
Designing Rich
Internet Components

Although the Web has gained widespread adoption as the default deployment solution

for enterprise-class applications, users increasingly demand a more interactive browser

experience and broader support for the vast array of Internet-enabled devices. This part of

the book will teach you how to deliver reusable, rich Internet components using JSF. These

are components that provide application developers with a set of building blocks for cre-

ating rich Internet applications with JSF without sacrificing productivity, and they can be

deployed to any platform.

P A R T 2

■ ■ ■

5807ch04.qxd 1/13/06 2:50 PM Page 171

5807ch04.qxd 1/13/06 2:50 PM Page 172

Using Rich Internet
Technologies

Ajax—in Greek mythology Ajax was a powerful warrior who fought in the Trojan War

and supposedly was second only to Achilles, the Greeks’ best warrior. Although charac-

terized as slow-witted, Ajax was one of the best fighters among the Greeks and was

famed for his steadfast courage in the face of adversity.

—Laboratori Nazionali di Frascati (http://www.lnf.infn.it)

It will always be the user who will feel the effect of the technology you choose, and the first pri-
ority of any Web or desktop application developer should be the user experience. Users are not
interested in what technology is being used or whether the application is a traditional desktop
application or a Web application. Users demand a feature-rich and interactive interface.

Traditionally, desktop applications have been able to provide users with the richness
required to fulfill their demands, but an increasing number of desktop applications are migrat-
ing to the Web. Therefore, Web application developers have to provide richer Web interfaces.

To make you fully appreciate JSF and what it brings to the Internet community, you need
to understand the current status of rich Internet applications. Web application developers
today are faced with a demand for richer functionality using technologies such as HTML, CSS,
JavaScript, and the DOM. However, these technologies were not developed with enterprise
applications in mind. The increasing demand from consumers for applications with features
not fully supported by these technologies is pushing Web application developers to explore
alternative solutions.

New breeds of Web technologies that enhance the traditionally static content provided by
Web applications have evolved from these consumer requirements. These technologies are
often referred to as Rich Internet Technologies (RITs).

In the absence of a standard definition and with the lack of extensibility of the tradi-
tional Web technologies, new technologies have emerged, such as Mozilla’s XUL, Microsoft’s
HTC, Java applets, Flex, and OpenLaszlo. These technologies support application-specific
extensions to traditional HTML markup while still leveraging the benefits of deploying an
application to a central server. Another solution that has returned under a newly branded
name is Ajax (recently an acronym for Asynchronous JavaScript and XML and formerly
known as XMLHTTP). Applications built with these technologies are often referred to as
Rich Internet Applications (RIAs).

173

C H A P T E R 4

■ ■ ■

5807ch04.qxd 1/13/06 2:50 PM Page 173

In this chapter, we will introduce three RITs: Ajax, Mozilla XUL, and Microsoft HTC. This
chapter will give a high-level overview of these technologies, and it will show some simple
examples to highlight the core feature of each technology. In later chapters, you will get into
the details of each technology to improve the user experience of two JSF components—
ProInputDate and ProShowOneDeck.

The following are the four main players in this chapter:

Ajax1: Ajax is the new name of an already established technology suite—the DOM,
JavaScript, and XMLHttpRequest. Ajax is used to create dynamic Web sites and to
asynchronously communicate between the client and server.

XUL: XML User Interface Language (XUL) which, pronounced zuul, was created by the
Mozilla organization (Mozilla.org) as an open source project in 1998. With XUL, developers
can build rich user interfaces that may be deployed either as “thin client” Web applica-
tions, locally on a desktop or as Internet-enabled “thick client” desktop applications.

XBL: Extensible Binding Language (XBL) is a language used by XUL to define new com-
ponents. XBL is also used to bridge the gap between XUL and HTML, making it easy to
attach behavior to traditional HTML markup.

HTC: Introduced in Microsoft Internet Explorer 5, HTCs provide a mechanism to imple-
ment components in script as DHTML behaviors. Saved with an .htc extension, an HTC
file is an HTML file that contains script and a set of HTC-specific elements that define the
component.

After reading this chapter, you should understand what these RITs are, what they provide,
and how you can create rich user interface components with them.

Introducing Ajax
Ajax has been minted as a term describing a Web development technique for creating richer
and user-friendlier Web applications. In this chapter, we will give you an overview of Ajax.

Ajax was first coined in February 2005 and has since taken the software industry by storm.
One of the reasons Ajax has gained momentum and popularity is the XMLHttpRequest object
and the way this object makes it possible for developers to asynchronously communicate with
underlying servers and any business services used by Web applications. Popular sites such as
Google GMail and Google Suggest are using Ajax techniques to provide users with rich inter-
faces that have increased the awareness of Ajax.

Although the name Ajax is new, the technologies listed as the foundation of this technique—
JavaScript, XMLHttpRequest, and the DOM—have been around for some time. In fact, the
latest addition to this suite of technologies—the XMLHttpRequest object—was introduced
by Microsoft in 1999 with the release of Internet Explorer 5.0 and was implemented as an
ActiveX component.

The XMLHttpRequest object, although widely used, is not a standard; it could at best be
called a “de facto” standard, since most modern browsers, including Firefox, Internet Explorer,

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES174

1 This term was first coined in an article by James Garrett of Adaptive Path.

5807ch04.qxd 1/13/06 2:50 PM Page 174

Opera, and Safari, support it. However, a standard has been proposed that covers some of
the functionality provided by the XMLHttpRequest object—the DOM Level 3 Load and Save
specification.

■Note The XMLHttpRequest object is not a W3C standard. The W3C DOM Level 3 Load and Save speci-
fication contains some similar functionality, but this is not implemented in any browsers yet. So, at the
moment, if you need to send an HTTP request from a browser, you will have to use the XMLHttpRequest
object.

With the XMLHttpRequest object, developers can now send requests to the Web server
to retrieve specific data and use JavaScript to process the response. This ability to send data
between the client and the Web server reduces the bandwidth to a minimum and saves time
on the server since most of the processing to update the user interfaces takes place on the
client using JavaScript.

The XMLHttpRequest Object
Since the XMLHttpRequest object is not a standard, each browser may implement support for
it slightly differently; thus, the behavior might vary among browsers. You will notice when
creating the sample application in this chapter that Microsoft’s Internet Explorer implements
the XMLHttpRequest object as an ActiveX object, whereas Mozilla Firefox treats it like a native
JavaScript object. However, most implementations support the same set of methods and
properties. This eases the burden on application developers, since the only difference is in
creating an instance of the XMLHttpRequest object. Creating an instance of the XMLHttpRequest
object can look like Code Sample 4-1 or Code Sample 4-2.

Code Sample 4-1. Creating an Instance of the XMLHttpRequest Object

var xmlhttp = new XMLHttpRequest();

Code Sample 4-2. Creating an Instance of the XMLHttpRequest Object Using ActiveXObject

var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

It is also worth noting that the XMLHttpRequest object is not exclusive to standard HTML.
The XMLHttpRequest object can potentially be used by any HTML/XML-based Web technology
such as XUL or HTC.

Methods
An XMLHttpRequest object instance provides methods that can be used to asynchronously
communicate with the Web server (see Table 4-1).

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 175

5807ch04.qxd 1/13/06 2:50 PM Page 175

Table 4-1. XMLHttpRequest Object Methods

Method Description

open("method", "URL") Assigns destination URL, method, and other
optional attributes of a pending request

send(content) Transmits the request, optionally with a string that
can be posted or DOM object data

abort() Stops the current request

getResponseHeader("headerLabel") Returns the string value of a single header label

getAllResponseHeaders() Returns a complete set of headers (labels and val-
ues) as a string

setRequestHeader("label", "value") Assigns a label/value pair to the header to be sent
with a request

In Table 4-1, the open() and send() methods are the most common ones. The open("method",
"URL"[, "asynch"[, "username"[, "password"]]]) method sets the stage for the request and
upcoming operation. Two parameters are required; one is the HTTP method for the request
(GET or POST), and the other is the URL for the connection. The optional asynch parameter
defines the nature of this request—true being the default and indicating that this is an
asynchronous request. The other two optional parameters—username and password—allow
application developers to provide a username and password, if needed.

The send() method makes the request to the server and is called after you have set the
stage with a call to the open() method. Any content passed to this method is sent as part of the
request body.

Properties
Once an XMLHttpRequest has been sent, scripts can look to several properties that all imple-
mentations have in common (see Table 4-2).

Table 4-2. XMLHttpRequest Object Properties

Property Description

onreadystatechange Event handler for an event that fires at every state change

readyState Object status integer: 0 = uninitialized, 1 = loading, 2 = loaded,
3 = interactive, 4 = complete

responseText String version of data returned from server process

responseXML DOM-compatible document object of data returned from server
process

status Numeric code returned by server, such as 404 for “Not Found” or
200 for “OK”

statusText String message accompanying the status code

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES176

5807ch04.qxd 1/13/06 2:50 PM Page 176

As with the XMLHttpRequest object methods, two properties will be used more frequently
than the others—responseText and responseXML. You can use these two properties to access
data returned with the response. The responseText property provides a string representation of
the data, which is useful in case the requested data comes in as plain text or HTML. Depending
on the context, the responseXML property offers a more extensive representation of the data.
The responseXML property will return an XML document object, which can be examined using
W3C DOM node tree methods and properties.

Traditional Web Application Development
Before getting into the details of Ajax, you need to first understand how a traditional Web
application works and what issues users, and application developers, face when a Web appli-
cation contains form elements. HTML forms are used to pass data to an underlying Web
server. You have probably encountered Web applications with forms, such as when you have
filled in a survey, ordered products online from Web sites such as eBay (http://www.ebay.com),
or filled in an expense report with a company’s HR application.

A form in a traditional Web application is defined by a special HTML tag (<form>) that has
a set of parameters—action, method, enctype, and target. The action parameter defines the
destination URL to pass the form data, the method parameter defines the HTTP method used
for the form postback, the enctype parameter defines the content type to be used for encoding
the data, and the target parameter defines the frame that should receive the response.

Regular Postback
You can use two methods when submitting a form—POST and GET. With the HTTP GET method,
the form data set is appended to the URL specified by the action attribute (for example,
http://forums.oracle.com/forums/forum.jspa?forumID=83), and this new URL is sent to the
server. In JSF the value of the action attribute is provided by ViewHandler.getActionURL(viewId)
during rendering.

■Note The <h:form> tag defined by the JSF specification does not have the method and action
attributes.

With the HTTP POST method, the form data set is included in the body of the request sent
to the server. The GET method is convenient for bookmarking, but should be used only when
you do not expect form submission side effects as defined in the W3C HTTP specification
(http://www.w3.org/Protocols/). If the service associated with the processing of a form
causes side effects (for example, if the form modifies a database row or subscribes to a serv-
ice), you should use the POST method.

Another reason for choosing the POST method over the GET method is that it allows
browsers to send an unlimited amount of data to a Web server by adding data as the message
body after the request headers on an HTTP request. The GET method is restricted to the URL
length, which cannot be more than 2,048 characters. POST removes any limitations from the
transmitted data length.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 177

5807ch04.qxd 1/13/06 2:50 PM Page 177

■Note The GET method restricts form data set values to ASCII characters. Only the POST method (with
enctype="multipart/form-data") is specified to cover the entire [ISO10646] character set.

When the user submits a form (for example, by clicking a submit button), as shown in
Figure 4-1, the browser processes the controls within the submitted form and builds a form
data set. A form data set is a sequence of control-name/current-value pairs constructed
from controls within the form. The form data set is then encoded according to the content
type specified by the enctype attribute of the <form> element (for example, application/
x-www-form-urlencoded).

Figure 4-1. Sequence diagram over a regular postback

The encoded data is then sent as a url-formencoded stream back to the server (HTTP
POST). The server response contains information about the response status indicating that
the request has succeeded (HTTP status code 200 “OK”) and sends a full-page response. The
browser will then parse the HTML sent on the response to the HTML DOM and render the
page in the browser window. Any resources required by the page will be reverified and possi-
bly downloaded again from the server. After the HTML document has been replaced in the
browser window, the URL in the browser location bar is also modified to reflect the page from
the previous page form action.

Alternatively, the server response can contain information indicating that the request has
failed (for example, HTTP status code 404 “Not Found”).

Side Effects of Regular Postback
The obvious undesired side effect of regular postback is that it will cause the page to flicker
when the page is reloaded in the browser window, and at worst the user will have to wait while

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES178

5807ch04.qxd 1/13/06 2:50 PM Page 178

the page downloads all the required resources to the client browser again. Other less promi-
nent, but still annoying, side effects are the loss of scroll position and cursor focus.

■Note Most browsers today have excellent client-side caching functionalities that work well to prevent
pages from reloading resources from the Web server, unless caching is turned off or the application is using
HTTPS, in which case content may be prevented from being cached on the client.

As part of a page design, it might be required to have multiple forms on a page. When
multiple forms are available on a page, only one form will be processed during postback, and
the data entered in other forms will be discarded.

One benefit is that bookmarking is possible with regular postbacks. However, the user is
often fooled by the URL set in the location bar, since it reflects what was last requested and
not what is returned on the response. When the user selects the bookmark, it will return to the
previously submitted page. A regular postback also allows the user to click the browser back
button to return to the previous page with the only side effect that a form post warning will
occur.

Ajax Web Application Development
Developing sophisticated Ajax-enabled applications is not something for the everyday applica-
tion developer, and just as the Trojans feared Ajax on the battlefield, even the most experienced
Web designer dreads to attack Ajax. A major part of the Ajax framework is the client-side
scripting language JavaScript. As many Web designers have experienced, JavaScript is not an
industrial-strength language and is claimed by many to lack support in professional develop-
ment tools.

However, in our opinion, at least two really good JavaScript tools are available—Microsoft’s
Visual Studio and Mozilla’s Venkman. What is true, though, is that maintaining Ajax applications
is difficult; the lack of browser consistency in JavaScript implementations makes maintaining
browser-specific code a challenge.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 179

MOZILLA'S VENKMAN DEBUGGER

Venkman is the code name for Mozilla’s JavaScript debugger (http://www.mozilla.org/projects/
venkman/). Venkman aims to provide a powerful JavaScript debugging environment for Mozilla-based
browsers, including the Netscape 7.x series of browsers and Mozilla milestone builds. It does not include
Gecko-only browsers such as K-Meleon and Galeon. The debugger is available as an add-on package in XPI
format and has been provided as part of the Mozilla install distribution since October 3, 2001.

5807ch04.qxd 1/13/06 2:50 PM Page 179

Ajax Postback
Now that you have familiarized yourself with regular postbacks, it is time to look at Ajax. This
section will give you an overview of how to use Ajax postbacks to handle events. You can use
Ajax to take control of the form submit action, and instead of using the regular form submit
action, you use an XMLHttpRequest object to asynchronously submit your request to the Web
server. As a side effect, when the user submits a form (for example, by clicking a submit but-
ton), no browser helps you process the controls within the submitted form. You now need to
handle any form fields that need to be part of the postback and use them to build a form data
set—control-name/current-value pairs. You then take the form data set and simulate the
encoding (url-formencoded) to provide the same syntax as a regular postback (see Figure 4-2).

Figure 4-2. Sequence diagram over an XMLHttpRequest postback

After you have created the XMLHttpRequest object, you use the open() method to set the
HTTP method—GET or POST—intended for the request and the URL for the connection. After
you have set the stage for your XMLHttpRequest operation, you send the encoded data, using
the XMLHttpRequest object, as a url-formencoded stream back to the server (HTTP POST). For
the Web server, the request will appear as a traditional HTTP POST, meaning that the Web
server cannot tell the difference between a regular postback and your Ajax postback. For a JSF
solution, this means an Ajax request can be picked up the same way as a regular postback
request, allowing server code (for example, JSF request lifecycle) to be unaffected.

If the request is successful, the ready state on your XMLHttpRequest object is set to 4,
which indicates that the loading of the response is complete. You can then use two properties
to access data returned with the response—responseText and responseXML.

The responseText property provides a string representation of the data, which is useful in
case the requested data comes in the shape of plain text or HTML. Depending on the context,
the responseXML property offers a more extensive representation of the data.

The responseXML property will return an XML document object, which is a full-fledged
document node object (a DOM nodeType of 9) that can be examined using the W3C DOM node

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES180

5807ch04.qxd 1/13/06 2:50 PM Page 180

tree methods and properties. In this traditional Ajax approach, the Ajax handler is in charge of
sending the data, managing the response, and modifying the HTMLDocument object node tree.

■Note DOM elements can be different types. An element’s type is stored in an integer field of nodeType
(for example, COMMENT_NODE = 8 and DOCUMENT_NODE = 9). For more information about the different
nodeTypes, please visit http://www.w3.org/.

Side Effects of Ajax Postback
As with the regular postback, desired and undesired side effects exist when using Ajax for
postback. The most prominent and desired side effect is the XMLHttpRequest object’s strength
and ability to set or retrieve parts of a page. This will remove flickering when data is reloaded
and increase performance of the application, since there is no need to reload the entire page
and all its resources. The undesired side effect of this is that users will typically no longer be
able to bookmark a page or use the back button to navigate to the previous page/state.

Another important, but less immediately obvious, implication of using XMLHttpRequest in
your application is that clients such as mobile phones, PDAs, screen readers, and IM clients
lack support for this technology. Also, Ajax requires additional work to make applications
accessible; for example, screen readers expect a full-page refresh to work properly.

■Note With XMLHttpRequest, you do not need the form element in an application, but one function
requires a form regardless of regular postbacks or Ajax postbacks—file upload. If you need file-upload func-
tionality in your application, you have to use form.submit(). In the context of Ajax, you can do this by using
a hidden <iframe> tag and the form.submit() function and setting target.

Ajax Is Not a Magic Wand
As you know, the XMLHttpRequest object is an important player in Ajax, since it transports data
asynchronously between the client and the server. It is important to understand that the
XMLHttpRequest is not a magic wand that automatically solves all your problems. You still need
to watch performance and scalability carefully using the XMLHttpRequest object. If you are
aware of this, it is easy to understand that it is what you send on the request, receive upon the
response, and manage on the client that will affect your performance.

Building Ajax Applications
Traditional Web applications are in most cases slower than their desktop application counter-
parts. With Ajax, you can now send requests to the Web server to retrieve only the data needed
using JavaScript to process the response, which creates a more responsive Web application.
Figure 4-3 illustrates a page using Ajax to asynchronously communicate with the back-end

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 181

5807ch04.qxd 1/13/06 2:50 PM Page 181

and provide a Book Titles drop-down list that includes certain books based on what category
the user enters.

Figure 4-3. An HTML page using Ajax to filter a list of books based on category

When the user tabs out of the Book Category field, the drop-down list is populated with
books based on the entered category without a page refresh.

Figure 4-4 shows the result of entering Ajax as the category and tabbing out of the Book
Category field.

Figure 4-4. An HTML page using Ajax to filter a list of books based on category

As you can see, the Book Titles drop-down list has been populated with books about the
related topic.

A traditional Ajax application leverages standard HTML/XHTML as the presentation layer
and JavaScript to dynamically change the DOM, which creates an effect of “richness” in the

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES182

5807ch04.qxd 1/13/06 2:50 PM Page 182

user interface with no dependency on a particular runtime environment. Code Sample 4-3
shows the actual HTML source behind this simple application.

Code Sample 4-3. An HTML Page Leveraging Ajax to Update a <select> Element

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<script type="text/javascript"

src="projsf-ch4/dynamicBookList.js" >
</script>
<title>Select a book</title>

</head>
<body>
<form name="form" method="get">
<table>
<tr>
<td align="right">Book Category</td>
<td>
<input type="text" size="3" maxlength="8"

onchange="populateBookList('/chapter4-context-root/projsf-ch4',
'bookListId', this.value);" />

</td>
</tr>
<tr>
<td align="right">Book Title</td>
<td >
<select id="bookListId" >
<option value="[none]">
[enter a book category]

</option>
</select>

</td>
</tr>

</table>
</form>

</body>
</html>

At the top of this page, you have a reference to your Ajax implementation—
dynamicBookList.js. This code adds an onchange event handler to the <input> element that
will call a JavaScript function, populateBookList(), which is invoked when the cursor leaves
the input field. The populateBookList() function takes three arguments—the service URL for
retrieving the book list data, the book category entered in the input field this.value, and the
ID of the select element to populate with books ('bookListId').

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 183

5807ch04.qxd 1/13/06 2:50 PM Page 183

The Ajax Book Filter Implementation
The Ajax book filter implementation consists of three JavaScript functions—
populateBookList(), createHttpRequest(), and transferListItems()—and a data source
containing information about the books. As soon as the cursor leaves the Book Category
field, the getBookList() function is invoked (see Figure 4-5).

Figure 4-5. Sequence diagram over the book filter XMLHttpRequest

The populateBookList() function will call the createHttpRequest() function, which will
create a new instance of the XMLHttpRequest object. You then use this XMLHttpRequest object to
set the stage for your request and send the encoded data as a url-formencoded stream back to
the server (HTTP GET). If the request is successful, the XMLHttpRequest object calls your callback
function. This function will get the response text from the XMLHttpRequest object and use the
content passed (for example, a list of books) to modify the HTML document and populate the
<select> element with data. Code Sample 4-4 shows the actual code behind this book filter.

Code Sample 4-4. The populateBookList() Function

/**
* Populates the select element with a list of books in a specific book category.
*
* @param serviceURL the service URL for retrieving JSON data files
* @param selectId the id of the target select element to populate
* @param category the book category for the populated books
*/
function populateBookList(
serviceURL,
selectId ,

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES184

5807ch04.qxd 1/13/06 2:50 PM Page 184

category)
{
var xmlhttp = createHttpRequest();

// You can use any type of data source, but for the sample
// you are going to use a simple JSON file that contains your data.
var requestURL = serviceURL + '/booklist-' + category.toLowerCase() + '.json';
xmlhttp.open("GET", requestURL);
xmlhttp.onreadystatechange=function()
{
if (xmlhttp.readyState == 4)
{
if (xmlhttp.state == 200)
{
transferListItems(selectId, eval(xmlhttp.responseText));

};
};

};
xmlhttp.send(null);

};

With this code, you first create a new instance of the XMLHttpRequest object by calling a
function called createHttpRequest(). You initiate your request by calling the open("GET",
requestURL) method on the XMLHttpRequest object instance and passing two arguments. The
GET string indicates the HTTP method for this request, and the requestURL variable represents
the URL to your data source, which in this case is a simple text file. If a request is successful,
the readyState on your XMLHttpRequest object is set to 4, and the state is set to 200. You use
the onreadystatechange event handler to invoke the transferListItems() function when
readyState is set to 4, passing the responseText property from the XMLHttpRequest object. The
transferListItems() function will take the returned string and populate the <select> element
with data.

Creating an instance of the XMLHttpRequest object is simple, although as shown in Code
Sample 4-5, you have a few things to consider.

Code Sample 4-5. The createHttpRequest() Function That Creates the XMLHttpRequest Object

/**
* Creates a new XMLHttpRequest object.
*/
function createHttpRequest()
{
var xmlhttp = null;
if (window.ActiveXObject)
{
xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

}
else if (window.XMLHttpRequest)

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 185

5807ch04.qxd 1/13/06 2:50 PM Page 185

{
xmlhttp = new XMLHttpRequest();

}
return xmlhttp;

};

Code Sample 4-5 creates the XMLHttpRequest object, and as in many browsers with
JavaScript support, different browsers support the XMLHttpRequest object slightly differently.
This means you need to implement support for different browsers in your createHttpRequest()
function. For Microsoft Internet Explorer, you have to create the XMLHttpRequest object using
new ActiveXObject("Microsoft.XMLHTTP"). With any browser supporting the Mozilla GRE, you
can use a native call—new XMLHttpRequest()—to create an instance of the XMLHttpRequest
object.

The transferListItems() function, shown in Code Sample 4-6, returns the data requested
by the user and populates the <select> element with data.

Code Sample 4-6. The transferListItems() Function That Populates the <select> Element

/**
* Transfers the list items from the JSON array
* to options in the select element.
*
* @param selectId the id of the target select element to populate
* @param listArray the retrieved list of books
*/
function transferListItems (
selectId,
listArray)

{
var select = document.getElementById(selectId);

// reset the select options
select.length = 0;
select.options[0] = new Option('[select]');

// transfer the book list items
for(var i=0; i < listArray.length; i++)
{
// create the new Option
var option = new Option(listArray[i]);
// add the Option onto the end of the select options list
select.options[select.length] = option;

};
};

The transferListItems() function takes two arguments—selectId and listArray. The
listArray represents the data returned by your request, and selectId represents the <select>

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES186

5807ch04.qxd 1/13/06 2:50 PM Page 186

element that is being populated with this data. Code Sample 4-7 is just showing your simple
data source, in JavaScript Object Notation (JSON) syntax, so that you can replicate the sample
application.

Code Sample 4-7. Source for Your Ajax Titles—ajax.json

['Pro JSF and Ajax: Building Rich Internet Components',
'Foundations of Ajax',
'Ajax Patterns and Best Practices']

This file contains a JavaScript expression that defines a new array of Ajax related books.

■Note JSON is a lightweight data interchange format. It is based on a subset of the JavaScript program-
ming language (standard ECMA-262, third edition). JSON is a text format that is completely language
independent but uses conventions familiar to programmers of the C family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others.

Ajax Summary
You should now understand what Ajax is and be familiar with the XMLHttpRequest object,
which is a vital part of the Ajax technique, and the lifecycle of a regular XMLHttpRequest. You
should also have enough knowledge to be able to create simple Ajax solutions. In the coming
chapters, you will dive deeper into Ajax.

Introducing Mozilla XUL
What is Mozilla XUL? Is it a crossbreed between a dinosaur and an evil Ghostbuster spirit?
No, Mozilla XUL is an open source project that is known as the development platform for the
Mozilla Firefox browser and Mozilla Thunderbird email client. In the following sections of this
chapter, you will get a high-level overview of Mozilla XUL and its subcomponents. In 1998 the
Mozilla organization (Mozilla.org) created an open source project called XUL, which is an
extensible UI language based on XML and, as such, can leverage existing standards including
XSLT, XPath, the DOM, and even Web Services (SOAP).

Using XUL, developers can build rich user interfaces that can be deployed as Web appli-
cations, as desktop applications locally, or as desktop applications on other Internet-enabled
devices. XUL leverages the support of the Mozilla Gecko Runtime Environment (GRE) in order
to fully provide the consumer with a rich user interface. The Firefox browser and the Thunder-
bird email client, as well as numerous plug-ins, are available for these clients and are two good
examples of applications based on XUL and the Mozilla GRE.

One of the great features of XUL is its extensibility. Using XBL, XUL provides a declarative
way to create new and extend existing XUL components. XBL can also bridge the gap between
XUL and HTML, since it is not possible to embed XUL components directly into an HTML

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 187

5807ch04.qxd 1/13/06 2:50 PM Page 187

page. The following section introduces how to build XUL applications and some of the com-
ponents used when building XUL applications.

■Tip An excellent sample to look at to get a feel for what is possible with XUL is the Mozilla Amazon
Browser (MAB) at http://www.faser.net/mab/.

Building XUL Applications
The idea behind XUL is to provide a markup for building user interfaces, much like HTML,
while leveraging technologies such as CSS for the look and feel and JavaScript for the event
and behavior. Also, APIs are available to give developers access to read from and write to file
systems over the network and give them access to Web Services. As an XML-based language,
developers can also use XUL in combination with other XML languages such as XHTML and
SVG. You can load an application built with XUL in three ways:

• You can load the XUL page the traditional way from the local file system.

• You can load it remotely using an HTTP URL to access content on a Web server.

• You can load it using the chrome URL provided by the Mozilla GRE.

XUL Components
XUL comes with a base set of components (see Table 4-3) that are available through the
Mozilla GRE, and as such, XUL does not need to download components to draw an applica-
tion in the browser. You can also design your own components with XUL; these will need to be
downloaded upon request and cached in the browser.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES188

MOZILLA XUL'S CHROME SYSTEM

In addition to loading files from the local file system or from a Web server, the Mozilla engine has a special
way of installing and registering applications as a part of its chrome system. The chrome system allows
developers to package applications and install them as plug-ins to clients supporting the Mozilla GRE. XUL
applications deployed in this way gain read and write access to the local file system, and so on. This type of
access can be hard to achieve in a traditional Web application unless the application has been signed with a
digital certificate, and the end-user grants access permission.

An important distinction exists between accessing an application via an HTTP URL (http://) and
accessing it via a chrome URL (chrome://). The chrome URL always refers to packages or extensions that
are installed in the chrome system of the Mozilla engine. An example of an application that can be reached
by a chrome URL is chrome://browser/content/bookmarks/bookmarksManager.xul. This chrome
URL will open the Bookmarks Manager available in the Firefox browser.

5807ch04.qxd 1/13/06 2:50 PM Page 188

Table 4-3. Subset of Available XUL Components*

Component Name Description

<button> A button that can be clicked by the user. Event handlers can be used to
trap mouse, keyboard, and other events. A button is typically rendered
as a gray outset rectangle. You can specify the label of the button by
using the label attribute or by placing content inside the button.

<window> Describes the structure of a top-level window. It is the root node
of a XUL document, and it is by default a horizontally oriented box.
Because it is a box, it takes all the box attributes. By default, the window
will have a platform-specific frame around it.

<menubar> A container that usually contains menu elements. On a Mac, the menu
bar is displayed along the top of the screen, and all non-menu-related
elements inside the menu bar will be ignored.

<menu> An element, much like a button, that is placed on a menu bar. When
the user clicks the <menu> element, the child <menupopup> of the menu
will be displayed. This element is also used to create submenus.

<menupopup> A container used to display menus. It should be placed inside a menu,
menu list, or menu-type button element. It can contain any element
but usually will contain <menuitem> elements. It is a type of box that
defaults to vertical orientation.

<menuitem> A single choice in a <menupopup> element. It acts much like a button, but
it is rendered on a menu.

<radio> An element that can be turned on and off. Radio buttons are almost
always grouped together in clusters. Only one radio button within the
same <radiogroup> can be selected at a time. The user can switch
which radio button is turned on by selecting it with the mouse or
keyboard. Other radio buttons in the same group are turned off. A
label, specified with the label attribute, can be added beside the radio
button to indicate its function to the user.

<radiogroup> A group of radio buttons. Only one radio button inside the group can
be selected at a time. The radio buttons can direct either children of
the <radiogroup> or descendants. Place the <radiogroup> inside a
<groupbox> if you would like a border or caption around the group.
The <radiogroup> defaults to vertical orientation.

<checkbox> An element that can be turned on and off. The user can switch the state
of the check box by selecting it with the mouse. A label, specified with
the label attribute, may be added beside the check box to indicate to
the user its function.

<box> A container element that can contain any number of child elements.
If the box has an orient attribute that is set to horizontal, the child
elements are laid out from left to right in the order they appear in the
box. If orient is set to vertical, the child elements are laid out from top
to bottom. Child elements do not overlap. The default orientation
is horizontal.

<splitter> An element that should appear before or after an element inside a
container. When the splitter is dragged, the sibling elements of the
splitter are resized.

<image> An element that displays an image, much like the HTML element.
The src attribute can be used to specify the URL of the image.

* Source: http://xulplanet.com/references/elemref/

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 189

5807ch04.qxd 1/13/06 2:50 PM Page 189

We will cover the details of XBL shortly, but the sample XUL file in Code Sample 4-8
demonstrates how to embed standard, namespaced HTML elements into base XUL controls.

Code Sample 4-8. A Simple XUL File with Embedded HTML Elements

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<xul:window title="Pro JSF and AJAX: Mozilla XUL" align="start"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.org/1999/xhtml" >

<xul:groupbox>
<xul:caption label="Search" />
<xul:hbox>
<html:input id="find-text" />
<xul:button label="Search" />

</xul:hbox>
</xul:groupbox>

</xul:window>

Code Sample 4-8 shows how to use a namespaced HTML input element—<html:input
id="find-text"/>—embedded in a XUL page and mixed with regular XUL components.

To be able to deploy and run a XUL application on a remote server, the Web server needs
to be configured to send files with the content type of application/vnd.mozilla.xul+xml. A
browser that uses the Mozilla GRE (Netscape and Firefox, in other words) will use this content
type to determine the markup used by the requesting application. A browser with the GRE
does not use the file extension unless the file is read from the file system.

Events, State, and Data
Depending on what type of client is being developed—thick or thin—the event handling will
be slightly different. This section, however, is showing XUL for Web deployment, and you use
JavaScript to handle events and application logic.

Using XUL event handling is not that different from using HTML event handling. The
GRE implementation supports DOM Level 2 (and partially DOM Level 3), which is virtually the
same for HTML and XUL. Changes to the state and events are propagated through a range of
DOM calls. XUL elements come with predefined event handlers, much like the event handlers
provided with the standard HTML elements.

Code Sample 4-9 shows a simple use case where a button will launch an alert that will
display the value entered by the user in an input field.

Code Sample 4-9. A Simple Use Case of an Event and Predefined Event Handler

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES190

5807ch04.qxd 1/13/06 2:50 PM Page 190

<xul:window title="Pro JSF and AJAX : Mozilla XUL" align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.org/1999/xhtml" >

<xul:groupbox>
<xul:caption label="Search" />
<xul:hbox>
<html:input id="find-text" />
<xul:button label="Search"

oncommand="alert('Book choice: ' +
document.getElementById('find-text').value)" />

</xul:hbox>
</xul:groupbox>

</xul:window>

Figure 4-6 shows the aforementioned code running in Mozilla Firefox.

Figure 4-6. A simple XUL file rendered in the Firefox browser

As in HTML, developers can use JavaScript functions located in external files of the form
myScript.js. You can access these methods and functions by using the src attribute on the
<script> element or by embedding them in the page. Developers can refer to a remote server
using the http:// URL, as shown in Code Sample 4-10.

Code Sample 4-10. Script Reference Using http://

<script type="text/javascript" src="http://www.apress.com/projsf/js/myScript.js">

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 191

5807ch04.qxd 1/13/06 2:50 PM Page 191

A large set of event handler attributes is available, and some of them work only on specific
XUL/HTML elements. An example is the XUL <window> element that listens for DOM events
(for example, load). Table 4-4 lists a subset of the available predefined event handlers.

Table 4-4. Listing of Predefined Event Handlers Provided by the GRE DOM Implementation*

Event Handler Description

onload An event handler property for window loading. This event is being sent
when the window element is finished loading and when all objects in the
document are available in the DOM tree. This event handler can also be
used on image elements.

oncommand This event replaces the onclick event handler and is called when an
element is activated. The activation can vary from element to element,
but essentially it can be called from different user interactions such as
clicking and hitting the Enter key or shortcut keys, which is not the case
for the onclick event handler.

onblur The blur event is raised when an element loses focus.

onfocus The opposite of the onblur event. This event is raised when an element
gets focus.

* Source: http://www.xulplanet.com

Creating Custom XUL Components Using XBL
To fully understand how Mozilla XUL can provide a mechanism for JSF to use XUL as a ren-
dering technology, you have to understand XBL. XBL is an XML-based language that allows
developers to extend XUL and add “custom” components to the already extensive set of XUL
elements. In XUL, developers can change the look and feel using CSS and can attach skins,
but they have no way to change the behavior of XUL elements in XUL itself.

To do this, developers have to use another language—XBL. Developers can look at XUL
as the “implementation” that comes with a set of base components or as tag libraries that can
be used to build a user interface, much like the JSF Reference Implementation. XBL is the lan-
guage developers use to extend XUL components and enable integration with HTML, similar
to how Java is used to extend JSF components.

Creating XBL Bindings
XBL is an XML language, and a file created with XBL contains a set of bindings. These bindings
each describe the behavior of a XUL component. Besides describing the behavior, these bind-
ings also describe the XUL elements that make up the component along with properties and
methods of the component. In Code Sample 4-11, the root shows that the <bindings> element
contains one <binding> element.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES192

5807ch04.qxd 1/13/06 2:50 PM Page 192

Code Sample 4-11. An XBL File Containing One Binding—projsf-bindings.xml

<?xml version="1.0"?>
<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.org/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>
<xul:text value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="!" />

</xbl:content>
</xbl:binding>

</xbl:bindings>

A <bindings> element can contain an infinite number of <binding> elements. The name-
space in the <bindings> element defines what syntax will be used, and in Code Sample 4-11
it is XBL—xmlns=http://www.mozilla.org/xbl. The file also contains some XUL elements:
<xul:text/>. This is extremely useful to simplify development by encapsulating several com-
ponents that later can be referred to as one component.

The xbl:inherits attribute on one of the <xul:text> elements allows the <xul:text>
element to inherit values from the bound element by defining a variable name and, in this
case, assigning it to the value attribute. If no value is defined in the bound element in the page
using this component, the text field will default to Guest.

The id attribute on the <xbl:binding> element (in Code Sample 4-11, welcome) will iden-
tify the binding.

Using the XBL Bindings
To attach an XBL component or behavior to a XUL application, XUL uses CSS. Using CSS, a
developer can assign a binding to an element by setting the -moz-binding property to a URI
pointing to the XBL document.

■Note Netscape has submitted a proposal to the W3C to define how to attach custom behavior to an
HTML element in “A Modular Way of Defining Behavior for XML and HTML” (http://www.w3.org/TR/
NOTE-AS).

Code Sample 4-12 illustrates a CSS file that attaches a binding to the <pro:welcome>
element.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 193

5807ch04.qxd 1/13/06 2:50 PM Page 193

Code Sample 4-12. A Sample CSS File That Has the -moz-binding Property Set—projsf.css

@namespace pro url('http://projsf.apress.com/tags');

pro|welcome
{
-moz-binding: url('projsf-bindings.xml#welcome');

}

In Code Sample 4-12, the selector has the -moz-binding set to point to an XBL file named
projsf-bindings.xml and uses #welcome to refer to a specific binding in the XBL file. This is
similar to how anchors are referenced in HTML files.

■Note To provide a consistent sample tag throughout the chapter’s samples, Code Sample 4-12 uses
CSS3 standard syntax to simulate the sample element—<pro:welcome>.

If the binding id is omitted when assigned to an element, XUL will default to the first
binding listed. In Code Sample 4-12, the welcome binding has been declared as the id, and the
element that has been assigned this binding is <pro:welcome>.

In Code Sample 4-13, the projsf-bindings.css style sheet has been attached to the XUL
document, and two elements (<pro:welcome id="guest" /> and <pro:welcome id="duke"
name="Duke" />) are inserted in the page. The first element displays a welcoming greeting for
the specified user, “Duke”. The second element displays the “Welcome, ” string defined in the
XBL file plus a default value user, “Guest”. One of the cool features of using encapsulation of
behavior, as provided by XBL, is that it creates a document tree within the scope of the custom
component that is separate from the XUL page. What this means is that the content of the
XBL component is not “exploded” into the main document, losing encapsulation. Figure 4-7
shows the DOM using a DOM inspector.

Code Sample 4-13. A Sample HTML File with XUL Components—prototype-ch4.xul

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" ?>
<xul:window title="Pro JSF : Mozilla XBL" align="start"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >

<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />

</xul:groupbox>
</xul:window>

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES194

5807ch04.qxd 1/13/06 2:50 PM Page 194

Figure 4-7. A page’s DOM tree with an XBL component

The direct benefits of encapsulation are that the component author has full control over
the behavior and look and feel and that the component is not exposing internal implementa-
tion details. In Figure 4-7, the nested <xul:text> elements are shown in the DOM inspector
but never exposed in the actual main document.

Extending the XBL Bindings
Apart from creating a widget that is a collection of one or more XUL elements (as shown in the
previous sections), you can also use XBL to add new properties and methods. XBL has three
types of items that can be added to the binding—fields, properties, and methods:

• The field item is a simple container that can store a value, which can be retrieved
and set.

• The property item is slightly more complex and is used to validate values stored in
fields or values retrieved from XBL-defined element attributes. Since the property item
cannot hold a value, you have no way to set a value directly on a property item without
using the onset handler or the onget handler. Using these handlers, you can perform
precalculation or validation of the value retrieved or modified.

• Methods are object functions, such as window.open(), that allow developers to add
custom functions to custom elements.

In Code Sample 4-14, these three items are defined in an <implementation> element that
is a child element of the <binding> element.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 195

5807ch04.qxd 1/13/06 2:50 PM Page 195

Code Sample 4-14. Adding Properties and Methods—pro-bindings.xml

<?xml version="1.0"?>
<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.org/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>
<xul:text id="greeting" value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="!" />

</xbl:content>
<xbl:implementation>
<xbl:constructor>
<![CDATA[
this._greetingNode = document.getElementById('greeting');

]]>
</xbl:constructor>
<xbl:property name="greeting"

onget="return this._greetingNode.getAttribute('value');"
onset="this._greetingNode.setAttribute('value', val);" />

</xbl:implementation>
</xbl:binding>

</xbl:bindings>

In Code Sample 4-14, you have added one method and one property. The method used
in Code Sample 4-14 is a special method supported by XBL called constructor. A constructor
is called whenever the binding is attached to an element. It is used to initialize the content
such as loading preferences or setting the default values of fields. The property has been
defined with an onget handler and an onset handler, which get and set the value attribute on
your <pro:welcome> tag. To access these properties and call methods on the custom element,
developers can use the getElementById() function. In Figure 4-8, a XUL button is added that
triggers the oncommand event handler.

Figure 4-8. A page using the welcome XBL component

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES196

5807ch04.qxd 1/13/06 2:50 PM Page 196

When the button Greet Duke is clicked, the text of the first <pro:welcome> tag changes
and displays a new welcome message instead of the default message defined earlier in the
projsf-bindings.xml file. Code Sample 4-15 shows the code behind this page.

Code Sample 4-15. A Sample XUL File with XBL Components—prototype-ch4.xul

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" ?>
<xul:window title="Pro JSF : Mozilla XBL" align="start"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >

<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />
<xul:button label="Greet Duke"

oncommand="var duke = document.getElementById('duke');
duke.greeting = 'Howdy, ';" />

</xul:groupbox>
</xul:window>

In Code Sample 4-15, a XUL button has been added that triggers the oncommand event
handler. The oncommand event handler will execute the script encapsulated—var duke =
document.getElementById('duke'); duke.greeting = 'Howdy, ';. This will set the value of the
XUL element with the identifier greeting defined in your binding to “Howdy, ” instead of the
default greeting “Welcome, ” causing Duke’s greeting to change to “Howdy, Duke!” whereas the
Guest greeting remains unchanged.

Event Handling and XBL Bindings
In XBL, developers can add event handlers directly to the XUL elements listed as children
to the content element (for example, <xul:button label="Press me!" oncommand=
"alert('welcome')" />). Sometimes developers need to add an event handler for all the
child elements in the content element.

In XBL, you can do this by adding a <handler> element. The <handler> element is a child
of the <handlers> element, and it can contain one or more event handlers. Each handler
defines the action that will be taken for a particular event in the scope of the binding in
which it is defined. If an event is not captured, it will just pass to the inner elements.

In Code Sample 4-15, you had a button and an event handler in the actual page source.
Code Sample 4-16 shows how you can move this functionality into an XBL component.

Code Sample 4-16. Adding Event Handlers—projsf-bindings.xml

<?xml version="1.0"?>
<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.org/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 197

5807ch04.qxd 1/13/06 2:50 PM Page 197

<xul:text value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="!" />

</xbl:content>
<xbl:handlers>
<xbl:handler event="click" >
if (this.hasAttribute('name'))
alert('Nice to see you again, ' + this.getAttribute('name') + '.');

</xbl:handler>
</xbl:handlers>

</xbl:binding>
</xbl:bindings>

In Code Sample 4-16, one handler has been added to capture all click events in the context
of the welcome binding. The handler will display an alert only if the attribute name has been set
on the <pro:welcome> tag. You now have a simple but well-defined and encapsulated XUL com-
ponent. Code Sample 4-17 shows a simple XUL page that is using this new <pro:welcome> tag.

Code Sample 4-17. A Simple XUL Page Using an XBL Binding with Attached Event Handler

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" ?>
<xul:window align="start"

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >

<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />

</xul:groupbox>
</xul:window>

In this page only one <pro:welcome> tag has the name attribute defined. So, when the page
is launched in a browser (a Mozilla GRE-compliant browser), the click event will launch an
alert only when the “Welcome, Duke!” text is clicked, as shown in Figure 4-9.

Figure 4-9. Simple XUL page using a custom XBL binding with attached event handler

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES198

5807ch04.qxd 1/13/06 2:50 PM Page 198

XUL Summary
After reading the previous sections, you should understand the relationship between XUL and
XBL. You should also know how to create custom XUL components using XBL and how to use
them in the context of building XUL applications. In the next chapters, you will see how to
build a new RenderKit for your JSF components by leveraging the component model provided
by XUL and XBL.

Introducing Microsoft Dynamic HTML and HTC
In your continuing quest for a rich Internet component framework, the focus of this chapter
now switches to Microsoft’s offering. Microsoft has a similar offering to the Mozilla XUL tech-
nology through DHTML and HTC. These technologies rely on an underlying platform (in
other words, Internet Explorer) to provide a foundation for extending HTML elements.

Applications built with these Microsoft technologies are deployed and downloaded from
the Web. Microsoft’s DHTML is designed to deliver an easy markup for building rich Internet
applications.

When building applications with DHTML, developers will use regular HTML pages to
describe their Web application but with the ability to dynamically change the rendering
and content of the HTML page. HTC files can create reusable components that encapsulate
dynamic behaviors, much the same way as XBL works for XUL. The following sections will give
you an overview of Microsoft’s DHTML solution and show how you can build reusable compo-
nents with HTC.

HTC Structure
DHTML was introduced in Internet Explorer 5.0 and was Microsoft’s first attempt to supply a
medium in which to build RIAs. DHTML made it possible to transform the behavior of stan-
dard HTML elements by using the behavior attribute of a CSS entry or by using the addBehavior
method in script.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 199

WHY HTC AND NOT XAML?

Several reasons exist for not selecting XAML. One reason is that XAML requires .NET 2.0/Avalon, which ships
with Microsoft’s Vista release and is scheduled to be released at the end of 2006. Another project, XAMLON,
provides a preview implementation of Avalon, which is the runtime engine needed to build XAML applica-
tions. This implementation provides an early look at XAML-like technologies on a .NET 1.1 runtime. The
XAMLON preview implementation of XAML has two main drawbacks. First, it requires a .NET 1.1 runtime
plug-in for Internet Explorer. Second, it does not integrate (well) with HTML pages. If you wanted to have
a plug-in, you would use something that is established and can work cross-platform, such as Macromedia
Flash, and be done.

5807ch04.qxd 1/13/06 2:50 PM Page 199

■Note Microsoft has submitted a proposal to add and extend HTML elements, using CSS as the
bridge. This proposal is based on Microsoft’s solution to add behavior to HTML, which is similar to the
XUL solution. The proposal has been sent to the W3C and is named “Componentizing Web Applications”
(http://www.w3.org/ TR/1998/NOTE-HTMLComponents-19981023), in collaboration with Netscape
to define how to best add behavior and extend HTML elements—see “Behavioral Extensions to CSS” at
http://www.w3.org/TR/1999/WD-becss-19990804.

HTC, as noted previously, provides a means of packaging dynamic behavior into a sepa-
rate document. With DHTML and HTC, Microsoft has taken the approach of extending the
HTML markup rather than coming up with yet another markup for RIAs. The fact that HTC
leverages the HTML markup means you can focus purely on HTC, since HTML markup should
be familiar to developers reading this book.

HTC File Structure and Elements
Plainly put, HTC is just an HTML page with the file extension .htc. The file shown in
Code Sample 4-18 contains a set of HTC-specific elements, such as <public:property>,
<public:event>, and <public:method>, that list properties, events, and methods that define
the HTC component.

Code Sample 4-18. HTC File Structure

<html>
<head>
<public:component>
<public:property ... />
<public:event ... />
<public:method ... />
...

</public:component>
<script language=" ">
...

</script>
</head>
<body>
...

</body>
</html>

The <public:component> is used to define two behavior types—element behavior and
attached behavior. Code Sample 4-19 illustrates an attached behavior, which will modify an
existing element by setting the color to green. The <public:attach> element couples an event
raised on the client with an underlying function. In Code Sample 4-19 the function onColor()
is attached to the mouseover event.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES200

5807ch04.qxd 1/13/06 2:50 PM Page 200

Code Sample 4-19. A Simple HTC File

<html>
<head>
<public:component>
<public:attach event="onmouseover" onevent="onColors()" />

</public:component>
<script>
function onColors()
{
runtimeStyle.color = "green";

}
</script>

</head>
<body>
</body>

</html>

HTC comes with a set of public elements that can be used to define the component.
Table 4-5 describes a subset of the available predefined elements.

Table 4-5. HTC Public Elements*

Name Description

COMPONENT Identifies the content of the file as an HTC

PROPERTY Defines a property of the HTC to be exposed to the containing document

DEFAULT Sets default properties for an HTC

ATTACH Binds a function to an event so that the function is called whenever the event
fires on the specified object

METHOD Defines a method of the HTC to be exposed to the containing document

EVENT Defines an event of the HTC to be exposed to the containing document

* Source: Microsoft MSDN (http://msdn.microsoft.com/workshop/author/behaviors/behaviors_node_entry.asp)

Event Handling and HTC
Microsoft’s implementation of the DOM is not standard, but it provides an implementation
that is similar to DOM Level 2 event handling that includes, for example, event bubbling and
cancellations. The following scripting languages are supported by HTC: Visual Basic Scripting
Edition (VBScript), Microsoft JScript, JavaScript, and third-party scripting languages that sup-
port the Microsoft ActiveX Scripting interfaces.

Scripts are encapsulated in <script> elements the same way as in a regular HTML page.
From these scripts, developers can access each HTC element as a script object, using the value
of the HTC element's id attribute as the name of the script variable. This allows all attributes
and methods of HTC elements to be dynamically modified as properties and methods of these
objects.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 201

5807ch04.qxd 1/13/06 2:50 PM Page 201

In the DHTML object model, developers can declare an event handler function and
assign a call to that function or do the reverse and declare event handling code to associate
the function with the event.

A developer can assign a call to a function with HTC in three ways. Code Sample 4-20
and Code Sample 4-21 illustrate traditional HTML and JavaScript assignments, and Code
Sample 4-22 illustrates an alternative solution in HTC.

Code Sample 4-20. Assigning a Call to Function

<script>
function onColor()
{
...

}
</script>
...

<input type="button" value="Press me!" onclick="onColor();" />

In Code Sample 4-20 the assignment has been done by the actual button using the
onclick event handler. Code Sample 4-21 assigns the function in the <script> element to
the proButton button.

Code Sample 4-21. Associating Function with an Event

<script for="proButton" event="onclick" >
function onColor()
{
...

}
</script>
...

<input id="proButton" type="button" value="Press me!" />

Developers can also use the <public:attach> element to associate an event globally in the
component and assign it to a function, as shown in Code Sample 4-22.

Code Sample 4-22. A Globally Assigned Event Handler

<public:attach event="onclick" onevent="onColors()" />

This event handler will fire on all click events within this component.

Building DHTML Applications
In 1999, Netscape and Microsoft made a submission to the W3C to add behavioral extensions
to the CSS specification. These proposals have not yet been rolled into the CSS standard (and
are still a working draft for CSS 3), so Microsoft and Mozilla have implemented their own pro-
posed solutions to add behavior to an HTML element—Microsoft via HTC and Mozilla via XBL.
When Microsoft introduced the concept of DHTML with Internet Explorer 5.0, it used CSS to

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES202

5807ch04.qxd 1/13/06 2:50 PM Page 202

attach a behavior directly to an existing HTML element. This way of attaching behavior to an
HTML element is referred to as an attached behavior and can be changed programmatically.

With the release of Internet Explorer 5.5, Microsoft introduced something called element
behavior. With element behavior, developers can build custom components that can be used
the same way as regular HTML elements but with the ability to add richer functionality via
script. The default way of defining element behaviors is by using HTC files. It is important to
not confuse the DHTML behavior—attached behavior—introduced in Internet Explorer 5.0
with element behaviors. Element behavior uses a different approach to bind to elements and
has other distinctive characteristics.

Looking at the HTC solution, the element behavior is applied to a bound element using
the import processing instruction. The import processing instruction imports a tag definition
from an element behavior. Code Sample 4-23 illustrates how a behavior is bound to an ele-
ment using this instruction.

Code Sample 4-23. A Simple HTML File with Attached Behavior

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" >
<html xmlns:pro >
<?import namespace="pro" implementation="pro.htc" ?>
<head>
<title>Pro JSF : Microsoft HTC</title>

</head>
<body>
<div><pro:welcome name="Duke" /></div>
<div><pro:welcome/></div>

</body>
</html>

An element behavior defines a custom tag, which can be used in a Web page like a standard
HTML tag. By setting the tagName attribute on the <public:component> element, developers can
turn an HTC file into a custom tag. The <?import namespace="pro" implementation="pro.htc"
?> element imports the pro.htc implementation and sets the identifier or prefix for the custom
tags provided in the .htc file to the declared namespace—pro.

As shown in Code Sample 4-24, the tagName attribute specifies the name of the custom
tag, which is defined in the HTC file.

Code Sample 4-24. Defining Element Behavior

<html>
<head>
<public:component tagName="welcome" >
<public:property name="name" value="Guest" />
<public:attach event="oncontentready" handler="_constructor" />

</public:component>

<script type="text/javascript" >
function _constuctor()
{

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 203

5807ch04.qxd 1/13/06 2:50 PM Page 203

nameSpan.innerText = element.name;
}

</script>
</head>
<body>

Welcome, <span id="nameSpan"
onclick="if (element.name != 'Guest')

{
alert('Nice to see you again, ' + element.name);

}" >!
</body>

</html>

Figure 4-10 shows the page running in the Internet Explorer, and you can see that it is
only when the user clicks on Duke's greeting that the additional message is displayed.

Figure 4-10. A page using the welcome HTC component

Importing HTC element behavior into an HTML page makes the custom element a first-
class member in the DOM hierarchy and the element behavior permanently bound to the
custom element. One of the key differentiators between element behavior and attached
behavior is that an attached behavior is asynchronously bound to an element, allowing it to
be attached and detached programmatically, whereas the element behavior is bound synchro-
nously to a custom element, is seen as a regular HTML element, and cannot be detached from
its custom element.

Component Encapsulation
When using HTC, developers can encapsulate a document tree within the HTC component, or
they can decide to explode the content into the HTML page and as such expose internal imple-
mentations. In HTC, you can encapsulate a DOM tree inside the HTC component by setting the
HTC declaration <public:defaults> to <public:defaults viewLinkContent>. By default, docu-
ment fragments that are part of an HTC file are exploded into the HTML page, so developers
will have to manually set the viewlink property on the defaults declaration.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES204

5807ch04.qxd 1/13/06 2:50 PM Page 204

Browser performance of the initial page parse should be faster with the property
viewlink set on the <public:defaults> declaration (no exploding), but general interaction
with the component might be a little slower because of the indirection. We recommend using
the viewlink property if the interactivity performance is acceptable, since it allows for encap-
sulation and attendant benefits.

In Code Sample 4-25, viewLinkContent has been added to the defaults declaration, and as
such the content of the welcome component will not be exploded into the main HTML page.

Code Sample 4-25. HTC File with viewlink Set

<html>
<head>
<public:component tagName="welcome" >
<public:defaults viewlinkcontent="true" />
<public:property name="name" value="Guest" />
<public:attach event="oncontentready" handler="_constuctor" />

</public:component>

<script type="text/javascript" >
function _constuctor()
{
nameSpan.innerText = element.name;

}
</script>

</head>
<body>

Welcome, <span id="nameSpan"
onclick="if (element.name != 'Guest')

{
alert('Nice to see you again, ' + element.name);

}" >!
</body>

</html>

■Note Deploying Microsoft DHTML applications has no specific requirements except the dependency on
Microsoft’s browser Internet Explorer 5.0 and above.

HTC Summary
As with XUL, HTC comes with a well-defined component model allowing application develop-
ers to encapsulate behavior into a reusable entity. From the previous sections about Microsoft’s
DHTML and HTC, you now know about the HTC structure and about elements and event han-
dling. You know the difference between element behavior and attached behavior. Later in this
book (see Chapter 9), you will leverage this knowledge to build a set of Renderers for your JSF
components that support HTC.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 205

5807ch04.qxd 1/13/06 2:50 PM Page 205

Comparing XBL and HTC
The lesson learned so far is that several technologies provide almost identical functionality
although they are implemented completely differently. If you look at the semantics of XBL and
HTC, you will see many similarities:

• Both use CSS to attach components or behavior to an HTML element.

• Both provide encapsulation of a document tree within the component, not exposing
internal implementation details.

• Both depend on the underlying browser platform.

The critical differences are as follow:

• XBL is based on XML, whereas HTC is based on HTML.

• They support different platforms—XBL needs Mozilla GRE, and HTC needs Microsoft’s
Internet Explorer.

If you compare the pieces essential to creating a component and using it, they will fall
into these categories—defining a component, implementing event handling, adding content,
and attaching the component to the page.

Defining a Component
Although the two are similar, the way they define a component is different. In HTC the rule is
one component per HTC file, whereas in XBL the recommendation is to have all related cus-
tom components in one file. This impacts how to define the component. In the HTC case, a
developer sets the tagName attribute on <public:component tagName="welcome" > to specify the
name of the tag for that particular HTC component.

In the XBL file, the binding ID will identify the component to be used with a specific ele-
ment—<binding id="welcome" >. The element is then defined in a CSS file by using an anchor
to couple the element to the right XBL binding/component.

Adding Content
In HTC the component content is encapsulated in the <body> element, and in XBL the content
is encapsulated in the <content> element.

Event Handling
The two technologies both support DOM, although, once again, with some slight differences.
XBL supports DOM Level 2 (and some Level 3), and HTC supports only DOM Level 1 and as
such supports only bubbling of events and cancellation, not capturing or at target. (This is
because no new version of Internet Explorer has been released over the past four years.)

■Note The current version of Internet Explorer is 6.0. Microsoft is currently working on version 7.0 of its
browser Internet Explorer, which is code-named Rincon. When it finally hits the shelves, it will be more than
four years since the last release.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES206

5807ch04.qxd 1/13/06 2:50 PM Page 206

If you look at how event handling takes place in HTC and XBL, you will see some more
distinct differences:

• HTC has three different approaches to event handling—a developer can use
<public:attach> to declare a global event handler for the component, define a function
using the HTML element <script for="proButton" event="onclick">, assign it to a
specific element and event, and finally declare an event handler function and assign a
call to that function (for example, onclick="proButton()").

• XBL has two ways of defining event handlers—one is using a predefined event handler
such as onclick or onmouseover on an element, and the other is defining an event han-
dler globally for the component using the <handler> element. To add custom methods,
a developer can use the <method> element to define a custom event handler for the
component.

Attaching Components
Both technologies leverage CSS to attach behavior to an element. Attaching a component to
the HTML page using XBL, developers have to use the -moz-binding: url() attribute; using
HTC they have to use the behavior: url() attribute. Both of these approaches seem compara-
ble, but the end result is poles apart. In XBL the style class name (for example, pro\:welcome)
will become the tag <pro:welcome> and be interpreted as a first class element in the DOM tree,
obscuring any internal implementations.

With HTC it is different, since the CSS approach is used to attach a behavior to an
already existing HTML element (for example, H1 {behavior:url(projsf.htc)}) that is not
declaring a first-class element in the DOM, and therefore it will expose internal imple-
mentations of that component. To create a first-class element, developers have to use the
<?import namespace="pro" implementation="pro.htc" ?> element and the namespace
<html xmlns:pro > to uniquely identify the imported component, and as mentioned earlier,
the name of the tag is declared in the HTC file using the tagName attribute.

JSF—The Greatest Thing Since Sliced Bread!
Of the technologies described in this chapter, it is only XUL and HTC that allow developers
to reuse components in Web applications. They allow the encapsulation of HTML, CSS, and
script into components that application developers can reuse. Ajax, on the other hand, deliv-
ers asynchronous communication to the server that can be used to provide users with a
responsive UI.

These technologies solve most of the requirements coming from consumers, but they are
still lacking in support for the application developer.

What the market needs is a standard way of defining an RIA that can be deployed over the
Web without vendor lock-in. A working group, called Web Hypertext Applications Technology
(WHAT), is trying to create a standard tag library for extensions to HTML that work across all
browsers by leveraging technologies such as Mozilla’s XBL to achieve this. Technologies such
as Mozilla’s XBL allow for encapsulation of HTML, CSS, and script into components that appli-
cation developers can reuse but that are not standards.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 207

5807ch04.qxd 1/13/06 2:50 PM Page 207

■Note The WHAT working group (http://www.whatwg.org/) is addressing the need for a sound and
rational development environment extending the standard HTML elements. This will take place through a set
of technical specifications that can be used and implemented in Web browsers such as Firefox, Mozilla, and
Internet Explorer.

Meanwhile, developers are falling back to the lowest common denominator—HTML—and
using technologies such as Ajax to build dynamic Web applications. This approach of develop-
ing Web applications has one severe drawback—it has no good reuse model. Currently, this
approach has no standard way for a developer to define reusable and easy-to-integrate HTML
components that have rich functionality with existing server-side logic. Currently developers
use JSP tag libraries to create reusable HTML components that access server-side logic, but this
is still low-level and cumbersome.

What is needed is a standard that can encapsulate these RITs using components instead
of markup in an effective model that allows application developers to build Web applications
with prefabricated blocks of functionality without concern for implementation details. Prefab-
ricated blocks, or components, allow application developers to build complex applications
with reusable components. This also allows application developers to focus on the actual
application structure rather than building the actual dynamic functionality themselves.

JSF is all about these kinds of reusable components!

Cross-Platform Support
An important aspect that developers and their managers need to take into account when
building applications is cross-platform support. Consumer requirements are increasingly
supporting handheld devices, Telnet clients, desktops, and so on. For developers with com-
plete control over the consumer base and infrastructure, this may not be important, but in
most cases it is.

Initially the term cross-platform meant the operating system the application runs on
(for example, Windows, Linux, Mac OS, Unix, and so on), but the advancement of Internet-
enabled devices means the cross-platform support matrix has become far more complex.
Several cross-platform solutions such as Java are available.

In most cases, applications need to be designed to use features of a specific platform,
which in turn is time-consuming and costly. For a developer to fully support an application
on only one platform requires lengthy lifecycles for compiling and debugging. Adding more
platforms to the mix, the time spent on developing a cross-platform application can grow
exponentially.

For the technologies used in this chapter—Ajax, XUL, and HTC—Mozilla’s XUL claims
that it has cross-platform support. That is partially true; you can deploy a XUL application to
any operating system that the Mozilla platform (GRE) supports.

■Note XBL is already available for Firefox on the Mac, and it is coming to Safari 1.3/2.0.

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES208

5807ch04.qxd 1/13/06 2:50 PM Page 208

You could also argue that Ajax provides cross-platform support, but it is the provider
of the Ajax solution that needs to ensure that every browser-specific quirk is supported.
So, although you have plenty of environments to deploy to, no true solution has full cross-
platform support.

Imagination As the Only Limit
JSF standardizes the server side for the application developer, but you still have to wait for the
presentation layer in the browser to standardize for component developers. JSF brings plat-
form independence to the application developer by separating the user interface from the
application, which makes it possible for the component author to change the presentation
layer without tampering with the application.

This is not solving the browser inconsistency issue, the maintenance difficulties, or the
cross-platform issue of the previously mentioned technologies, but it will help application
developers build RIAs in a standard way.

The three technologies described in this chapter—Ajax, XUL, and HTC—have their
advantages and drawbacks, so wouldn’t it be great if you could combine the advantages into
one reusable standard component?

A JSF component developer can use XUL or HTC for presentation and Ajax for communi-
cation and then dynamically fall back to a traditional HTML solution if the client does not
support any of the three technologies. The application developer will be able to build one
application supporting multiple rendering technologies with one common programming
model—JSP and Java.

A JSF Application Supporting Ajax, XUL, and HTC
To finish this chapter and map back to the previously covered technologies, the JSF sample
shown in Figure 4-11 illustrates a page containing your JSF input date component. In later
chapters, you will implement the support shown in this section. This version of your compo-
nent has been extended to include a pop-up calendar from which the user can pick a date.
This improved component leverages Ajax for communication and XUL and HTC as rendering
technologies.

Figure 4-11. A page built with JSF components using XUL as the rendering technology

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 209

5807ch04.qxd 1/13/06 2:50 PM Page 209

Figure 4-11 shows a JSF page—inputDate.jspx—that contains your ProInputDate compo-
nent, which is rendering XUL content to the Mozilla Firefox browser.

Figure 4-12 shows the same page—inputDate.jspx—running in Internet Explorer. The
interesting part with this simple application is that you are using the best rendering technol-
ogy for each browser, and although not visible, the ProInputDate component is using Ajax to
asynchronously communicate with the server to receive dates that are selectable.

Figure 4-12. The same page in Internet Explorer using HTC as the rendering technology

The source of the page (see Code Sample 4-26) is not that different from what you have
seen with XUL and HTC, but the main difference is that the application developer will not
need to learn two, or even three, ways of supporting RIAs in today’s browsers.

Code Sample 4-26. JSF Page Matching the XUL and HTC Samples

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"

xmlns:pro="http://projsf.apress.com/tags"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >

<jsp:directive.page contentType="application/x-javaserver-faces" />
<f:view>
<pro:document title="ProJSF : ProInputDate" >
<h:form>
Please enter a date with the pattern "d MMMMM yyyy".

<pro:inputDate id="dateField"

title="Date Field Component"
value="#{inputDateBean.date}" >

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES210

5807ch04.qxd 1/13/06 2:50 PM Page 210

<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{inputDateBean.getAvailability}" />

</pro:inputDate>

<h:message for="theDate" />

<h:commandButton value="Submit" />

<h:outputText value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />

</h:outputText>
</h:form>

</pro:document>
</f:view>

</jsp:root>

Apart from the obvious namespaces, the sample contains one namespace that maps to
a custom component library (xmlns:pro="http://projsf.apress.com/tags") and a custom
component (<pro:inputDate ..."/>). Be patient—you will see the actual JSF implementation
in the coming chapters.

Summary
This chapter gave you some insight into three of the market’s leading view technologies for
RIAs: XUL, HTC, and Ajax. These technologies have proven they are more than capable of
providing users with rich and responsive interfaces. The chapter also touched on the issues
with these technologies such as lack of standards, platform support, and maintenance.

Looking ahead, the potential for JSF as a technology is unlimited. Component developers
can provide the community with a wide range of components supporting technologies from
HTML to XUL, including wireless and even character-based solutions; your imagination is the
only limit.

The chapter showed how to build reusable components with XBL and HTC, as well as how
to implement event handling, how to implement encapsulation, and how to embed custom
components in a page using the supported implementations (CSS and import) provided by
the different technologies. You also gained knowledge about Ajax and its key player, the
XMLHttpRequest object. For more information about these technologies, please visit the Mozilla
Web site (http://www.mozilla.org), the Microsoft MSDN Web site (http://msdn.microsoft.com/),
and Wikipedia.org (http://en.wikipedia.org/wiki/AJAX).

CHAPTER 4 ■ USING RICH INTERNET TECHNOLOGIES 211

5807ch04.qxd 1/13/06 2:50 PM Page 211

5807ch04.qxd 1/13/06 2:50 PM Page 212

