
CSS Mastery
Advanced Web

Standards Solutions

Andy Budd
with Cameron Moll
and Simon Collison

CSS Mastery:
Advanced Web Standards Solutions

Copyright © 2006 by Andy Budd, Cameron Moll, and Simon Collison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system,

without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-614-2
ISBN-10 (pbk): 1-59059-614-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner,

with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505,

e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in
the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to

any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Product numbers for the images used in Tuscany Luxury Resorts are as follows:
FAN1003579, FAN1003613, FAN1006983, and DVP0703035.

Credits

Lead Editor
Chris Mills

Technical Reviewer
Molly Holzschlag

Editorial Board
Steve Anglin

Dan Appleman
Ewan Buckingham

Gary Cornell
Jason Gilmore

Jonathan Hassell
Chris Mills

Dominic Shakeshaft
Jim Sumser

Project Manager
Denise Santoro Lincoln

Copy Edit Manager
Nicole LeClerc

Copy Editor
Liz Welch

Assistant Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor and Artist
Diana Van Winkle, Van Winkle Design

Proofreader
April Eddy

Indexer
John Collin

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

7 LAYOUT

20px

20px

Background positioning using px

(0,0)x

One of the major benefits of CSS is the ability to control page layout without needing to
use presentational markup. However, CSS layout has gained a rather undeserved reputa-
tion of being difficult, particularly among those new to the language. This is partly due to
browser inconsistencies, but mostly due to a proliferation of different layout techniques
available on the Web. It seems that every CSS author has their own technique for creating
multicolumn layouts, and new CSS developers will often use a technique without really
understanding how it works. This “black box” approach to CSS layout may get quick
results, but ultimately stunts the developer’s understanding of the language.

All these CSS layout techniques rely on three basic concepts: positioning, floating, and
margin manipulation. The different techniques really aren’t that different, and if you
understand the core concepts, it is relatively easy to create your own layouts with little or
no hassle.

In this chapter you will learn about

Horizontally centering a design on a page

Creating two- and three-column float-based layouts

Creating fixed-width, liquid, and elastic layouts

Making columns stretch to the full height of the available space

Centering a design
Long lines of text can be difficult and unpleasant to read. As modern monitors continue to
grow in size, the issue of screen readability is becoming increasingly important. One way
designers have attempted to tackle this problem is by centering their designs. Rather than
spanning the full width of the screen, centered designs span only a portion of the screen,
creating shorter and easier-to-read line lengths.

Centered designs are very fashionable at the moment, so learning how to center a design
in CSS is one of the first things most developers want to learn. There are two basic meth-
ods for centering a design: one uses auto margins and the other uses positioning and neg-
ative margins.

Centering a design using auto margins

Say you have a typical layout where you wish to center a wrapper div horizontally on the
screen:

<body>
<div id="wrapper">
</div>

</body>

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

134

To do this you simply define the width of your wrapper div and then set the horizontal
margins to auto:

#wrapper {
width: 720px;
margin: 0 auto;

}

In this example I have decided to fix the width of my wrapper div in pixels, so that it fits
nicely on an 800✕600 resolution screen. However, you could just as easily set the width as
a percentage of the body or relative to the size of the text using ems.

This works on all modern browsers. However, IE 5.x and IE 6 in quirks mode doesn’t honor
auto margins. Luckily, IE misunderstands text-align: center, centering everything
instead of just the text. You can use this to your advantage by centering everything in the
body tag, including the wrapper div, and then realigning the contents of the wrapper back
to the left:

body {
text-align: center;

}

#wrapper {
width: 720px;
margin: 0 auto;
text-align: left;

}

Using the text-align property in this way is a hack—but a fairly innocuous hack that has
no adverse effect on your code. The wrapper now appears centered in IE as well as more
standards-compliant browsers (see Figure 7-1).

Figure 7-1. Centering a design using auto margins

LAYOUT

135

7

There is one final thing that needs to be done in order for this method to work smoothly
in all browsers. In Netscape 6, when the width of the browser window is reduced below
the width of the wrapper, the left side of the wrapper spills off the side of the page and
cannot be accessed. To keep this from happening, you need to give the body element a
minimum width equal to or slightly wider than the width of the wrapper element:

body {
text-align: center;
min-width: 760px;

}

#wrapper {
width: 720px;
margin: 0 auto;
text-align: left;

}

Now if you try to reduce the width of the window below the width of the wrapper div,
scroll bars will appear, allowing you to access all of the content.

Centering a design using positioning
and negative margins

The auto margin method of centering is by far the most common approach, but it does
involve using a hack to satisfy IE 5.x. It also requires you to style two elements rather than
just the one. Because of this, some people prefer to use positioning and negative margins
instead.

You start as you did before, by defining the width of the wrapper. You then set the
position property of the wrapper to relative and set the left property to 50%. This will
position the left edge of the wrapper in the middle of the page.

#wrapper {
width: 720px;
position: relative;
left: 50%;

}

However, you don’t want the left edge of the wrapper centered—you want the middle of
the wrapper centered. You can do this by applying a negative margin to the left side of the
wrapper, equal to half the width of the wrapper. This will move the wrapper half its width
to the left, centering it on screen:

#wrapper {
width: 720px;
position: relative;
left: 50%;
margin-left: -360px;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

136

Your choice of centering technique comes down to personal taste. However, it is always
useful to have several techniques up your sleeve, as you never know when one may come
in handy.

Float-based layouts
There are a few different ways of doing CSS-based layout, including absolute positioning
and using negative margins. I find float-based layouts the easiest method to use. As the
name suggests, in a float-based layout you simply set the width of the elements you want
to position, and then float them left or right.

Because floated elements no longer take up any space in the flow of the document, they
no longer appear to exert any influence on the surrounding block boxes. To get around
this, you will need to clear the floats at various points throughout the layout. Rather than
continuously floating and clearing elements, it is quite common to float nearly everything,
and then clear once or twice at strategic points throughout the document, such as the
page footer.

Two-column floated layout

To create a simple two-column layout using floats, you need to start off with a basic
(X)HTML framework. In this example the (X)HTML consists of a branding area, a content
area, an area for the main navigation, and finally a page footer. The whole design is
enclosed in a wrapper div, which will be horizontally centered using one of the preceding
methods:

<div id="wrapper">
<div id="branding">
...

</div>
<div id="content">
...

</div>
<div id="mainNav">
...

</div>
<div id="footer">
...

</div>
</div>

The main navigation for this design will be on the left side of the page and the content will
be on the right. However, I have chosen to put the content area above the navigation in
the source order for usability and accessibility reasons. First, the main content is the most
important thing on the page and so should come first in the document. Second, there is
no point forcing screenreader users to trawl through a potentially long list of links before
they get to the content if they don’t have to.

LAYOUT

137

7

Normally when people create float-based layouts, they float both columns left, and then
create a gutter between the columns using margin or padding. When using this approach,
the columns are packed tightly into the available space with no room to breathe. Although
this wouldn’t be a problem if browsers behaved themselves, buggy browsers can cause
tightly packed layouts to break, forcing columns to drop below each other.

This can happen on IE because IE/Win honors the size of an element’s content, rather than
the size of the element itself. In standards-compliant browsers, if the content of an ele-
ment gets too large, it will simply flow out of the box. However, on IE/Win, if the content
of an element becomes too big, the whole element expands. If this happens in very tightly
packed layouts, there is no longer enough room for the elements to sit next to each other,
and one of the floats will drop. Other IE bugs, such as the 3-pixel text jog bug and the
double-margin float bug (see Chapter 9), can also cause float dropping.

To prevent this from happening, you need to avoid cramming floated layouts into their
containing elements. Rather than using horizontal margin or padding to create gutters,
you can create a virtual gutter by floating one element left and one element right (see
Figure 7-2). If one element inadvertently increases in size by a few pixels, rather than
immediately running out of horizontal space and dropping down, it will simply grow into
the virtual gutter.

Figure 7-2. Creating a two-column layout using floats

The CSS for achieving this layout is very straightforward. You simply set the desired width
of each column, then float the navigation left and the content right:

#content {
width: 520px;
float: right;

}

#mainNav {
width: 180px;
float: left;

}

float: left float: right

clear: both

#subNav #content

#footer

#wrapper

Virtual gutter

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

138

Then, to ensure that the footer is positioned correctly below the two floats, the footer
needs to be cleared:

#footer {
clear: both;

}

The basic layout is now complete. Just a few small tweaks are required to tidy things up.
First, the content in the navigation area is flush to the edges of the container and needs
some breathing room. You could add horizontal padding directly to the navigation ele-
ment, but this will invoke IE 5.x’s proprietary box model. To avoid this, add the horizontal
padding to the navigation area’s content instead:

#mainNav {
padding-top: 20px;
padding-bottom: 20px;

}

#mainNav li {
padding-left: 20px;
padding-right: 20px;

}

The right side of the content area is also flush to the right edge of its container and needs
some breathing room. Again, rather than apply padding directly to the element, you can
apply padding to the content and avoid having to deal with IE’s box model problems:

#content h1, h2, p {
padding-right: 20px;

}

And there you have it: a simple, two-column CSS layout (see Figure 7-3).

Figure 7-3. Floated two-column layout

LAYOUT

139

7

Three-column floated layout

The HTML needed to create a three-column layout is very similar to that used by the two-
column layout, the only difference being the addition of two new divs inside the content
div: one for the main content and one for the secondary content.

<div id="content">
<div id="mainContent">
…
</div>
<div id="secondaryContent">
…
</div>
</div>

Using the same CSS as the two-column technique, you can float the main content left and
the secondary content right, inside the already floated content div (see Figure 7-4). This
essentially divides the second content column in two, creating your three-column effect.

Figure 7-4. Creating a three-column layout by dividing the
content column into two columns

As before, the CSS for this is very simple. You just set your desired widths and then float
the main content left and the secondary content right:

#mainContent {
width: 320px;
float: left;

}

#secondaryContent {
width: 180px;
float: right;

}

float: left float: right

#mainContent

#footer

#mainNav #content

#secondaryContent

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

140

You can tidy up the layout slightly by removing the padding from the content element and
applying it to the content of the secondary content instead:

#secondaryContent h1, h2, p {
padding-left: 20px;
padding-right: 20px;

}

This leaves you with a nice and solid three-column layout (see Figure 7-5).

Figure 7-5. Three-column layout using floats

Fixed-width, liquid, and elastic layout
So far, all the examples have used widths defined in pixels. This type of layout is known as
fixed-width layout, or sometimes “ice layout” due to its rigid nature. Fixed-width layouts
are very common as they give the developer more control over layout and positioning. If
you set the width of your design to be 720 pixels wide, it will always be 720 pixels. If you
then want a branding image spanning the top of your design, you know it needs to be 720
pixels wide to fit. Knowing the exact width of each element allows you to lay them out
precisely and know where everything will be. This predictability makes fixed-width layout
by far the most common layout method around.

However, fixed-width designs have their downsides. First, because they are fixed, they are
always the same size no matter what your window size. As such, they don’t make good use of
the available space. On large screen resolutions, designs created for 800✕600 can appear tiny
and lost in the middle of the screen. Conversely, a design created for a 1024✕760 screen will
cause horizontal scrolling on smaller screen resolutions. With an increasingly diverse range of
screen sizes to contend with, fixed-width design is starting to feel like a poor compromise.

Another issue with fixed-width design revolves around line lengths and text legibility.
Fixed-width layouts usually work well with the browser default text size. However, you only

LAYOUT

141

7

have to increase the text size a couple of steps before sidebars start running out of space
and the line lengths get too short to comfortably read.

To work around these issues, you could choose to use liquid or elastic layout instead of
fixed-width layout.

Liquid layouts

With liquid layouts, dimensions are set using percentages instead of pixels. This allows liq-
uid layouts to scale in relation to the browser window. As the browser window gets bigger,
the columns get wider. Conversely, as the window gets smaller, the columns will reduce in
width. Liquid layouts make for very efficient use of space, and the best liquid layouts aren’t
even noticeable.

However, liquid layouts are not without their own problems. At small window widths, line
lengths can get incredibly narrow and difficult to read. This is especially true in multicol-
umn layouts. As such, it may be worth adding a min-width in pixels or ems to prevent the
layout from becoming too narrow.

Conversely, if the design spans the entire width of the browser window, line lengths can
become long and difficult to read. There are a couple of things you can do to help avoid
this problem. First, rather than spanning the whole width, you could make the wrapper
span just a percentage—say, 85 percent. You could also consider setting the padding and
margin as percentages as well. That way, the padding and margin will increase in width in
relation to the window size, stopping the columns from getting too wide, too quickly.
Lastly, for very severe cases, you could also choose to set the maximum width of the wrap-
per in pixels to prevent the content from getting ridiculously wide on oversized monitors.

You can use these techniques to turn the previous fixed-width, three-column layout into a
fluid, three-column layout. Start by setting the width of the wrapper as a percentage of
the overall width of the window. In this example I have chosen 85 percent as it produces
good results on a range of screen sizes. Next, set the width of the navigation and content
areas as a percentage of the wrapper width. After a bit of trial and error, setting the navi-
gation area to be 23 percent and the content area to 75 percent produced nice results.
This leaves a 2-percent virtual gutter between the navigation and the wrapper to deal with
any rounding errors and width irregularities that may occur:

#wrapper {
width: 85%;

}

#mainNav {
width: 23%;

Be aware that IE 5.x on Windows incorrectly calculates padding in relation to
the width of the element rather than the width of the parent element. Because
of this, setting padding as a percentage can produce inconsistent results in
those browsers.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

142

float: left;
}

#content {
width: 75%;
float: right;

}

You then need to set the widths of the columns in the content area. This gets a bit trickier
as the widths of the content divs are based on the width of the content element and not
the overall wrapper. If you want the secondaryContent to be the same width as the main
navigation, you need to work out what 23 percent of the wrapper is in terms of the width
of the content area. This is 23 (width of the nav) divided by 75 (width of the content area),
multiplied by 100—which works out at around 31 percent. You will want the gutter
between the content columns to be the same width as the gutter between the navigation
and content areas. Using the same method, this works out to be around 3 percent, mean-
ing that the width of the main content area should be 66 percent:

#mainContent {
width: 66%;
float: left;

}

#secondaryContent {
width: 31%;
float: right;

}

This produces a liquid layout that is optimal at 1024✕780 but is comfortable to read at
both larger and smaller screen resolutions (see Figure 7-6).

Figure 7-6. Three-column liquid layout at 800✕600, 1024✕768, and 1152✕900

LAYOUT

143

7

Because this layout scales so nicely, there isn’t any need to add a max-width property.
However, the content does start to get squashed at smaller sizes, so you could set a mini-
mum width of 720px on the wrapper element if you liked.

Elastic layouts

While liquid layouts are useful for making the most of the available space, line lengths can
still get uncomfortably long on large resolution monitors. Conversely, lines can become
very short and fragmented in narrow windows or when the text size is increased a couple
of steps. If this is a concern, then elastic layouts may be a possible solution.

Elastic layouts work by setting the width of elements relative to the font size instead of the
browser width. By setting widths in ems, you ensure that when the font size is increased
the whole layout scales. This allows you to keep line lengths to a readable size and is par-
ticularly useful for people with reduced vision or cognitive disorders.

Like other layout techniques, elastic layouts are not without their problems. Elastic layouts
share some of their problems with fixed-width layouts, such as not making the most use of
the available space. Also, because the whole layout increases when the text size is
increased, elastic layouts can become much wider than the browser window, forcing the
appearance of horizontal scroll bars. To combat this, it may be worth adding a max-width
of 100% to the body tag. max-width isn’t currently supported by IE 6 and below, but it is
supported by standards-complaint browsers such as Safari and Firefox.

Elastic layouts are much easier to create than liquid layouts as all of the HTML elements
essentially stay in the same place relative to each other; they just all increase in size.
Turning a fixed-width layout into an elastic layout is a relatively simple task. The trick is to
set the base font size so that 1em roughly equals 10 pixels.

The default font size on most browsers is 16 pixels. Ten pixels works out at 62.5 percent of
16 pixels, so setting the font size on the body to 62.5% does the trick:

body {
font-size: 62.5%;

}

Because 1em now equals 10 pixels at the default font size, we can convert our fixed-width
layout into an elastic layout by converting all the pixel widths to em widths:

#wrapper {
width: 72em;
margin: 0 auto;
text-align: left;

}

#mainNav {
width: 18em;
float: left;

}

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

144

#content {
width: 52em;
float: right;

}

#mainContent {
width: 32em;
float: left;

}

#secondaryContent {
width: 18em;
float: right;

}

This produces a layout that looks identical to the fixed-width layout at regular text sizes
(see Figure 7-7), but scales beautifully as the text size is increased (see Figure 7-8).

Figure 7-7. Elastic layout at the default text size

Figure 7-8. Elastic layout after the text size has been increased a
few times

LAYOUT

145

7

Elastic-liquid hybrid

Lastly, you could choose to create a hybrid layout that combines both elastic and liquid
techniques. This hybrid approach works by setting the widths in ems, then setting the max-
imum widths as percentages:

#wrapper {
width: 72em;
max-width: 100%;
margin: 0 auto;
text-align: left;

}

#mainNav {
width: 18em;
max-width: 23%;
float: left;

}

#content {
width: 52em;
max-width: 75%;
float: right;

}

#mainContent {
width: 32em;
max-width: 66%;
float: left;

}

#secondaryContent {
width: 18em;
max-width: 31%;
float: right;

}

On browsers that support max-width, this layout will scale relative to the font size but will
never get any larger than the width of the window (see Figure 7-9).

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

146

Figure 7-9. The elastic-liquid hybrid layout never scales larger than the
browser window.

Liquid and elastic images

If you choose to use a liquid or an elastic layout, fixed-width images can have a drastic
effect on your design. When the width of the layout is reduced, images will shift and may
interact negatively with each other. Images will create natural minimum widths, preventing
some elements from reducing in size. Other images will break out of their containing ele-
ments, wreaking havoc on finely tuned designs. Increasing the width of the layout can also
have dramatic consequences, creating unwanted gaps and unbalancing designs. But never
fear—there are a few ways to avoid such problems.

For images that need to span a wide area, such as those found in the site header or brand-
ing areas, consider using a background image rather than an image element. As the
branding element scales, more or less of the background image will be revealed:

#branding {
height: 171px;
background: url(images/branding.png) no-repeat left top;

}

<div id="branding"></div>

LAYOUT

147

7

If the image needs to be on the page as an image element, try setting the width of the
container element to 100% and the overflow property to hidden. The image will be trun-
cated so that it fits inside the branding element but will scale as the layout scales:

#branding {
width: 100%;
overflow: hidden;

}

<div id="branding">

</div>

For regular content images, you will probably want them to scale vertically as well as
horizontally to avoid clipping. You can do this by adding an image element to the page
without any stated dimensions. You then set the percentage width of the image, and add a
max-width the same size as the image to prevent pixelization.

For example, say you wanted to create a news story style with a narrow image column on
the left and a larger text column on the right. The image needs to be roughly a quarter of
the width of the containing box, with the text taking up the rest of the space. You can do
this by simply setting the width of the image to 25% and then setting the max-width to be
the size of the image—in this case 200 pixels wide:

.news img {
width: 25%;
max-width: 200px;
float: left;
padding: 2%;

}

.news p {
width: 68%;
float: right;
padding: 2% 2% 2% 0;

}

As the news element expands or contracts, the image and paragraphs will also expand
or contract, maintaining their visual balance (see Figure 7-10). However, on standards-
complaint browsers, the image will never get larger than its actual size.

Remember that max-width only works in more modern browsers such as Safari
and Firefox. If you are concerned about the image pixelating in older browsers,
make the image as large as you will ever need it to be.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

148

Figure 7-10. Giving images a percentage width allows them to scale nicely in relation to their
surroundings.

Faux columns
You may have noticed that the navigation and secondary content areas on all these layouts
have been given a light gray background. Ideally the background would stretch the full
height of the layout, creating a column effect. However, because the navigation and sec-
ondary content areas don’t span the full height, neither do their backgrounds.

To create the column effect, you need to create fake columns by applying a repeating
background image to an element that does span the full height of the layout, such as a
wrapper div. Dan Cederholm coined the term “faux column” to describe this technique.

LAYOUT

149

7

Starting with the fixed-width, two-column layout, you can simply apply a vertically repeat-
ing background image, the same width as the navigation area, to the wrapper element (see
Figure 7-11):

#wrapper {
background: #fff url(images/nav-bg-fixed.gif) repeat-y left top;

}

Figure 7-11. Faux fixed-width column

For the three-column fixed width layout, you can use a similar approach. This time, how-
ever, your repeating background image needs to span the whole width of the wrapper and
include both columns (see Figure 7-12). Applying this image in the same way as before
creates a lovely faux two-column effect (see Figure 7-13).

Figure 7-12. Background image used to create the faux three-column effect

Figure 7-13. Faux three-column effect

Creating faux columns for fixed-width designs is relatively easy, as you always know the
size of the columns and their position. Creating faux columns for fluid layouts is a little
more complicated; the columns change shape and position as the browser window is

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

150

scaled. The trick to fluid faux columns lies in the use of percentages to position the back-
ground image.

If you set a background position using pixels, the top-left corner of the image is positioned
from the top-left corner of the element by the specified number of pixels. With percent-
age positioning, it is the corresponding point on the image that gets positioned. So if you
set a vertical and horizontal position of 20 percent, you are actually positioning a point 20
percent from the top left of the image, 20 percent from the top left of the parent element
(see Figure 7-14).

Figure 7-14. When positioning using percentages, the corresponding position on the image is used.

This is very useful as it allows you to create background images with the same horizontal
proportions as your layout, and then position them where you want the columns to appear.

To create a faux column for the navigation area, you start by creating a very wide back-
ground image. In this example, I have created an image that is 2000 pixels wide and 5 pix-
els high. Next you need to create an area on the background image to act as the faux
column. The navigation element has been set to be 23 percent of the width of the wrap-
per, so you need to create a corresponding area on the background image that is 23 per-
cent wide. For a background image that is 2000 pixels wide, the faux column part of the
image needs to be 460 pixels wide. Output this image as a GIF, making sure that the area
not covered by the faux column is transparent.

The right edge of the faux column is now 23 percent from the left side of the image. The
right edge of the navigation element is 23 percent from the left edge of the wrapper ele-
ment. That means if you apply the image as a background to the wrapper element, and set
the horizontal position to be 23 percent, the right edge of the faux column will line up
perfectly with the right edge of the navigation element.

#wrapper {
background: #fff url(images/nav-faux-column.gif) repeat-y 23% 0;

}

You can create the background for the secondary content area using a similar method. The
left edge of this faux column should start 77 percent from the left edge of the image,

20px 20%

20px 20%

(20%, 20%)x

Background positioning using px Background positioning using %

(0,0)x

LAYOUT

151

7

matching the position of the secondaryContent element relative to the wrapper. Because
the wrapper element already has a background image applied to it, you will need to add a
second wrapper element inside the first. You can then apply your second faux column
background image to this new wrapper element.

#wrapper2 {
background: url(images/secondary-faux-column.gif) repeat-y 77% 0;

}

If you have worked out your proportions correctly, you should be left with a beautiful three-
column liquid layout with columns that stretch the height of the wrapper (see Figure 7-15).

Figure 7-15. Faux three-column layout

Summary
In this chapter you learned how to create simple two- and three-column fixed-width lay-
outs using floats. You then learned how these layouts could be converted into liquid and
elastic layouts with relative ease. You learned about some of the problems associated with
liquid and elastic layouts and how liquid images and hybrid layouts can help solve some of
these problems. Lastly, you saw how to create full height column effects on both fixed-
width and liquid layouts, using vertically repeating background images. This chapter
touched on some of the techniques used to create CSS-based layouts. However, there are
a lot of techniques out there, enough to fill a whole book of their own.

One of the big problems developers face with CSS layouts is that of browser inconsistency.
To get around browser rendering issues, various hacks and filters have been created. In the
next chapter, you will learn about some of the better-known hacks and how to use them
responsibly.

CSS MASTERY: ADVANCED WEB STANDARDS SOLUTIONS

152

