CHAPTER 5

The Processing Pipeline

Spring MVC applications are highly configurable and extensible, and most of that power comes
from its software architecture. Inside Spring MVC, as is the case with the Spring Framework as a
whole, interfaces and abstractions are provided so that you can easily customize the behavior and
work flow of your web application. In this chapter we will examine the DispatcherServlet and the
processing pipeline that it controls in order to understand how a request is handled, as well as
how best to tap into the many extension points and life cycle events.

Processing Requests

A new HTTP request entering the system is passed to many different handlers, each playing its
own small part in the overall processing of the request. We will now look at the timeline of a
new request and the order in which the handlers are activated.

Request Work Flow

1. Discover the request’s Locale; expose for later usage.

2. If the request is a multipart request (for file uploads), the file upload data is exposed
for later processing.

3. Locate which request handler is responsible for this request (e.g., a Controller).

4. Locate any request interceptors for this request. Interceptors are like filters, but cus-
tomized for Spring MVC.

5. Call preHandle() methods on any interceptors, which may circumvent the normal pro-
cessing order (see “HandlerInterceptors” in Chapter 6).

6. Invoke the Controller.
7. Call postHandle() methods on any interceptors.

8. If there is any exception, handle it with a HandlerExceptionResolver.

9. If no exceptions were thrown, and the Controller returned a ModelAndView, then render
the view. When rendering the view, first resolve the view name to a View instance.

10. Call afterCompletion() methods on any interceptors.

77

78

CHAPTER 5 © THE PROCESSING PIPELINE

Functionality Overview

Asyou can see, the DispatcherServlet provides Spring MVC much more functionality than
Controllers and Views. The main theme here is pluggability, as each piece of functionality is
abstracted behind a convenient interface. We will visit each of these areas with more depth
later in this chapter, but for now let’s look at what Spring MVC is really capable of.

Locale Aware

Especially important with applications sensitive to internationalization (i18n) issues, Spring
MVC binds a Locale to all requests. Typically, the servlet container will set the Locale by look-
ing at HTTP headers sent by the client, but Spring MVC abstracts this process and allows for
the Locale to be retrieved and stored in arbitrary ways. By extending the LocaleResolver
interface, you can discover and set the Locale for each request based on your application’s
requirements. The Locale is then available during the entire request processing, including
view rendering.

Tip See section 14.4 of the HTTP RFC for more on the Accept-Language header: http://www.w3.org/
Protocols/rfc2616/rfc2616-sec14.htmlifsec14.4.

Multipart File Uploads

A standard functionality requirement for all web application frameworks, file uploads (also
known as multipart requests) are handled in a pluggable manner. Spring MVC integrates

with the two well-known Java file upload libraries, Jason Hunter’s COS library (http://

www. servlets.com/cos, from his book Java Servlet Programming (O'Reilly, 2001)) and Jakarta
Commons’ FileUpload library (http://jakarta.apache.org/commons/fileupload). If neither of
these libraries covers your application’s needs, you may extend the MultipartResolver inter-
face to implement your custom file upload logic.

Request HandlerAdapters

While all the examples in this book will cover Controllers as the primary way to handle
incoming requests, Spring MVC provides an extension point to integrate any request handling
device. The HandlerAdapter interface, an implementation of the adapter pattern, is provided
for third-party HTTP request handling framework integration.

Tip Learn more about the adapter pattern, which adapts one system’s API to be compatible with
another’s, inside the book Design Patterns: Elements of Reusable Object-Oriented Design (Gamma, Helm,
Johnson, and Vlissides; Addison Wesley, 1995).

Mapping Requests to Controllers

The HandlerMapping interface provides the abstraction for mapping requests to their handlers.
Spring MVC includes many implementations and can chain them together to create very

CHAPTER 5 ©" THE PROCESSING PIPELINE

flexible and partitioned mapping configurations. Typically a request is mapped to a handler
(Controller) via a URL, but other implementations could use cookies, request parameters, or
external factors such as time of day.

Intercepting Requests

Like servlet filters wrapping one or more servlets, HandlerInterceptors wrap request handlers
and provide explicit ways to execute common code across many handlers. HandlerInterceptors
provide useful life cycle methods, much more fine grained than a filter’s simple doFilter ()
method. An interceptor can run before a request handler runs, after a request handler finishes,
and after the view is rendered. Like servlet filters, you may wrap a single request handler with
multiple interceptors.

Custom Exception Handling

Spring MVC allows for more exact exception handling than the standard web.xml file through
its HandlerExceptionResolver interface. It’s still possible to simply map exceptions to error
pages, but with a HandlerExceptionResolver your exception mappings can be specific to the
request handler plus the exception thrown. It’s possible to chain these resolvers to create very
specific exception handling mappings.

View Mapping

The extremely flexible view mapping mechanism, through the ViewResolver interface, is one of
Spring MVC'’s most useful features. ViewResolvers are Locale aware, converting a logical view
name into a physical View instance. Complex web applications are not limited to a single view
technology; therefore Spring MVC allows for multiple, concurrent view rendering toolkits.

Pieces of the Puzzle

As you can see, the request is passed between quite a few different processing elements. While
this might look confusing, Spring MVC does a good job hiding this work flow from your code.
The work flow (see “Request Work Flow” earlier in this chapter) is encapsulated inside the
DispatcherServlet, which delegates to many different components providing for easy exten-
sion and customization.

DispatcherServlet

As mentioned in Chapter 4, the DispatcherServlet is the front controller of the web applica-
tion. It gets its name from the fact that it dispatches the request to many different components,
each an abstraction of the processing pipeline.

Declaration

Typically, you will only declare and configure this class. All the customization is done through
configuring different delegates instead of extending or modifying this class directly.

Caution The DispatcherServlet will be marked final in the near future, so avoid subclassing this class.

79

80 CHAPTER 5 © THE PROCESSING PIPELINE

You saw the declaration and configuration of this servlet in Chapter 4. To quickly review,
this servlet is configured in your application’s web.xml file, as shown in Listing 5-1.

Listing 5-1. DispatcherServlet in the web.xml

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

Of course, the URL pattern you choose for the servlet-mapping element is up to you.

Tip Many servlet containers will validate the web . xm1 against its DTD or schema file, so be sure to place
the elements in the right order and in the right place.

Initialization
When the DispatcherServlet initializes, it will search the WebApplicationContext for one or

more instances of the elements that make up the processing pipeline (such as ViewResolvers
or HandlerMappings).

Tip Remember that the WebApplicationContext is a special ApplicationContext implementation
that is aware of the servlet environment and the ServletConfig object.

For some of the component types such as ViewResolvers (see Table 5-1), the
DispatcherServlet can be configured to locate all instances of the same type. The servlet
will then chain the components together and order them, giving each the chance to handle
the request.

Note The DispatcherServlet uses the Ordered interface to sort many of its collections of delegates.
To order anything that implements the Ordered interface, simply give it a property named order. The lower
the number, the higher it will rank.

Usually, the first element to respond with a non-null value wins. This is very use-
ful if your application requires different ways to resolve view names, for instance. This

CHAPTER 5 ©" THE PROCESSING PIPELINE

technique also allows you to create modular configurations of request handlers and then
chain them together at runtime.

The DispatcherServlet searches for its components using the algorithm pictured in
Figure 5-1. The path through the algorithm is dependent on many factors, including if multi-
ple components of the same type can be detected and if there is a default strategy available if
none are found in the ApplicationContext. For many types of components, if you disable the
automatic detection by type, then the DispatcherServlet will fall back to searching for a single
component with a well-known bean name.

Table 5-1 lists the discovery rules and interfaces of the components managed by the
DispatcherServlet.

DispatcherServlet Init

[Able to detect all] [Only detect all]

[Unable to detect all]

[Configurable detect all]

[Detect all = false] [Detect all = true]

81

>(Detect multiple components of the same type)

[None found]

Detect single by name

[Found one or more]

[Component not found] @der

[Has default strategy]

Get default component

[No default strategy]

[Component located] \P
>@f

Figure 5-1. DispatcherServlet discovery of components algorithm

THE PROCESSING PIPELINE

CHAPTER 5

82

(39TAT9SIBYDYRdST(Q

ay) ur ApoaIrp pasn jou) 3sanbai siyy TIATOSIY2WaY |

ON ON 10J 9UIAY) B SUTAJOSAI 10 90BJIaIUT A30)1eNS IIATOSIYRUWY) *}9TAIDS * oM"Y IoMaweI 4 3utIds * 310

3sanbai1e Jo a7L207 IDATOSYITEI07

ON ON o1} Su1A[0Sa1 103 dorJIIUT A391ENS I9NTOSIYaTEIOT *}9TAIDS * gom* yIomaweI3utIds * 310

I9ATOS9Y}IedTI TN

ON ON speordn a[1j o[puey 0} 90BJIa)UT A391BNS I9ATOS9Y}IedTITNW *3xedTiTnw: gam- yxomawer}3uTds - 810

I9ATOS9YUOTIdadXJ I TpUEH

SOk SOk SMITA pue s1a[puey o) suondaoxa dejy I9ATOSayuoTIdadx3IaTpuey *}9TAIDS * oMy Iomawer3utIds * 310

IOATOSIYMITA

SOk SOk SOJUBISUI MIIA 0] Soweu MaIA sdey IOATOSIYMITA *}9TAIDS * oMy Iomawer3utIds * 310

}19TAI9SIDY2}edST(9} WO SId[puRy 193depyIaTpueH

ON SOk sa1dnooasp ‘urened 1a1depe Jo soue)suy auou *}9TAIDS * om* yIomaweI3utIds * 310

dutddezatpuey

SIk S (SISTTOIIUO) “89) s1aTpuey 0) s)sanbar sdejy dutddepzatpuey *}9TAIDS * gom* yIomawer3utIds * 310
¢liv 1933ed éaldniny

uej uleyg asodind awieN ueag }inejaq aWwiepN adelidiu|

aunjadig Su1ssaso.d ayj Jo saopfiajuf *1-G ajqelL

CHAPTER 5 ©" THE PROCESSING PIPELINE

During initialization, the DispatcherServlet will look for all implementations by type
of HandlerAdapters, HandlerMappings, HandlerExceptionResolvers, and ViewResolvers. How-
ever, you may turn off this behavior for all types but HandlerAdapter by setting to false the
detectAllHandlerMappings, detectAllHandlerExceptionResolvers, or detectAllViewResolvers
properties. To set one or more of these properties, you must use the web.xml where you ini-
tially declared the DispatcherServlet. Listing 5-2 shows an example of disabling the detection
of all ViewResolvers.

Note At the time this was written, there is no way to turn off automatic detection of all
HandlerAdapters.

Listing 5-2. Disable Detection of all View Resolvers

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<init-param>
<param-name>detectAllViewResolvers</param-name>
<param-value>false</param-value>
</init-param>
</servlet>

If you do disable the automatic discovery, you will then need to name at least one bean of
each type with the default bean name. Consult Table 5-1 for each type’s default bean name.

The DispatcherServlet is configured with default implementations for most of these inter-
faces. This means that if no implementations are found in the ApplicationContext (either by
name or by type), the DispatcherServlet will create and use the following implementations:

Caution There is no default implementation for MultipartResolver, HandlerExceptionResolver, or
ViewResolver.

* org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping
e org.springframework.web.servlet.mvc.SimpleControllerHandlerAdapter
* org.springframework.web.servlet.view.InternalResourceViewResolver
* org.springframework.web.servlet.i18n.AcceptHeaderLocaleResolver

e org.springframework.web.servlet.theme.FixedThemeResolver

Let’s now take a closer look at each element in the processing pipeline, starting with the
HandlerAdapter interface.

83

84

CHAPTER 5 " THE PROCESSING PIPELINE

HandlerAdapter

The org.springframework.web.servlet.HandlerAdapter is a system level interface, allowing
for low coupling between different request handlers and the DispatcherServlet. Using this

interface, the DispatcherServlet can interact with any type of request handler, as long as a

HandlerAdapter is configured.

Tip If your application consists of only Controllers, then you may safely ignore this section. Controllers
are supported by default, and no explicit configurations for HandlerAdapters are required. However, read on if
you are interested in integrating a third-party framework into Spring MVC.

Why not just require all request handlers to implement some well-known interface? The
DispatcherServlet is intended to work with any type of request handler, including third-party
frameworks. Integrating disparate software packages is often difficult because the source code
isn't available or is very difficult to change. The Adapter design pattern attempts to solve this
problem by adapting the third party’s interface to the client’s expected interface. The seminal
book Design Patterns (Gamma, Helm, Johnson, and Vlissides; Addison Wesley, 1995) defines
this pattern’s goal as follows: “Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't otherwise because of incompatible
interfaces.”

Spring’s HandlerAdapter achieves this adaptation by delegation. Listing 5-3 shows the
HandlerAdapter interface.

Listing 5-3. HandlerAdapter Interface

package org.springframework.web.servlet;
public interface HandlerAdapter {
boolean supports(Object handler);

ModelAndView handle(HttpServletRequest request, HttpServletResponse response,
Object handler) throws Exception;

long getlastModified(HttpServletRequest request, Object handler);

The DispatcherServlet will check whether the HandlerAdapter supports a handler type
with a call to supports(). If so, the DispatcherServlet will then ask the adapter to delegate the
request to the handler via the handle() method. Notice how this interface is provided the
handler instead of looking one up via the ApplicationContext.

If your application uses only Controllers, which nearly all Spring MVC applications
do, then you will never see this interface. It is intended, along with its default subclass
SimpleControllerHandlerAdapter, to be used by the framework internally. However, if

CHAPTER 5 " THE PROCESSING PIPELINE

you are intending to integrate an exotic web framework, you may use this class to integrate it
into the DispatcherServlet.

Listing 5-4 provides a simple example of an implementation of a HandlerAdapter for some
exotic web framework.

Listing 5-4. Example HandlerAdapter

public class ExoticFrameworkHandlerAdapter implements HandlerAdapter {

public boolean supports(Object handler) {
return (handler != null) &% (handler instanceof ExoticFramework);

}

public ModelAndView handle(HttpServletRequest req, HttpServletResponse res,
Object handler) throws Exception {
ExoticResult result = ((ExoticFramework)handler).executeRequest(req, res);
return adaptResult(result);

}

private ModelAndView adaptResult(ExoticResult result) {
ModelAndView mav = new ModelAndView();
mav.getModel().putAll(result.getObjectsToRender());
return mav;

}

public long getlastModified(HttpServletRequest req, Object handler) {
return -1; // exotic framework doesn't support this

}

Configuring the DispatcherServlet to use this HandlerAdapter is quite easy, as the
DispatcherServlet by default looks into the ApplicationContext for all HandlerAdapters. It
will find all adapters by their type, and it will order them, paying special attention to any
adapters that implement the org.springframework.core.Ordered interface.

Listing 5-5 contains the bean definition for the ExoticFrameworkHandlerAdapter.

Listing 5-5. ApplicationContext with ExoticFrameworkHandlerAdapter

<?xml version="1.0"?
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exoticHandlerAdapter"
class="com.apress.expertspringmvc.chap4.ExoticFrameworkHandlerAdapter"
/>
</beans>

85

86

CHAPTER 5 " THE PROCESSING PIPELINE

It does not matter what the name of the HandlerAdapter is, because the DispatcherServlet
will look for beans of type HandlerAdapter.

Note that by specifying any HandlerAdapter, the default SimpleControllerHandlerAdapter
will not be used. If your application requires two or more HandlerAdapters, you will need to
explicitly specify all HandlerAdapters, including the default.

Summary

The HandlerAdapter, an example of the Adapter design pattern, is a system-level interface to
promote easy integration between the DispatcherServlet and third-party frameworks. Unless
using third-party frameworks, this interface and its implementations are normally hidden
from the developer. The DispatcherServlet will also chain multiple adapters if found in the
ApplicationContext and will order them based on the Ordered interface.

HandlerMapping

No web application is complete without mapping its request handlers to URLs. As with all
things in Spring MVC, there is no one way to map a URL to a Controller. In fact, it’s very pos-
sible to create a mapping scheme and implementation that doesn't even rely on URLs at all.
However, because the provided implementations are all based on URL paths, we will now
review the default path matching rules.

Path Matching

Path matching in Spring MVC is much more flexible than a standard web.xml’s servlet map-
pings. The default strategy for path matching is implemented by org.springframework.util.
AntPathMatcher. As its name hints, path patterns are written using Apache Ant (http://ant.
apache.org) style paths. Ant style paths have three types of wildcards (listed in Table 5-2),
which can be combined to create many varied and flexible path patterns. See Table 5-3 for
pattern examples.

Table 5-2. Ant Wildcard Characters

Wildcard Description

? Matches a single character

* Matches zero or more characters
ok Matches zero or more directories

Table 5-3. Example Ant-Style Path Patterns

Path Description

/app/*.x Matches all . x files in the app directory

/app/p?ttern Matches /app/pattern and /app/pXttern, but not /app/pttern
/**/example Matches /app/example, /app/foo/example, and /example
/app/**/dir/file.* Matches /app/dir/file.jsp, /app/foo/dir/file.html,

/app/foo/bar/dir/file.pdf, and /app/dir/file.java
/¥*/* . jsp Matches any . jsp file

CHAPTER 5 " THE PROCESSING PIPELINE

Path Precedence

The ordering and precedence of the path patterns is not specified by any interface.

However, the default implementation, found in org. springframework.web.servlet.handler.
AbstractUrlHandlerMapping, will match a path based on the longest (most specific) matching
pattern.

For example, given a request URL of /app/dir/file. jsp and two path patterns of /**/*.jsp
and /app/dir/*.jsp, which path pattern will match? The later pattern, /app/dir/*. jsp, will
match because it is longer (has more characters) than /**/*.jsp. Note that this rule is not
specified in any high-level interface for matching paths to request handlers, but it is an imple-
mentation detail.

Mapping Strategies

The HandlerMapping interface (shown in Listing 5-6) doesn’t specify exactly how the mapping
of request to handler is to take place, leaving the possible strategies wide open.

Listing 5-6. HandlerMapping Interface

package org.springframework.web.servlet;

public interface HandlerMapping {
HandlerExecutionChain getHandler(HttpServletRequest request) throws Exception;

}

As you can see in Listing 5-6, a HandlerMapping returns not a HandlerAdapter, but a
HandlerExecutionChain. This object encapsulates the handler object along with all handler
interceptors for this request. The HandlerExecutionChain is a simple object and is used only
between the DispatcherServlet and implementations of HandlerMapping. If you are not imple-
menting your own custom HandlerMapping, then this object will be hidden from you.

Out of the box, Spring MVC provides three different mappers, all based on URLs. How-
ever, mapping is not tied to URLSs, so feel free to use other mechanisms such as session state to
decide on which request handler shall handle an incoming request.

BeanNameUrlHandlerMapping

The default strategy for mapping requests to handlers is the org. springframework.web.
servlet.handler.BeanNameUrlHandlerMapping class. This class treats any bean with a name or
alias that starts with the / character as a potential request handler. The bean name, or alias,
is then matched against incoming request URLs using Ant-style path matching. Listing 5-7
provides an example bean definition with a bean name containing a URL path.

Listing 5-7. A Controller Mapped by a Bean Name

<bean name="/home"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

87

CHAPTER 5 " THE PROCESSING PIPELINE

Caution You may not use a bean definition’s id attribute to specify URL paths, because the XML specifi-
cation forbids the / character in XML ids. You can, however, have both an id attribute and a name
attribute on a single bean definition.

Path Components

Now how does that mapping translate to a full URI used by a client? Many paths are at work
here, including the web application’s context path, the servlet’'s mapped path, and then this
Controller’s mapped path. How are they all combined and parsed when mapping a request
to a handler?

By default, the path provided in the bean definition is inside the servlet’s URL path. The
servlet, in this case, is the DispatcherServlet that is declared and configured in the web.xml.
For example, in Listing 5-8 we have mapped the DispatcherServlet to handle all requests for
/app/*.

Listing 5-8. Example DispatcherServlet Configuration

<servlet>
<servlet-name>spring</servlet-name>
<servlet-class>
org.springframework.web.servlet.DispatcherServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>spring</servlet-name>
<url-pattern>/app/*</url-pattern>
</servlet-mapping>

Therefore, to access the HomeController with a bean name of /home, a client must use the
following full URI: http://example.org/servletcontext/app/home. In this case, servletcontext
is the name of the servlet context this application is currently deployed to.

The default behavior, to be relative to the servlet mapping, is useful and preferable
because it is decoupled from the URL pattern used to map the DispatcherServlet (in this
case, /app/*). If the pattern changes, the bean name mappings do not need to change.

If you wish to write bean name mappings that include the servlet path mapping, you may
do so by setting alwaysUseFullPath to true on an instance of BeanNameUr1HandlerMapping. To
do this, simply declare an instance of BeanNameUr1HandlerMapping in your ApplicationContext.
See Listing 5-9.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Listing 5-9. Setting alwaysUseFullPath to True

<bean
class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
<property name="alwaysUseFullPath" value="true" />

</bean>

<bean name="/app/home"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

Multiple Mappings per Handler
You may also assign multiple mappings to a single handler. Simply separate each mapping
with one or more spaces inside the bean name attribute, as shown in Listing 5-10.

Listing 5-10. Multiple Mappings for a Single Handler

<bean name="/home /homepage /index"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

Because wildcards are supported, the example shown in Listing 5-10 could be shortened
to Listing 5-11.

Listing 5-11. Multiple Mappings with Wildcards

<bean name="/home* /index"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

Tip This convenient mapping technique is useful with MultiActionControllers, which are controllers
that handle multiple URIs with separate methods. For more information, see the section “MultiActionCon-
trollers” in Chapter 6.

Default Mapping

It is also possible to set a default handler, in the case that no other mapping can satisfy the
request. If you wish to designate a default handler, simply map that handler with /*, as shown
in Listing 5-12.

89

90

CHAPTER 5 © THE PROCESSING PIPELINE

Listing 5-12. Setting a Controller As the Default Handler

<bean name="/*"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />
</bean>

The order in which you define your beans and mappings does not matter to the
BeanNameUrlHandlerMapping. It attempts to find the best match at request time.

Match Algorithm

As you can see, there are many different strategies for mapping a request handler with a URL
path. The AbstractUrlHandlerMapping class uses the following algorithm when performing a
match.

1. Attempt an exact match. If found, exit from search.
2. Search all registered paths for a match. The most specific (longest) path pattern will win.

3. If no matches are found, use the default mapping (/*) if present.

BeanNameUrlHandlerMapping Shortcomings

While it is very convenient, there are shortcomings with BeanNameUr1HandlerMapping. This
implementation of HandlerMapping is not able to map to prototype beans. In other words,
all request handlers must be singletons when using BeanNameUr1HandlerMapping. Normally,
Controllers are built as singletons, so this doesn’t become an issue. However, as we'll see
in the chapter covering Controllers, there are a few types of controllers that are indeed

prototypes.

Note Prototype beans are non-singleton beans. A new bean instance is created for every call to getBean()
on the ApplicationContext. For more information, consult Pro Spring.

The BeanNameUr1lHandlerMapping has another problem when your application begins to
integrate interceptors. Because there is no explicit binding between this handler mapping and
the beans it is mapping, it is impossible to create complex relationships between controllers
and interceptors. We will cover interceptors in detail in Chapter 6.

If more complex handler mapping requirements arise, you may use the
SimpleUrlHandlerMapping along with BeanNameUr1lHandlerMapping.

SimpleUrliHandlerMapping

Created as an alternative to the simple BeanNameUr1HandlerMapping, the
SimpleUrlHandlerMapping addresses the former’s two shortcomings. It is able to map to
prototype request handlers, and it allows you to create complex mappings between handlers
and interceptors.

CHAPTER 5 ©" THE PROCESSING PIPELINE

The path matching algorithms default to the same mechanism as
BeanNameUr1lHandlerMapping, so the patterns used to map URLs to request handlers remains
the same

To use a SimpleUrlHandlerMapping, simply declare it inside your ApplicationContext.
The DispatcherServlet will recognize it by type, and it will not create an instance of
BeanNameUr1HandlerMapping. This means that if you wish to use both mapping strategies,
you must declare both in your ApplicationContext.

Tip The DispatcherServlet will chain handler mapping strategies, allowing you to mix and match as
you see fit. Handler mappings also implement the Ordered interface.

To begin, we will port the previous mapping to use a SimpleUrlHandlerMapping, as shown
in Listing 5-13.

Listing 5-13. SimpleUrlHandlerMapping Example

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="urlMap">
<map>
<entry key="/home" value-ref="homeController" />
</map>
</property>
</bean>

<bean id="homeController"
class="com.apress.expertspringmvc.flight.web.HomeController">
<property name="flightService" ref="flightService" />

</bean>

Unfortunately, it is a bit more verbose when mapping two different URL patterns to the
same request handler. You must create two different mappings, as shown in Listing 5-14.

Listing 5-14. Two Mappings for One Controller with SimpleUrlHandlerMapping

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="urlMap">
<map>
<entry key="/home*" value-ref="homeController" />
<entry key="/index" value-ref="homeController" />
</map>
</property>
</bean>

91

92

CHAPTER 5 " THE PROCESSING PIPELINE

Asyou can see, we are mapping a URL directly to a request handler instance (in this case,
the singleton homeController). If your request handlers are prototypes, you may instead use
the mappings property of SimpleUrlHandlerMapping. Using this property, the mapping is
between a URL and a bean name (as a String), thus decoupling the mapping from the actual
bean instance. Using the mappings property, you are able to map to prototype request han-
dlers, as they are looked up every time a request enters the system. See Listing 5-15.

Listing 5-15. Mapping URLs to Bean Names for Use with Prototype Handlers

<bean
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="mappings">
<props>
<prop key="/home">homeController</prop>
</props>
</property>
</bean>

The SimpleUrlHandlerMapping maps default handlers in the same way as the
BeanNameUr1HandlerMapping. To set a request handler as the default handler, simply map
it to the path /*.

One of the main reasons to use SimpleUrlHandlerMapping is to take advantage of intercep-
tors. While you can configure interceptors with BeanNameUr1HandlerMapping, it is very difficult
to create different combinations of handlers and interceptors. Using SimpleUrlHandlerMapping
makes it easy to create custom handler chains per request handler. We will visit interceptors in
Chapter 6.

Custom Mapping Strategy

The power and flexibility of Spring MVC’s request mapping really shines when a non-URL-based
mapping strategy is required. Because the HandlerMapping interface doesn't require a URL to be
involved in the mapping, the possibilities are quite open.

To illustrate a mapping strategy not based on URLSs, let’s consider mapping requests to
handlers based solely on request parameters.

To begin with, we will subclass AbstractHandlerMapping to take advantage of ordering, the
ability to set a default handler, and other life cycle callbacks. The new
RequestParameterHandlerMapping class (Listing 5-16) will map request parameter values from
a specified parameter name to handler instances.

Listing 5-16. RequestParameterHandlerMapping

public class RequestParameterHandlerMapping extends AbstractHandlerMapping
implements InitializingBean {

public final static String DEFAULT_PARAM NAME = "handler";
private String parameterName = DEFAULT_PARAM NAME;

private final Map<String, Object> paramMappings =
new HashMap<String, Object>();

CHAPTER 5 " THE PROCESSING PIPELINE

public final void setParamMappings(Map<String, Object> paramMappings) {
this.paramMappings.putAll(paramMappings);
}

public final void setParameterName(String parameterName) {
this.parameterName = parameterName;

}

@verride
protected Object getHandlerInternal(HttpServletRequest request)
throws Exception {
String parameterValue = request.getParameter(parameterName);
return paramMappings.get(parameterValue);

}

public void afterPropertiesSet() throws Exception {
Assert.hasText (parameterName,
"parameterName must not be null or blank");

Because this class extends AbstractHandlerMapping, if no handler exists for the request
parameter, then the AbstractHandlerMapping will attempt to load the default handler, which
can be set via the XML bean definition. See Listing 5-17.

Listing 5-17. RequestParameterHandlerMapping XML Definition

<bean
class="com.apress.expertspringmvc.chap5.RequestParameterHandlerMapping">
<property name="defaultHandler" ref="defaultController" />
<property name="parameterName" value="action" />
<property name="paramMappings">
<map>
<entry key="load" value-ref="loadController" />
<entry key="save" value-ref="saveController" />
</map>
</property>
</bean>

With this configuration, the URL http://example.org/springapp/app?action=1oad would
be routed to the loadController. Remember that /app is just the DispatcherServlet mapping
and not specific to any controller or request handler.

93

94

CHAPTER 5 " THE PROCESSING PIPELINE

Summary

Mapping incoming requests to request handlers is very flexible in Spring MVC. Out of the box,
URL mapping methods are provided, but it’s very easy to create mapping strategies that use
any information available in the HttpServletRequest.

The BeanNameUr1lHandlerMapping is the default mapping strategy and is used if no other
mapping strategies are defined in the ApplicationContext. This strategy, while simple and
easy, does have a few limitations. If you require complex interceptor mapping or the use of
prototype beans for handlers, you will need to use the SimpleUrlHandlerMapping.

Handler mapping strategies can be ordered using the Ordered interface, allowing you to
utilize multiple methods to resolve incoming requests to handlers.

HandlerExceptionResolver

When an exception occurs from handling a request, Spring MVC can catch the exception for
you and route the request to a particular error page or other exception handling code. The
HandlerExceptionResolver will handle any exception thrown inside the HandlerInterceptors,
the Controllers, or the View rendering. Typically, an exception is mapped to a particular error
page, but it is easy to extend this functionality for your particular error handling needs.

By using a HandlerExceptionResolver, shown in Listing 5-18, it is easy to centralize error
handling and configuration. Otherwise, each controller and interceptor would have to contain
duplicate code and logic for each exception that could be thrown.

Listing 5-18. HandlerExceptionResolver Interface

package org.springframework.web.servlet;
public interface HandlerExceptionResolver {

ModelAndView resolveException(
HttpServletRequest request, HttpServletResponse response,
Object handler, Exception ex);

The DispatcherServlet is configured by default to look for all beans in its
ApplicationContext of type HandlerExceptionResolver. If it finds one or more, it will order
them using the org.springframework.core.Ordered interface if the bean implements it. If
no HandlerExceptionResolver is found, no exception resolving will take place. Of course, any
mapped exceptions you have specified in the web.xml will still apply if the exception isn't han-
dled by a HandlerExceptionResolver.

You may also tell the DispatcherServlet to use only a single exception resolver,
ignoring all others that may be present in the ApplicationContext. Simply set the
detectAllHandlerExceptionResolvers property of the DispatcherServlet to false,
and then define a single bean with the name handlerExceptionResolver.

CHAPTER 5 ©" THE PROCESSING PIPELINE

The default implementation of this interface is the org. springframework.web.servlet.
handler.SimpleMappingExceptionResolver. This class maps exceptions to view names by the
exception class name or a substring of the class name. This implementation can be configured
for individual Controllers or for globally for all handlers. The example configuration in
Listing 5-19 illustrates these options.

Listing 5-19. Example SimpleMappingExceptionResolver ApplicationContext

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ApplicationException">appErrorView</prop>
<prop key="SomeOtherException">someErrorView</prop>
<prop key="java.lang.Exception">genericErrorView</prop>
</props>
</property>
</bean>
</beans>

The exceptionMappings property is a java.util.Properties with substrings (explained
later in this section) of exception class names as keys and View names as values. Notice how
you can specify a fully qualified class name or only part of a class name for the key. The error
View name will be ultimately resolved by a ViewResolver.

Listing 5-19 does not specify a particular request handler, so it will be applied to any
mapped exception by any handler. However, you can bind an exception resolver to specific
handlers to create very specific mappings. Use this technique when you require displaying dif-
ferent error pages for the same exception thrown by two different controllers.

Caution Mapping exceptions to individual handlers only works if the handler is a singleton. Unless you
are using ThrowawayControllers, this should not be an issue because normally Controllers are single-
tons. However, it is always possible to run any controller as a prototype.

Listing 5-20 provides two examples, one for mapping an exception resolver to a single
request handler, and the other for mapping to multiple request handlers.
Listing 5-20. Two Exception Resolvers for Specific Handlers

<?xml version="1.0"?>
<IDOCTYPE beans PUBLIC

95

96 CHAPTER 5 " THE PROCESSING PIPELINE

"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMappingForSingleController"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="mappedHandlers">
<set>
<ref bean="someController" />
</set>
</property>
<property name="exceptionMappings">
<props>
<prop key="ApplicationException">appErrorView</prop>
<prop key="SomeOtherException">someErrorView</prop>
<prop key="java.lang.Exception">genericErrorView</prop>
</props>
</property>
</bean>

<bean id="exceptionMappingForMultipleControllers"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="mappedHandlers">
<set>
<ref bean="anotherController" />
<ref bean="mainController" />
</set>
</property>
<property name="exceptionMappings">
<props>
<prop key="java.lang.Exception">differentErrorView</prop>
</props>
</property>
</bean>
</beans>

Two exception resolvers are defined in the ApplicationContext in Listing 5-20. Each
defines a set of mapped handlers that will define when the exception resolver is applied. If an
exception resolver encounters an exception from a handler it is not mapped to, it will simply
ignore the exception. Note that this behavior is only for exception resolvers that are mapped
to at least one handler.

You can control the order in which the DispatcherServlet will call each exception
resolver. To do this, simply add a property named order and set it to a positive integer. Any
exception resolvers not specified with an order will be randomly placed at the end of the
ordered list.

Listing 5-21 provides an example of setting an order priority.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-21. Example of Ordered Exception Resolver

<bean id="anotherExceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="order" value="1" />
<property name="mappedHandlers">
<set>

Pattern Matching Rules

The rules for pattern matching of the exception names might not be obvious, so we cover
them here. There are two rules to be aware of.

Rule Number One
The first rule to be aware of is that the shorter the pattern string, the higher priority it will
receive. For example, the mapping Excep will match any exception whose class name contains
that substring (in other words, nearly every exception). Even if you have another mapping
with the exact class name, the shorter Excep mapping will resolve first. Listings 5-22 through
5-24 illustrate this.

Listing 5-22 contains the two exception classes we’ll use for this example. It is a simple
class hierarchy, with ExceptionChild subclassing ExceptionParent.

Listing 5-22. Example Exception Classes

public class ExceptionParent extends Exception { }
public class ExceptionChild extends ExceptionParent { }

Listing 5-23 illustrates an exception resolver with two mappings. The first is a very general
mapping, handling any exception whose name includes the substring Excep. The second map-
ping is an explicit mapping for an exception whose names includes the fuller ExceptionChild.

Listing 5-23. Exception Mapping Example

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="Excep">exceptionPage</prop>
<prop key="ExceptionChild">moreSpecificPage</prop>
</props>
</property>
</bean>
</beans>

97

98

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-24 contains sample code that programmatically illustrates what view name is
resolved when an ExceptionChild exception is thrown.

Listing 5-24. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild());
assertEquals("exceptionPage", mav.getViewName()); // true!

Notice how, in Listing 5-24, the SimpleMappingExceptionResolver returned the view name
exceptionPage, even though there was a rule to map an ExceptionChild exception.

Rule Number Two

The second rule comes in two parts. Exception mappings are aware of their superclasses, so
a mapping for a class will resolve to that class and all of its subclasses. Given the exception
classes from the previous example, the code in Listing 5-25 illustrates this rule.

Listing 5-25. Exception Resolver Configuration for ExceptionParent

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ExceptionParent">parentPage</prop>
</props>
</property>
</bean>
</beans>

Listing 5-26 simply shows that even those an ExceptionChild was thrown, the mapping
for ExceptionParent resolves.

Listing 5-26. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild()); // throwing child subclass
assertEquals("parentPage", mav.getViewName()); // true!

Now, here is the second part of the rule. If you specify both the parent exception and the
child exception, then the child exception will resolve. So, even though the resolving logic will
scan the exception class hierarchy for a match, it will prefer a match lower in the tree.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-27 contains a simple mapping with both ExceptionParent and ExceptionChild.
Which one will resolve is based on which exception is thrown. Listing 5-28 shows that when
throwing ExceptionChild, the view name childPage resolves because ExceptionChild is more
specific than ExceptionParent.

Listing 5-27. Exception Resolver Mapping Both ExceptionParent and ExceptionChild

<?xml version="1.0"?>
<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="exceptionMapping"
class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver">
<property name="exceptionMappings">
<props>
<prop key="ExceptionParent">parentPage</prop>
<prop key="ExceptionChild">childPage</prop>
</props>
</property>
</bean>
</beans>

Listing 5-28. Test Case

ModelAndView mav = resolver.resolveException(req, res, handler,
new ExceptionChild()); // throwing child subclass
assertkEquals("childPage", mav.getViewName()); // true!

Of course, if you configured that last exception resolver with a mapping of Exce, then that
would take precedence over either previous mapping.

Summary

To summarize, the HandlerExceptionResolver interface provides a mechanism to centralize
exception handling and remove it from the primary work flow logic. You can configure multi-
ple exception resolvers in an ApplicationContext, and they can be ordered by priority.

Spring provides a single implementation of this interface called
SimpleMappingExceptionResolver that maps exception names to error pages. This implemen-
tation can match full class names or substrings, will prefer a shorter name, and is aware of the
class hierarchy when attempting to match the exception.

The DispatcherServlet is aware of all exception resolvers in the ApplicationContext
and can order them based on priority. You can change this behavior by setting the
DispatcherServlet’s detectAllHandlerExceptionResolvers property to false, in which case
you will need to define a single exception resolver with the name handlerExceptionResolver.

99

100

CHAPTER 5 " THE PROCESSING PIPELINE

LocaleResolver

The org.springframework.web.servlet.LocaleResolver is a Strategy interface for retrieving
and setting a java.util.Locale during a web request. The Gang of Four, authors of Design
Patterns (Addison Wesley, 1995), write this of the Strategy pattern: “Define a family of algo-
rithms, encapsulate each one, and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.”

Tip The Strategy pattern is heavily implemented within the Spring Framework. One of the reasons this
pattern is preferred is because class inheritance is generally avoided as a means to share behavior. The
Strategy pattern allows you to share behavior much more easily.

The LocaleResolver defines the contract of Locale resolution and modification. It leaves
the details of these methods up to implementations. Most importantly, the implementations
can be exchanged freely without affecting the system.

The Locale is mostly used when the application needs to display translated text for the
user interface, although it is also useful for formatting numbers and currencies. It assists the
general internationalization (i18n) features of the Java platform (http://java.sun.com/docs/
books/tutorial/i18n) and Spring MVC for providing language and culture independent appli-
cations. You will see many examples of this in Chapter 7, which covers user interface options.
For now, it’'s important to know that the Locale is set per user and intended to be accessible to
both the work flow and the user interface.

By default, generic Java web applications will respect the Accept-Language (http://www.w3.
org/Protocols/rfc2616/rfc2616-seci4.html#tsec14.4) header of a HTTP request. The servlet
container will map the languages specified in the header into Locale objects and set the pri-
mary choice as the chosen Locale.

Tip For more information on how Java web applications handle this header, see section 4.8 of the
Servlet 2.4 Specification (http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html)
or HttpServletRequest’s getLocale() and getlLocales() methods.

Many applications, however, require more control when selecting the user’s Locale or
modifying it. This strategy interface allows you to customize where the Locale information
comes from and how to change it. First, let’s look at the LocaleResolver interface, shown in
Listing 5-29 and Figure 5-2.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Listing 5-29. LocaleResolver Interface

package org.springframework.web.servlet;

public interface LocaleResolver {
Locale resolvelocale(HttpServletRequest request);

void setlocale(HttpServletRequest request, HttpServletResponse response,
Locale locale);

Tip To clear out the locale using this strategy interface, simply set the 1ocale property of the
LocaleResolver implementation to null.

<<interface>>
LocaleResolver
AN AN
AcceptHeaderLocaleResolver CookieLocaleResolver
FixedLocaleResolver SessionLocaleResolver

Figure 5-2. LocaleResolver class hierarchy

Once you have chosen an appropriate LocaleResolver, you need to register it with
the DispatcherServlet by creating a bean definition with the name localeResolver in your
ApplicationContext. The DispatcherServlet will look for that name before falling back to its
default implementation, the AcceptHeaderLocaleResolver.

The LocaleResolver interface defines how to query and set a Locale, but it does not define
when or how you should use it. Spring MVC’s i18n infrastructure (discussed in Chapters 7 and
9) will read out the Locale when performing translations and culture-specific formatting. This
work is typically done under the hood, so your job as a developer is to set the locale via the
LocaleResolver.

101

102

CHAPTER 5 " THE PROCESSING PIPELINE

This action is often a manual operation, helped tremendously by the chosen strategy,
because many users and clients cannot be trusted to set their browser’s language preferences
correctly. In other words, you probably can’t trust that the Accept-Language HTTP header is
correctly configured all the time.

Note The DispatcherServlet does not support chaining LocaleResolvers, so you are allowed to
choose only one implementation.

Setting a Locale

Your application’s design will dictate when you should call setLocale, normally in response to
some user action. For example, the application might provide a page with language choices,
and the user will be able to choose one and submit it back to the server.

In one possible implementation, you would create a Controller that delegates to a
LocaleResolver in order to store the user’s chosen Locale. Listings 5-30 and 5-31 show you
how to do this.

Listing 5-30. HTML Form, Choosing Language

<form action="setlLocale" method="post">
<p>
Language: <select name="language">
<option value="en">English</option>
<option value="de">German</option>

</select>
</p>
<p>
<input type="submit" />
</p>
</form>

Listing 5-31. SetLocaleController

public class SetlLocaleController extends AbstractController {

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
Locale locale = StringUtils.parselocaleString(language);

// How did we get a reference to the localeResolver?
// See Listings 5-32 and 5-34 for the two strategies
// for obtaining a reference

// to this localeResolver instance

CHAPTER 5 ©" THE PROCESSING PIPELINE

localeResolver.setlocale(req, res, locale);

return new ModelAndView("setlocaleSuccess");

}

Tip Spring MVC provides a LocaleChangeInterceptor that performs the exact same operation as the
above example Controller. This interceptor is recommended, especially if many forms all have the same
locale request parameters.

Retrieving a LocaleResolver

Clearly you may use the LocaleResolver to set the locale, but what is the best way to obtain a
reference to the localeResolver from inside the Controller? There are at least two ways to get
the LocaleResolver object, each with different advantages. Which way you choose will be up
to you.

The most obvious way to get the LocaleResolver is to rely on Dependency Injection.
The LocaleResolver instance is a bean in the ApplicationContext like all other objects in
the system, so Spring will be happy to set this object into your Controller via DI for you. The
DispatcherServlet will recognize only one LocaleResolver in the ApplicationContext (it won't
chain multiple resolvers of this type), so typically there will be only one instance in the appli-
cation. If you have defined a LocaleResolver in the context, consider altering your Controller
to allow for injection of the resource, as shown in Listings 5-32 and 5-33.

Listing 5-32. Adding a Setter Method for Dependency Injection

private LocaleResolver localeResolver;

public void setlLocaleResolver(LocaleResolver localeResolver) {
this.localeResolver = localeResolver;

}

Listing 5-33. SetLocaleController ApplicationContext

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="localeResolver"
class="org.springframework.web.servlet.i18n.SessionLocaleResolver" />

103

104

CHAPTER 5 " THE PROCESSING PIPELINE

<bean id="setlocaleController"
class="com.apress.expertspringmvc.chap4.SetLocaleController">
<property name="localeResolver" ref="localeResolver" />
</bean>

</beans>

There are situations where simple Dependency Injection won't work, such as when Spring
doesn’'t manage the life cycle of the handler object. For instance, the HandlerAdapter interface
was created to allow any request handler to be easily integrated into the DispatcherServlet. In
cases such as these, the DispatcherServlet places some of the framework objects, such as the
LocaleResolver, into the servlet request as request scoped attributes. This allows for any
object handling the HttpServlerRequest to be able to access the LocaleResolver.

To conveniently access the resolver without Dependency Injection, use the org.
springframework.web.servlet.support.RequestContextUtils class and its helpful
getlLocaleResolver () method. This utility method encapsulates the knowledge of where
the LocaleResolver is placed in the request scope, making retrieval safer for the client. The
Controller can be modified as shown in Listing 5-34.

Listing 5-34. RequestContextUtils.getLocaleResolver Example

@0verride
protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
String language = req.getParameter("language");
Locale locale = StringUtils.parselocaleString(language);
LocaleResolver localeResolver = RequestContextUtils.getlocaleResolver(req);
localeResolver.setlocale(req, res, locale);
return new ModelAndView("setlLocaleSuccess");

This class no longer needs the setLocaleResolver() method, as Dependency Injection is
no longer used.

Which method should you use? Using Dependency Injection is always easier to test than
using RequestContextUtils, so the DI solution is preferable.

You have now seen the LocaleResolver interface and the different options of interacting
with it. How the Locale, once it is set, affects the i18n features will be covered in Chapters 7
and 9. It’s time now to look in detail at the different implementations of LocaleResolver.

AcceptHeaderLocaleResolver

The DispatcherServlet will default to the org.springframework.web.servlet.i18n.
AcceptHeaderLocaleResolver class if no other LocaleResolvers are specified in the
ApplicationContext. This implementation simply delegates to the HttpServletRequest’s
getlocale() method, thus obeying the Accept-Language HTTP header. Because the
header originates from the client, there is no way to change the Locale, so the
AcceptHeaderlLocaleResolver will throw an exception if setLocale() is called.

There is no need to specify this class in your ApplicationContext, as the DispatcherServlet
will create it if no implementations can be found.

CHAPTER 5 ©" THE PROCESSING PIPELINE

FixedLocaleResolver

The simplest implementation is the FixedLocaleResolver. This class allows you to define the

Locale in the ApplicationContext, and because the Locale choice is fixed, it’s one size fits all

with this Strategy. This is a useful and easy way to override and ignore any client’s language

choice, for example. Simply define an instance of this class in your ApplicationContext with

the bean name localeResolver, and the DispatcherServlet will recognize it automatically.
Listing 5-35 contains an example configuration of a FixedLocaleResolver.

Listing 5-35. Sample FixedLocaleResolver

<?xml version="1.0"?>

<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="fixedlLocaleResolver"
class="org.springframework.web.servlet.i18n.FixedLocaleResolver">
<property name="defaultlLocale" value="en" />

</bean>

</beans>

Using the configuration from Listing 5-35, no matter what the client advertises via its
headers, the framework will force the locale to be en.

You might notice that the defaultLocale property is of type java.util.Locale, yet all we
specified in the above configuration is the string en. Spring will use its LocaleEditor property
editor to convert from the string to a full Locale instance. LocaleEditor is one of the many
property editors that Spring will create and register by default.

Tip Spring’s use of PropertyEditors from the Java Bean specification is quite extensive. Take the time
to learn what editors Spring provides out of the box (a subset is covered in Chapter 6).

If your applications require providing each user their own unique experience, the
FixedLocaleResolver falls quite short. With the default class AcceptHeaderLocaleResolver
(while it does provide a personalized experience) it’s impossible for the application to change
its value. There are two other implementations of LocaleResolver that allow the application to
change the Locale for the user, the CookielocaleResolver and the SessionLocaleResolver.
Both of these implementations support changing and storing the Locale across requests.

105

106

CHAPTER 5 © THE PROCESSING PIPELINE

CookieLocaleResolver

The CookielocaleResolver sets and retrieves the Locale object via a browser cookie. This strat-
egy is useful when the application does not support sessions and the state must be kept client
side.

Simply declare this class in your ApplicationContext to use it. Note that you can configure
the name of the cookie if you choose, but the class provides a sensible default. If you wish to
clear the Locale cookie, simply call setLocale() and pass in a null locale.

Listing 5-36 contains a sample bean definition for a CookielLocaleResolver.

Listing 5-36. CookieLocaleResolver Bean Definition

<?xml version="1.0"?>

<!DOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="cookielocaleResolver"
class="org.springframework.web.servlet.i18n.CookielocaleResolver" />

</beans>

Note If there is no Locale cookie present, this class will fall back to ServletRequest’s getLocale()
method. The getlLocale() method returns the client’s preferred Locale, as dictated by the Accept-Language
HTTP header. If the client did not specify an Accept-Language header, the method returns the default Locale of
the server.

SessionLocaleResolver

The SessionLocaleResolver stores the user’s Locale inside the HttpSession object, and it sup-
ports both retrieval and modification. It offers a nice alternative to storing the locale state in a
cookie. As with the CookielocaleResolver, if no Locale is found in the session, this class will
fall back to the getLocale() method of HttpServletRequest.

This implementation (see Listing 5-37) is as easy to declare as the CookielocaleResolver.

Listing 5-37. SessionLocaleResolver Bean

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

CHAPTER 5 ©" THE PROCESSING PIPELINE

<bean id="sessionlLocaleResolver"
class="org.springframework.web.servlet.i18n.SessionLocaleResolver" />

</beans>

Summary

So how do you choose which locale management strategy to use? It all depends on what your
application requirements are, and as usual, Spring doesn’t force one decision for you. In fact, if
your needs aren’t covered by the included strategy implementations, the LocaleResolver inter-
face is simple enough to create a customization if required.

Tip Never feel constrained by the provided solutions and implementations. More often than not, there’s an
interface or abstract class for easy customization.

If your application doesn't allow your users to change their Locale, but you do want to
acknowledge their browser’s defaults, then stick with the default AcceptHeaderLocaleResolver.
This strategy emulates the Servlet specification’s default behavior and requires no configura-
tion. It’s also the option of least surprise, as it performs as most people would expect.

If you need to force a particular Locale and it can never be changed, then
FixedLocaleResolver is the one for you. This class is very simple to set up, but is quite limiting.

When your application requires Locales to be changed by the user from inside the web
application, then the CookielocaleResolver and the SessionLocaleResolver are your two
choices. If your application is already using sessions, then the SessionlLocaleResolver is a logi-
cal choice. However, if you require the Locale choice to persist longer than the session, then
the CookielocaleResolver is your only choice. There is no clear winner here, so choose the
option that best fits your situation.

MultipartResolver

Handling file uploads is a standard feature of web frameworks, and Spring MVC'’s
org.springframework.web.multipart.MultipartResolver provides the strategy interface
for this functionality. Like many other features, Spring doesn’t reinvent the wheel when it
comes to file upload handling. Out of the box, Spring provides two implementations of
MultipartResolver, one for Jakarta Commons’ FileUpload (http://jakarta.apache.org/
commons/fileupload) and one for Jason Hunter’s COS (http://www.servlets.com/cos).

Tip COS stands for com.oreilly.servlet, as the library was originally written for Jason Hunter’s Java
Serlvet Programming (0’Reilly, 2001).

107

108

CHAPTER 5 © THE PROCESSING PIPELINE

HTTP file uploading, or “Form-based File Upload in HTML,” is defined in RFC 1867
(http://www.ietf.org/rfc/rfc1867.txt). By creating an HTML input field of type="file" and
setting the form’s enctype="multipart/form-data", the browser can send a text or binary file to
the server as part of a HTTP POST request.

The DispatcherServlet will look for a single bean in the ApplicationContext with the
name multipartResolver. If one is found, it will pass each incoming request to the resolver
in order to wrap the HttpServletRequest with a subclass that can expose the file upload. If a
multipart resolver is not located, then no multipart file handling will be available. Note that
the DispatcherServlet does not chain MultipartResolvers.

Unlike previous resolvers such as LocaleResolver, client code is never intended to
interact with this interface directly. The DispatcherServlet manages the work flow of
the MultipartResolver, and the client code will simply cast the request object to an
org.springframework.web.multipart.MultipartHttpServletRequest wrapper object in
order to get the uploaded file(s).

Listing 5-38 contains the MultipartResolver interface.

Listing 5-38. MultipartResolver Interface

package org.springframework.web.multipart;
public interface MultipartResolver {
boolean isMultipart(HttpServletRequest request);

MultipartHttpServletRequest resolveMultipart(HttpServletRequest request)
throws MultipartException;

void cleanupMultipart(MultipartHttpServletRequest request);

The isMultipart() method is called by the DispatcherServlet in order to determine if
the incoming request is a multipart request. The implementation will most likely check the
Content-Type of the request for a value of multipart/form-data, but this can be only part of
the heuristics.

If the request does indeed contain uploaded files, the resolveMultipart() method is
called, returning the MultipartHttpServletRequest (see Listing 5-39). This wrapping object
adds methods to retrieve the uploaded files.

Caution The MultipartResolver will only wrap requests with a MultipartHttpServletRequest if
the request actually contains file uploads.

CHAPTER 5 " THE PROCESSING PIPELINE

Listing 5-39. MultipartHttpServletRequest Interface

package org.springframework.web.multipart;

public interface MultipartHttpServletRequest extends HttpServletRequest {
Iterator getFileNames();
MultipartFile getFile(String name);

Map getFileMap();

Before the end of the request life cycle and after the handling code has had a chance to
work with the uploaded files, the DispatcherServlet will then call cleanupMultipart(). This
removes any state left behind by the file upload implementation code, such as temporary files
on the file system. Therefore, it is important that any request handling code should work with
the uploaded files before request processing finishes.

So which library should you use, Commons’ FileUpload or COS? The choice is up to you,
as both have been around for years and are considered stable. However, keep in mind that
Commons’ FileUpload will probably receive more maintenance in the future. Of course, if
neither provides the features you require, you may implement a new MultipartResolver.

Example

Working with file uploads is actually quite simple, as most of the mechanisms are handled by
the DispatcherServlet and thus hidden from request handling code. For an example, we will
register a Jakarta Commons FileUpload MultipartResolver and create a Controller that saves
uploaded files to a temporary directory.

Listing 5-40 contains the configuration required for the CommonsMultipartResolver.

Listing 5-40. MultipartResolver ApplicationContext

<?xml version="1.0"?>

<IDOCTYPE beans PUBLIC
"-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<bean id="multipartResolver"
class="org.springframework.web.multipart.commons.CommonsMultipartResolver">
<property name="maxUploadSize" value="2000000" />

</bean>

<bean name="/handleUpload"
class="com.apress.expertspringmvc.chap4.HandleUploadController">
<property name="tempDirectory" value="/tmp" />

109

110 CHAPTER 5 " THE PROCESSING PIPELINE

</bean>

</beans>

Note that we declared the multipart resolver in the same ApplicationContext as our
Controller. We recommend grouping all web-related beans in the same context.
Next, we create the form for the file upload, as shown in Listing 5-41.

Tip It's very important to set the enctype attribute of the <form> element to multipart/form-data.

Listing 5-41. HTML File Upload Form

<?xml version="1.0" encoding="IS0-8859-1" ?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=IS0-8859-1" />

<title>File Upload Form</title>

</head>

<body>

<form action="spring/handleUpload" method="post" enctype="multipart/form-data">
File: <input type="file" name="uploaded" />
<input type="submit" />

</formy>
</body>
</html>

The Controller that handles the request is shown in Listing 5-42. Notice how it must cast
the request object to a MultipartHttpServletRequest before extracting the file. The utility class
FileCopyUtils, provided by Spring, contains convenience methods such as copying an input
stream to an output stream.

Listing 5-42. File Upload Controller

public class HandleUploadController extends AbstractController
implements InitializingBean {

private File destinationDir;

public void setDestinationDir(File destinationDir) {
this.destinationDir = destinationDir;

}

CHAPTER 5 " THE PROCESSING PIPELINE

public void afterPropertiesSet() throws Exception {
if (destinationDir == null) {
throw new IllegalArgumentException("Must specify destinationDir");
} else if (!destinationDir.isDirectory() 8& !destinationDir.mkdir()) {
throw new IllegalArgumentException(destinationDir + " is not a " +
"directory, or it couldn't be created");

n

}
}

protected ModelAndView handleRequestInternal(HttpServletRequest req,
HttpServletResponse res) throws Exception {
res.setContentType("text/plain");

if (! (req instanceof MultipartHttpServletRequest)) {
res.sendError (HttpServletResponse.SC_BAD REQUEST,
"Expected multipart request");
return null;

}

MultipartHttpServletRequest multipartRequest =
(MultipartHttpServletRequest) req;
MultipartFile file = multipartRequest.getFile("uploaded");
File destination = File.createTempFile("file", "uploaded",
destinationDir);
FileCopyUtils.copy(file.getInputStream(),
new FileOutputStream(destination));

res.getWriter().write("Success, wrote to " + destination);
res.flushBuffer();

return null;

If you are creating command beans (see BaseCommandController and SimpleFormController
in Chapter 6) to encapsulate the request parameters from forms, you can even populate a prop-
erty of your command object from the contents of the uploaded file. In other words, instead
of performing the manual operation of extracting the file from the MultipartFile instance (as
we did in the preceding example in Listing 5-42), Spring MVC can inject the contents of the
uploaded file (as a MultipartFile, byte[], or String) directly into a property on your command
bean. With this technique there is no need to cast the ServletRequest object or manually retrieve
the file contents.

111

112

CHAPTER 5 " THE PROCESSING PIPELINE

We'll cover binding request parameters from forms in the next chapter, so we won’t
jump ahead here and confuse the topic at hand. But we will provide the hint required to
make the file contents transparently show up in your command bean: you must register
either ByteArrayMultipartFileEditor or StringMultipartFileEditor with your data binder
(for instance, inside the initBinder () method of your form controller). What does that mean?
Hang tight, or skip to Chapter 7.

Aslong as the contents of the uploaded file aren’t too large, we recommend the direct
property binding because it is less work for you and certainly more transparent.

ThemeResolver

Spring MVC supports a concept of themes, which are interchangeable looks and feels for
your web application. Often called skins, themes are a way to abstract a look and feel (color
scheme, logo, size of buttons, and so on) from the user interface. This is helpful to the user
interface implementer, because the skin information can be rendered at runtime, instead of
simply duplicating each page once for each look and feel. We will cover themes in greater
detail in the Chapter 7. For now, we will focus on how to choose and manipulate themes
for each user’s requests. You will find that the concepts here are very similar to the
LocaleResolver.

Listing 5-43 contains the ThemeResolver interface.

Listing 5-43. ThemeResolver Interface

package org.springframework.web.servlet;

public interface ThemeResolver {
String resolveThemeName(HttpServletRequest request);

void setThemeName(HttpServletRequest request, HttpServletResponse response,
String themeName);

As you can see, the ThemeResolver interface resembles the LocaleResolver interface very
closely. One major difference between the two is ThemeResolver returns strings instead of a
strongly typed objects. The resolution of the theme name to a org. springframework.ui.context.
Theme object is done via an org. springframework.ui.context.ThemeSource implementation.

The ThemeResolver interface has the same types of implementations as the
LocaleResolver interface. Out of the box, Spring MVC provides a FixedThemeResolver, a
CookieThemeResolver, and a SessionThemeResolver. Just like their LocaleResolver counter-
parts, both CookieThemeResolver and SessionThemeResolver support retrieving and changing
the theme, while FixedThemeResolver only supports a read-only theme.

CHAPTER 5 ©" THE PROCESSING PIPELINE

Figure 5-3 illustrates the class hierarchy for the ThemeResolver and its subclasses.

<<interface>>
ThemeResolver CookieGenerator
AbstractThemeResolver CookieThemeResolver
SessionThemeResolver FixedThemeResolver

Figure 5-3. ThemeResolver class hierarchy

The DispatcherServlet does not support chaining of ThemeResolvers. It will simply attempt
to find a bean in the ApplicationContext with the name themeResolver. If no ThemeResolvers are
located, then the DispatcherServlet will create its own FixedThemeResolver configured only with
the defaults.

Working with the configured ThemeResolver is no different than working with the
LocaleResolver. The DispatcherServlet places the ThemeResolver into each request as an
HttpServletRequest attribute. You then access this object through the RequestContextUtils
utility class and its getThemeResolver () method.

Summary

A theme is a skin, or look and feel, for your web application that is easily changed by the user
or application. The ThemeResolver interface encapsulates the strategy for reading and setting
the theme for a user’s request. Similar to the LocaleResolver, the ThemeResolver supports a
fixed theme, or storing the theme in a cookie or in the HttpSession object.

The DispatcherServlet will look for a bean with the name themeResolver in
the ApplicationContext upon startup. If it does not find one, it will use the default
FixedThemeResolver.

We'll discuss themes in detail in Chapter 7. For now, it’s important to know that
there is one for each DispatcherServlet and the default, if none are specified, is the
FixedThemeResolver.

113

114

CHAPTER 5 " THE PROCESSING PIPELINE

Summary

Spring MVC has a full-featured processing pipeline, but through the use of sensible
abstractions and extensions, it can be easily extended and customized to create powerful
applications. The key is the many interfaces and abstract base classes provided for nearly
every step along the request’s life cycle.

As a developer, you are encouraged to implement and extend the provided interfaces and
implementations to customize your users’ experiences. Don't be constrained by the provided
implementations. If you don’'t see something you need, chances are it’s very easy to create.

For more information on themes and views, including the ViewResolver, continue on to
Chapter 7. For more information on Controllers (Spring MVC'’s default request handlers) and
interceptors, let’s now continue on to Chapter 6.

