phase commit protocol. Geronimo uses High-Speed ObjectWeb Logger (HOWL) for transaction
logging and transaction recovery.

JDBC Connection Pools
You can configure a JDBC connection pool by deploying a connector that provides database
connectivity and connection pools. Geronimo provides TranQL, the open source product that
has a J2EE connector that allows you to configure and deploy a connection pool.

JavaMail
Geronimo provides JavaMail 1.3.3 capability, allowing applications to send and receive e-mails.
Geronimo provides GBeans that you can use to configure a JavaMail session and Simple Mail
Transport Protocol (SMTP) transport.

CHAPTER 1 ■ GETTING STARTED4

6420_c01_final.qxd 3/24/06 12:57 AM Page 4

Apache Active Directory Support
Geronimo includes Apache Directory, which allows applications to use active directory serv-
ices. This enables applications to implement a unified security layer for applications.

Specification Support
Geronimo offers all the features of a typical J2EE 1.4 application server, including support for
all specifications that J2EE 1.4 requires. These specifications are as follows:

• Servlet 2.4

• JSP 2.0

• EJB 2.1

• JMS 1.1

• JTA 1.0.1B (Java Transaction API)

• JTS 1.0 (Java Transaction Service)

• JMX 1.2

• J2EE Management API 1.0

• J2EE Deployment API 1.1

• JCA 1.5

• JAXR 1.0 (Java API for XML Registries)

• JAX-RPC 1.1 (Java API for XML RPC)

• SAAJ 1.2 (SOAP with Attachment API for Java)

• JACC 1.0

• JavaMail 1.2

Figure 1-1 depicts Geronimo and the components that provide a J2EE 1.4–certified appli-
cation server.

CHAPTER 1 ■ GETTING STARTED 5

6420_c01_final.qxd 3/24/06 12:57 AM Page 5

Web-Based Administration Console
Geronimo has a web-based administration console application that you can use to administer
the Geronimo server. You can also use this application to deploy, undeploy, and manage your
own applications.

Other Features
Other useful Geronimo features include integration with the open source ServiceMix Enter-
prise Service Bus (ESB) and Eclipse tools and plug-ins for integrated development environment
(IDE) integration. Geronimo supports the Java Business Integration (JBI) specification by using
the ServiceMix ESB provider, and its deployer can deploy service components defined in the
META-INF/jbi.xml file of any JAR file.

New Features in Geronimo 1.0
Some of the key features in Geronimo’s 1.0 release are as follows:

• Hot deploy and undeploy of applications and services.

• A dynamic deploy directory for applications and services. You can deploy applications
by copying their deployment artifacts to the Geronimo root/deploy directory.

• Remote deployment and management capabilities.

• Clustering support with Tomcat.

• Improved web-based administration console.

• Many configuration parameters that can be updated in the var/config/config.xml file.

• Improved documentation with samples.

CHAPTER 1 ■ GETTING STARTED6

Figure 1-1. Geronimo application server components

6420_c01_final.qxd 3/24/06 12:57 AM Page 6

GERONIMO’S TO-DO LIST

Here are some key features that Geronimo should offer in the next version:

• Provide tooling support for all popular Java IDEs

• Provide full clustering support

• Completely implement the JSR 88 specification

• Include a J2EE application client container that can work from a machine other than the server

Installing Geronimo
Geronimo is a pure Java application server; hence, it can run on any Java Development Kit (JDK)
1.4 platform. However, for all features to run with the 1.0 release, Geronimo requires Sun Java
Virtual Machine (JVM) 1.4.2 or higher. This is primarily because Geronimo uses Sun’s Common
Object Request Broker Architecture (CORBA) implementation classes for its CORBA support—
this limitation will likely be rectified with a later release, when Geronimo uses a bundled CORBA
implementation.

Obtaining Geronimo
You can download Geronimo from http://geronimo.apache.org/downloads.html. There are
three types of downloads available for each release: binary, installer, and source code. The binary
release is a ZIP file or a TAR.GZ file, and the installer is a JAR file. You can use Subversion to check
out Geronimo source code, as shown here:

svn co https://svn.apache.org/repos/asf/geronimo/trunk geronimo

This will create a directory called geronimo that contains the source code. You need Apache
Maven to execute various Maven build commands to download dependencies and build Geron-
imo. This process is documented in the Geronimo wiki (http://wiki.apache.org/geronimo/
Building).

Installing Geronimo Quickly
You can use the binary package for a quick installation. As mentioned, the binary package is
a ZIP file (or a TAR.GZ file), and you simply unpack the ZIP file into a directory to complete the
installation. (There are separate packages available for Tomcat and Jetty web containers, and
you can select either one.) With this type of installation, you get Geronimo preconfigured with
default settings. If you need to customize the various settings, including ports for services, you
need to use the installer-based installation.

CHAPTER 1 ■ GETTING STARTED 7

6420_c01_final.qxd 3/24/06 12:57 AM Page 7

Installing Using the Installer
As of this writing, the Geronimo 1.0 final release does not have an installer download, and hence
we will use the Geronimo 1.0 Milestone 4 release installer to explore the installation process.
With future releases, the installer options are expected to change; however, the core installation
process will remain the same.

The installer application is a JAR file. It guides you through an installation wizard that
collects server configuration information and then installs and configures Geronimo for
immediate use. To run the installer, use the following command:

java -jar geronimo-1.0-M4-installer.jar

A welcome screen appears, as shown in Figure 1-2.

Click the Next button. You will see the license screen, shown in Figure 1-3.

CHAPTER 1 ■ GETTING STARTED8

Figure 1-2. Welcome screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 8

Accept the license, and click Next. In the next screen, choose an installation folder in which
to install Geronimo, as shown in Figure 1-4. This folder will be the Geronimo root folder.

CHAPTER 1 ■ GETTING STARTED 9

Figure 1-3. License screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 9

If the target directory does not exist, the installer indicates that it will create the directory.
Click Next, and the installer displays the feature list, shown in Figure 1-5, from which you can
select the optional features that you want to include in the installation. The core server, the
J2EE features, and the web container are mandatory features. This feature list is expected to
change in future releases.

CHAPTER 1 ■ GETTING STARTED10

Figure 1-4. Select installation path screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 10

Click Next, and you will be prompted to enter a system user name and a password,
as shown in Figure 1-6. You need this user name and password to use the deployer and the
Geronimo administration web tool. You will also be prompted to enter port numbers for vari-
ous services, like HTTP and JNDI. The web container will use the HTTP port number you
specify here to create a listener (connector) for handling HTTP requests, and it will use the
HTTPS port number to create another listener for handling secure HTTP (HTTPS) connec-
tions. You can choose to use the default values if you do not want to override these values.

CHAPTER 1 ■ GETTING STARTED 11

Figure 1-5. Feature selection screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 11

Click Next to go to the advanced configuration screen, shown in Figure 1-7. Here, you
need to enter configuration information for the following items:

• A naming port that Geronimo naming service should use to listen for JNDI connections

• A network port that the EJB container should use

• A list of client Internet Protocol (IP) addresses from which the EJB container should
accept EJB client connections

• A network port for Remote Method Invocation over Internet Inter-Orb Protocol
(RMI/IIOP) connections

• A network port that the IIOP Object Request Broker (ORB) should use

• A network port that the CORBA naming service should use

CHAPTER 1 ■ GETTING STARTED12

Figure 1-6. Basic configuration screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 12

Click Next to advance to the final configuration screen, shown in Figure 1-8. Here, you need
to provide configuration information for additional services, like JMS and Derby database.

CHAPTER 1 ■ GETTING STARTED 13

Figure 1-7. Advanced configuration screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 13

To start the installation, click Next. An installation progress screen, shown in Figure 1-9,
appears.

CHAPTER 1 ■ GETTING STARTED14

Figure 1-8. Additional services configuration screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 14

After installation, the installer displays the installation summary, as shown in Figure 1-10.

CHAPTER 1 ■ GETTING STARTED 15

Figure 1-9. Installation progress screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 15

Finally, the installer displays the installation success screen, shown in Figure 1-11. If you
require an installation script, you can create it and save it as an Extensible Markup Language
(XML) file by selecting Generate an automatic installation script.

You can use the following installation script:

java -jar geronimo-1.0-M4-installer.jar install-file.xml

CHAPTER 1 ■ GETTING STARTED16

Figure 1-10. Installation summary screen

6420_c01_final.qxd 3/24/06 12:57 AM Page 16

Browsing the Geronimo Installation
During installation, the Geronimo installer creates the directory structure shown in Figure 1-12.

CHAPTER 1 ■ GETTING STARTED 17

Figure 1-11. Installation success screen

Figure 1-12. Geronimo directory structure

6420_c01_final.qxd 3/24/06 12:57 AM Page 17

The following list describes the directories:

• bin directory: Contains JAR files (and scripts) that you can use to start the server and
deploy applications to the server in both online and offline modes.

• config-store directory: Contains configuration modules in numbered subdirectories.
A configuration module can be a user-deployed application or a system service. You
can configure the server to start one or more configurations, as required. The default
server configuration starts some of these modules. The file index.properties contains
a mapping of configuration module names to subdirectory numbers. The Geronimo
deploy tool maintains the contents of this directory automatically.

• deploy directory: Provides a hot-deployment directory into which you can copy your
application artifacts for hot deployment.

• lib directory: Holds kernel libraries that are needed to start the bare server, which in
turn loads all the required configuration modules.

• repository directory: Provides a store for all shared libraries. These libraries are loaded
on a need basis. You can add database drivers and other libraries that need to be avail-
able to all application modules in this directory.

• schema directory: Holds a reference copy of all XML schema definitions.

• var directory: Holds server runtime contents like the log files, configuration informa-
tion, and the security configuration files.

Starting the Server
To start Geronimo, run the following command from the home directory:

java -jar bin/server.jar

This command first starts the kernel and then loads the required configuration modules,
which in turn load the following modules (also shown in Figure 1-13):

• A web container (Tomcat or Jetty on ports 8080 and 8443)

• An EJB container (OpenEJB with naming services on port 1099)

• A JMS broker (ActiveMQ on port 61616)

• An embedded database (Derby on port 1527)

• A log service that writes to var/log/geronimo.log

• A transaction manager

• A security realm based on security configurations in var/security/

• A JMX connector for outside JMX clients to manage and monitor server components

CHAPTER 1 ■ GETTING STARTED18

6420_c01_final.qxd 3/24/06 12:57 AM Page 18

You can also start Geronimo by using one of the following two commands: geronimo.bat
start or startup.bat. This starts the server in a new command window.

You can get the help listing, shown in Figure 1-14, by issuing this command:

geronimo.bat --help

You can also give as parameters to the following command a list of configurations that
you want to start:

geronimo.bat start --override geronimo/j2ee-system/1.0/car

This command will load and start only the System configuration. In the default mode,
when no configurations are explicitly given as command parameters, Geronimo will load
all known configurations. This list of configurations is obtained from the file var/config/
config.xml. Geronimo keeps this list up-to-date with all last-known configurations.

CHAPTER 1 ■ GETTING STARTED 19

Figure 1-13. Geronimo server startup

6420_c01_final.qxd 3/24/06 12:57 AM Page 19

You can also specify verbose options as command parameters when you start the server.
To start Geronimo in silent mode, use the following command:

geronimo.bat start –-quiet

For verbose mode, use the following command:

geronimo.bat start –v

This option will print all log messages with priority greater than or equal to INFO. To print all
log messages (including the DEBUG messages) use the following command:

geronimo.bat start –vv

Once the Geronimo J2EE server starts, you can test the installation by using a browser
to access http://localhost:8080/. This should bring up the default home page, as shown
in Figure 1-15.

CHAPTER 1 ■ GETTING STARTED20

Figure 1-14. Geronimo startup help

6420_c01_final.qxd 3/24/06 12:57 AM Page 20

You can access the administration console, shown in Figure 1-16, at http://host:port/
console. Log in by using the user name “system” and the password “manager.”

CHAPTER 1 ■ GETTING STARTED 21

Figure 1-15. Geronimo default page

6420_c01_final.qxd 3/24/06 12:57 AM Page 21

Stopping the Server
To stop the server, press Ctrl+C in the console window. You can also use one of the following
commands from the command window to stop the server: geronimo.bat stop or shutdown.bat.

Summary
In this chapter, you learned about the features of the Geronimo application server. You also saw
how to install and use Geronimo. In the next chapter, you’ll examine Geronimo’s architecture.

CHAPTER 1 ■ GETTING STARTED22

Figure 1-16. Geronimo administration console

6420_c01_final.qxd 3/24/06 12:57 AM Page 22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

