
Laying Out Applications

In the previous chapter, we looked at creating and setting up windows to provide a frame-
work for an application. In this chapter, we will begin looking at how to add other widgets to
the newly created windows.

PHTP-GTK provides various specialty widgets that give you control over not only their
placement within the container, but also how they react when the container is resized. This
chapter introduces the GtkFrame, GtkVBox, GtkHBox, GtkButtonBox, GtkTable, GtkFixed, and
GtkNotebook widgets. We will also begin to implement the Crisscott PIMS application, focusing
on setting up the application so that the functional pieces can just be dropped into place.

The Sample Application Layout
The Crisscott PIMS application needs to have the following elements as part of the main window:

• A menu for opening and saving files, changing settings, and so on

• A toolbar for quick access to commonly used commands

• An area for navigating to individual products

• An area to display a summary of the current inventory data

• An area to display a summary of the currently selected product

• An area to display news and important messages

• An area for adding and editing product information

• An area for displaying status messages

Adding these eight areas to the window is more involved than it appears. We need to do
more than simply decide which pieces go where. We need to consider the relative size and
importance of each section, as well as whether or not an area should be able to shrink or grow
with the application. These decisions are often made by considering what the final product
might look like and how it will be used.

For instance, what type of information will the news section include? Will it just show
headlines, or will it also display article bodies? If the news section will show summaries of the
articles, or even the full articles, it will need to be much larger than it would if it were to simply
show headlines. This decision of how to size and place the news section will have a significant

87

C H A P T E R 6

■ ■ ■

6137ch06.qxd 3/14/06 2:09 PM Page 87

CHAPTER 6 ■ LAYING OUT APPLICATIONS88

Figure 6-1. One possible layout for the PIMS application

impact on the user experience. Whereas a large prominently displayed news section will draw
the user’s attention, it is more likely that Crisscott, Inc. wants the suppliers to remain focused
on the product information instead of the news and updates.

Figure 6-1 shows one possible skeleton layout for the PIMS application. Different inter-
pretations of the importance and role of each section of the application will result in widely
varied final products, but the layout in Figure 6-1 is what we will try to achieve by the end of
this chapter.

Discussion of application layout revolves mainly around containers, which provide the
framework and structure for the application by holding and positioning the other elements on
the screen. The choice of which container to use depends greatly on the needs of the application
and can vary from one section of the application to another. Before deciding which route to go,
you must determine levels of priority for the program. Influencing factors are the expected
size of the application’s window, whether or not certain elements should shrink or grow when
the window changes size, and the space between elements on the screen.

Frames
A GtkFrame widget is a simple container that exists mostly for decoration purposes, but also
allows related content to be grouped together on the screen. GtkFrame widgets are bin containers,
meaning they can contain only one child widget. As far as providing structure for an application,
a GtkFrame plays no role. However, it is useful for enhancing usability.

6137ch06.qxd 3/14/06 2:09 PM Page 88

CHAPTER 6 ■ LAYING OUT APPLICATIONS 89

Figure 6-2. GtkFrames in action

The GtkFrame has a thin border and a label at the top. The border helps to group the frame’s
contents as a single unit. The label is most often used to describe the contents of the
frame.

Most containers do not take up space or have any size without having children added
first, but because GtkFrame has a border and a label, it is able to take up screen space on its
own. This makes GtkFrame an excellent choice as a placeholder during development. Through-
out the next several sections, we’ll use frames to hold the place of application elements while
we develop the layout. Figure 6-2 shows GtkFrames in action as part of the PHP-GTK 2 demo
application.

Creating and using a GtkFrame is simple. The constructor takes the label to be displayed.
You can add a child with the add method.

Setting the Label Section
While frames may be simple, they are flexible. Even though technically GtkFrame is a bin con-
tainer, it is really more of a bin-and-a-half, because the label section of the frame can be set
with either a string value or a widget.

You can add any type of widget as the frame’s label. This opens up a whole world of
possibilities—both good and bad. For example, adding a button to the frame’s label area
can increase the functionality of an application but can also distort the layout. So, you need to
understand exactly what may happen if you add a widget as the frame’s label.

To add a widget as the label, call set_label_widget and pass the new label widget. If all
you want is a simple string, you can call set_label, passing the new label string. The following
line uses set_label to change a frame’s label from its current value to the string 'Buttons'.

$frame->set_label('Buttons');

6137ch06.qxd 3/14/06 2:09 PM Page 89

CHAPTER 6 ■ LAYING OUT APPLICATIONS90

Figure 6-3. Several GtkFrames with different alignments and border types

And to set the frame’s label to a GtkButton, you can use the following:

$frame->set_label_widget(new GtkButton('Click Me'));

You can also move the label around within the top edge of the frame, aligning it both hori-
zontally and vertically. By using set_label_align, you can move the label left or right and up
or down. The two values passed to set_label_align determine the label’s relative distance from
the upper-left corner of the frame. The values must be decimal numbers between zero and one,
inclusive. The numbers represent a percentage of the frame’s width. If .5 is passed as the first
argument, the label will appear centered along the top edge of the frame. If 1 is passed, the label
will be aligned to the right. The second argument determines the vertical positioning. A value
of 0 means the label’s top edge will align with the top border. A value of 1 means that the label’s
bottom edge will align with the top border. If the alignment is not specifically set, the frame’s label
will be left aligned and vertically centered. This is equivalent to calling set_label_align(0, .5).

Setting the Border Type
Aside from allowing you to change the label and reposition it, GtkFrame also lets you control
the border that is displayed. You can set five border types:

• Gtk::SHADOW_NONE: No border will be visible.

• Gtk::SHADOW_IN: The border is beveled inward.

• Gtk::SHADOW_OUT: The border is beveled outward.

• Gtk::SHADOW_ETCHED_IN: A thin, inward border surrounds the frame.

• Gtk::SHADOW_ETCHED_OUT: A thin, outward border surrounds the frame.

To set the frame’s border, use set_shadow_type. By default, a frame’s border is set to
Gtk::SHADOW_ETCHED_IN. Figure 6-3 shows five simple frames with varying borders and label
positions.

6137ch06.qxd 3/14/06 2:09 PM Page 90

CHAPTER 6 ■ LAYING OUT APPLICATIONS 91

Boxes
The box container is one of the simplest types of containers available to PHP-GTK, and it is
also one of the most versatile. PHP-GTK offers three types of box containers, each designed to
fulfill a specific need:

• GtkVBox: Used to display widgets in a vertical column.

• GtkHBox: Used to display widgets in a horizontal row.

• GtkButtonBox: Used to display a set of buttons.

Creating Vertical and Horizontal Boxes
GtkVBox and GtkHBox are probably the two most commonly used containers in PHP-GTK.
Their simplicity and ability to be nested makes them extremely powerful tools for laying out
an application. Part of the power in these two classes is that they are not picky about what types
of widgets are added to them, meaning any widget that does not require a specific type of parent
can be added to a GtkVBox or GtkHBox. This includes buttons, labels, trees, text entries, and even
other boxes. In fact, after creating the main application window, most applications immediately
add either a GtkVBox of GtkHBox to the main GtkWindow, and then add boxes within the box.
Actually, that is the fastest way to achieve the layout shown earlier in Figure 6-1.

Let’s start from the outside and work our way in. Remember from the previous chapter that
almost all applications start with a GtkWindow. Also remember that GtkWindow is a bin, meaning
that it can have only one child directly. Therefore, to place more than one widget inside a win-
dow, the window’s only child must be a container. The container can then take one or more
children, which themselves can be containers, and so on. Nesting containers allows an appli-
cation to be built up from a single-child widget to a collection of containers and children that
work together as an application. The quickest way to fill a window with multiple widgets is to
add a widget that is not a bin—namely, a GtkVBox or GtkHBox.

Look at Figure 6-1 again. We can break down the application into four main rows. The
first two are the menu and toolbar. The last row is the status bar. The third row is everything in
between. While rows tend to make you think of horizontal displays, rows are actually created
by stacking items one on top of another vertically. Since the rows are elements stacked verti-
cally, they must be packed into a GtkVBox.

Packing Widgets into a Box
While to most people, the terms packing and adding may have the same meaning, in the PHP-GTK
world, packing has a slightly different connotation. Think about how you get ready for a vaca-
tion. Sure you add items to your suitcase, but things are not just haphazardly thrown in. They
are placed neatly and with a purpose. The items are packed, not just added. The same thing
can be said about adding widgets to a box. They can be simply added, but more commonly
they are packed. This means that their order is carefully considered and thought is given to
how they will react within the container.

You pack widgets into a box by using the pack_start method. Each call to pack_start adds
its widget to the container, starting at the top and working down toward the bottom of the box.
The first call to pack_start places its widget at the top of the box, the second call to pack_start
adds the widget passed as the second element from the top, and so on. There is no limit to
how many elements can be added this way.

6137ch06.qxd 3/14/06 2:09 PM Page 91

CHAPTER 6 ■ LAYING OUT APPLICATIONS92

A similar method is called pack_end. It works in the same way as pack_start, except that the
widgets are packed from the bottom up. The first element added with pack_end will be the last
element in the container, the second element added with pack_end will be the second to last ele-
ment in the container, and so on.

Regardless of what order the method calls are made, elements added to a GtkVBox with
pack_start will always appear above elements added with pack_end.

Listing 6-1 shows the code that will create four rows within our sample application’s win-
dow. GtkFrame widgets are used as temporary placeholders. The frames are packed using the
pack_start method.

Listing 6-1. Creating Rows Within a Window

<?php

class Crisscott_MainWindow extends GtkWindow {

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Set the size of the window.

$this->set_size_request(500, 300);

// Position the window.

$this->set_position(Gtk::WIN_POS_CENTER);

// Give the window a title.

$this->set_title('Criscott PIMS');

// Add window's children

$this->_populate();

// Make the window expand to the limits of the screen.

$this->maximize();

// Set up the application to close cleanly.

$this->connect_object('destroy', array('Gtk', 'main_quit'));

}

private function _populate()

{

// Create a vertical box.

$vb1 = new GtkVBox();

// Pack some frames in the box.

$vb1->pack_start(new GtkFrame('MENU'), false, false, 0);

$vb1->pack_start(new GtkFrame('TOOLBAR'), false, false, 0);

$vb1->pack_start(new GtkFrame('MAIN'), true, true, 0);

$vb1->pack_start(new GtkFrame('STATUS'), false, false, 0);

6137ch06.qxd 3/14/06 2:09 PM Page 92

CHAPTER 6 ■ LAYING OUT APPLICATIONS 93

// Add the box to the window.

$this->add($vb1);

}

// ...

}

?>

A closer look at the calls to pack_start shows that there are four arguments passed,
instead of just the widget that is added. The following three optional parameters allow
pack_start and pack_end to be more powerful than the generic add method:

• expand: A Boolean value that determines whether or not the widget will take up all of
the space available to it.

• fill: A Boolean value that determines whether or not the widget will shrink and grow
along with its parent.

• padding: The amount of padding, in pixels, that will surround the child widget.

As I mentioned, packing implies consideration of how widgets will react within their par-
ent container. A child widget will be given the opportunity to interact with its parent container
at two times: first, when the child is added, and then when the container is resized. When these
events occur, the children of the container will be given the opportunity to automatically adjust
their size or the amount of space each occupies within the box.

When a widget is packed into a box, by default, it tries to take up as much room as is avail-
able. Also by default, the widget will try to resize itself to fill in that space. Taking up space and
filling in space are not necessarily the same thing.

Taking up space simply means that the widget reserves a given amount of space for itself.
It tells other widgets, “This area is mine. Stay out!”

Filling up the space means that the widget shrinks or grows to fit within the space it has
reserved. If the widget is only 50 pixels square, but the space available is 100 pixels wide by 200
pixels high, the widget will try to expand to fit the 100 × 200 space. When more than one widget
wants to take up all the space available, just as with children on a long car trip, the parent steps
in. The parent splits up the available space evenly among the children that want to occupy as
much screen space as possible.

The second and third arguments to the pack_start and pack_end methods determine
whether a widget may reserve the maximum amount of available space, known as expanding,
or resize itself to fill the space allotted to it, known as filling, respectively. By default, both of
these arguments are passed as true. This means that when a widget is packed into a box, it will
be automatically resized to be as big as the box and other children will allow.

However, in cases where a widget has been specifically sized, allowing the widget to fill
the available space may have undesired effects. Passing false as the second argument tells the
container that the given child widget does not want more space than it needs to display its
content. Passing false as the third argument tells the application that the widget being packed
should not be resized to fill the space available. Both of these requests are honored when the
child is packed and when the container is resized. If when the child was packed, it was allowed
to fill the available space, it will resize itself again when the container is resized and more (or
less) space is available.

6137ch06.qxd 3/14/06 2:09 PM Page 93

CHAPTER 6 ■ LAYING OUT APPLICATIONS94

Figure 6-4. Different padding values

In Listing 6-1, most parts of the application should take up as little space as needed to
allow for the more important pieces to be the focus of the application. That is why only the
frame labeled MAIN is allowed to expand and fill the space available to it. All other sections of
the application are forced to remain just large enough to show their contents.

■Tip All boxes have a set_homogeneous method, which makes the box’s children share the space
equally. This is the same as setting all of the fill arguments (the third argument) to true for every widget
packed into the box. If set_homogeneous is passed true, all children will share the space equally, regard-
less of what options were passed when the widget is packed.

The final argument that may be passed to pack_start and pack_end is an integer that defines
the amount of padding that will surround the child widget. The padding that surrounds a child
is given in pixels. In a box container, padding exists only in the direction of the box. So, for
a GtkVBox, padding will appear only above and below the child widget. For a GtkHBox, padding
will appear only to the left and right of the widget. Padding between widgets does not collapse.
If widget A is packed with a padding of 10 pixels and widget B is packed with a padding of 20
pixels, the total space between the two widgets will be 30 pixels. Figure 6-4 shows several widg-
ets packed into a GtkHBox with different padding values. In Listing 6-1, the maximum amount
of screen space is used by setting all of the padding to 0.

Nesting Boxes
Nesting boxes is the practice of putting one box inside another box. Box classes are highly
specialized, as this makes managing their children easier. While specialization may be good
for managing children, it makes layout a little more difficult. For instance, creating rows or
columns is easy, but creating rows and columns with boxes requires a little patience and planning.

To create rows within a column, a GtkVBox must be placed inside a GtkHBox. To create
columns within a row, simply do the opposite—put a GtkHBox inside GtkVBox. While this may
not sound very complicated, it can become quite difficult to track all the different boxes when
the levels go beyond one or two deep.

Listing 6-2 shows a reworked version of the _populate method used in Listing 6-1. The new
method uses GtkVBox and GtkHBox widgets nested inside one another to add more sections to
the application.

Listing 6-2. Nesting Boxes

<?php

//...

private function _populate()

{

6137ch06.qxd 3/14/06 2:09 PM Page 94

CHAPTER 6 ■ LAYING OUT APPLICATIONS 95

// Create several boxes for nesting.

$vb1 = new GtkVBox();

$vb2 = new GtkVBox();

$vb3 = new GtkVBox();

$hb1 = new GtkHBox();

$hb2 = new GtkHBox();

// Add some frames to the first vBox.

$vb1->pack_start(new GtkFrame('MENU'), false, false, 0);

$vb1->pack_start(new GtkFrame('TOOLBAR'), false, false, 0);

// Nest an hBox inside the vBox.

$vb1->pack_start($hb1);

// Add another frame after the hBox.

$vb1->pack_start(new GtkFrame('STATUS'), false, false, 0);

// Nest a vBox inside the hBox

$hb1->pack_start($vb2, false, false, 0);

// Nest another vBox inside the hBox.

$hb1->pack_start($vb3);

// Pack some frames into one of the nested vBoxes.

$vb2->pack_start(new GtkFrame('PRODUCT TREE'));

$vb2->pack_start(new GtkFrame('NEWS'));

// Set the size of the vBox.

$vb2->set_size_request(150, -1);

// Nest an hBox inside one of the nested vBoxes.

$vb3->pack_start($hb2, false, false, 0);

// Add a frame after the nested box.

$vb3->pack_start(new GtkFrame('EDITING PRODUCTS'));

// Add a few frames to the nested hBox.

$hb2->pack_start(new GtkFrame('PRODUCT SUMMARY'));

$hb2->pack_start(new GtkFrame('INVENTORY SUMMARY'));

// Set the nested hBox's size.

$hb2->set_size_request(-1, 150);

// Add the vBox to the window.

$this->add($vb1);

}

// ...

?>

6137ch06.qxd 3/14/06 2:09 PM Page 95

CHAPTER 6 ■ LAYING OUT APPLICATIONS96

Figure 6-5 shows the new layout using nested boxes.

In Listing 6-2, the third row, which used to have a title of MAIN, is now split into two columns.
The third row was changed from a simple frame to a GtkHBox. A GtkHBox was used because the
application needs to display things next to each other horizontally. By placing two GtkVBox
widgets next to each other, you can create columns.

The items packed into the GtkVBox widgets will be separated distinctly into items on the
left and items on the right. Notice that the first GtkVBox packed is told not to expand or fill. The
box also has its size explicitly set using set_size_request. The combination of proper packing
and set_size_request ensures that the box will appear just as you intended. The box will not
shrink or grow within its parent box, and its size is not dependent on other children in the
container.

Within each of the two columns are two rows. Since $vb2, the column on the left, is very
simple, two frames are added directly to the GtkVBox. $vb3, on the other hand is slightly more

Figure 6-5. Using nested boxes for layout

6137ch06.qxd 3/14/06 2:09 PM Page 96

CHAPTER 6 ■ LAYING OUT APPLICATIONS 97

complex. Its first row contains two columns again. Once again, the rows are created by nesting
GtkHBox widgets inside the GtkVBox.

Pay close attention to when and how the extra arguments for pack_start are used in this
listing. Try switching the values from true to false and vice versa, and add a little (or a lot) of
padding here and there. Changing one Boolean value can have a huge impact on the rest of
the application.

■Note In Listing 6-2, because the child box was packed into a GtkHBox, the expand and fill arguments
apply only in the horizontal direction. The vertical expand and fill arguments trickle down from the parent
when it was packed into the GtkVBox. Since the parent was told that it may expand and fill within the GtkVBox,
the child will shrink and grow vertically depending on the size of its parent.

Button Boxes
The application isn’t quite ready to start adding buttons, but this is a good point to discuss
button boxes. GtkButtonBox is a descendant of GtkBox, just like GtkVBox and GtkHBox. The dif-
ference is that button boxes can use special layouts that are often helpful when displaying
a group of buttons.

There are two varieties of GtkButtonBox: GtkVButtonBox and GtkHButtonBox. Each type func-
tions in the same way as its regular box counterpart. Widgets are packed into a GtkButtonBox

using pack_start and pack_end.
The advantage to using a button box is in the set_layout method. set_layout determines

how the buttons will be shown within the box. The layout can be one of four values:

• spread: The buttons will be distributed evenly in the box.

• edge: The buttons will be as far apart as possible. The first button will be against the
beginning edge of the box, and the last button will be against the ending edge of the box.
All of the buttons in between will be as far apart from each other as they can.

• start: The buttons appear toward the starting edge of the box.

• end: The buttons appear toward the ending edge of the box.

For a better understanding of how to use button boxes, take a look at phpgtk2-demo.php,
located in the demos directory of the PHP-GTK source. The button box demo shows the many
different layouts of a GtkButtonBox, as you can see in Figure 6-6.

6137ch06.qxd 3/14/06 2:09 PM Page 97

CHAPTER 6 ■ LAYING OUT APPLICATIONS98

Tables
It is often possible to achieve the desired layout of an application using nested boxes, but set-
ting up the application and keeping things organized gets more and more difficult as the levels
of nesting get deeper. As with most things in life, there is more than one way to reach the same
result.

GtkTable is a container class designed specifically for laying out an application, unlike its
HTML counterpart, which is designed for organizing data. A GtkTable can be used to more eas-
ily display widgets in rows and columns. A GtkTable container is similar to a table in HTML. It
has rows and columns made up of individual cells, and each cell can span more than one row
and/or column. While the contents of each cell are independent, the dimensions of a row or
column are determined by the largest cell in that row or column.

Listing 6-3 is an implementation of the _populate method from the earlier listings, but it
uses a GtkTable instead of nested boxes. At first glance, the new version appears to be quite
complicated because of all of the integers floating around, but once these numbers are explained,
the picture clears up rather quickly.

Figure 6-6. The different layouts of button boxes

6137ch06.qxd 3/14/06 2:09 PM Page 98

CHAPTER 6 ■ LAYING OUT APPLICATIONS 99

Listing 6-3. Laying Out an Application Using GtkTable

<?php

// ...

private function _populate()

{

// Create a new table with 5 rows and 3 columns.

$table = new GtkTable(5, 3);

// Make it easier to set both expand and fill at the same time.

$expandFill = Gtk::EXPAND|Gtk::FILL;

// Attach two frames to the table.

$table->attach(new GtkFrame('MENU'), 0, 2, 0, 1, $expandFill, 0, 0, 0);

$table->attach(new GtkFrame('TOOLBAR'), 0, 2, 1, 2, $expandFill, 0, 0, 0);

// Create a new frame and set its size.

$productTree = new GtkFrame('PRODUCT TREE');

$productTree->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($productTree, 0, 1, 2, 3, 0, $expandFill, 0, 0);

// Create a new frame and set its size.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($news, 0, 1, 3, 4, 0, $expandFill, 0, 0);

// Create a subtable.

$table2 = new GtkTable(2, 2);

// Create a new frame and set its size.

$productSummary = new GtkFrame('PRODUCT SUMMARY');

$productSummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($productSummary, 0, 1, 0, 1, $expandFill, 0, 1, 1);

// Create a new frame and set its size.

$inventorySummary = new GtkFrame('INVENTORY SUMMARY');

$inventorySummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($inventorySummary, 1, 2, 0, 1, $expandFill, 0, 1, 1);

$table2->attach(new GtkFrame('EDITING PRODUCTS'), 0, 2, 1, 2,

$expandFill, $expandFill, 1, 1);

6137ch06.qxd 3/14/06 2:09 PM Page 99

CHAPTER 6 ■ LAYING OUT APPLICATIONS100

// Attach the subtable to the main table.

$table->attach($table2, 1, 2, 2, 4, $expandFill, $expandFill, 0, 0);

// Attach another frame to the main table.

$table->attach(new GtkFrame('STATUS'), 0, 2, 4, 5, $expandFill, 0, 0, 0);

// Add the table to the window.

$this->add($table);

}

// ...

?>

Figure 6-7 gives an idea of what the end result of this section looks like. Notice that even
though the code has changed, the result is the same.

Constructing the Table
The first step in using a GtkTable is to create a new instance. The constructor for a GtkTable

widget takes three optional parameters.

Figure 6-7. The Crisscott PIMS application using a GtkTable for layout

6137ch06.qxd 3/14/06 2:09 PM Page 100

CHAPTER 6 ■ LAYING OUT APPLICATIONS 101

• rows: The number of rows the table should have initially. The value must be an integer
between 1 and 65535, inclusive. It defaults to 1.

• columns: The number of columns the table should have initially. The value must be an
integer between 1 and 65535, inclusive. It defaults to 1.

• homogeneous: A Boolean value that if set to true will force all cells to be the same size. It
defaults to false.

The first two parameters are the number of rows and columns that the table should have.
If at some point the table needs an additional row or column, you can easily change the
dimensions of the table using resize. resize sets the new number of rows and columns to
the two integer values passed. In both the constructor and resize, the first argument is the
number of rows and the second argument is the number of columns.

■Note It isn’t strictly necessary to resize the table when a new row or column is added. If a child is added
into a cell that doesn’t exist, the row and/or column needed for that cell will be added automatically.

The final argument for the GtkTable constructor is the Boolean homogeneous value. This
value defaults to false and has the same effect that set_homogeneous has for boxes. If the
homogeneous argument is set to true, all cells in the table will be the same size. In Listing 6-3,
the table is created with five rows and three columns, for a total of fifteen cells. No value is passed
to tell the table whether or not the cells should be homogeneous, so they will default to being
as tall as the tallest cell in their row and as wide as the widest cell in their column. The height
and width of the largest cell in a row or column are determined by the cell’s content.

Attaching Children
The next step in laying out the application is adding children to the table. Just as boxes have
their own terminology for adding children, so does GtkTable. In a table, children are not added—
they are attached, and this is accomplished with the attach method.

Attaching a child gives greater control over the location and the way the child reacts within
the table. The first priority in attaching a child to a table is putting it in the right place. When
putting a widget in a table, all four sides of the widget must be specifically positioned. The
attach method takes a whopping nine arguments:

• child: The widget to be added to the table.

• col_start: The starting column to attach the child to.

• col_end: The ending column to attach the child to.

• row_start: The starting row to attach the child to.

• row_end: The ending row to attach the child to.

• x_options: Whether or not the child should expand and fill in the x direction.

• y_options: Whether or not the child should expand and fill in the y direction.

6137ch06.qxd 3/14/06 2:09 PM Page 101

CHAPTER 6 ■ LAYING OUT APPLICATIONS102

• x_padding: The amount of padding on the left and right of the child widget.

• y_padding: The amount of padding on the top and bottom of the child widget.

The first argument to attach is the widget that will be added to the table. The other arguments
specify the child’s placement within the cell, whether it expands and fills, and its padding.

Cell Placement
After the child argument, the next four arguments to the attach method correspond to the
four sides of the child widget. The col_start argument tells the table in which column the left
side of the child should start. If the col_start argument is 0, the child will be in the leftmost
column. If the col_start argument is 1, the child will start in the second column. The col_end
argument tells the table where the child should stop. The value passed is one greater than the
column in which the widget should end.

For instance, if a child should be in only the first column of a table, the col_start and
col_end arguments should be 0 and 1. If a child should span the second and third columns,
the col_start and col_end arguments should be 1 and 3. This tells the table that the child
should start in column 1 (rows and columns are indexed starting with 0, just like most things
in programming) and end before column 3.

The row_start and row_end arguments to attach are similar to col_start and col_end,
except they determine the row or rows that the child will occupy.

The first call to attach in Listing 6-3 places a GtkFrame in the first row of the table, spanning
all three columns. This is done by telling the child to start in column 0 and end just before col-
umn 3. The child is also told to start in row 0 and end just before row 1. With these four values,
you can place a child in any cell and have it span as many rows and/or columns as needed.

Expanding and Filling
Assigning a widget to a cell in a table is only half the goal. The other half involves explaining
how the widget should react within the table. Similar to packing items in boxes, attaching
widgets to a table also involves determining whether or not the child should expand and fill
the maximum amount of space available.

With boxes, the space for each element is either part of a row (GtkHBox) or part of a column
(GtkVBox). A table cell is the intersection of both a row and a column. Therefore, the expand and
fill attributes need to be set for both the row, or x-axis, and column, or y-axis.

The x_options argument passed to attach tells the table whether the child should expand
and/or fill the cell in the x direction. The value passed should be made up of one or more con-
stant values. If the widget should expand but not fill the cell, the value should be Gtk::EXPAND.
If the widget should fill the cell but not expand, the value should be set to Gtk::FILL. If the
widget should both expand and fill the cell, the value should be Gtk::EXPAND|Gtk::FILL.

The y_options argument sets the same values for the y-axis. Passing 0 to either of these
values tells the table not to allow the child to expand or fill the cell in that direction. By default,
a child will expand and fill a cell in both directions. In Listing 6-3, the menu and toolbar frames
are told to expand and fill their cells only along the x-axis. The product tree frame is told to
expand and fill only along the y-axis. Because the product tree frame is set to 150 pixels wide
and is told not to expand or fill on the x-axis, it will always remain 150 pixels wide. The height

6137ch06.qxd 3/14/06 2:09 PM Page 102

CHAPTER 6 ■ LAYING OUT APPLICATIONS 103

of the frame is set to -1, which means that its height is not to be strictly controlled. Coupled with
the expand and fill properties for the y-axis, this allows the frame to stretch when the window
is resized.

Padding
The final task when attaching a widget to a table is setting the amount of padding that each
cell should have. When packing a widget in a box, the padding is set equally on two sides to
the value of the last argument passed to pack_start or pack_end (which two sides depends on
the type of box). When attaching a widget to a table, padding can be set for both the x and y
directions, just as with the expand and fill properties.

The x_padding and y_padding arguments passed to attach determine the x and y padding,
respectively. If either of these values is omitted, the padding for that direction will default to
5 pixels.

Tables vs. Boxes
You can use tables and boxes in a similar manner to create similar output. Listing 6-3 even has
a table nested inside another table to show how similar the two can be. Despite their similarities,
GtkTable is often a better choice when setting up an application.

Using tables gives you more control over the placement of children within the application
than creating the layout with boxes. With tables, it is possible to have a good idea of where the
widgets will appear before the application starts up. Boxes usually require much more trial
and error.

Tables also lend themselves better to more readable code. It is easy to tell where in the
application a table cell will be by looking at the row and column to which it is attached. With
boxes, it is usually more difficult and requires a little bit of tracing through the code.

While tables may have several advantages over boxes, they are not the only other choice.
An alternative is to use a fixed container, as described next.

Fixed Containers
GtkTable is very effective in lining up widgets into rows and columns. But sometimes the
relationships between children in the same row or column can be a problem, because the
dimensions of a cell in a table are determined by the largest cell in a cell’s row and column. That
is where GtkFixed comes in.

Like GtkTable, GtkFixed allows for precise positioning, but it does not strictly align elements
with each other. The elements in a GtkFixed container have no influence on one another. The
height and width of a given child do not depend on another element, because each child is
placed independently of the other children.

A GtkFixed widget is similar to a bulletin board. Each child is put in a specific location and
stays there, somewhat oblivious to its surroundings. Free-form layout is quick and easy with
a GtkFixed widget. Simply put a widget in its place, and that is it.

Listing 6-4 re-creates Figure 6-1, but this time uses a GtkFixed container instead of boxes
or tables. The end result is exactly the same in appearance.

6137ch06.qxd 3/14/06 2:09 PM Page 103

CHAPTER 6 ■ LAYING OUT APPLICATIONS104

Listing 6-4. Using GtkFixed to Lay Out the Application

<?php

// ...

private function _populate()

{

// Create a GtkFixed container.

$fixed = new GtkFixed();

// Create a frame, set its size, and put it in the fixed container.

$menu = new GtkFrame('MENU');

$menu->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($menu, 0, 0);

// Create a frame, set its size, and put it in the fixed container.

$toolbar = new GtkFrame('TOOLBAR');

$toolbar->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($toolbar, 0, 18);

// Create a frame, set its size, and put it in the fixed container.

$pTree = new GtkFrame('PRODUCT TREE');

$pTree->set_size_request(150, GDK::screen_height() / 2 - 54);

$fixed->put($pTree, 0, 36);

// Create a frame, set its size, and put it in the fixed container.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, GDK::screen_height() / 2 - 54);

$fixed->put($news, 0, GDK::screen_height() / 2 - 18);

// Create a frame, set its size, and put it in the fixed container.

$status = new GtkFrame('STATUS');

$status->set_size_request(GDK::screen_width() - 10, -1);

$fixed->put($status, 0, GDK::screen_height() - 72);

// Create a frame, set its size, and put it in the fixed container.

$pSummary = new GtkFrame('PRODUCT SUMMARY');

$pSummary->set_size_request(GDK::screen_width() / 2 - 90, 150);

$fixed->put($pSummary, 152, 36);

// Create a frame, set its size, and put it in the fixed container.

$iSummary = new GtkFrame('INVENTORY SUMMARY');

$iSummary->set_size_request(GDK::screen_width() / 2 - 75, 150);

$fixed->put($iSummary, GDK::screen_width() / 2 - 90 + 154, 36);

6137ch06.qxd 3/14/06 2:09 PM Page 104

CHAPTER 6 ■ LAYING OUT APPLICATIONS 105

// Create a frame, set its size, and put it in the fixed container.

$edit = new GtkFrame('EDIT PRODUCTS');

$edit->set_size_request(GDK::screen_width() - 150, GDK::screen_height() - 262);

$fixed->put($edit, 152, 190);

// Add the fixed container to the window.

$this->add($fixed);

}

// ...

?>

To create this version of the application, each child widget needs to be sized and placed
individually. This is different from the other examples. In the previous two listings, only a few
widgets were specifically sized, and even then, it was either their height or width, not both.

With a GtkFixed, children are not able to react to their surroundings. Children cannot
expand or fill an area. They simply get put into the container and remain there. Therefore, if
a child should take up a certain amount of the screen space, its size must be explicitly set.

Putting Widgets in a Fixed Container
When you use boxes, you pack widgets, which implies that the widgets are added to the con-
tainer one after another. When you use tables, you attach widgets, which implies that they
become part of the table. When you use a fixed container, the widgets are put, which implies
that a location was selected and the widget was placed in that specific spot.

To put a widget into a GtkFixed container, call the put method and pass the x and y
coordinates for the upper-left corner of the child. The child will be put directly into the con-
tainer at the location given. Its size will remain the same as it was before it was added. If the
container is resized, the child will not change. It will still be x pixels from the left and y pixels
from the top of the container.

In Listing 6-4, each element is sized and put individually. Calculating the position for
a given element can be difficult and often requires some advance knowledge of the other chil-
dren in the container.

Using Fixed Containers
Fine-grained control is the strong point of GtkFixed; however, as the name implies, flexibility
is its weakness. Listing 6-4 is admittedly a poor use of GtkFixed. The PIMS application does
not need such complete control over the application layout. Instead, it needs less control and
more flexibility.

Run the application using the _populate method from Listing 6-4. When the application
has loaded, try unmaximizing or resizing the window. The elements within the GtkFixed do
not resize. As you can see in Figure 6-8, the product edit area quickly gets cut off when the
window is resized even slightly smaller. This obviously is a bad design.

6137ch06.qxd 3/14/06 2:09 PM Page 105

CHAPTER 6 ■ LAYING OUT APPLICATIONS106

GtkFixed has its uses, but laying out a large application probably isn’t one of them. GtkFixed
should instead be used in places where position is much more important than size or where the
container cannot be resized. For instance, the splash screen might make good use of a GtkFixed

container. The user cannot resize the window, and the splash screen will likely show a corporate
logo. Corporations often have specific rules about their logos, which define sizes and distances
between the logo and other elements. A GtkFixed container can be used to ensure that the
corporate rules are followed.

For the Crisscott PIMS application, Listing 6-3 is probably the best solution. Because of
the complexity of the layout, the box approach is just too much work to keep organized. The
desire to keep the application highly usable and flexible rules out the GtkFixed approach.

Notebooks
Now that the general layout for the application is set, it is time to think about how to best fit all
the varying pieces into the limited real estate. For several parts of the application, this is a sim-
ple matter. The menu goes in the area we blocked out for the menu, and the news section goes
where the news frame is. But the main reason for building this application is not to show a menu
or to distribute news; it is to manage product data. That means we are going to need one or
more areas to modify product data and other information. Trying to show all of the tools in the
product-editing area at the same time would be difficult at best. Additionally, it would make
the application rather confusing to use.

One approach could be to make the product-editing area scroll to give elements more
room, but that wouldn’t really improve the usability. A more helpful approach would be to
show only one set of tools at a time. Tools that are not in use should be hidden to avoid confu-
sion and brought to the forefront when needed. Hiding and displaying groups of widgets may

Figure 6-8. An example of the issues inherent in GtkFixed

6137ch06.qxd 3/14/06 2:09 PM Page 106

CHAPTER 6 ■ LAYING OUT APPLICATIONS 107

sound difficult, but there is a highly specialized container widget that makes it easy. That
widget is GtkNotebook.

Figure 6-9 shows the PHP-GTK 2 Dev_Inspector (http://cweiske.de/phpgtk2_devinspector.
htm). This application uses a GtkNotebook widget to organize reflection data.

GtkNotebook is a container that organizes its children into pages. Each page is itself a bin
container and can hold one child. What makes GtkNotebook so powerful is that at any given
time, a specific page can be brought to the front of the screen. Only the selected page will be
seen by the user. All other pages will remain intact but out of view. The GtkNotebook can have
tabs that allow the user to select a given page, or the tabs can be hidden. If the tabs are hidden,
the application will control which page is currently displayed.

GtkNotebook is very good for organizing groups of widgets into task-oriented blocks. Being
able to control which group of widgets is currently visible also allows you to force the user to
step through a process in an ordered manner. The user will not be able to skip ahead, because
the next step is not yet available.

GtkNotebook should be thought of more as a three-ring binder than an actual notebook. It
consists of pages that can be added, removed, and reordered. The GtkNotebook can have all of
its pages marked, or tabbed, or the tabs can be hidden. If the tabs are visible, a user can click
one to jump to that page. The tabs can also be moved to any side of the page.

A GtkNotebook widget can have as many pages as needed. Each page holds any arbitrary
data and exists independently of the other pages. While the notebook may have more than
one child page, the pages themselves are bins and may only have one child each. Just as with
GtkWindow and GtkFrame, to have more than one widget show up in the page, another container
must be added as the page’s child.

In the Crisscott PIMS application, the main area in the application will serve multiple
purposes. It will be used to add and edit product information, update supplier data, transmit
inventory data, and perform a few other tasks. Figure 6-10 shows what the application will

Figure 6-9. GtkNotebook in the PHP-GTK 2 Dev_Inspector

6137ch06.qxd 3/14/06 2:09 PM Page 107

CHAPTER 6 ■ LAYING OUT APPLICATIONS108

look like with the GtkNotebook widget added. To keep these tasks organized, the main area will
use GtkNotebook, with each task assigned to one or more pages. This approach will maximize
the amount of space available and will also help improve usability by forcing the user to focus
on one task at a time.

The amount of effort that must be put into organizing widgets with GtkNotebook is consid-
erably less than trying to group, hide, and show widgets by hand. In Listing 6-5, the GtkFrame
widget that was labeled EDITING PRODUCTS has been replaced with a custom object that extends
GtkNotebook. The custom class helps to make the PIMS-specific organization a little easier.
Note also that the notebook is stored as a member variable. This is because items will need to
be added, removed, and accessed by other parts of the application.

Listing 6-5. Adding GtkNotebook to the Application

<?php

// ...

private function _populate()

{

// Create a new table.

$table = new GtkTable(5, 3);

Figure 6-10. The PIMS application with a simple notebook

6137ch06.qxd 3/14/06 2:09 PM Page 108

CHAPTER 6 ■ LAYING OUT APPLICATIONS 109

// Make it easier to set both expand and fill at the same time.

$expandFill = Gtk::EXPAND|Gtk::FILL;

// Attach a few frames to the table.

$table->attach(new GtkFrame('MENU'), 0, 2, 0, 1, $expandFill, 0, 0, 0);

$table->attach(new GtkFrame('TOOLBAR'), 0, 2, 1, 2, $expandFill, 0, 0, 0);

// Create a new frame and set its size.

$productTree = new GtkFrame('PRODUCT TREE');

$productTree->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($productTree, 0, 1, 2, 3, 0, $expandFill, 0, 0);

// Create a new frame and set its size.

$news = new GtkFrame('NEWS');

$news->set_size_request(150, -1);

// Attach the frame to the table.

$table->attach($news, 0, 1, 3, 4, 0, $expandFill, 0, 0);

// Create a new subtable.

$table2 = new GtkTable(2, 2);

// Create a new frame and set its size.

$productSummary = new GtkFrame('PRODUCT SUMMARY');

$productSummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($productSummary, 0, 1, 0, 1, $expandFill, 0, 1, 1);

// Create a new frame and set its size.

$inventorySummary = new GtkFrame('INVENTORY SUMMARY');

$inventorySummary->set_size_request(-1, 150);

// Attach the frame to the subtable.

$table2->attach($inventorySummary, 1, 2, 0, 1, $expandFill, 0, 1, 1);

// Create a new instance of the main notebook.

require_once 'Crisscott/MainNotebook.php';

$this->mainNotebook = new Crisscott_MainNotebook();

// Attach the notebook to the subtable.

$table2->attach($this->mainNotebook, 0, 2, 1, 2,

$expandFill, $expandFill, 1, 1);

// Attach the subtable to the main table.

$table->attach($table2, 1, 2, 2, 4, $expandFill, $expandFill, 0, 0);

6137ch06.qxd 3/14/06 2:09 PM Page 109

CHAPTER 6 ■ LAYING OUT APPLICATIONS110

// Attach a new frame to the main table.

$table->attach(new GtkFrame('STATUS'), 0, 2, 4, 5, $expandFill, 0, 0, 0);

// Add the table to the window.

$this->add($table);

}

// ...

?>

Defining the Notebook
The next step is defining the Crisscott_MainNotebook class. To start, the notebook will be very
simple and use the default settings. Then we will look at customizing the notebook to better
suit our needs.

Listing 6-6 is a first run at putting the notebook together. The Crisscott_MainNotebook class
is a simple wrapper around GtkNotebook that adds a few pages and tracks them using an array.
The constructor for GtkNotebook takes no arguments and returns a notebook that has no pages.
The idea behind the Crisscott_MainNotebook class is just to make development a little more
organized. Each page is given a text label, which is also used as the array index. Now instead of
having to search for a page by number, you can search a small array by its label.

Listing 6-6. Organizing Tools with GtkNotebook

<?php

class Crisscott_MainNotebook extends GtkNotebook {

public $pages = array();

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create an array of tab labels.

$titles = array(

'Product Summary',

'Product Details',

'Author Summary',

'Author Details',

'Supplier',

'Preview',

'Transmit',

'Inventory Summary',

'News Story'

);

// Add a page for each element in the array and put

// it in the pages array for easier access later.

6137ch06.qxd 3/14/06 2:09 PM Page 110

CHAPTER 6 ■ LAYING OUT APPLICATIONS 111

foreach ($titles as $title) {

$pageNum = $this->append_page(new GtkVBox(), new GtkLabel($title));

$page = $this->get_nth_page($pageNum);

$this->pages[$title] = $page;

}

}

}

?>

Adding, Moving, and Removing Notebook Pages
Each page of a notebook has two elements: the tab and the content. The page tab is usually
a string that describes the contents of the page. The tab is the main method by which a user
will select a page. The content of the page can be anything. Usually, the content that is added
directly to the page is some sort of container.

A page can be added at the beginning of a notebook, at the end of a notebook, or anywhere
in between using the methods prepend_page, append_page, and insert_page, respectively. All
require a widget for the page body and a widget for the page tab. In Listing 6-6, several pages
are appended to the notebook. Each page is added in turn to the back of the notebook with
append_page. The pages could have just as easily been added to the front of the notebook
with prepend_page. To insert a page in any arbitrary position, use insert_page, passing the body
widget, the tab widget, and the page position. Pages are indexed starting from 0, so the first
page in the notebook is actually page 0.

When a page is added to a GtkNotebook widget, its page index is returned. The value
returned from append_page is always the total number of pages minus one. The return value from
prepend_page is always 0. The return value from insert_page is not always the same as the
position passed to it. If a page is inserted with a position of 12 but there are only eight pages in
the notebook, the new page will be added as the last page. The page indexes are always collapsed.
For example, the newly inserted page may be inserted in position 12, but it will immediately
be moved to position 8. If no position value is passed to insert_page, the position will default
to –1, which means the page should be appended to the back of the notebook. The value that
will be returned will be the same as if append_page were used.

Knowing the page index is useful because you can use it to retrieve a page from the notebook.
Listing 6-6 uses the get_nth_page method to return the page body widget after it has been added
to the notebook. This is done to make accessing the page contents easier later on.

Once the page is found, it can then be used to grab the label or the label text.
get_tab_label takes a notebook child, usually returned by get_nth_page, and returns the tab
widget. get_tab_label_text will return just the text string for the same page if passed the
same child widget. Just as you can get a tab label or its text, you can set a tab label or its text.
set_tab_label and set_tab_label_text work in much same way as their get counterparts.
Each expects a widget that has already been prepended, appended, or inserted into the note-
book as the first argument and either a tab widget or a string of text to be set as the tab label.
The index of a page is the key to being able to make changes.

■Tip To get the total number of pages, use get_n_pages. Keep in mind that this is the total number of
pages, not the index of the last page. The index of the last page is get_n_pages() - 1.

6137ch06.qxd 3/14/06 2:09 PM Page 111

CHAPTER 6 ■ LAYING OUT APPLICATIONS112

While the index of a page is the key to accessing the page, the index may change. If a new
page is prepended or inserted in front of a given page, the index will be incremented. If a page
in front of a given page is removed or moved to the back of the notebook, the page’s index will
be decremented. To get the index of a specific child, use the page_num method. page_num takes
a widget as the only argument and returns the page index. Regrabbing the index this way
comes in handy when pages in the notebook are moved.

You can reorder pages by using the reorder_child method. reorder_child takes the child
given as the first argument and puts it in the position given by the second argument. The page
that previously occupied the position will be moved backward in the notebook. If the position
passed to reorder_child is greater than the total number of pages, the page will be moved to
the back of the notebook.

You can also remove pages from the notebook. To do this, call remove_page and pass the
page index.

Whenever either the reorder_child or remove_page method is called, the pages are rein-
dexed. This means, for example, that the page that was previously in position 5 may now be in
position 4, 5, or 6, even though that particular page was never moved. Because of this reindexing,
the code in Listing 6-6 uses a separate array with associative keys to keep track of the pages.
Without this separate array, finding a particular page may require cycling through all the pages
in the notebook.

Navigating Notebook Pages
In reality, a GtkNotebook widget can do only three things: go back one page, go forward one
page, or jump to a particular page. What makes GtkNotebook such an excellent tool is the num-
ber of ways in which these three simple tasks can be accomplished. The most obvious method
to get from one page to another is by clicking the tab for a given page. This is a simple user
interaction and requires no special programming.

GtkNotebook containers are powerful because of their ability to bring a particular group of
widgets to the front while hiding all others. While showing and hiding groups is a nice feature,
it is the ease with which the top page can be changed that makes GtkNotebook so powerful.

In some cases, an application may need to display a given page of the notebook. For
instance, when a user wants to edit a product in the Crisscott PIMS application, the page that
is currently being shown should be hidden, and the product-editing page should be brought
to the screen. Likewise, if there were a page specifically for error messages, that page would be
shown whenever an error is encountered.

Moving to the Next, Previous, or Specific Page
Another reason to change a page automatically is to step through a process. GtkNotebook
makes it easy to move through a series of steps that together make up one complete process.
The way to step through something is to complete the requirements for one page, and then go
to the next. Moving to the next page is done by calling next_page. The next_page method hides
the current page and shows the page with the next index. The previous_page method is similar
to next_page, except it goes to the previous page. If there is not a previous page, the first page
is shown again. Neither next_page nor previous_page will cycle around the pages.

Listing 6-7 rewrites the constructor of the Crisscott_MainNotebook class and adds two
buttons to each page. One is connected to the previous_page method, while the other is con-
nected to the next_page method.

6137ch06.qxd 3/14/06 2:09 PM Page 112

CHAPTER 6 ■ LAYING OUT APPLICATIONS 113

■Tip If next_page is called and the last page of the GtkNotebook is already being shown, nothing hap-
pens. This can be shown by creating a signal handler for the switch-page signal and trying to go past the
end of the GtkNotebook. When trying to go beyond the last page, the signal handler will not be called.

Listing 6-7. Moving to the Next or Previous Page

<?php

// ...

public function __construct()

{

// Call the parent constructor.

parent::__construct();

// Create an array of tab labels.

$titles = array(

'Product Summary',

'Product Details',

'Author Summary',

'Author Details',

'Supplier',

'Preview',

'Transmit',

'Inventory Summary',

'News Story'

);

// Add a page for each element in the array and

// put it in the pages array for easier access

// later.

foreach ($titles as $title) {

$pageNum = $this->append_page(new GtkVBox(), new GtkLabel($title));

$page = $this->get_nth_page($pageNum);

$this->pages[$title] = $page;

// Create a previous page button.

$button = new GtkButton('PREVIOUS');

// Create a signal handler that will bring the previous page to the

// front of the notebook when the button is clicked.

$button->connect_object('clicked', array($this, 'prev_page'));

// Pack the button into the page.

$page->pack_start($button, false, false);

6137ch06.qxd 3/14/06 2:09 PM Page 113

CHAPTER 6 ■ LAYING OUT APPLICATIONS114

// Create a next button.

$button = new GtkButton('NEXT');

// Create a signal handler that will bring the next page to the front of the

// notebook when the button is clicked.

$button->connect_object('clicked', array($this, 'next_page'));

// Pack the button into the page.

$page->pack_start($button, false, false);

}

}

// ...

?>

Moving to the next or previous page is good enough for stepping through a process, but
there are cases when relative movements are not enough. Sometimes it is necessary to jump
to a particular page. To jump to a particular page, use set_current_page. When passed an integer,
set_current_page will bring the page with that index to the screen. If an index of -1 is passed,
the last page will be shown.

set_current_page has a corresponding get_current_page method. This method returns
the page index of the page that is currently visible. Listing 6-8 shows a method that can be
connected to any signal, such as the clicked signal of a button, and jumps to a random page
in the notebook. This method is not all that practical, but it does show how the $pages array
can be used with set_current_page to easily navigate to any page in the notebook.

Listing 6-8. A Method for Jumping to a Random Page

<?php

public function goToRandomPage()

{

// Pick an array key at random and jump to that page.

$rndIndex = array_rand($this->pages);

$this->set_current_page($this->page_num($this->pages[$rndIndex]));

}

?>

So, to summarize, the following methods can be used to access pages in GtkNotebook:

• prev_page: Brings the previous page to the front of the notebook.

• next_page: Brings the next page to the front of the notebook.

• set_current_page: Brings the page with the given index to the front of the notebook.

Using a Pop-Up Menu
Navigating in a notebook is easy because of the many ways there are to get from one page to
another. Not only are there plenty of class methods to switch pages, but there are also multiple
ways for the user to get from one page to the next.

6137ch06.qxd 3/14/06 2:09 PM Page 114

CHAPTER 6 ■ LAYING OUT APPLICATIONS 115

Normally, a user clicks the page’s tab to bring that page to the front of the screen, but if
the notebook is set up properly, another method may be available to the user. If popup_enable
is called, a menu will pop up when the user right-clicks in the tab area. This pop-up menu will
have an entry for each page in the notebook. When a user selects an entry from this menu,
a built-in signal handler is fired and shows the corresponding page. To see this menu, the user
doesn’t actually need to click a tab. If there is empty space in the tab area, the user can click there
as well. If at some point the menu is no longer needed or shouldn’t be available, popup_disable
will make the menu unavailable.

By default, the text that is used for the pop-up menu is copied from the tab label. If you
want to use different text or a different type of widget for a particular page in the menu, use
the *_page_menu methods. You can prepend, append, and insert pages with the methods discussed
earlier, but you can also perform the same tasks with the menu sister methods: prepend_page_menu,
append_page_menu, and insert_page_menu. The *_page_menu methods can take an additional
parameter that is not available with their nonmenu counterparts: a widget that will be used as
the menu label. The widget for the menu is usually a GtkLabel widget, but it could be any type
of widget.

At this point, you might be thinking, “What is the point of having a pop-up menu when
the user can just click one of the tabs?” That is a valid question and one that will be answered
in the next section.

Decorating a Notebook
The power of GtkNotebook is not only in the way it shows and hides different pages, but also
in the amount of customization it allows. Having tabs at the top of the notebook may not work
for an application. You can put the tabs at the bottom. If that doesn’t work, you can move the
tabs to one of the sides. You can even get rid of them entirely. Maybe that isn’t good enough.
Maybe all of the tabs need to be the same size. Maybe the tabs need some padding. Or there
may even be too many tabs to show at once. GtkNotebook has methods to help with each of
these situations.

First, let’s tackle moving the tabs away from the top of the notebook.

Repositioning the Tabs
Having the tabs at the top of the notebook may be popular on web pages, but many desktop
applications move the tabs to another side. For instance, Microsoft Excel uses tabs at the bottom
of the notebook for accessing worksheets within a workbook.

Repositioning the tabs is a simple matter of calling set_tab_pos and passing a GtkPositionType.
A GtkPositionType is just a constant value that defines a position such as top, right, bottom,
or left. The names of the constants are Gtk::POS_TOP, Gtk::POS_RIGHT, Gtk::POS_BOTTOM, and
Gtk::POS_LEFT. When the tabs are moved to another side of the notebook, they keep their order
and orientation; that is, on the left and right the tab for the first page is on the top, and the tab
for the last page is on the bottom.

Because the tabs keep their orientation, moving the tabs to the left or right of the note-
book may not have the desired effect. The tabs will appear to stick out from the side of the
notebook instead of lying along it. This may be nice if the notebook has many pages, but in
most cases, it won’t be the intended result. It is possible to make the tabs lay flat against the side
of the notebook by angling text so that it will run vertically, as discussed in the next chapter.

6137ch06.qxd 3/14/06 2:09 PM Page 115

CHAPTER 6 ■ LAYING OUT APPLICATIONS116

Hiding the Tabs
Just because you’re using GtkNotebook doesn’t mean that you must show the tabs. When using
a notebook to control a user’s movement through a step-by-step process, it probably isn’t
a good idea to allow the user to jump around using the notebook tabs. In that case, you may
want to hide the tabs.

When the tabs are hidden, all built-in user navigation is taken away. Because the pop-up
menu requires the user to click the tab area, if the tabs are hidden, there is no way for the user
to access the menu.

You turn off the tabs by calling the set_show_tabs method and passing false. Passing true
to the method turns the tabs back on. Unfortunately, with GtkNotebook, it is either all or nothing.
There is no way to turn off a particular tab while leaving the rest visible.

Adjusting the Border and Sizing the Tabs
The all-or-nothing rule applies to other aspects of tabs as well. You can adjust the padding, or
border, around the contents of a tab on all four sides. The border can be changed for the top
and bottom independently of the left and right, but individual sides cannot be manipulated.
Also, setting the tab border changes the border for all tabs, not just the tab for a specific page.

To change the border on all four sides of every tab at once, use set_tab_border. To change
the border for just the left and right, use set_tab_hborder. To change the padding on the top
and bottom of the tabs, use set_tab_vborder. All three methods take one argument that defines
the number of pixels of padding that should be set. The default border for all sides of the tabs
is 2 pixels.

Setting a larger border value will increase the dimensions of all tabs, regardless of their
contents. Normally, the contents of the tab determine its width because the tab shrinks to fit
the contents so that it takes up as little space as possible. Using set_homogeneous_tabs and
passing true, will make all of the tabs the same width. The space that is available for the tabs
will be divided equally and shared by every tab. The border on the left and right (or top and
bottom depending on where the tabs have been positioned) will be automatically adjusted. If
a new page is added to the notebook, the tabs will be readjusted to account for the new tab.
When set_homogeneous tabs is passed true, all tabs will be the same size. This is true even if
one tab’s text is much longer than the text on the rest of the tabs. If one tab takes up more than
its fair share of real estate, the width of that tab (plus any border) will become the new width
of all tabs.

But how can the width of the tabs be more than the width of the notebook? Normally, the
notebook simply stretches to accommodate the extra width, but this can lead to unwanted
results. Depending on how the notebook was added to its parent container, it may stretch out
the window and throw off the layout. If the notebook isn’t able to stretch the window, one or
more of the tabs may simply be cut off and not be accessible to the user. This is obviously
a problem, but not one without a solution.

Using Scrolling Tabs
The set_scrollable method sounds like it would make the pages within a notebook scroll
when the contents are too much to show on one screen, but that is not quite what it does.
set_scrollable applies only to the tab area of the notebook.

Calling set_scrollable and passing true will allow some of the tabs to be hidden yet
accessible through the use of two scrolling icons. Take a look at Figure 6-11. Notice the two

6137ch06.qxd 3/14/06 2:09 PM Page 116

CHAPTER 6 ■ LAYING OUT APPLICATIONS 117

icons to the left and right of the tabs. Clicking one of these arrows will select the next page in
the notebook. If the tab for the next page is hidden, the tabs will be shifted so that the new
current page’s tab is shown. In fact, any time a page is shown, the tabs will be shifted so that
the tab for that page is shown. This is where the pop-up menu comes in handy again. Scrolling
through the pages requires the users to move one by one through every page until they reach
their destination. Using the pop-up, the users can quickly jump directly to the desired page.

The Crisscott PIMS application can certainly make good use of GtkNotebook. There are
several distinct and independent tools that the application will have that can benefit from the
organization GtkNotebook offers. The tools in the application need to be somewhat controlled,
so the tabs should probably be hidden. Other features, such as buttons or menus, can serve to
bring pages to the screen when they are needed.

Summary
Containers are arguably the most essential pieces of an application. They provide structure
and organization for an application. Aside from these two very important features, you simply
can’t build a PHP-GTK application without using at least one container.

In this chapter, you learned how to lay out an application through the use of containers.
There is the fast and free method of using boxes, which is good for smaller applications with
less rigid design constraints. Then there is the extremely structured GtkFixed approach, where

Figure 6-11. GtkNotebook with scrolling tabs

6137ch06.qxd 3/14/06 2:09 PM Page 117

CHAPTER 6 ■ LAYING OUT APPLICATIONS118

everything has a place and that place doesn’t change. And there is a compromise between the
two using GtkTable. GtkTable provides a good balance between structure and flexibility. Widgets
are easy to align, but are also free to shrink or grow as the application needs.

Finally, we looked at GtkNotebook. This handy widget makes organizing an application
a snap. Tools within the application can be organized into pages, which can then be accessed
in a variety of ways.

The choice of which container to use for a particular piece of an application plays a very
big role in how it will interact with the rest of the application and the user.

In the next chapter, we will begin to look at entering and displaying data. The chapter will
focus on how to collect data from the user and return it to be shown in the application. Finally,
the application will go from a static window on the screen to an interactive program capable
of collecting, analyzing, and presenting data. By the end of the next chapter, we will have an
application by all definitions of the word.

6137ch06.qxd 3/14/06 2:09 PM Page 118

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

