
XML Structure

Reading and understanding the W3C specifications can be a difficult and daunting task. This
chapter explains XML structures in an easy-to-understand way. This information is based on
the third edition of the WC3’s XML 1.0 specification. I did not use the XML 1.1 specification as
a basis for this chapter in order to ensure the greatest compatibility amongst parsers and appli-
cations. In other words, the XML 1.0 specification is compatible with XML 1.1, but the reverse
is not true.

This chapter will cover the basics for understanding and building an XML document. It
begins with some fundamental concepts of XML; using these concepts, I’ll break down the
structure of a document and explain the syntax for document composition. Once you have
a basic understanding of document structure, I’ll introduce additional features such as
namespaces and IDs. By the end of this chapter, you should be armed with enough knowl-
edge not only to build XML documents but also to at least understand some of the more
complex documents you may encounter. Although I’ll present some information about
DTDs, Chapter 3 provides more in-depth coverage.

Introducing Characters
XML uses most of the characters within the Unicode character set. The specification actually
refers to the ISO 10646 character set, but usually you will find these two used interchangeably,
because the two character sets are kept in sync. Unicode, a 32-bit character set, provides a
standard and universal character set by assigning a unique number to every character. This
way, by using Unicode, data is the same without regard to language or country. The two Uni-
code formats, which all parsers must accept, are UTF-8 and UTF-16, although you can use
other character encodings as long as they comply with Unicode.

Character References
Characters cannot always be represented in their literal formats. Also, sometimes certain
characters in their literal forms are invalid to use because they violate the XML specification,
which depends upon the type of markup being used at the time. Character references repre-
sent the literal forms using their numeric equivalents. You can express character references
in two ways: using decimal notation or hexadecimal notation. For example:

• The character A in decimal format is A.

• The character A in hexadecimal format is &x41;.
15

C H A P T E R 2

■ ■ ■

6331_c02_final.qxd 2/16/06 5:08 PM Page 15

The only constraint for the character to be considered well-formed is that it conforms to
the rules for valid characters, which are expressed in hexadecimal format and include the fol-
lowing range of characters:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

Whitespace
Throughout this chapter, you will encounter the term whitespace. Whitespace, as used within
XML, consists of one or more of the following characters (expressed in hexadecimal): #x20
(space), #x9 (tab), #xD (carriage return), or #xA (line feed). By default, whitespace is significant
within an XML document. In most cases, it is up to the application to determine how it wants
to handle whitespace. As you will see later in this chapter in the section “Using xml:space and
xml:lang,” xml:space is a way to force an application to preserve whitespace.

Names
The term name, as used within this chapter for explaining XML syntax, defines the valid
sequence of characters that you can use. A name begins with an alphabetical character, an
underscore, or a colon and is followed by any combination of alphanumeric characters, peri-
ods, hyphens, underscores, and colons, as well as a few additional characters defined by
CombiningChar and Extender within the XML specification.

Names beginning with the case-insensitive xml are also reserved by the current and future
XML specifications. For example, names already in use include xmlns and xml. Basically, it is
not wise to use a name beginning with those three letters. It is also not good practice to use
colons in names. Although you will find people using them, especially when using the DOM
and not using namespace-aware functionality, using colons can lead to problems when not
used for namespace purposes. Table 2-1 shows some example names.

Table 2-1. Example Names

Valid Names Invalid Names

automobile1 1automobile

_automobile +automobile

:automobile (automobile

my.automobile .automobile

my:_automobile @automobile

Character Data
Markup consists of XML declarations, document type declarations, elements, entity references,
character references, comments, processing instructions (PIs), CDATA section delimiters, text
declarations, and any whitespace outside the document element and not contained within other
markup. An example of whitespace that is considered markup is the line feed used between the
prolog and the body. Character data, simply, is everything else that is not markup. It is the actual
content of the document, which is being described and structured by the markup.

CHAPTER 2 ■ XML STRUCTURE16

6331_c02_final.qxd 2/16/06 5:08 PM Page 16

A few characters require special attention:

• Less-than sign (<)

• Ampersand (&)

• Greater-than sign (>)

• Double quote (")

• Single quote (')

Except when used for markup delimiters or within a comment, PI, or CDATA section,
& and < can never be used directly. The > character must never be used when creating a string
containing]]> within content and not being used at that time to close a CDATA section. The
double and single quote characters must never be used in literal form within an attribute value.
Attribute values may be enclosed within either double or single quotes, so to avoid potential
conflicts, those characters are not allowed within the value. All these characters, according to
their particular rule sets, must be represented using either the numeric character references
or the entity references, as shown in Table 2-2.

■Note The entity references for these special characters do not need to be defined in a DTD because they
are automatically built into the parser.

Table 2-2. Special Character Representations

Character Reference Character Reference
Character (Decimal) (Hexadecimal) Entity Reference

< < < <

& & & &

> > > >

" < < <

' ' ' '

Case Sensitivity
XML is case-sensitive. You must be careful when writing markup to ensure that you use case
correctly. An element that has a start tag in all lowercase must have an end tag that is also in
all lowercase. This also is important to remember when using attributes. The attribute a is
not the same as the attribute A. It is a good idea to be consistent with case within a docu-
ment. All attributes should use the same case; lowercase is commonly used for attributes.
Element names should also be consistent. The common methods for case in elements
names are using all lowercase, using all uppercase, or using uppercase for the first letter
of a word and using lowercase for the rest of the word. For example:

CHAPTER 2 ■ XML STRUCTURE 17

6331_c02_final.qxd 2/16/06 5:08 PM Page 17

<document>
<MyElement>content here</MyElement>
<MYELEMENT>content here</MYELEMENT>
<myelement a="1" b="2" />
<!-- The following is well-formed,

but it is not good to mix attribute cases -->
<myelement a="1" A="2" />
<!-- The following is invalid because of mismatching start and end tags -->
<MYELEMENT>content here </myelement>

</document>

Understanding Basic Layout
An XML document describes content and must be well-formed, as defined in the WC3’s XML
specifications. The bare minimum for a well-formed document is a single element that is prop-
erly started and terminated. This element is called the root or document element. It serves as the
container for any content. A document’s layout consists of an optional prolog; a document body,
which consists of the document element and everything it contains; and an optional epilog.

Prolog
A prolog provides information about the document. A prolog may consist of the following (in
this order): an XML declaration; any number of comments, PIs, or whitespace; a document type
declaration; and then again any number of comments, PIs, or whitespace. Though not required,
an XML declaration is highly recommended. You can find information about comments and PIs
in the section “Understanding Basic Syntax.” Listing 2-1 shows an example prolog.

Listing 2-1. Example Prolog

<?xml version="1.0"?>
<!--The previous line contains the XML declaration -->
<!--The following document type declaration contains no subsets -->
<!DOCTYPE foo [
]>
<!--This is the end of the prolog -->

The prolog in Listing 2-1 takes the form of an XML declaration, two comments, a docu-
ment type declaration, and another comment.

XML Declaration
The XML declaration, the first line in Listing 2-1, provides information about the version of
the XML specification used for document construction, the encoding of the document, and
whether the document is self-contained or requires an external DTD. The basic rules for com-
position of the declaration are that it must begin with <?xml, it must contain the version, and
it must end with ?>. Documents containing no XML declaration are treated as if the version

CHAPTER 2 ■ XML STRUCTURE18

6331_c02_final.qxd 2/16/06 5:08 PM Page 18

were specified as 1.0. When using an XML declaration, it must be the first line of the docu-
ment. No whitespace is allowed before the XML declaration. Listing 2-2 shows an example
XML declaration.

Listing 2-2. Example XML Declaration

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Version

The version information (version), which is mandatory when using an XML declaration, indi-
cates to which XML specification the document conforms. The major difference between the
two specifications, XML 1.0 and XML 1.1, is the allowed characters. XML 1.1 allows flexibility and
supports the changes to the Unicode standards. The rationale behind creating a new version
rather than modifying the XML 1.0 specification was to avoid breaking existing XML parsers.
Parsers that support XML 1.0 are not required to support XML 1.1, but those that support XML
1.1 are required to support XML 1.0. With respect to the XML declaration, the version either can
be 1.0, as in version="1.0" (as shown in Listing 2-2), or can be 1.1, as in version="1.1".

Encoding

The encoding declaration (encoding), which is not required in the XML declaration, indicates
the character encoding used within the document. Encodings include, but are not limited to,
UTF-8, UTF-16, ISO-8859-1, and ISO-2022-JP. It is recommended that the character sets used
are ones registered with the Internet Assigned Numbers Authority (IANA). When encoding is
omitted and not specified by other means, such as byte order mark (BOM) or external proto-
col, the XML document must use either UTF-8 or UTF-16 encoding. Although Listing 2-2
explicitly sets the encoding to UTF-8, this is not needed because UTF-8 is supported by default.

Stand-alone

The stand-alone declaration (standalone), also not required within the XML declaration, indi-
cates whether the document requires outside resources, such as an external DTD. The value
yes means the document is self-contained, and the value no indicates that external resources
may be required. Documents that do not include a stand-alone declaration within the XML
declaration, yet do include external resources, automatically assume the value of no.

Document Type Declaration
The document type declaration (DOCTYPE) provides the DTD for the document. It may include
an internal subset, which means declarations would be declared directly within the DOCTYPE,
and/or include an external subset, which means it could include declarations from an external
source. The internal and external subsets collectively are the DTD for the document. Chapter 3
covers DTDs in detail. Listing 2-3, Listing 2-4, and Listing 2-5 show some example DTDs.

Listing 2-3. Document Type Declaration with External Subset

<!DOCTYPE foo SYSTEM "foo.dtd">

CHAPTER 2 ■ XML STRUCTURE 19

6331_c02_final.qxd 2/16/06 5:08 PM Page 19

Listing 2-4. Document Type Declaration with Internal Subset

<!DOCTYPE foo [
<!ELEMENT foo (#PCDATA)>

]>

Listing 2-5. Document Type Declaration with Internal and External Subset

<!DOCTYPE foo SYSTEM "foo.dtd" [
<!ELEMENT foo (#PCDATA)>

]>

Body
The body of an XML document consists of the document element and its content. In the sim-
plest case, the body can be a single, empty element. You may have heard the term document
tree before; this term is synonymous with the body. The document element is the base of the
tree and branches out through elements contained within the document element. The section
“Understanding Basic Syntax” covers the basic building blocks of the body. Listing 2-6 shows
an example of a document body.

Listing 2-6. Example of an XML Document Body

<root>
<element1>Some Content</element1>
<element2 attr1="attribute value">More Content</element2>

</root>

Epilog
If you are referring to the XML specifications, you will not find a reference to the epilog. Within
the XML specifications, the epilog is equivalent to the Misc* portion of the document defini-
tion as defined using the Extended Backus-Naur Form (EBNF) notation. For example:

document ::= prolog element Misc*

The epilog refers to the markup following the close of the body. It can contain comments,
PIs, and whitespace. Epilogs are not mandatory and, other than possibly containing white-
space, are not very common. Many parsers will not even parse past the closing tag of the
document element. Because of this limitation, a possible use for the epilog is to add some
comments for someone reading the XML document. This type of usage of an epilog causes
no problems if a parser does not read it.

Understanding Basic Syntax
XML syntax is actually pretty simple. Many people get away with documents consisting of
only elements and text content. These documents tend to have a simple structure with simple
data, but isn’t that the whole point of XML in the first place? Once you begin working with

CHAPTER 2 ■ XML STRUCTURE20

6331_c02_final.qxd 2/16/06 5:08 PM Page 20

more complex documents, such as those involving namespaces and content that is not just
valid plain text, you may start to get a little intimidated. I know the first time I ever encoun-
tered a schema, I felt a little overwhelmed.

After reading the following sections, you should understand at least the basics of XML
documents and be able to understand documents used in some XML techniques such as vali-
dation using schemas, SOAP, and RELAX NG. Some documents may seem impossible to ever
understand, but armed with the basic knowledge in this chapter, you should be able to find
your way.

Elements
Elements are the foundation of a document, and at least one is required for a well-formed doc-
ument. An element consists of a start tag, an end tag, and content, which is everything between
the start and end tags. Elements with no content are the exception to this rule because the ele-
ment may consist of a single empty-element tag.

Start Tags
Start tags consist of <, the name, any number of attributes, and then >. Name refers to a valid,
legal name as explained within the “Characters” section.

This shows an element start tag named MyNode having one attribute:

<MyNode att1="first attribute">

End Tags
End tags take the form of </", Name, ">, where Name is the same as the starting tag. The end
tag for the previous example would be as follows:

</MyNode>

Element Content
Content may consist of character data, elements, references, CDATA sections, PIs, and com-
ments. Everything contained within the element’s start and end tags is considered to be an
element’s content. For example:

<myElement>
<nestedElement>content of nestedElement</nestedElement>

</myElement>

Breaking this document down, the element name nestedElement contains a string of char-
acter data. The document element myElement contains content consisting of whitespace (a line
feed and then a tab), followed the element nestedElement and its content, followed by more
whitespace (line feed).

Empty-Element Tags
Elements without content can appear in the form of a start tag directly followed by an end tag
(as well as without any whitespace). To simplify expressing this, you can use an empty-element
tag. Empty-element tags take the form of <", Name, "/>. For example:

CHAPTER 2 ■ XML STRUCTURE 21

6331_c02_final.qxd 2/16/06 5:08 PM Page 21

<!-- start and end tags without content -->
<myElement></myElement>

<!-- empty-element tag -->
<myElement/>

<!-- start and end tags WITH content -->
<myElement> </myElement>

Notice that the last example does contain content. Even though it’s only a single space,
the element contains content. Every character, including whitespace, is considered content.

Element Hierarchy
The most important point to remember when dealing with XML is that it must be well-formed.
This may be redundant information, but if you are coming from the HTML world, it can be easy
to forget. It’s easy to get away with malformed documents when writing HTML, especially
because not all tags are required to be closed. Take the HTML document shown in Listing 2-7,
for example.

Listing 2-7. HTML Example

<HTML><BODY>
<P>This is all in <I>Italics and this is Bold</I>

New line here</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name: <input type="text" name="name" value=""></td>
</tr>
<tr>

<td><input type="submit" name="submit" value="Submit">
</form>

</td>
</tr>

</table>
</BODY></HTML>

The document in Listing 2-7 is not well-formed at all. The simplest piece to identify is
that the BR tag is opened and never closed. Within the P tag, the hierarchy is completely bro-
ken. Beginning with the I tag, you’ll see some text followed by an opening B tag. Using XML
rules, you would expect the B tag to be closed prior to the I tag, but as illustrated, the I tag is
actually closed first and then the B tag is closed. If you have ever wondered why XML tends to
be illustrated in an indented format, well, the answer might be much clearer now. Not only is
the document easier for human readability, it also is easier to find problems in malformed
documents.

The hierarchy of tags is completely invalid in Listing 2-7. Not only is there a problem with
the B and I tags, but also the opening and closing form and table tags do not nest correctly.
When writing HTML, it’s all about presentation in the browser. A problem many UI designers

CHAPTER 2 ■ XML STRUCTURE22

6331_c02_final.qxd 2/16/06 5:08 PM Page 22

ran into years ago, before the days of CSS, was related to forms and tables. Depending upon
the placement of the form and table tags, additional whitespace would appear in the rendered
page within a Web browser. To remove the additional whitespace, designers would open forms
prior to the table tag and close them before closing the table. Web browsers, being forgiving,
would render the output correctly without the extra whitespace even though the syntax of the
document was not actually correct. As far as XML is concerned, that type of document is not
well-formed and will not parse. Elements must be properly nested, which means they must
be opened and closed within the same scope. In Listing 2-7, the table tag is opened within the
scope of the form tag but closed after the form tag has been closed. Even though it may render
when viewed in a browser, the structure is broken and flawed because the form tag should not
be closed until all tags residing within its scope have been properly terminated.

Each time an element tag (start, end, or empty element) is encountered, you should
insert a line feed and a certain number of indents. Typically for each level of the tree you
descend (each time you encounter an element start tag), you should indent one more time
than you did the previous time. When ascending the tree (each time an element’s end tag is
encountered), you should index one less time than previously. Because an empty-element
tag serves both purposes, it can be ignored. If you tried to do this with the example from List-
ing 2-7, you just could not do it. Using whitespace for formatting also makes it pretty easy to
spot where it is broken as well:

<HTML>
<BODY>

<P>This is in
<I>Italics and this is

Bold
</I>

New Line here

</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name:
<input type="text" name="name" value="">
</td>

</tr>
<tr>

<td>
<input type="submit" name="submit" value="Submit">
</form>

</td>
</tr>

</table>
</BODY>

</HTML>

Although this document has several issues, the most obvious problem should jump out at
you. The indenting is completely off between the closing table tag and the closing BODY tag.

CHAPTER 2 ■ XML STRUCTURE 23

6331_c02_final.qxd 2/16/06 5:08 PM Page 23

This clearly indicates something is wrong with the document. The document in Listing 2-8
applies the rules for XML elements to the document from Listing 2-7 to produce a well-formed
XML document.

Listing 2-8. HTML Example Using Well-Formed XML

<HTML>
<BODY>

<P>This is in
<I>Italics and this is

Bold
</I>

</P>
<form name="myform" method="post" action="mypage.php">

<table width="100%" border="0">
<tr valign="top">

<td>Name:
<input type="text" name="name" value="" />

</td>
</tr>
<tr>

<td>
<input type="submit" name="submit" value="Submit" />

</td>
</tr>

</table>
</form>

</BODY>
</HTML>

This might also give you an inclination of why Extensible HTML (XHTML) was created.
XHTML is a stricter version of HTML that not only can be processed by a browser but, because
it is XML compliant, can also be processed by applications.

Attributes
You can think of attributes as properties of an element, similar to properties of an object.
You might be shaking your head right now completely disagreeing with me. You are 100 per-
cent correct, but for a simple document and to give at least a basic idea of what they are, I
will use that analogy for now. Attributes can exist within element start tags and empty-ele-
ment tags. In no case may they appear in an element end tag. Attributes take the form of
name/value pairs using the following syntax: Name="Value" or Name='Value'. You can sur-
round values with either double or single quotes. However, you must use the same type of
quotes to encapsulate the attribute’s value. It also is perfectly acceptable to use one style of
quotes for one attribute and another style for a different attribute. The attribute name must
conform to the constraints defined by the term name earlier in this chapter. Also, attributes

CHAPTER 2 ■ XML STRUCTURE24

6331_c02_final.qxd 2/16/06 5:08 PM Page 24

within an element must be uniquely named, meaning an element cannot contain more than
one attribute with the same name. Listing 2-9 shows an invalid attribute usage.

Listing 2-9. Invalid Attribute Usage

</Car color="black">
<Car color="black" color='white' />

Attributes also have no specified order within the element, so the following two examples
are identical, even though the order and quoting are different:

<Car make="Ford" color="black" />
<Car color="black" make='Ford' />

Attribute Values
Attributes must also have a value, even if the value is empty. Again, referring to HTML, you
may be accustomed to seeing lone attribute names such as <HR size="5" noshade> or <frame
name="xxx" scrolling="NO" noresize>. Notice that noshade and noresize have no defined val-
ues. These are not well-formed XML and to be made conformant must be written as <HR size="5"
noshade="noshade"> and <frame name="xxx" scrolling="NO" noresize="noresize">, which
now makes them XHTML and XML compliant. In cases where an attribute value is empty and
there are no rules for any default values, such as those for converting HTML to XHTML, you
would write an attribute as such: attrname="".

Attribute values can also not contain unescaped < or & characters. Also, you should use
escaped characters for double and single quotes. Although it might be OK to use a literal
single quote character within an attribute value that is encapsulated by double quotes
(though in this case double quote characters must be escaped), it is not good practice and
highly discouraged.

Suppose you wanted to add some attributes to the element Car with the following
name/value pairs:

• color: Black and white

• owner: Rob’s

• score: Less than 5

You would write this as follows:

<Car color="black & white" owner="Rob's" score="< 5" />

Attribute Use
The use of attributes, unless specifically required such as through a DTD, is really a choice left
to the document author. You will find opinions on attribute use running the full spectrum, with
some saying you should never use attributes. When considering whether you should use an
attribute or whether it should be a child element, you have a few facts to consider. If you can
answer “yes” to any of the following questions, then you should use an element rather than
an attribute:

CHAPTER 2 ■ XML STRUCTURE 25

6331_c02_final.qxd 2/16/06 5:08 PM Page 25

• Could multiple values apply to an element?

• Is a DTD requiring the attribute being used?

• Is the data essential to the document and not just an instruction for an application?

• Is the value complex data or difficult to understand?

• Does the value need to be extensible for potential future use?

If the questions aren’t applicable, then it comes down to personal preference. One point
to always remember is that the document should end up being easily understood by a human
and not just meant for electronic processing. With this in mind, you have to ask yourself which
of the following is easier to understand. This is the first choice:

<Car make='Ford' color='black' year='1990' model='Escort' />

and this is the second choice:

<Car>
<make>Ford</make>
<color>black</color>
<year>1990</year>
<model>Escort</model>

</Car>

CDATA
CDATA sections allow the use of all valid Unicode characters in their literal forms. The CDATA
contents bypass parsing so are great to use when trying to include content containing markup
that should be taken in its literal form and not processed as part of the document. CDATA sec-
tions begin with <![CDATA[, which is followed by your content, and end with]]>, like so:

<![CDATA[..content here ..]]>

The only invalid content in this example is the literal string]]>. As you may have guessed,
using]]> indicates the close of the CDATA section. To represent this string, you would need to
use]]>.

For example, if you were writing an article about using XML and were using XML as the
document structure, CDATA sections would allow you to embed your examples without
requiring any character escaping. Listing 2-10 shows an example without a CDATA section,
and Listing 2-11 shows an example with one.

Listing 2-10. Example Without a CDATA Section

<document>
<title>Example of an XML</title>
<example>

<xml version="1.0"?>
<document>
this &amp; that
</document>

</example>
</document>

CHAPTER 2 ■ XML STRUCTURE26

6331_c02_final.qxd 2/16/06 5:08 PM Page 26

Listing 2-11. Example Using CDATA Section

<document>
<title>Example of an XML</title>
<example><![CDATA[

<xml version="1.0">
<document>

this & that
</document>

]]></example>
</document>

Clearly, the document in Listing 2-11 is much easier to read than the one in Listing 2-10.
If editing a document by hand, it is also easier to write because you don’t need to be con-
cerned with figuring out what the correct entities to use are.

Because of the flexibility of CDATA sections, you may have heard or read somewhere that
CDATA is great to use for binary data. In its native form, this is not true. You have no guarantee
that the binary data will not contain the characters]]>. For this reason, binary data that must
be encoded should use a format such as Base64. Now, if Base64 is used for encoding, a CDATA
section is not even necessary, and it could be embedded directly as an element’s content. This
is because Base64 does not use any of the characters that would be deemed illegal for element
content.

Comments
You can use comments to add notes to a document. This is comparable to a developer adding
comments to source code. They do not affect the document but can be used to add some notes
or information for someone reading it. For this reason, parsers are not required to parse com-
ments, although most will allow access to the content. This is what a comment looks like:

<!-- This is a comment -->

Comments consist of the initial <!--, the actual text for the comment, and finally the
closing -->. Be aware of the following stipulations when using comments:

• The content for a comment must not contain --.

• A comment may not end with -.

Other than those conditions, comments can contain any other characters.
Comments may also occur anywhere after the XML declaration as long as they are not

contained within markup. Listing 2-12 shows some valid comments, and Listing 2-13 shows
some invalid ones.

Listing 2-12. Valid Comments

<!-- The <Car> elements do not contain all known automobiles -->
<!-- This is valid as a whitespace follows the last "-" character - -->
<!-- Don't forget to escape the & character when used as element content -->

CHAPTER 2 ■ XML STRUCTURE 27

6331_c02_final.qxd 2/16/06 5:08 PM Page 27

Listing 2-13. Invalid Comments

<!-- Comments take the form of <!-- This is a comment --> within a document -->
<!-- This comment is invalid as it ends with three "-" characters. --->
<Car <!-- Invalid because it resides within the element start tag -->>

Processing Instructions
XML is purely concerned with document content. A PI allows application-specific instructions
to be passed with the document to indicate to the application how it should be processed. The
PI takes the form of <?, which is followed by the target (which must be a valid name) and white-
space, then takes the actual instruction, and closes with ?>, like so:

<?target instructions ?>

The target indicates the application that the instruction targets. You might already be
familiar with this syntax from PHP:

<?php echo "Hello World"; ?>

This syntax is a PI. The PI target is php, and the instruction is echo "Hello World";. If you
were creating an XHTML document and embedding PHP code, this would constitute a well-
formed XML document.

Another case you may have already encountered is the association of style sheets with an
XML document. Many XML editors will add the following PI so they can easily perform XSL
transformations on the XML you may be editing:

<?xml-stylesheet type="text/xsl" href="mystylesheet.xsl"?>

Entity References
You have already encountered some of the built-in entity references (&, <, >, ',
and ") throughout this chapter. Just as characters can be represented using numeric
character references, entity references are used to reference strings, which are defined in the
DTD. They take the form of &, which is followed by a legal name, and they terminate with a
semicolon. You are probably familiar with the concept from HTML:

<P> Copyright © 2002</P>

The entity reference © is defined in the HTML DTD and represents the copyright
symbol. Entity references cannot just be used blindly, however. The document must pro-
vide a meaning to an entity reference. For instance, if you were looking at a document that
contained <p>&myref;<p>, the entity reference &myref; has absolutely no meaning to you or
may mean something completely different to you than to me. You can use DTDs to define
an entity reference. It is mandatory that any entity reference, other than those that are built
in, must be defined. Looking at an HTML page, you may notice the DOCTYPE tag at the top
of the page. The contents depend upon the type of HTML you are writing. For instance,
-//W3C//DTD HTML 4.01 Transitional//EN refers to the DTD http://www.w3.org/TR/
html4/loose.dtd. This file contains a reference to http://www.w3.org/TR/html4/
HTMLlat1.ent. If you looked at the contents of this file, you will notice that the entity copy
is defined as <!ENTITY copy CDATA © -- copyright sign, U+00A9 ISOnum -->.

CHAPTER 2 ■ XML STRUCTURE28

6331_c02_final.qxd 2/16/06 5:08 PM Page 28

The entity reference, when used within the document, then is able to take its “meaning”
from the definition. This is further explained in Chapter 3.

General Entity Declaration
Entity declarations may be either general or parameter entity declarations. Entity declarations
will be covered in more depth in Chapter 3, though general entities have some bearing to this
discussion with respect to entity references. The common use of general entities is to declare
the text replacement value for entity references. General entities are commonly referred to as
entities unless used in a context where that name would be ambiguous; therefore, for the sake
of this section, entities will refer to general entities.

Entities are defined within the DTD, which is part of the prolog. Suppose you had the
string "This is replacement text", which you want to use many times within the document.
You could create an entity with a legal name, in this case "replaceit":

<?xml version="1.0"?>
<!DOCTYPE foo [

<!ENTITY replaceit "This is replacement text">
]>
<foo>&replaceit;</foo>

If this document were loaded into a parser that was substituting entities, which means it
is replacing the entity reference (&replaceit;) with the text string defined in the entity decla-
ration, the results would look something like this:

<?xml version="1.0"?>
<!DOCTYPE foo [

<!ENTITY replaceit "This is replacement text">
]>
<foo>This is replacement text</foo>

Using Namespaces
Documents can become quite complex. They can consist of your own XML as well as XML
from outside sources. Element and attribute names can start overlapping, which then makes
the names ambiguous. How do you determine whether the name comes from your data or
from an outside source? Looking at the document, you would have to guess what the elements
and attributes mean depending on the context. Unfortunately, applications processing the
XML typically don’t understand context, so the document would no longer have the correct
meaning. Namespaces solve this potential problem.

Namespaces are collections of names identified by URIs. They are not part of the XML spec-
ification but have their own specification that applies to XML. Through the use of namespaces,
names within a document are able to retain their original meanings even when combined with
another document that contains some of the same names with completely different meanings.

Assume you are building a document that includes customer information as well as items
they have ordered, and assume your customer records look like the following:

CHAPTER 2 ■ XML STRUCTURE 29

6331_c02_final.qxd 2/16/06 5:08 PM Page 29

<Customer>
<Name>John Smith</Name>
<Number>12345</Number>

</Customer>

The items ordered by the customer take the form of the following structure:

<Items>
<Item>

<Name>Book</Name>
<Number>11111</Number>

</Item>
</Items>

Combining these into a single document would result in the following:

<Order>
<Customer>

<Name>John Smith</Name>
<Number>12345</Number>

</Customer>
<Items>

<Item>
<Name>Book</Name>
<Number>11111</Number>

</Item>
</Items>

</Order>

Unless you read the pieces of the document in context, the elements Name and Number are
ambiguous. Does Number refer to the customer number or an item number? Right now the only
way you can tell is that if you are within an item, then Number must refer to an item number;
otherwise, it refers to a customer number. This is just a simple case, but it does get worse, such
as when elements appear within the same scope. In any event, using namespaces uniquely
identifies the elements and attributes, so there is no need for guesswork or trying to figure out
the context. Take the following document, for instance. Separate namespaces have been cre-
ated for Customer and Item data. Just by looking at the element names, you can easily
distinguish to what the data refers.

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item">

<cus:Customer>
<cus:Name>John Smith</cus:Name>

<cus:Number>12345</cus:Number>
</cus:Customer>
<item:Items>

<item:Item>
<item:Name>Book</item:Name>
<item:Number>11111</item:Number>

</item:Item>
</item:Items>

</Order>

CHAPTER 2 ■ XML STRUCTURE30

6331_c02_final.qxd 2/16/06 5:08 PM Page 30

Defining Namespaces
Looking at the previous example, you may have already determined that xmlns:cus="http://
www.example.com/Customer" is a namespace definition. Usually, and I stress usually, this is not
the case; namespaces are created using a special prefixed attribute name and a URI, like so:

xmlns:prefix="URI"

Based on this definition, prefix refers to the namespace prefix you want to use through-
out your document to associate certain elements and attributes to a namespace name (URI).
In this example, the Number element within the Customer element becomes cus:Number, and the
Number element within the Item element becomes item:Number. Now, the XML clearly distin-
guishes between the meanings of these two elements. You have removed any ambiguity from
the document.

These new names being used in the elements are called qualified names, also referred to
as QNames. They can be broken down into two parts, separated by a colon: the prefix and the
local name. When using namespaced elements, the start and end tags now must contain the
qualified name. Again, an exception to this exists, which you will come to in the “Default
Namespace” section.

The significant portion of the namespace declaration is the URI (the namespace name).
Once bound to a node or element, this will never change. The prefix, however, is not guaran-
teed. By manipulating the tree, such as moving elements around using the DOM, it is possible
a namespace collision may occur. This frequently happens when a namespace defined lower
in the tree declares a namespace and uses a prefix, which was used in one of its ancestors. By
moving some element as a child of this other element, the prefixes would collide because they
refer to two different URIs. It is perfectly valid for the prefix to automatically be changed to
one that would not conflict. This is covered in more detail in the section “Namespace Scope.”

Elements containing the namespace definition are not part of the namespace unless pre-
fixed. Listing 2-14 shows the Order element within a namespace, because it is prefixed with
ord, as specified in the namespace definition. The Order element in Listing 2-15 is not in any
namespace even though a namespace is being defined.

Listing 2-14. Element Order Within the http://www.example.com/Order Namespace

<ord:Order xmlns:ord="http://www.example.com/Order" />

Listing 2-15. Element Order Not Within the http://www.example.com/Order Namespace

<Order xmlns:ord="http://www.example.com/Order" />

Namespaces are not required for every element and attribute within a document. You need
to remember that namespaces remove ambiguity when there are, or there could be, overlapping
names. Looking at the example, the only two elements that require namespacing are Name and
Number. It would have been perfectly valid to not put all other elements into namespaces.

Namespaces can also apply to attributes as well:

<cus:Customer cus:cid="12345" />

The attribute cid, with the cus prefix, falls within the http://www.example.com/Customer
namespace.

CHAPTER 2 ■ XML STRUCTURE 31

6331_c02_final.qxd 2/16/06 5:08 PM Page 31

Default Namespaces
All rules have exceptions. If you remember from the previous section that namespaces take
the form of prefix:name, well here is the exception: default namespaces allow a namespace
to be defined that causes all elements, unless explicitly set to a namespace, to automatically
be assigned to the default namespace, like so:

<Order xmlns="http://www.example.com/Order" />

You may think that the Order element is not associated with any namespace. This, how-
ever, is wrong. Default namespaces apply to the element they are defined on as well as to all
elements, but not to attributes contained in the defining element, unless already associated
with a namespace using the QName approach.

■Caution Default namespaces do not affect attributes. Unless explicitly set to a namespace with a prefix,
attributes do not belong to any namespace. This is extremely important to remember when working with
many of the XML technologies, not just the ones within PHP. This knowledge may save you many hours and
days of trying to debug an XML-based project.

Let’s return to a simplified version of the order structure:

<Order xmlns="http://www.example.com/Order"
xmlns:item="http://www.example.com/Item">

<Items>
<Item itid="12345">

<item:Name>Book</item:Name>
<item:Number>11111</item:Number>

</Item>
</Items>

</Order>

This structure contains two namespaces. One is http://www.example.com/Item, which is ref-
erenced by the prefix item, and the other, http://www.example.com/Order, is a default namespace.
Based on the structure, the elements Name and Number belong to the http://www.example.com/Item
namespace because they are using QNames with the item prefix. The elements Order, Items, and
Item all belong to the http://www.example.com/Order namespace, because they are not explicitly
set to any namespace so inherit the default namespace. Lastly, the attribute itid does not belong
to any namespace. It is not explicitly set and hence doesn’t use a QName, and as you remember,
attributes do not inherit the default namespace.

If possible, I recommend avoiding default namespaces and using QNames with name-
spaces. As documents become more complex, they become much more difficult to read and
understand. Default namespaces do not easily stand out, and when adding namespace scope
to the equation, they can become quite confusing to follow. Using qualified names also will
help avoid the confusion that sometimes happens with attributes; many people have been
bitten by the fact that attributes do not inherit the default namespace and have spent a great
deal of time trying to find the bugs in their XML.

CHAPTER 2 ■ XML STRUCTURE32

6331_c02_final.qxd 2/16/06 5:08 PM Page 32

Reserved Prefixes and Namespace Names
By default, XML processors are required to define two namespaces with associated prefixes by
default:

• The prefix xml is bound to http://www.w3.org/XML/1998/namespace. You can use this
namespace to define things such as ID attributes (xml:id) and languages (xml:lang).

• The prefix xmlns is bound to http://www.w3.org/2000/xmlns/. You can use this name-
space to declare XML namespaces.

These namespaces may not be bound by using any other prefix except those defined.
Within a document, the prefix xmlns must never be declared. The xml prefix, on the other
hand, may be declared, although it’s not necessary. If declared, though, it must be bound to
the http://www.w3.org/XML/1998/namespace namespace.

Prefixes should also not begin with the characters xml. Prefixes that begin with these
characters are reserved for future specifications. However, a processor will not treat the use
of these as a fatal error, but documents that do use prefixes with these characters may possi-
bly not be valid in the future if a specific prefix ends up being used in any currently undefined
specifications.

Namespace Scope
Up until now, you have looked only at namespaces defined in the document element. You
can declare namespaces by using any element in the document. So what happens when you
encounter additional namespaces? Consider the following document:

<Order xmlns:cus="http://www.example.com/Customer"
xmlns:item="http://www.example.com/Item"
xmlns="http://www.example.com/Order">

<cus:Customers>
<Customer xmlns:cus="http://www.example.com/GENERIC_Customer">

<cus:Name>John Smith</cus:Name>
<cus:Number>12345</cus:Number>

</Customer>
<cus:Count>1</cus:Count>

</cus:Customers>
<item:Items>

<item1:Item xmlns:item1="http://www.example.com/GENERIC_Item">
<item1:Name>Book</item1:Name>
<item1:Number>11111</item1:Number>

</item1:Item>
<Item xmlns:item="http://www.example.com/GENERIC_Item">

<item:Name>Software</item:Name>
<item:Number>22222</item:Number>

</Item>
</item:Items>
<GeneralInfo xmlns="http://www.example.com/General">

<Name>General Information</Name>
<Number>33333</Number>

</GeneralInfo>
</Order>

CHAPTER 2 ■ XML STRUCTURE 33

6331_c02_final.qxd 2/16/06 5:08 PM Page 33

It’s time to play the “Which namespace am I in?” game. You may have been curious why
I suggested avoiding using default namespaces if possible. This document is not highly com-
plex because it is quite small and has only a few levels, but it takes namespace use to the
extreme—almost to the level of abuse. It should help you to not only understand namespace
scoping but also to understand why default namespaces can cause a document to become
confusing to read.

What namespace is the item:Name element in?
At first glance, you might say http://www.example.com/Item because that is the namespace

defined on the Order element using the item prefix. This, however, is wrong. The element is
actually in the http://www.example.com/GENERIC_Item namespace.

To fully understand how the namespace/element associations are made, you should walk
through the document tree and examine the elements. Beginning with the document element,
three namespaces are defined:

• cus is associated with http://www.example.com/Customer.

• item is associated with http://www.example.com/Item.

• http://www.example.com/Order is a default namespace.

The element cus:Customers is in the http://www.example.com/Customer namespace. This
should be obvious, as you have encountered no other namespace definitions. Descending
into the content, you encounter the Customer element. This element belongs to the http://
www.example.com/Order namespace. Because it has no prefix and is not defining a default
namespace, it inherits the current in-scope default namespace. The element does, however,
define a new namespace, http://www.example.com/GENERIC_Customer, and it associates the
prefix cus with it. This prefix used to be associated with http://www.example.com/Customer,
but for any elements or attributes using this prefix within the contents of the Customer ele-
ment, it now refers to http://www.example.com/GENERIC_Customer. This means cus:Name and
cus:Number, which are children of Customer, are both in the http://www.example.com/
GENERIC_Customer namespace.

As you exit from the Customer element, the http://www.example.com/GENERIC_Customer
namespace associated with the cus prefix goes out of scope. These were defined on the Customer
element, which is now closed, so the definition ceases to exist. However, cus is now in scope
from its definition on the Order element. When you encounter the next element, cus:Count,
it belongs to the http://www.example.com/Customer namespace because of the scoping rules.
Moving back up the tree, you can safely ignore the cus:Customers closing element. Because
the element did not define any namespaces, it does not alter anything.

The item:Items element is the next element encountered. No changes exist in name-
space, so it is bound to the http://www.example.com/Item namespace as defined on the Order
element. Its child element, item1:Item, defines the http://www.example.com/GENERIC_Item
namespace with the item1 prefix. As this element is also prefixed with item1, it ends up in the
http://www.example.com/Item/1 namespace, which it is defining. Both of its children,
item1:Name and item1:Number, will belong to the same http://www.example.com/GENERIC_Item
namespace defined on their parent.

Entering the second Item element, the namespace http://www.example.com/GENERIC_Item
is once again defined but associated with the item prefix. This changes the scope of the prefix
so that all the elements contained within Item and using the prefix item will now be bound to
http://www.example.com/GENERIC_Item rather than to the one defined on the Order element.

CHAPTER 2 ■ XML STRUCTURE34

6331_c02_final.qxd 2/16/06 5:08 PM Page 34

The Item element itself has no prefix so is bound to the default namespace, which currently is
http://www.example.com/Order. With the newly defined item prefix, both the children elements,
item:Name and item:Number, belong to http://www.example.com/GENERIC_Item. Upon leaving
the last Item element, the item prefix loses scope, but since it was defined before in an ances-
tor element (Order), item again refers to the http://www.example.com/Item namespace.

The next element hit is the GeneralInfo element. This demonstrates how it might be con-
fusing to use default namespaces. This element resides in the default namespace. It, however,
is also defining a default namespace. The question now arises—to which default namespace
does it belong?

Remember the section “Default Namespaces”? Elements defining a default namespace, and
not bound to any namespace, will be bound to the default namespace they’re defining. To answer
the original question then, GeneralInfo is bound to http://www.example.com/General. This also
means all elements contained within GeneralInfo will now use http://www.example.com/General
as the default namespace. So with that information, there is no way to trick you by asking you
what the namespace for the child Name and Number elements are. Of course, they are bound to
http://www.example.com/General. When a parser encounters the GeneralInfo closing tag, the
default namespace defined on that element falls out of scope, and http://www.example.com/Order
comes back into scope as the default namespace of the document.

It’s a good thing this was a simple document. Just imagine how hard it would have been to
explain a large and complex document. Here are a few tips for writing XML documents:

• If you don’t need namespaces, don’t use them.

• If you have the choice, use QNames rather than default namespaces.

• Attributes are not bound to default namespaces.

• DTDs and namespaces are not all that compatible and can lead to invalid documents.

Namespaces and Attribute Uniqueness
Back in the “Attributes” section, you learned attributes must be unique for an element. Name-
spaces add a little twist to this. Attributes names must still be unique, where the name consists
of the prefix and local name for a namespaced attribute, but they must also not have the same
local name and prefixes that are bound to the same namespace.

In the following example, although the attribute names, a1:z and a2:z, are unique, they
are both bound to the same namespace, http://www.example.com/a, which means this is an
invalid document:

<x xmlns:a1="http://www.example.com/a" xmlns:a2="http://www.example.com/a">
<y a1:z="1" a2:z="2" />

</x>

The following attributes are perfectly legal. The attribute a1:z is bound to http://
www.example.com/a1, and a2:z is bound to http://www.example.com/a2.

<x xmlns:a1="http://www.example.com/a1" xmlns:a2="http://www.example.com/a2">
<y a1:z="1" a2:z="2" />

</x>

CHAPTER 2 ■ XML STRUCTURE 35

6331_c02_final.qxd 2/16/06 5:08 PM Page 35

The following example may throw you a bit. Default namespaces do not apply to attrib-
utes, so these attributes are unique. Their names are unique because the qualified names are
used for comparison, and no duplicate namespace exists. Attribute a:z is bound to
http://www.example.com/a, and attribute a is not in any namespace.

<x xmlns:a="http://www.example.com/a" xmlns="http://www.example.com/a">
<y a:z="1" z="2" />

</x>

■Note The remainder of the examples in this chapter that use DTDs are well-formed documents but are
not valid. If loading them into a parser, make sure you disable validation; otherwise, validation errors will
occur. For more information, see Chapter 3.

Using IDs, IDREF/IDREFS, and xml:id
When dealing with documents, it is often useful to be able to uniquely identify elements and
be able to easily locate them. Attribute IDs serve this same purpose. When applied to an ele-
ment, which can have at most a single ID (though this is not the case when using xml:id), the
value of the attribute on the element serves as the unique identifier for the element. An IDREF,
on the other hand, allows elements to reference these unique elements.

At first glance, you may be wondering what purpose the ID and IDREF instances actually
serve. Of course, they uniquely identify an element, but what advantage does that offer to you?
Before answering that question, I’ll cover how you construct them. You can create an attribute
ID in two ways. The first is through an attribute declaration (ATTLIST) in a DTD. (Chapter 3
covers DTDs in depth; in this chapter, I’ll explain ATTLIST and its makeup in regard to IDs.)
On February 8, 2004, the W3C released the xml:id specification as a candidate recommenda-
tion. This provides a mechanism to define IDs without requiring a DTD. Since this is relatively
new, I will begin with the ATTLIST method and then return to xml:id.

Defining IDs Using a DTD
Earlier, when discussing the prolog of the document, I touched upon the document type decla-
ration and where it is defined. Similar to Listing 2-4, you can use an internal subset to declare
the attribute. Defining attributes takes the following form:

<!ATTLIST element_name attribute_name attribute_type attribute_default >

In this case, attribute_type is the ID. Attribute types, as well as the entire ATTLIST definition,
are fully explained in Chapter 3, so for now, just take this at face value. You also, for now, will use
#REQUIRED for attribute_default. This just means every element with the name element_name is
required to have the ID attribute named attribute_name defined.

Consider the XML document in Listing 2-16, which could serve as a course list for a school.

CHAPTER 2 ■ XML STRUCTURE36

6331_c02_final.qxd 2/16/06 5:08 PM Page 36

Listing 2-16. Course Listing

<Courses>
<Course id="1">

<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>
<Course id="2">

<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course id="3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

Does this document contain IDs used to uniquely identify elements and for ID lookups?
The answer is no. However, it may appear to do so; since the attribute name is id and the

values of the attributes are unique, the attributes within the document are just plain, everyday
attributes. This is a problem many people frequently encounter, and I have fielded many bug
reports claiming that IDs are not working properly in a document. The fact is, just creating an
attribute with the name ID does not make it an ID. IDs can actually be named anything you
like, assuming it is a legal XML name. The document must somehow be told that the attribute
is of type ID. There is also a caveat about the allowed values for attribute IDs. The values must
follow the rules for legal XML names. So within the previous example, the value 1 is invalid
because names cannot begin with a number.

■Caution An attribute with the name ID is not automatically an ID. You must make the document aware
that an attribute is of type ID. Once identified, the values of the attribute IDs must conform to the rules
defined by legal XML names and so may not begin with a number.

Listing 2-17 shows how to rewrite the document so it can use IDs.

Listing 2-17. New Course Listing

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>

]>
<Courses>

<Course cid="c1">
<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>

CHAPTER 2 ■ XML STRUCTURE 37

6331_c02_final.qxd 2/16/06 5:08 PM Page 37

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

Comparing the documents from Listing 2-16 and Listing 2-17, you will notice that I added a
document type declaration and I named the attributes cid. I changed the name to illustrate that
you can use any valid names for IDs and not just id. I added the ATTLIST declaration to define the
attributes named cid when applied to elements named Course of type ID and to define that
the attribute is required for all Course elements. You may also notice that the values for the
attributes have changed. With respect to the rules surrounding the attribute value, I prefixed
the numeric values with the letter c so they conform to the rules for legal XML names.

After the document in Listing 2-17 has been parsed, you will end up with two Course elements
that are uniquely identified by the value of the cid attribute. Now I can answer the original
question of what purpose they serve. The answer really depends upon what you are doing. For
instance, if you were to load the document under the DOM, using the DOM Document object,
you could retrieve specific elements by calling the getElementById() method. Passing in the
unique value as the parameter to the method, such as c2, the Course element that contains
information on French I would be returned. Distinct elements could also be returned using
XPath queries, such as those used in XSL. IDs can also be referenced within a document, which
brings us to IDREF.

IDREF
An IDREF is a method that allows an element to reference another element. It is basically a
pointer from one element to another. Taking the course list in Listing 2-17, how could you
expand it to add course prerequisite information? One way to do this would be to duplicate
the course information for the prerequisites, as shown in Listing 2-18.

Listing 2-18. Course Listing with Prerequisites

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>

]>
<Courses>

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

CHAPTER 2 ■ XML STRUCTURE38

6331_c02_final.qxd 2/16/06 5:08 PM Page 38

<Pcourse>
<Title>French I</Title>
<Description>Introduction to French</Description>

</Pcourse>
</pre-requisite>

</Course>
</Courses>

This is not an efficient way of handling data. The element name Course could not be used
for the prerequisite. Course elements require the ID attribute cid, but for this document, the
prerequisites should not be IDs. This could be handled by changing the attribute_type in the
ATTLIST, covered in Chapter 3, but this still requires duplicating the content for the French I
course. No correlation within the document exists that says the Course element containing
French I in the prerequisites is the same as the Course element identified by c2.

Modifying the document in Listing 2-18, you can add an IDREF, as shown in Listing 2-19.
For now, the document continues to use Pcourse for the element name.

Listing 2-19. Course Listing with Prerequisites Using IDREF

<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST Pcourse cref IDREF #REQUIRED>

]>
<Courses>

<Course cid="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

<Pcourse cref="c2" />
</pre-requisite>

</Course>
</Courses>

Pcourse no longer contains all the additional baggage and redundant data. The IDREF, cref,
now refers to the Course element identified by c2. The document no longer contains redundant
data, making it more compact as well as easier to read. In addition, you can reuse the content.
Imagine how long the document would be if you created an entire school course list, along with
all prerequisites, without using IDs and IDREF.

IDREFS
Sometimes an element will need to reference more than one ID of the same element type. For
example, in Listing 2-19, it would be much easier if the pre-requisite element could reference
the courses directly, rather than adding child elements for the courses. Multiple attributes of

CHAPTER 2 ■ XML STRUCTURE 39

6331_c02_final.qxd 2/16/06 5:08 PM Page 39

the same name are not allowed for an element, so you must use IDREFS to perform this feat, as
shown in Listing 2-20.

Listing 2-20. Course Listing with Prerequisites Using IDREFS<!DOCTYPE Courses [
<!ATTLIST Course cid ID #REQUIRED>
<!ATTLIST pre-requisite cref IDREFS #REQUIRED>

]>
<Courses>

<Course cid="c1">
<Title>Basic Languages</Title>
<Description>Introduction to Languages</Description>

</Course>
<Course cid="c2">

<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course cid="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite cref="c1 c2" />

</Course>
</Courses>

You will notice that the element pre-requisite now contains a single attribute, cref, with
the value c1 c2. The value of the IDREFS attribute is a whitespace-delimited list of IDREF. This
means cref is a pointer to both the Course element identified by c1 and the Course element
identified by c2.

Using xml:id
In 2004, the W3C released the xml:id specification as a recommendation. Using xml:id within
a document allows you to create IDs without requiring a DTD. This is a much easier method
than creating attribute declarations, though the two have a few differences:

• The values for xml:id must conform to legal namespace names. This is almost identical
to regular IDs, except a colon is not a valid character for the value.

• When defined in a DTD, though not a requirement to do so, xml:id must be defined as
an ID. The attribute type for xml:id cannot be modified to another type.

Re-creating the course list from Listing 2-17, using xml:id rather than declaring attributes
of type ID, the document would look as follows:

<Courses>
<Course xml:id="c1">

<Title>Spanish I</Title>
<Description>Introduction to Spanish</Description>

</Course>

CHAPTER 2 ■ XML STRUCTURE40

6331_c02_final.qxd 2/16/06 5:08 PM Page 40

<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course xml:id="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>

</Course>
</Courses>

To use an IDREF, however, the IDREF still must be declared in the DTD. So, re-creating the
document in Listing 2-18 using xml:id and IDREF, the document would take this form:

<!DOCTYPE Courses [
<!ATTLIST Pcourse cref IDREF #REQUIRED>

]>
<Courses>

<Course xml:id="c2">
<Title>French I</Title>
<Description>Introduction to French</Description>

</Course>
<Course xml:id="c3">

<Title>French II</Title>
<Description>Intermediate French</Description>
<pre-requisite>

<Pcourse cref="c2" />
</pre-requisite>

</Course>
</Courses>

You don’t need to do anything else to handle IDs using xml:id. As I said before, it is simple
to use and is great when you don’t want to deal with DTDs. One less thing to complicate the
document is always better!

Using xml:space and xml:lang
Two special attributes that are part of the XML specification can provide additional informa-
tion to a document about how certain things should be processed: xml:space and xml:lang.
These are not like PIs, which are application specific. These attributes, being part of the XML
specification, are meant to be handled by any application. When using these attributes within
a document to be validated, you must define attribute declarations for these attributes within
the DTD; otherwise, validation errors may occur.

CHAPTER 2 ■ XML STRUCTURE 41

6331_c02_final.qxd 2/16/06 5:08 PM Page 41

xml:space
This attribute specifies to an application how it should handle whitespace. The valid values
are preserve and default. When set to default, the application handles whitespace as it
normally does. A value of preserve instructs the application that it must preserve all white-
space within the context of the element on which the attribute is set. For example:

<Description xml:space="preserve">
<a>This

is
<c>the</c>

<d>description</d>
</Description>

The value of preserve should instruct the application to preserve the whitespace within
the description content. If this were set to default, the application may or may not preserve
whitespace. It would depend upon its default behavior.

xml:lang
The xml:lang attribute can specify the language used for the content within an element. The
values can come from the ISO standard 639, denoted by the IANA prefix i-, or from private
sources, denoted by the prefix x-. For example:

<docu xml:lang="en">
<p xml:lang="fr">Bonjour monde en français </p>
<p xml:lang="de">Hallo Welt auf Deutsch<p>
<p>Hello World in English</p>

</docu>

The document illustrates “Hello World” in French (xml:lang="fr"), German (xml:lang="de"),
and English. The p tag for English has no xml:lang attribute because it is in the scope of the docu
element, which is set to xml:lang="en". Therefore, unless overridden, the default content of the
docu element is in English.

Understanding XML Base
Unlike xml:space and xml:lang, XML Base is not part of the XML specification. It has its own
specification from the W3C. The xml:base attribute specifies a base URI on an element, which
is used to resolve relative URIs used within the scope of the element. The use of xml:base may
also be stacked. By this I mean that within the scope of an element defining an xml:base, an
element may define a relative URI as its xml:base. This would effectively set the base URI within
the context of this subelement as the path of this new base, relative to the ancestor base URI.

XML Base is primarily used for XLink to describe linking between resources. You may also
see it used in other contexts, such as with XInclude and XSLT. The following is a document that
uses XInclude to illustrate how xml:base can define base URIs for the XInclude documents:

CHAPTER 2 ■ XML STRUCTURE42

6331_c02_final.qxd 2/16/06 5:08 PM Page 42

<example xmlns:xi="http://www.w3.org/2001/XInclude">
<para xml:base="http://www.example.com/">

<xi:include href="example.xml" />
<p2 xml:base="examples/">

<xi:include href="example1.xml" />
</p2>
<p3>

<xi:include href="examples/example1.xml" />
</p3>

</para>
</example>

Within the para element, the base URI is set to http://www.example.com/. Everything within
the scope of this element will now use this URI as the base for any relative URI. As you descend
into the child elements, the first xi:include points to example.xml. This will resolve to http://
www.example.com/example.xml when included in the document.

Moving to the p2 element, xml:base is set to examples/. This is a relative URI, so for all
practicality, it inherits the base of the encapsulating element’s URI (http://www.example.com/)
and sets the base relative to this. The base is now http://www.example.com/examples/ for the
p2 element and everything within its scope. When the xi:xinclude element is reached within
this element, the file example1.xml will resolve to http://www.example.com/examples/
example1.xml when included.

Continuing to navigate the document, you reach the end of p2. The base that was set
falls out of scope, which means the base set by the para element, http://www.example.com/,
becomes the active base again. Upon reaching the xi:include within the p3 element, the file
examples/example1.xml, being relative, uses the base URI from para and resolves to http://
www.example.com/examples/example1.xml when included. This is the same file that p2 had
included, just using relative pathing a little differently based upon the scope of xml:base
within the document.

Conclusion
This chapter covered the basic structure, syntax, and a few other areas of XML that will help
you understand documents, regardless of their complexity. Although a few more complex
aspects of XML exist, you should be well on your way to creating well-formed XML docu-
ments with the basics presented here. The next chapter will introduce you to validating with
DTDs, XML Schemas, and RELAX NG. What you have learned in this chapter will be invalu-
able to you throughout the rest of this book.

CHAPTER 2 ■ XML STRUCTURE 43

6331_c02_final.qxd 2/16/06 5:08 PM Page 43

6331_c02_final.qxd 2/16/06 5:08 PM Page 44

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

