
47

■ ■ ■

C H A P T E R 3

Building with Ant

The traditional definition of a build process entails converting source code into an executable
deliverable. In the world of enterprise Java development this definition falls short. In this
chapter you’ll learn how to use the popular build tool Ant to set the stage for the build system
used in the TechConf application. A production J2EE application build system will typically
need to do much more than simply compiling and packaging your code. Some sample tasks
that can be performed by a build include the following:

• Version control: Obtaining the latest version of a project’s source code from a version
control repository

• Build plan: Determining what to build

• Generate: Generating any source code from several sources such as annotated code,
database tables, and Unified Modeling Language (UML) diagrams

• Formatting: Correcting syntax and style

• Checking: Validating syntax and style

• Compiling: Generating .class files from .java files

• Testing: Running automated tests

• Validating: Verifying components’ validity

• Javadoc: Generating API documentation

• Metrics: Generating code metrics reports

• Packaging: Generating JAR, web archive (WAR), and enterprise archive (EAR) files

• Deploying: Deploying applications to servers

• Distributing: Distributing packaged applications

• Notifying: Notifying developers and managers of important build-related events

This relatively short list of activities should give you an idea of how involved the build
process can become. How many times have you heard the dreaded, “But it was working just
fine on my machine!” A reproducible build is of paramount importance for keeping your code
base healthy and your project in a known state at all times. Having a reproducible and stable

Sam-Bodden_596-3 C03.fm Page 47 Wednesday, February 22, 2006 6:05 AM

48 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

build process takes more than just having a dedicated team of developers. Without automa-
tion, even a small project with few developers can rapidly get out of hand.

By using an automated build tool, developers can define the steps in the process of building
their software and execute those steps reliably under different environments and circumstances.
Typically such tools will account for individual configuration differences between developers’
environments and production systems. Most build tools have some sort of configuration or
script that describes the build process in discrete, atomic steps.

A typical build process also covers aspects of both the production and the development
stages of an application. For example, in a database-driven application, individual developers
might need to initialize a database with sample data needed for testing, while in a production
environment such a step would not be required.

Although integrated development environments (IDEs) have always provided a level of
support for the building process, this support usually falls short of developers’ needs and expec-
tations. Most of these build solutions aren’t portable across environments; it’s hard enough to
get one developer’s IDE project file to work on any environment except for its creator’s. Not
only are these facilities IDE-independent, but they’re also very different from the work that
an application assembler or deployer has to do for a production application. Common sense
should tell you that the closer your development environment is to the production environ-
ment, the fewer problems you’ll have going into production. By having a build process that is
consistent across development and production environments (and any other environments in
between), you can eradicate many development maladies that come from using multiple IDEs,
operating systems, and Java versions.

As the build process is automated and becomes transparent to programmers, other issues
such as testing and documentation generation find their way into the build process. Most
developers find that they begin with a build system that evolves to accomplish more than
simply “building.” From testing to document generation, a finely crafted build process eventu-
ally becomes a reflection of a team’s development process.

In J2EE, a consistent build system brings together the roles of the application developer,
assembler, and deployer. As part of the J2EE specification, Sun defined several roles in its defi-
nition of the J2EE platform. Newcomers to J2EE might quickly put themselves in one of these
categories and disregard the details of the other roles. But the reality is that unless you have an
understanding of every role’s responsibility, your understanding of the J2EE platform will not
be complete. In particular, the roles of the application assembler and the application deployer
are reflected in the build process, and unless your developers can duplicate what happens in
production you’re likely to experience a painful transition from development into production.

Introduction to Ant
A project with a few files and very few dependencies makes the process of building almost not
a process at all. By simply using the Java compiler and maybe the JAR command-line utility,
you can build simple Java applications.

Before Ant, developers typically started with a set of simple batch files or shell scripts as an
initial step towards automation. But as the number of files, components, target platforms, and
virtual machine (VM) versions increases so does the build time, the complexity of the build,
and the likelihood that human errors will contribute to irreproducible and inconsistent builds.
After a while, you end up realizing that maintaining a non-portable, platform-dependent
homemade solution is cumbersome and error-prone.

Sam-Bodden_596-3 C03.fm Page 48 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 49

For the few teams in which developers actually agree on the choice of an IDE, the first
choice is usually the build functionality provided by the IDE. Most IDEs provide wizards that
build simple applications. These wizards cover only part of the equation, and they tie your
team to the particular IDE.

Besides the aforementioned problems, both approaches treat development and produc-
tion environments as being conceptually separate. What’s needed is a low-level tool that can
unify the build process across multiple IDEs, stages of development, platforms, and so on.

For many years, UNIX programmers have had a way to build their applications via the
make utility and all of its variants (GNU Make, nmake, and so on). Like make, Ant is at its core
a build tool, but as the Ant website states, Ant “is kind of like Make, but without Make’s wrinkles”
(http://ant.apache.org/).

Ant’s simplicity has contributed to its rapid adoption and made it the de facto standard for
building applications in the Java world. Ant, together with the Concurrent Versions System
(CVS), has played an important role in fostering open source by providing a universal way for
individuals to obtain, build, and contribute to the open source community. Ant has also become an
indispensable tool for most Java developers, especially those developing J2EE applications.

Ant has made life easier for Java developers worldwide. Although far from perfect, it has
demonstrated that it can cover what a Java developer needs, from gaining control over the
build process to cutting the umbilical cord from proprietary build systems.

The most relevant reasons to choose Ant are as follows:

• Platform independence: A typical corporate Java environment includes development
teams that work on Wintel machines and deploy to UNIX machines for production. Ant,
being a pure Java tool, makes it possible to have a consistent build process regardless of
the platform, thereby making the development, staging, integration, and production
environments closer to each other. Ant also has built-in capabilities that handle platform
differences. Your Java code is portable; your build should be too!!

• Adoption: Ant is everywhere! Yes, by itself this is a poor reason to favor a technology, but
the strengths that ubiquity brings to the table are many, including hiring, training, and
marketability of skills. Ant also has been integrated into many of the leading IDEs, thereby
making it the one consistent factor between developers. This is partly due to the choice,
for good and bad reasons, of XML as its language.

• Functionality and flexibility: For the majority of Java projects, Ant is extensible and
highly configurable; it provides the required functionality right out of the box. For Java
developers, any class can easily become an Ant task, although in our experience we
seldom have to write our own tasks (because someone in the open source community
always seems to beat you to the punch). If desired, you can plug scripting engines and
run platform-specific commands.

• Syntax: Like it or not, XML has become a globally recognized data format. Most Java
developers have worked with XML, and J2EE developers deal with XML on a daily basis.
XML makes Ant buzzword-compliant. But XML also has some advantages. XML is ideal
for representing structured data because of its hierarchical nature. The abundance of
commercial and open source parsers, and the ability to easily check an XML file for
being well-formed and valid has made the use of XML pervasive in the industry.

Sam-Bodden_596-3 C03.fm Page 49 Wednesday, February 22, 2006 6:05 AM

50 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Ant’s architecture is similar to the make utility in that it’s based on the concept of a target.
In Ant a target is a modular unit of execution that uses tasks to accomplish its work. An Ant
target has dependencies and can be conditionally executed. A build is usually composed of
some main targets that will accomplish some coarse-grained process related to an application’s
build, such as compiling the code or packaging a component. These main targets might make
use of other subtargets (usually via dependencies) to accomplish their job.

Underneath the covers, tasks are plain Java classes that extend the org.apache.tools.
ant.Task class, although any class that exposes a method with the signature void execute() can
become an Ant task. One of Ant’s great advantages is its extensibility. Ant tasks are pluggable
plain Java classes. To write a task all you need to do is extend the Task class and add some code
to the execute method. Ant comes loaded with myriad tasks to accomplish many of the things
needed during a typical build. These tasks are referred to as the core tasks and the optional
tasks. There are also a countless number of third-party tasks, whether they’re commercial,
freeware, or open source.

The scope of Ant’s contribution to Java development isn’t obvious at first, especially on
small projects. But once complexity begins to creep in and you have multiple developers, you’ll
find that Ant becomes the glue that can help your team work in synchronization. It can basi-
cally remove the need for a full-time build “engineer.” This is largely the case with most open
source Java projects, and their success should be a testament to the effectiveness of the inte-
gration power of using Ant.

Ant isn’t without its critics, however. Many have failed to understand that Ant was never
meant to be a full-fledged scripting language but a Java-friendly way to automate the build
process in a simple declarative, goal-oriented fashion. Since its inception, many scriptinglike
features have been added to Ant in the form of custom tasks, and the arguments between
camps that want a full scripting language and ones that want a simple, dependency-driven
build system continue to this day. In my opinion there is no right answer; scripting is program-
ming, and you know the issues that arise with that. On the other hand, Ant’s simple declarative
ways make it hard to do write-once and reuse builds across different projects. Ant’s reusability
is at the task level. In his essay “Ant in Anger” (http://ant.apache.org/ant_in_anger.html),
Steve Loughran recommends that to achieve the level of complexity that most developers turn
to scripting to achieve, Ant builds can be dynamically generated on a per-project basis using
something like eXtensible Stylesheet Language Transformations (XSLT).

Fortunately, Ant version 1.6 provides new features that make Ant build reuse a reality.
We will cover some of the relevant features that enable reuse later in this chapter.

Obtaining and Installing Ant
Ant can be obtained from http://ant.apache.org in binary and source distributions, or you
can obtain the source code through CVS. Ant is a pure Java application. Therefore, the only
requirement to run it is that you have a compliant JDK installed and a parser compliant with
Java API for XML Processing (JAXP). Ant ships with the latest Apache Xerces2 parser. Ant is
distributed as a compressed archive (.zip, tar.gz, and tar.bz2). Once the archive has been
uncompressed to a directory (this directory is referred to as ANT_HOME), it’s recommended

Sam-Bodden_596-3 C03.fm Page 50 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 51

that you add the environment variable ANT_HOME to your system and the bin directory under
the ANT_HOME directory to your system’s executable path. The bin directory contains scripts
in many different formats for the most popular platforms. These scripts facilitate the execution
of Ant and include DOS batch, UNIX shell, and Perl and Python scripts. Ant also relies on the
JAVA_HOME environment variable to determine the JDK to be used.

■Caution If you have only the JRE installed (a rare case for most Java developers) many of Ant’s tasks will
not work properly.

To verify that Ant is installed correctly, at the command prompt type:

ant -version

If the installation was successful you should see a message showing the version of Ant and
the compilation date:

Apache Ant version 1.6.5 compiled on June 2 2005

Ant’s Command-Line Options
Ant is typically used from the command line by running one of the scripts in the bin directory.
Ant’s command line can take a set of options (prefixed with a dash) and any number of targets
to be executed, as follows:

ant [options] [target target2 ... targetN]

Table 3-1 shows the options available from the command line. You can access them by
typing ant -help. By default, Ant will search for a file named build.xml unless a different file is
specified via the buildfile option.

Table 3-1. Ant Command-Line Options

Option Purpose

help | h Prints the help message showing all available options

projecthelp | p Displays all targets for which the description attribute has been set

version Prints the version of Ant

diagnostics Prints a diagnostics report that shows information like file sizes and
compilation dates; useful for reporting bugs

Sam-Bodden_596-3 C03.fm Page 51 Wednesday, February 22, 2006 6:05 AM

52 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

A Simple Ant Example
Figure 3-1 shows a simplified view of what a simple Ant build entails. The root of an Ant build
is the project element, which contains one or more targets and at least one default target. In
this case the simple build contains three targets named Target A, Target B, and Target C, with
Target C being the default target. As shown in the zoomed view of Target B, a target can contain
zero or more tasks.

quiet | q Minimizes the amount of console output produced by Ant

verbose | v Maximizes the amount of console output produced by Ant

debug | d Prints debugging information to the console

emacs | e Removes all indentation and decorations from the console output

lib <path> Configures a file system path to search for JARs and Java classes

logfile | l <file> Redirects all console output to the specified log file

logger <classname> Uses the specified class for logging (it must implement org.apache.
tools.ant.BuildLogger)

listener <classname> Adds an instance of a class that can receive logging events from the build
(it must implement org.apache.tools.ant. BuildListener)

noinput Prevents interactive input from blocking the build process

buildfile | file | f <file> Specifies the buildfile to be processed

D <property>=<value> Passes a property to the build

keep-going | k Tells Ant to execute all targets whose dependencies succeed

propertyfile <filename> Loads all properties in a properties file; properties passed with the D option
take precedence.

inputhandler <class> Specifies a class to handle input request; by default input requests are
handled via the standard in (stdin)

find | s <file> Tells Ant to search for the given filename by traversing upwards from the
current directory until it finds the file

nice (1..10) Specifies a niceness value for the main thread; 1 (lowest) to 10 (highest);
5 is the default

nouserlib Tells Ant not to load any JAR files in the user’s ${user.home}/.ant/lib directory

noclasspath Tells Ant to run without using the System’s CLASSPATH

Table 3-1. Ant Command-Line Options

Option Purpose

Sam-Bodden_596-3 C03.fm Page 52 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 53

Figure 3-1. A simplified view of an Ant build

Ant controls the build process with a description file. In Ant the description file is typically
referred to as a buildfile or build script. The Ant buildfile is an XML file whose root is the project
element that contains child nodes that represent the targets. An Ant buildfile representing a
build similar to the one depicted in Figure 3-1 would look like Listing 3-1.

Listing 3-1. Simple Ant Buildfile

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="Target C" name="MyProject">

 <target name="Target A" description="Performs Step A">
 <echo>Performing Step A</echo>
 </target>

Sam-Bodden_596-3 C03.fm Page 53 Wednesday, February 22, 2006 6:05 AM

54 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

 <target name="Target B" depends="Target A" description="Performs Step B">
 <echo>Performing Step B</echo>
 <echo>Echo is one of many Core Tasks</echo>
 </target>

 <target name="Target C" depends="Target B" description="Performs Step C">
 <echo>Performing Step C</echo>
 </target>

</project>

As you can see, for a simple buildfile the XML format makes it easier to discern targets
from one another.

Project

The project element can have three attributes: name, default, and basedir. Only the default
attribute is required, but I recommend that you use the name attribute especially because many
IDE Ant editors use this attribute for display purposes. The name attribute comes in handy when
dealing with more than one buildfile.

■Best Practice For a project with a single buildfile (build.xml) I recommend that you use the name of the
project for the name attribute of the project element. For projects with multiple buildfiles I recommend that
you name each one according to its intended functionality and that the name attribute should be the same as
the filename without the .xml extension.

The default attribute determines the default target to be executed for the buildfile. Finally,
the basedir attribute determines the base directory for all file-related operations during the
course of a build. In the previous example it’s simply the current directory where the buildfile
resides, and since this is the default value, the attribute could have been omitted. This setting
is important especially if you’re using multiple buildfiles in different subdirectories of an appli-
cation directory structure and you want a uniform way to refer to paths across all buildfiles.

■Best Practice Make the basedir directory the root directory of your project. This is a common conven-
tion, and it will make your buildfiles easy to understand.

Sam-Bodden_596-3 C03.fm Page 54 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 55

The Build Stages

An Ant build has two stages: the parsing stage and the running stage. During the parsing stage
the XML buildfile is parsed and an object model is constructed. This object model reflects the
structure of the XML file in that it contains one project object at the root with several target
objects, which themselves contain other objects representing the contents of a target such as
tasks, datatypes, and properties.

■Note Ant scripts can contain top-level items other than targets. These can include certain tasks and
datatypes. These elements are grouped in order of appearance into an implicit target that gets executed right
after the parsing process ends and before any other targets are executed.

During the runtime phase Ant determines the build sequence of targets to be executed.
This sequence is determined by resolving the target’s dependencies. By default, unless a
different target is specified, Ant will use the default target attribute as the entry point so it can
determine the build sequence.

Let’s execute the sample buildfile for the sample build shown in Figure 3-1 in order to get
acquainted with Ant and some of the command-line options shown in Table 3-1. First type the
contents shown in the listing to a text file and save it as build.xml. To run it, simply change to
the directory where the buildfile is located and type the following:

ant

The output should look like this:

Buildfile: build.xml

Target A:
 [echo] Performing Step A

Target B:
 [echo] Performing Step B
 [echo] Echo is one of many Core Tasks

Target C:
 [echo] Performing Step C

BUILD SUCCESSFUL
Total time: 1 second

The output shows that Ant executed the buildfile successfully and that it took one second
to execute (execution times will vary from system to system). From the output, you can see that
the targets were executed in the following sequence: Target A, Target B, and Target C. To see a

Sam-Bodden_596-3 C03.fm Page 55 Wednesday, February 22, 2006 6:05 AM

56 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

bit more detail you can run Ant again using the -v command-line option, which will show you
some extra information:

Apache Ant version 1.6.5 compiled on June 2 2005
Buildfile: build.xml
...
Build sequence for target 'Target C' is [Target A, Target B, Target C]
Complete build sequence is [Target A, Target B, Target C]
...
BUILD SUCCESSFUL
Total time: 1 second

First, notice that the output shows that the intended target is Target C, which was defined
as the build’s default target. Ant resolved the default target dependencies to arrive at the build
sequence [Target A, Target B, Target C] as shown at the top of the console output.

The text enclosed in the echo elements in each of the targets is shown on the console as
each target is executed. The echo task is one of many built-in tasks provided by Ant. For example, a
quick browse of the online documentation shows that the echo task sends the text enclosed to
an Ant logger. By default Ant uses the DefaultLogger, which is a class that “listens” to the build
and outputs to the standard out. Specific loggers can be selected on the command line by using
the –logger option. Further examination shows that the echo task is well integrated with the
logging system and that it can be provided with a level attribute to control the level at which
the message is reported.

■Note I decided against regurgitating the contents of the online documentation; therefore I’ll explain some
of Ant’s tasks in context as you set out to build the tiers of the TechConf system. The best place to learn about
all the available Ant tasks is from the online manual located at http://ant.apache.org/manual/
index.html.

The previous run of the sample script assumed that you wanted to run the default target.
To run a specific target you can indicate the target in the command line as follows:

ant "Target A"

Notice that target names are case sensitive and that double quotes are required for any
target names that contain spaces. The resulting output should look like this:

Sam-Bodden_596-3 C03.fm Page 56 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 57

Buildfile: build.xml

Target A:
 [echo] Performing Step A

BUILD SUCCESSFUL
Total time: 1 second

More on Targets
Targets are meant to represent a discrete step in the build process. Targets use tasks, datatypes,
and property declarations to accomplish their work. Targets are required to have a name attribute
and an optional comma-separated list of dependent targets.

■Best Practice Use simple action verbs to name your targets, such as “build,” “test,” or “deploy.”

A typical buildfile is composed of several main targets: those that are meant to be called
directly by the user and subtargets, which are targets that provide functionality to a main target.

■Best Practice Add a description attribute to a build’s main targets. Targets containing a description
are shown in the automatic project help, which is displayed when Ant is invoked with the -p or -projecthelp
command-line options. For subtargets, prefix the name with a hyphen to make it easy to differentiate them
from main targets.

Targets can be conditionally executed, and for this purpose Ant supports the if and unless
attributes. Targets using either or both of these are said to be conditional targets. Both if and
unless take the name of a property as a value, which is a test for existence. You can see an
example of this if you modify Target A from the sample buildfile and add an if attribute with a
value of do_a as shown in Listing 3-2.

Listing 3-2. Conditional Ant Target

 <target name="Target A" description="Performs Step A" if="do_a">
 <echo>Performing Step A</echo>
 </target>

Sam-Bodden_596-3 C03.fm Page 57 Wednesday, February 22, 2006 6:05 AM

58 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

The target should be executed only if the Ant property by the name do_a exists in the
context of the build. Executing the buildfile produces the following result:

Buildfile: build.xml

Target A:

Target B:
 [echo] Performing Step B
 [echo] Echo is one of many Core Tasks

Target C:
 [echo] Performing Step C

BUILD SUCCESSFUL
Total time: 1 second

Notice that the output shows the banner for Target A but that the echo tasks contained
within were never executed. You can run the buildfile again using the -D option to pass the
property do_a to the build as shown:

ant -D "do_a="

The output now shows that Target A is being executed. You add the double quotes around
the name-value pairs for the command-line argument parser so you can recognize the end of
the argument. Any value could have been passed and the results would have been the same.
Remember with if and unless, the value of the property is irrelevant; what matters is whether
or not the property has been defined.

Target Dependencies
From the simple buildfile shown previously you can see that targets can depend on other
targets. This example shows a very simple and linear dependency chain in which Target C
depends on Target B, which in turn depends on Target A.

Ant will resolve any circular dependencies and will consequently fail the build. For example,
you can modify the sample script to add Target C as a dependency of Target A as shown in
Listing 3-3.

Listing 3-3. Ant Target Dependencies

<target name="Target A" depends="Target C" description="Performs Step A">
 <echo>Performing Step A</echo>
</target>

Sam-Bodden_596-3 C03.fm Page 58 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 59

The resulting execution of the script will produce output similar to the following:

Buildfile: build.xml

BUILD FAILED
Circular dependency: Target C <- Target A <- Target B <- Target C

Total time: 1 second

Dependencies are resolved recursively using a topological sorting algorithm. The resulting
build sequence ensures that a target in the dependency chain will only get executed once. You
can see a great example of this in the Ant online manual, which shows a build with dependencies
as shown in Figure 3-2.

Figure 3-2. Script dependencies

A buildfile for the build in Figure 3-2 would look like Listing 3-4.

Listing 3-4. Simple Ant Buildfile Showing Dependencies

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="D" name="dependencies">
 <target name="A"/>
 <target name="B" depends="A"/>
 <target name="C" depends="B,A"/>
 <target name="D" depends="C,B,A"/>
</project>

Understanding how dependencies work is very important as your build process grows in
complexity. Figure 3-3 shows a depiction of the dependency resolution process.

Sam-Bodden_596-3 C03.fm Page 59 Wednesday, February 22, 2006 6:05 AM

60 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Figure 3-3. Dependency resolution in Ant

To test the dependencies example, save the buildfile as dependencies.xml and run it using
Ant’s -f parameter in order to indicate the buildfile as follows:

ant -f dependencies.xml -v

The output should look like this:

...
Buildfile: dependencies.xml
...
Build sequence for target 'D' is [A, B, C, D]
Complete build sequence is [A, B, C, D]

A:

B:

C:

D:

Sam-Bodden_596-3 C03.fm Page 60 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 61

BUILD SUCCESSFUL
Total time: 1 second

■Best Practice Keep a build’s dependencies as simple and linear as possible.

Tasks
Tasks are used within a target to achieve certain functionality. Think of a task element as a way
to invoke a Java class’s functionality. Ant provides a plethora of tasks that are divided in the
following two categories:

• Core: Core tasks include basic foundational facilities needed in the build process like file
manipulation, file dependencies, directory operations, source-code compilation, API
document generation, archiving and packaging, XML file manipulation, SQL execution,
and others.

• Optional: This includes tasks for some commercial products (like EJB/J2EE servers and
third-party Version Control Systems) as well as nonbuild-specific tasks like unit testing,
XML validation, and others.

Properties
Ant provides the ability for a project to have a set of properties. Properties are simple strings
that you can access using the ${propertyName} notation. Whether you need to specify the loca-
tion of a needed library many times or the name of a CVS repository, properties give you the
flexibility to defer until runtime a set of values to be used in the build.

There are several ways to set a property. You can set it individually to the Ant buildfile via
the D command-line option (see Table 3-1), or in bulk, from standard Java properties files by
using the propertyfile option.

There are also several tasks that deal with properties. The property task enables the setting
of a property by name. All property tasks are idempotent, which means that once a property’s
value has been set it will remain unchanged for the remainder of the build. The immutability of
properties in Ant is often a source of confusion, because as developers you’re often used to
thinking with the use of variables.

■Note The <ant> and <antcall> tasks both span a new build by calling another buildfile. The <ant> task
calls an external buildfile, and the <antcall> tasks calls a target on the current buildfile. Since version 1.6,
Ant provides the <macro-def>, <import>, and <subant> tasks, which eliminate the need for using <ant> in
most cases.

Sam-Bodden_596-3 C03.fm Page 61 Wednesday, February 22, 2006 6:05 AM

62 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

The simplest way to set a property’s value is to use the property task. For example, to set a
property named src, which could be later accessed using ${src}, you would use the property
task as follows:

<property name="src" location="src" />

The src property would be an absolute path that refers to the location of the src directory
relative to the basedir directory.

■Best Practice Properties should be used with care. The two main uses of properties are for items
whose value might change from build to build or for items whose value is calculated and used more than once
during the build.

Many Ant properties are also available implicitly and are composed from the system prop-
erties, such as ${java.version}.

For any but the simplest project you can load a property file using the file attribute of the
property task, thereby taking into account differences in user configurations, as follows:

 <property file="build.properties"/>

Other tasks that deal directly with properties include the following:

• LoadProperties: Loads the contents of a file as properties (equivalent to using the file
attribute for the property task).

• LoadFile: Load a text file into a single property.

• XMLProperty: Loads properties from an XML file. See the Ant documentation for the
specific format of the XML file.

• EchoProperties: Displays all available properties in the project.

Many other tasks use properties as a way to take parameters in or out. For example, a
common practice is for a task to have an attribute that takes the name of an inexistent property
to be set in case of a specific event such as the possibility of the task failing.

■Best Practice I recommend using a properties file named build.properties to store any overridden
default values. This property file shouldn’t be kept in the source-code repository but instead should add a
sample properties file named build.properties.sample along with instructions on how to configure an indi-
vidual build.properties file.

Sam-Bodden_596-3 C03.fm Page 62 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 63

Datatypes
Ant’s datatypes are primitive constructs that provide frequently required information in the
processing of a buildfile. Their purpose is to simplify a task by encapsulating some information
required and providing a simple way to manipulate it.

Several of Ant’s built-in datatypes provide a structure that encapsulates information about
a set of related resources such as files, environment variables, or even complex mappings
between input and output files. Knowing how to properly use the Ant’s datatypes will help you
keep your buildfiles simple and efficient.

Datatypes and Properties in Action: A Simple Example

Many of Ant’s tasks need to manipulate a file or groups of files. A typical need in a build is to
specify a set of JAR files to be included in the classpath for certain tasks. Imagine that you’re
building a simple application with a directory structure, as shown in Figure 3-4.

Figure 3-4. Sample directory structure for datatypes and properties

The sample buildfile in Listing 3-5 shows a build for which two path structures (datatypes)
are defined, one with an id of class.path and the other with and id of all.source.path. These
two datatypes are then used in the target named “compile”, which uses the javac task to compile
the classes referenced by the path reference by the id all.source.path.

Listing 3-5. Simple Ant Buildfile Showing Datatypes

<?xml version="1.0"?>
<project name="My Project" default="all" basedir=".">
...
 <property name="lib" location="lib"/>
 <property name="src" location="src"/>
 <property name="classes" location="classes"/>
 <property name="build" location="build"/>

 <property name="src-java" location="${src}/java"/>
 <property name="src-test" location="${src}/test"/>
 <property name="some-lib" location="${lib}/some-lib"/>
...
 <path id="class.path">
 <fileset dir="${lib}">
 <include name="*.jar"/>

Sam-Bodden_596-3 C03.fm Page 63 Wednesday, February 22, 2006 6:05 AM

64 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

 </fileset>
 <fileset dir="${some-lib}">
 <include name="*.jar"/>
 </fileset>
 </path>

 <path id="all.source.path">
 <pathelement path="${src-java}"/>
 <pathelement path="${src-test}"/>
 </path>
...
 <target name="compile" description="Compiles all sources.">
...
 <javac
 destdir="${classes}"
 classpathref="class.path"
 debug="on"
 deprecation="on"
 optimize="off">
 <src>
 <path refid="all.source.path"/>
 </src>
 </javac>
 </target>

The class.path path structure uses two instances of the fileset datatype to group under
a common classpath all the JAR files included in the directories referenced by the lib and
struts-lib properties. The pathelement is an example of an indispensable datatype that enables
you to reuse path information in your builds. The fileset datatype is a typical example of Ant’s
pathlike structures. It encapsulates a group of files defined via nested patternset structures.
For example, to create a fileset that includes all JAR files under the ${lib} directory, you can use
the following fileset definition:

<fileset dir="${lib}">
 <patternset>
 <include name="*.jar"/>
 </patternset>
</fileset>

The fileset datatype contains an implicit patternset structure, which means that you can
use shorthand to rewrite the fileset definition as follows:

<fileset dir="${lib}">
 <include name="*.jar"/>
</fileset>

We can further compact the fileset definition by using the include as a property rather
than as a nested element:

<fileset dir="${lib}" include="*.jar" />

Sam-Bodden_596-3 C03.fm Page 64 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 65

The path datatype can also make use of nested pathelements, as shown in the definition of
the all.source.path path structure. It uses the pathelement datatype to reference the locations
defined by src-java and src-generated properties.

Path is a typical Ant pathlike structure. When dealing with paths or classpaths, Ant’s task
makes use of pathlike structures to perform its function. In the previous example, you can see
that the two pathelements defined at the top of the buildfile are then used by reference in the
context of the javac task. The class.path path is passed to the classpathref attribute of javac
to determine the classpath for compilation and the all.source.path is used by creating a new
pathelement, which is nested inside the src nested element of the javac task.

As a build’s complexity increases so do the patterns for selecting files. Pathlike structures
enable the reuse of path information and help keep the growth of buildfiles under control.

■Note One of the criteria used in choosing many of the tools in this chapter was whether the tool provided
an Ant task.

Case Study: Building TechConf with Ant
To set the stage for the development throughout the rest of the book, you need to first create a
suitable directory structure (see Figure 3-5) as well as an initial Ant buildfile for the TechConf
system.

Figure 3-5. Sample directory structure for the TechConf project

The project’s root directory is TechConf. Under this directory you’ll place the project’s
main buildfile, named build.xml. The subdirectories under TechConf are organized as follows:

• lib: Contains any libraries required at runtime by the application(s)

• ant: Contains Ant macrodef in a single file, macros.xml

• src: The root directory for all non-generated sources

• src/java: The root directory for all non-J2EE Java sources

• src/test: The root directory for all test classes

• src/j2ee: The root directory for all J2EE source files

Sam-Bodden_596-3 C03.fm Page 65 Wednesday, February 22, 2006 6:05 AM

66 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Now that you have a suitable directory structure, your next step should be to start putting
together the TechConf buildfile. The project element contains the name of your project and a
nested description element.

■Best Practice Use the description element, which allows you to enter a detailed description of
the project. This description is shown on the console when invoking Ant with the -projecthelp or -p
command-line option.

The default target will be the all target, which you’ll develop later in the chapter. The basedir
is set to be the directory where the buildfile resides, which in this case is the TechConf directory.

<?xml version="1.0"?>
<project name="TechConf" default="all" basedir=".">

 <description>
 This build script was developed to be a generic enterprise development
 build script using ANT 1.6.5 (ant.apache.org). To customize it or use it for
 other projects modify the build.properties file.
 </description>
...

Next, properties are defined for the created directories. Notice that you can define proper-
ties using other properties as with the lib-dev property. Properties that represent a directory
are defined using the location attribute instead of the value attribute. The location attribute
gets resolved to the full path relative to the basedir specified in the project element.

■Best Practice Making all paths relative to the project’s basedir directory and avoiding the use of absolute
paths guarantees that your buildfile will work anywhere. If your build depends on a resource whose location
might change from environment to environment, you should place the location of said resource in a properties
file or use environment variables such as ${os.name}.

The build directory is the root directory for all products of the build process, such as the
classes directory, where the results of compiling the classes under src/java will be placed.

<!-- === -->
<!-- Initialization -->
<!-- === -->
<property file="build.properties"/>

<!-- =========== -->
<!-- Directories -->

Sam-Bodden_596-3 C03.fm Page 66 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 67

<!-- =========== -->
<property name="build" location="build" />
<property name="lib" location="lib" />

<!-- Source -->
<property name="src" location="src" />
<property name="src-java" location="${src}/java" />
<property name="src-test" location="${src}/test" />
<property name="src-j2ee" location="${src}/j2ee" />

<property name="docs" location="docs" />
<property name="docs-api" location="${docs}/api" />
<property name="docs-html-source" location="${docs}/source" />
<property name="docs-test" location="${docs}/tests" />
<property name="src-web" location="web" />

Paths representing all the JAR files under the lib directory (class.path) and all class files
under the classes directory are created.

■Best Practice A common practice in Ant buildfiles is to have an init task that all other tasks depend on.
I advocate not using the init task for setting up properties, loading properties files, paths, patternsets, or
taskdefs. Instead, just place them before the first target, and they will be added to the implicit target. As
mentioned earlier, the contents of the implicit target always get called and you don’t have to remember
making all other targets dependent on an init target.

A patternset is also used to filter a directory for non-source files. In the case where resources
are part of the source directory such as property files or images, a patternset can be used to
copy them to the location of the compiled classes which will require said resources.

<!-- Paths -->
<path id="class.path">
 <fileset dir="${lib}">
 <include name="*.jar"/>
 </fileset>
</path>

<path id="app.class.path">
 <pathelement location="${classes}"/>
 <path refid="class.path"/>
</path>

<!-- Patternsets -->
<patternset id="non.source.set">
 <exclude name="**/*.java"/>
 ...

Sam-Bodden_596-3 C03.fm Page 67 Wednesday, February 22, 2006 6:05 AM

68 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

 <exclude name="**/read-me.txt"/>
 <exclude name="**/package.html"/>
</patternset>

Compiling
Now it’s time to add the first target to the buildfile, the compile target. This target will make use
of the javac task, which is a wrapper to the javac command. In Listing 3-6, notice that before
the javac task is invoked, all files under the ${src-java} directory that match the patternset
non.source.set are copied to the ${classes} directory. This is done so that any resources such as
Java properties files, images, and others are available to the compiled code under the classes
directory. This is a common practice for many IDEs.

Listing 3-6. Compile Target

<!-- === -->
<!-- Target: compile -->
<!-- Compiles all classes -->
<!-- MUST use JDK 1.5 compiler -->
<!-- === -->

<target
 name="compile"
 depends="compile-init"
 description="Compiles all classes (JDK1.5)">
 <javac
 destdir="${classes}"
 classpathref="class.path"
 debug="on"
 deprecation="on"
 optimize="off"
 >
 <src>
 <path refid="all.source.path" />
 </src>
 </javac>
</target>

<target name="compile-init">
 <target-banner target="compile"/>
 <mkdir dir="${classes}"/>
 <copy todir="${classes}">
 <fileset dir="${src-java}">
 <patternset refid="non.source.set" />
 </fileset>

Sam-Bodden_596-3 C03.fm Page 68 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 69

 <fileset dir="dd">
 <include name="*.properties"/>
 </fileset>
 </copy>
</target>

<target name="compile-clean">
 <delete includeemptydirs="true">
 <fileset dir="${classes}" includes="**/*"/>
 </delete>
</target>

Notice that we’ve added two more targets other than compile. These are compile-init and
compile-clean. The compile-init target simply creates the classes directory by making use of
the mkdir task. The compile-clean target uses the delete task to remove the directory and all of
its contents.

■Best Practice For each main target in the buildfile, add a target-init and a target-clean, where target is
the name of the main target. This makes it fairly straightforward to determine the resources needed and
created by a target and also makes it easier to maintain large buildfiles. For simple buildfiles a single clean
target will usually suffice.

Buildfile Reuse with Macros
If you paid close attention to the compile-init target shown previously, you’ve notice that the
first line is:

<target-banner target="compile"/>

The element target-banner is not a standard Ant task or a third-party task; it is a macro
definition contained in a separate XML named macros.xml. Macro definitions, a feature intro-
duced in Ant 1.6, help you avoid the tedious copy-paster reuse and enable you to modularize
your builds. Macros can be invoked anywhere in the buildfile, and the macro definitions can
be parameterized. In order to enable our build to use the macros, we use the import task as
shown next:

<!-- === -->
<!-- Imports -->
<!-- === -->
<import file="ant/macros.xml"/>

Let’s take a look at the file macros.xml, which is located in the ant directory at the root of
the TechConf project and shown in Listing 3-7.

Sam-Bodden_596-3 C03.fm Page 69 Wednesday, February 22, 2006 6:05 AM

70 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Listing 3-7. Ant Macros File

<?xml version="1.0"?>
<project name="techconf-ant-macros" default="test-macros" basedir="..">

 <!-- === -->
 <!-- Prints a banner for the target being executed -->
 <!-- === -->
 <macrodef name="target-banner">
 <attribute name="target"/>
 <attribute name="message" default="" />
 <sequential>
 <echo>===</echo>
 <echo>Executing Target @{target}</echo>
 <echo>@{message}</echo>
 <echo>===</echo>
 </sequential>
 </macrodef>

 <!-- === -->
 <!-- Test the macros -->
 <!-- === -->
 <target name="test-macros">
 <target-banner target="Compile"/>
 <target-banner target="Testing" message="This is a sample message"/>
 </target>
...
</project>

In macros.xml we define the target-banner macrodef. Ant macrodefs can take attributes;
in this case there are two attributes, target and message. As you can guess from the snippet
shown, the target-banner macrodef uses the echo task to print a banner to the console that
informs the user of the current target being executed and also prints an optional message. The
attributes are defined using the attribute element. The target attribute is required, but the
message attribute is optional since it has a default value. Macro attributes are mutable and are
expanded via @{attrname}.

■Note Macro attributes @{attr} are expanded before Ant properties ${property}. This is important if you are
using properties in your macros.

Sam-Bodden_596-3 C03.fm Page 70 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 71

On its own, the macros.xml file behaves just like any other Ant buildfile. If we execute the
macros.xml file using Ant as follows:

ant -f macros.xml

The default target test-macros will execute, producing the following output:

Buildfile: macros.xml

test-macros:
 [echo] ===
 [echo] Executing Target Compile
 [echo] ===

 [echo] ===
 [echo] Executing Target Testing
 [echo] This is a sample message
 [echo] ===

BUILD SUCCESSFUL
Total time: 1 second

As you can see, macrodef in combination with the import task can help you create reusable,
modularized Ant functionality that will help you keep your buildfiles simple. For the TechConf
project we will use the macros.xml file to house most of the tasks peripheral to the build process.
In the remainder of this chapter we will continue to enhance both the build.xml file and the
macros.xml file to create a J2EE build system that’s modular and reusable.

Javadoc Generation
For proper team communication and for enabling code reuse you must have a consistent, up-
to-date set of API documentation. The Javadoc tool has existed for as long as Java has been
around, and all developers are well acquainted with it. The problem has been that developers
feel that they can run Javadoc only after they are finished with the code (which might be never).
Running Javadoc at the end of a project provides very little help to others in the team and moves
documentation to the end of process, when it isn’t as helpful (waterfall).

With Ant you can ensure that Javadoc is generated as part of the daily build and that you
don’t hide the documentation process until the “end” of the development phase. The Ant Javadoc
task provides a convenient way to generate Javadoc from within Ant.

To incorporate Javadoc generation into the TechConf build we will enhance the macros.xml
file with a generic macrodef that defaults most of the common settings used with the Javadoc
task. There are four required attributes—source.path, class.path, dest, year—and the optional
company attribute, as shown in Listing 3-8.

Sam-Bodden_596-3 C03.fm Page 71 Wednesday, February 22, 2006 6:05 AM

72 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Listing 3-8. Javadoc Macrodef

<!-- === -->
<!-- JavaDocs -->
<!-- === -->

<macrodef name="generate-javadoc" description="Generate JavaDocs.">
 <attribute name="company" default="Integrallis Software, LLC."/>
 <attribute name="source.path"/>
 <attribute name="class.path"/>
 <attribute name="year"/>
 <attribute name="dest"/>
 <sequential>
 <javadoc
 destdir="@{dest}"
 author="true"
 version="true"
 use="true"
 windowtitle="${ant.project.name}"
 sourcepathref="@{source.path}"
 classpathref="@{class.path}"
 packagenames="*.*"
 Verbose="false">
 <doctitle><![CDATA[<h1>${ant.project.name}</h1>]]></doctitle>
 <bottom>
 <![CDATA[<i>Copyright © @{year} @{company} All Rights Reserved.</i>]]>
 </bottom>
 <tag name="todo" scope="all" description="To do:" />
 </javadoc>
 </sequential>
</macrodef>

Notice that the doctitle and the bottom nested elements make use of the XML character
data (CDATA) section in order to be able to use HTML markup and not have it interfere with
the markup of the buildfile.

To use the generate-javadoc macrodef in the TechConf buildfile we can create a target in
our build.xml as shown in Listing 3-9.

Listing 3-9. Generate-docs Target

<!-- === -->
<!-- Target: docs -->
<!-- Generates documentation artifacts -->
<!-- === -->

Sam-Bodden_596-3 C03.fm Page 72 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 73

<target name="generate-docs" description="Generates all documentation">
 <target-banner target="generate-docs"/>
 <generate-javadoc
 class.path="class.path"
 dest="${docs-api}"
 source.path="all.source.path"
 year="2005"
 />
</target>

<target name="generate-docs-clean">
 <delete dir="${docs}" />
</target>

It is easy to see how much cleaner your main buildfile can become by using macrodefs
effectively. For the rest of the chapter we will use the same technique to continue enhancing
the build with other functionality.

Checking Code Conventions with Checkstyle
Even if you’re using a formatting tool either at build time or with your favorite IDE, there are
still style checks beyond the realm of formatting. Checkstyle is a tool that enables code to be
checked against a convention. Checkstyle supports the Sun convention by default, although it
can check for more than just simple formatting. For example, it can check for illegal regular
expressions in the code, inline conditionals, double-checked locking, and other idioms or
patterns that might be considered unsafe or problematic.

You can download Checkstyle from http://checkstyle.sourceforge.net. At the root of
the Checkstyle distribution you’ll find the checkstyle-all-4.0.jar file. Place this file in a directory
named checkstyle under the lib directory of the TechConf project directory. The file containing
the XML configuration representing the Sun convention is named sun_checks.xml, and it’s
located under the docs directory of the distribution directory. Copy this file to the lib/check-
style directory also.

Checkstyle writes its output to the standard out by default or to a file in plain text or XML
format. The Checkstyle distribution also provides several Extensible Stylesheet Language (XSL)
stylesheets that can be used to convert the XML reports to HTML format for easier viewing. You
can find these stylesheets in the Checkstyle distribution under the contrib directory. Copy the
checkstyle-noframes-sorted.xsl file to the lib/checkstyle directory.

To use Checkstyle from within Ant, you first need to load the checkstyle task. As with the
Javadoc task we will incorporate the checkstyle task in a macrodef contained in the macros.xml
file. First we need to make the checkstyle task available to the macros.xml file by defining a
taskdef for it:

<path id="checkstyle.class.path">
 <fileset dir="lib/checkstyle">
 <include name="*.jar"/>
 </fileset>
</path>

Sam-Bodden_596-3 C03.fm Page 73 Wednesday, February 22, 2006 6:05 AM

74 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

<taskdef
 resource="checkstyletask.properties"
 classpathref="checkstyle.class.path"
/>

The macrodef generate-checkstyle takes two required attributes: src to determine
the directory containing the source files to check and checkstyle-reports for the location
to place the generated reports. The rest of the attributes—checkstyle-checks-file,
checkstyle-xml-report-file, checkstyle-html-report-file and checkstyle-stylesheet—
are all optional. Notice that some of the default values for the optional attributes are generated
from the values of the required attributes.

The checkstyle macrodef uses the checkstyle task to check the code under the @{src}
directory against the conventions specified by the file @{checkstyle-checks-file} and uses a
formatter of type XML to generate the report referred to in @{checkstyle-xml-report-file}.
The failureProperty attribute is the property that’s set if there are any errors encountered
during the checking process. You can use this value to determine if any action is to be taken in
the case of an error, such as emailing the report. The second part of the target uses the style task
to transform the generated XML into an HTML report. The generate-checkstyle macrodef is
shown in Listing 3-10.

Listing 3-10. Generate-checkstyle Macrodef

<!-- === -->
<!-- CheckStyle -->
<!-- === -->
<macrodef name="generate-checkstyle"
 description="Generates Code Convention Violations Report.">
 <attribute name="src" />
 <attribute name="checkstyle-reports" />
 <attribute name="checkstyle-checks-file"
 default="lib/checkstyle/sun_checks.xml"/>
 <attribute name="checkstyle-xml-report-file"
 default="@{checkstyle-reports}/checkstyle-report.xml"/>
 <attribute name="checkstyle-html-report-file"
 default="@{checkstyle-reports}/checkstyle-report.html"/>
 <attribute name="checkstyle-stylesheet"
 default="lib/checkstyle/checkstyle-noframes-sorted.xsl"/>
 <sequential>
 <mkdir dir="@{checkstyle-reports}" />
 <checkstyle
 config="@{checkstyle-checks-file}"
 failureProperty="checkstyle.failure"
 failOnViolation="false"
 >
 <formatter type="xml" tofile="@{checkstyle-xml-report-file}"/>
 <fileset dir="@{src}" includes="**/*.java"/>
 </checkstyle>

Sam-Bodden_596-3 C03.fm Page 74 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 75

 <style
 in="@{checkstyle-xml-report-file}"
 out="@{checkstyle-html-report-file}"
 style="@{checkstyle-stylesheet}"
 />
 </sequential>
</macrodef>

A sample Checkstyle report is shown in Figure 3-6.

Figure 3-6. Checkstyle HTML report

Generating Source-Code Metrics
Although I don’t advocate counting code lines, classes, or methods as a measure of a project’s
success, static code analysis can help you pinpoint some areas of unnecessary complexity that
can lead to the discovery of potential bugs or high-maintenance code.

JavaNCSS is a simple source-measurement tool for Java that provides that following basic
types of analysis:

• NCSS: Noncommenting source statements provide counts of many features of the code
such as lines of code, declarations, methods, statements, constructors, and so on.

• CCN: Cyclomatic complexity number (McCabe metric). McCabe’s cyclomatic complexity
metric looks at a program’s control flow graph as a measure of its complexity.

Sam-Bodden_596-3 C03.fm Page 75 Wednesday, February 22, 2006 6:05 AM

76 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

You can download JavaNCSS from www.kclee.de/clemens/java/javancss/ as a simple ZIP
file that includes an Ant task. Place all JAR files located under the distribution’s lib directory in
a directory named javancss under the lib directory of the TechConf project. Next, create a
directory named xslt under the lib/javancss and copy the contents of the xslt directory under
the JavaNCSS distribution directory.

To make the JavaNCSS Ant task available in the macros.xml file we add the following path
and taskdef definitions:

<path id="javancss.class.path">
 <fileset dir="lib/javancss">
 <include name="*.jar"/>
 </fileset>
</path>

<!-- Javancss - kclee.com/clemens/java/javancss -->
<taskdef
 name="javancss"
 classname="javancss.JavancssAntTask"
 classpathref="javancss.class.path"
/>

The Ant task can generate a report in plain text of the XML format. Similar to the checkstyle
macrodef, you’ll use the style task to transform the reports to HTML, as shown in Listing 3-11.

Listing 3-11. Generate-metrics Macrodef

<!-- === -->
<!-- Metrics -->
<!-- === -->
<macrodef name="generate-metrics">
 <attribute name="src" />
 <attribute name="report-name" />
 <attribute name="report-dir" default="." />
 <attribute name="xml-report" default="@{report-dir}/@{report-name}.xml" />
 <attribute name="html-report" default="@{report-dir}/@{report-name}.html" />
 <attribute name="stylesheet" default="lib/javancss/xslt/javancss2html.xsl" />
 <sequential>
 <mkdir dir="@{report-dir}" />
 <javancss
 srcdir="@{src}"
 includes="**/*.java"
 generateReport="true"
 outputfile="@{xml-report}"
 format="xml"
 functionMetrics="false"
 />

Sam-Bodden_596-3 C03.fm Page 76 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 77

 <style
 in="@{xml-report}"
 out="@{html-report}"
 style="@{stylesheet}"
 />
 </sequential>
</macrodef>

The generated HTML reports look like the one shown in Figure 3-7.

Figure 3-7. A JavaNCSS HTML report

Generating Browsable Source Code
One useful feature for sharing knowledge about a project is the ability to generate a browsable
version of the code for viewing online. Many open source projects use this as a way to allow
others to view the source to a particular class without having to download a source distribution

Sam-Bodden_596-3 C03.fm Page 77 Wednesday, February 22, 2006 6:05 AM

78 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

or having to use CVS. Java2Html is a tool that enables you to take a Java class or a snippet of
Java code and generate a syntax-highlighted HTML version of the code.

The Java2Html tool can be obtained from www.java2html.de as a single ZIP file that contains
one JAR file (java2html.jar). As with the other third-party Ant tasks, place the JAR file in a directory
named java2html under the TechConf lib directory.

As mentioned previously, you should load the task using the taskdef task. First we add the
path and taskdef to the macros.xml file as shown here:

<path id="java2html.class.path">
 <fileset dir="lib/java2html">
 <include name="*.jar"/>
 </fileset>
</path>

<!-- Java2Html - java2html.de -->
<taskdef
 name="java2html"
 classname="de.java2html.anttasks.Java2HtmlTask"
 classpathref="java2html.class.path"
/>

The generated HTML source will be placed under the location pointed to by the property
${browseable-source}, as shown in Listing 3-12.

Listing 3-12. Generate-html Macrodef

<!-- === -->
<!-- Generates browsable source code in HTML format -->
<!-- === -->
<macrodef name="generate-html"
 description="Generates browsable HTML version of the source code." >
 <attribute name="src"/>
 <attribute name="dest"/>
 <sequential>
 <mkdir dir="@{dest}" />
 <java2html
 srcdir="@{src}"
 destdir="@{dest}"
 includes="**/*.java"
 outputFormat="html"
 tabs="4"
 style="eclipse"
 showLineNumbers="true"
 showFileName="true"
 showTableBorder="true"

Sam-Bodden_596-3 C03.fm Page 78 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 79

 includeDocumentHeader="true"
 includeDocumentFooter="true"
 addLineAnchors="true"
 lineAnchorPrefix="fff"
 />
 </sequential>
</macrodef>

Figure 3-8 shows an example of an HTML page generated by Java2Html.

Figure 3-8. An HTML page generated by Java2Html

Document Generation
Finally we can group all of the document-generation tasks under one single target in the
build.xml file as shown in Listing 3-13.

Sam-Bodden_596-3 C03.fm Page 79 Wednesday, February 22, 2006 6:05 AM

80 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Listing 3-13. Generate-docs Target

<!-- === -->
<!-- Target: docs -->
<!-- Generates documentation artifacts: Javadoc, Browsable HTML, etc. -->
<!-- === -->

<target name="generate-docs"
 description="Generates all documentation">
 <target-banner target="generate-docs"/>
 <generate-javadoc
 class.path="class.path"
 dest="${docs-api}"
 source.path="all.source.path"
 year="2005"
 />
 <generate-html
 src="${src}"
 dest="${docs-html-source}"
 />
 <generate-checkstyle
 src="${src}"
 checkstyle-reports="${checkstyle-reports}"
 />
 <generate-metrics
 src="${src}"
 report-dir="${metrics-reports}"
 report-name="${ant.project.name}"
 />
</target>

This single document-generation target makes the buildfile simpler. The use of macrodefs
makes the main buildfile less verbose. I decided to group all document generation-tasks so that
users of the build have to deal with only a single, simple target for all document-generation
tasks.

Cleaning Up
The build process produces many files and directories. Getting the project directory to the
same state as when the source was checked out of a repository is important for determining
what has changed. Many Ant users recommend having a “clean” target that can remove all the
products of the build process.

The problem with this approach is that for large builds it’s easy to accidentally delete files
that are needed, and it’s also easy to miss files or directories that need to be deleted. For this
reason you should include a clean sub target for each main target in the buildfile. By doing this
you’ll easily be able to determine what needs to be clean at the target level. Then for the global
clean target you can simply invoke all individual clean sub targets by invoking them using the
antcall task (or by listing them as dependencies), as shown in Listing 3-14.

Sam-Bodden_596-3 C03.fm Page 80 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 81

Listing 3-14. Clean-all Target

<!-- === -->
<!-- Target: clean-all -->
<!-- Removes all build artifacts -->
<!-- === -->
<target name="clean-all" description="Removes all build artifacts">
 <antcall target="compile-clean" />
 <antcall target="generate-docs-clean" />
 <antcall target="test-clean" />
 ...
</target>

The All Target
Finally, it’s a common practice to make the buildfile default target a target named “all”, which
has in its dependencies a list of the targets that represented a full build of the system. If your
build process has any non-critical targets that take a fair amount of time to generate, you can
create new targets that will do whatever the all target does in addition to any extra work. For
example a target that does “all” and also generates documentation can be called “all-with-docs”.
The point is that you want to minimize the amount of time that it takes to build the application
so that developers don’t have noticeable interruptions in the flow of their work. A typical all
target looks like that shown in Listing 3-15.

Listing 3-15. The All Target

<!-- === -->
<!-- Does it all -->
<!-- === -->

<target
 name="all"
 depends="compile,..."
 description="Generates, compiles, packages and deploys."
/>

Eclipse Integration
In Chapter 2 we learned how to get the Eclipse IDE installed and configured. Now that we have
an Ant buildfile it will be ideal if we can achieve harmony between the command line and the
IDE. Luckily for us, Eclipse ships with powerful Ant integration. Eclipse provides a great Ant
XML editor with syntax highlighting, code completion, flyover evaluation of Ant elements, as
well as immediate visual feedback about the validity of your buildfile.

For the TechConf application to work seamlessly, you can create an Ant Builder, which is
a facility provided by Eclipse's external tools framework for Ant integration. An Ant Builder can
be configured to run at specific times. For example, in my environment I configured the Ant
build to run when a manual build is invoked or when the project “Clean” option is selected.

Sam-Bodden_596-3 C03.fm Page 81 Wednesday, February 22, 2006 6:05 AM

82 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

To create an Ant builder, select Project ➤ Properties from the Eclipse menu (alternatively
you can right-click and select Properties or press Alt+Enter on the project’s top node in the
Navigator or Package Explorer). Next, select the Builders node as shown in Figure 3-9.

Figure 3-9. TechConf Eclipse project properties dialog

To create a new builder, click New in the Builders property dialog. Another dialog will
appear asking to select the type of builder to create, as shown in Figure 3-10.

Select the Ant Build option and click OK. You should now be presented with the Ant
builder property dialog as shown in Figure 3-11. Enter a suitable name for the builder in the
Name field such as “TechConf Ant Builder”. The dialog consists of several tabs of options. In
the Main tab you can select the Ant buildfile to be used by the builder. Under the Buildfile field
click Browse Workspace and find the build.xml file at the root of the techconf project.

Sam-Bodden_596-3 C03.fm Page 82 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 83

Figure 3-10. External tool builder type selection

Figure 3-11. Eclipse Ant builder properties dialog

Sam-Bodden_596-3 C03.fm Page 83 Wednesday, February 22, 2006 6:05 AM

84 C H A P T E R 3 ■ B U I LD I N G W I T H A N T

Under the Refresh tab, check the “Refresh resources upon completion” box, choose the
radio button labeled “The project containing the selected resource”, and check “Recursively
include sub-folders” as shown in Figure 3-12.

Figure 3-12. Eclipse Ant builder properties Refresh tab

Finally, under the Targets tab, you want the default target of the Ant build to be executed
after a “Clean” and during a “Manual Build” as shown in Figure 3-13.

Sam-Bodden_596-3 C03.fm Page 84 Wednesday, February 22, 2006 6:05 AM

C H A P T E R 3 ■ B U I L D I N G W I T H A N T 85

Figure 3-13. Eclipse Ant builder properties Targets tab

Summary
In this chapter you have learned the importance of having a solid build system in place and the
basics of the Ant build tool. We crafted a reusable Ant build to automate the building process
of the TechConf system by using several open source Ant tasks. The resulting base build reflects my
experience building many Java and J2EE applications. You can apply most of the ideas used in
this system to your existing and future projects. In the rest of the book we will continue to enhance
the build to create the J2EE components and artifacts that compose the sample application.

The power of a well-crafted build will become even more apparent when we combine the
building blocks learned in this chapter with the power of unit testing (Chapter 8) and contin-
uous integration (Chapter 9).

Sam-Bodden_596-3 C03.fm Page 85 Wednesday, February 22, 2006 6:05 AM

Sam-Bodden_596-3 C03.fm Page 86 Wednesday, February 22, 2006 6:05 AM

