
661

■ ■ ■

C H A P T E R 2 8

Securing MySQL

It’s almost a natural reaction; when exiting your automobile, you take a moment to lock the
doors and set the car alarm, if you have one. You do so because you know that the possibility of
the car or its contents being stolen dramatically increases if you do not take such rudimentary
yet effective precautions. Ironically, the IT industry at large seems to take the opposite approach
when creating the vehicles used to maintain enterprise data. Both IT systems and applications
are rife with open doors, leading to intellectual property theft, damage, and even destruction
as a result of electronic attacks. Often, such occurrences take place not because the technology
does not offer deterrent features, but simply because the developers never bothered to put
these deterrents into effect.

This chapter introduces several key aspects of MySQL’s configuration and highly effective
security model. In particular, this chapter describes MySQL’s user privilege system in great
detail, showing you how to create users, manage privileges, and change passwords. Additionally,
MySQL’s secure (SSL) connection feature is introduced. You’ll also learn how to place limitations
on user resource consumption. After completing this chapter, you should be familiar with the
following topics:

• Steps to take immediately after starting the mysqld daemon for the first time

• How to secure the mysqld daemon

• MySQL’s access privilege system

• The GRANT and REVOKE functions

• User account management

• Creating secure MySQL connections with SSL

Let’s start at the beginning: What you should do before doing anything else with your
MySQL database server.

What You Should Do First
This section outlines several rudimentary yet very important tasks that you should undertake
immediately after completing the installation and configuration process outlined in Chapter 25:

Gilmore 2E_552-1.book Page 661 Wednesday, December 14, 2005 10:35 AM

662 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

• Patch the operating system and any installed software: Software security alerts seem to
be issued on a weekly basis these days, and although they are annoying, it’s absolutely
necessary that you take the steps to ensure that your system is fully patched. With exploit
instructions and tools readily available on the Internet, a malicious user with even little
experience in such matters will have little trouble taking advantage of an unpatched
server. Even if you’re using a managed server, don’t blindly depend on the service provider
to perform the necessary upgrades; instead, monitor support updates to ensure that
matters are being taken care of.

• Disable all unused system services: Always take care to eliminate all unnecessary potential
server attack routes before you place the server on the network. These attack vectors are
almost exclusively the result of insecure system services, often ones running on the
system unbeknownst to the system administrator. In short, if you’re not going to use a
service, disable it.

• Close the firewall: Although shutting off unused system services is a great way to lessen
the probability of a successful attack, it doesn’t hurt to add a second layer of security by
closing all unused ports. For a dedicated database server, consider closing all ports below
1024 except for the designated SSH port, 3306 (MySQL), and a handful of “utility” ports,
such as 123 (NTP). In short, if you don’t intend for traffic to travel on a given port, close
it off altogether. In addition to making such adjustments on a dedicated firewall appli-
ance or router, also consider taking advantage of the operating system’s firewall. Both
Microsoft Windows Server 2000/2003 and Unix-based systems have built-in firewalls at
your disposal.

• Audit the server’s user accounts: Particularly if a pre-existing server has been repurposed for
hosting the organization’s database, make sure that all nonprivileged users are disabled
or, better yet, deleted. Although MySQL users and operating system users are completely
unrelated, the mere fact that they have access to the server environment raises the possi-
bility that damage could be done, inadvertently or otherwise, to the database server and its
contents. To completely ensure that nothing is overlooked during such an audit, consider
reformatting all attached drives and reinstalling the operating system.

• Set the MySQL root user password: By default, the MySQL root (administrator) account
password is left blank. Although many find this practice questionable, this has long been
the standard procedure, and it will likely be this way for some time. You must take care
to add a password immediately! You can do so with the SET PASSWORD command, like so:

%>mysql -u root mysql
%>SET PASSWORD FOR root@localhost=PASSWORD('secret');
%>FLUSH PRIVILEGES;

• Of course, choose a password that is a tad more complicated than secret. MySQL will let you
dig your own grave in the sense that passwords such as 123, abc, and your dog’s name are
perfectly acceptable. Consider choosing a password that is at least eight characters in length,
and consists of a mixture of numeric and alphabetical characters of varying case.

Securing the mysqld Daemon
There are several security options that you can use when you start the mysqld daemon:

Gilmore 2E_552-1.book Page 662 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 663

• --skip-networking: Prevents the use of TCP/IP sockets when connecting to MySQL,
meaning that remote connections aren’t accepted regardless of the credentials provided. If
your application and database reside on the same server, you should definitely consider
including this option.

• --skip-name-resolve: Prevents the use of hostnames when connecting to the MySQL
database, instead allowing only IP addresses or localhost.

• --safe-show-database: Causes the SHOW DATABASES command to return only those data-
bases for which the user possesses some sort of privilege. If you’re running version 4.02
or higher, this option is enabled by default.

• --skip-show-database: Prevents any user that does not possess the SHOW DATABASES privilege
from using the command entirely. As of version 4.02, the Show_db_priv column located
in the user table mimics this feature. (See the next section for more information about
the user table.)

• --local-infile: Disabling this option by setting it to 0 disables use of the command LOAD
DATA LOCAL INFILE, which when enabled allows the client to load a file from their local
machine. See Chapter 37 for more information about this command.

• --safe-user-create: Prevents any user from creating new users via the GRANT command
if they do not also possess the INSERT privilege for the user table.

The MySQL Access Privilege System
Protecting your data from unwarranted review, modification, or deletion, accidental or other-
wise, should always be your primary concern. Yet balancing a secure database with an expected
level of user convenience and flexibility is often a difficult affair. The delicacy of this balance
becomes obvious when you consider the wide array of access scenarios that might exist in any
given environment. For example, what if a user requires modification privileges, but not inser-
tion privileges? How do you authenticate a user who might need to access the database from a
number of different IP addresses? What if you want to provide a user with read access to only
certain table columns, while restricting the rest? You can imagine the nightmarish code that
might result from incorporating such features into the application logic. Thankfully, the MySQL
developers have relieved you of these tasks, integrating fully featured authentication and
authorization capabilities into the server. This is commonly referred to as the MySQL access
privilege system.

How the Privilege System Works
MySQL’s privilege system revolves around two general concepts:

• Authentication: Determines whether a user is even allowed to connect to the server.

• Authorization: Determines whether the user possesses adequate privileges to execute
query requests.

Because authorization cannot take place without successful authentication, you can think
of this process as taking place in two stages.

Gilmore 2E_552-1.book Page 663 Wednesday, December 14, 2005 10:35 AM

664 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

The Two Stages of Access Control

The general privilege control process takes place in two distinct stages: connection authentica-
tion and request verification. Together, these stages are carried out in five distinct steps:

1. MySQL uses the contents of the user table to determine whether the incoming connection
should be accepted or rejected. This is done by matching the specified host and the user
to a row contained within the user table. MySQL also determines whether the user requires
a secure connection to connect, and whether the number of maximum allowable connec-
tions per hour for that account has been exceeded. The execution of Step 1 completes
the authentication stage of the privilege control process.

2. Step 2 initiates the authorization stage of the privilege control process. If the connection
is accepted, MySQL verifies whether the maximum allowable number of queries or
updates per hour for that account has been exceeded. Next, the corresponding privileges
as granted within the user table are examined. If any of these privileges are enabled (set
to y), then the user has global privileges, for any database, to act in the capacity granted
by that privilege. Of course, in most cases, all of these privileges are disabled, which
causes Step 3 to occur.

3. The db table is examined, verifying which databases this user is allowed to interact with.
Any corresponding privileges enabled in this table correspond to all tables within those
databases that the user is allowed to interact with.

4. If a row in the db table is found to have a matching user but an empty host value, the
host table is then examined. If a matching host value is found, the user has those privileges
for that database as indicated in the host table, and not in the db table. This is done to
allow for host-specific access on a given database.

5. Finally, if a user attempts to execute a command that has not been granted in the user,
db, or host tables, the tables_priv and columns_priv tables are examined, to determine
whether the user is able to execute that command on the table(s) or column(s) in question.

As you may have gathered from the process breakdown, the system examines privileges by
starting with the very broad and ending with the very specific. Let’s consider a concrete example.

■Note Only as of MySQL 4.0.2 was it possible to impose maximum hourly connections, updates, and
queries for a user. As of MySQL 5.0.3, it’s possible to set the maximum number of simultaneous connections
for a user.

Tracing Through a Real-World Connection Request

Suppose user jason would like to insert a new row into the widgets table. This example takes
the following variables into account:

• Database: company

• Table: widgets

Gilmore 2E_552-1.book Page 664 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 665

• User: jason

• Connecting from: www.example.com

• Password: secret

MySQL first determines whether jason is authorized to connect to the database, and, if so,
then determines whether he’s allowed to execute the INSERT request:

1. Does user jason@www.example.com require a secure connection? If yes, and user
jason@www.example.com has attempted to connect without the required security certificate,
deny the request and end the authentication procedure. If no, proceed to Step 2.

2. If MySQL version 4.0.2 or higher is running, determine whether the jason account has
exceeded the maximum allowable number of hourly connections, denying the authenti-
cation procedure. If not, and MySQL version 5.0.3 or higher is running, MySQL determines
whether the maximum number of simultaneous connections has been exceeded. If
both tasks pass muster, proceed to Step 3.

3. Does user jason@www.example.com possess the necessary privileges to connect to the
database server? If yes, proceed to Step 4. If no, deny access and end the control procedure.
This step ends the authentication component of the privilege control mechanism.

4. Has user jason@www.example.com exceeded the maximum number of allowable updates
or queries? If not, proceed to Step 5.

5. Does user jason@www.example.com possess global INSERT privileges? If yes, accept and
execute the insertion request. If no, proceed to Step 6.

6. Does user jason@www.example.com possess INSERT privileges for the company database?
If yes, accept and execute the insertion request. If no, proceed to Step 7.

7. Does user jason@www.example.com possess INSERT privileges for the widget table columns
specified in the insertion request? If yes, accept and execute the insertion request. If no,
deny the request and end the control procedure.

By now you should be beginning to understand the generalities surrounding MySQL’s
access-control mechanism. However, the picture isn’t complete until you’re familiar with the
technical underpinnings of this process. This matter is introduced next.

Where Is Access Information Stored?
MySQL’s privilege verification information is stored in the mysql database, which is installed by
default along with the database server. Specifically, six tables found in this database play an
important role in the authentication and privilege verification process:

• user: Determines which users can log in to the database server from which host

• db: Determines which users can access which databases

• host: An extension of the db table, offering additional hostnames from which a user can
connect to the database server

Gilmore 2E_552-1.book Page 665 Wednesday, December 14, 2005 10:35 AM

666 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

• tables_priv: Determines which users can access specific tables of a particular database

• columns_priv: Determines which users can access specific columns of a particular table

• procs_priv: Governs the use of stored procedures

This section delves into the details pertinent to the purpose and structure of each privilege
table.

The user Table

The user table is unique in the sense that it is the only privilege table to play a role in both stages
sof the privilege request procedure. During the authentication stage, the user table is solely
responsible for granting user access to the MySQL server, determining whether the user has
exceeded the maximum allowable connections per hour (MySQL 4.0.2 and greater), and deter-
mining whether the user has exceeded the maximum simultaneous connections (MySQL 5.0.3
and greater). During this stage, the user table also determines whether SSL-based authorization is
required; if it is, the user table checks the necessary credentials. See the later section “Secure
MySQL Connections” for more information about this feature.

In the request authorization stage, the user table determines whether those users granted
access to the server have been assigned global privileges for working with the MySQL server.
That is, any privilege enabled in this table allows a user to work in some capacity with all data-
bases located on that MySQL server. During this stage, the user table also determines whether the
user has exceeded the maximum number of allowable queries and updates per hour. See the
later section “Limiting User Resources” for more information about controlling resource usage
on a per-user basis.

The user table possesses another defining characteristic: It is the only privilege table to
store privileges pertinent to the administration of the MySQL server. For example, this table is
responsible for determining which users are allowed to execute commands relevant to the
general functioning of the server, such as shutting down the server, reloading user privileges,
and viewing and even killing existing client processes. Thus, this table plays quite an important
role in the access privilege procedure.

Because of its wide-ranging responsibilities, user is the largest of the privilege tables,
containing a total of 37 fields: three scope, and the rest privilege. Table 28-1 offers information
regarding the columns found in the user table, including their names, datatypes, attributes,
and default values. Following the table, a more thorough introduction of each column’s purpose
is offered.

Table 28-1. Overview of the user Table

Column Datatype Null Default

Host char(60) binary No No default

User char(16) binary No No default

Password char(41) binary No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

Gilmore 2E_552-1.book Page 666 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 667

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Reload_priv enum('N','Y') No N

Shutdown_priv enum('N','Y') No N

Process_priv enum('N','Y') No N

File_priv enum('N','Y') No N

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Show_db_priv enum('N','Y') No N

Super_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Repl_slave_priv enum('N','Y') No N

Repl_client_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Show_view_priv enum('N','Y') No N

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Create_user_priv enum('N','Y') No N

ssl_type enum('','ANY','X509','SPECIFIED') No 0

ssl_cipher blob No 0

x509_issuer blob No 0

x509_subject blob No 0

max_questions int(11) unsigned No 0

max_updates int(11) unsigned No 0

max_connections int(11) unsigned No 0

max_user_connections int(11) unsigned No 0

Table 28-1. Overview of the user Table

Column Datatype Null Default

Gilmore 2E_552-1.book Page 667 Wednesday, December 14, 2005 10:35 AM

668 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

Host

The Host column specifies the hostname that determines the host address from which a user
can connect. Addresses can be stored as either hostnames, IP addresses, or wildcards. Wildcards
can consist of either the % or _ character. In addition, netmasks may be used to represent IP
subnets. Several example entries follow:

• www.example.com

• 192.168.1.2

• %

• %.example.com

• 192.168.1.0/255.255.255.0

• localhost

User

The User column specifies the case-sensitive username capable of connecting to the database
server. Although wildcards are not permitted, blank values are. If the entry is empty, any user
arriving from the corresponding Host entry will be allowed to log in to the database server.
Example entries follow:

• jason

• Jason_Gilmore

• secretary5

Password

The Password column stores the encrypted password supplied by the connecting user. Although
wildcards are not allowed, blank passwords are. Therefore, make sure that all users are provided
with a corresponding password to alleviate potential security issues.

Passwords are stored in a one-way hashed format, meaning that they cannot be converted
back to their plain-text format. Furthermore, as of version 4.1, the number of bytes required to
store a password increased from 16 bytes to 41 bytes. Therefore, if you’re importing data from
a pre-4.1 version, and you want to take advantage of the added security offered by the longer
hashes, you need to increase the size of the Password column to fit the new space requirement.
You can do so either by manually altering the table with the ALTER command or by running the
utility mysql_fix_privilege_tables. If you choose not to alter the table, or cannot, then MySQL
will still allow you to maintain passwords, but will simply continue to use the old method for
doing so.

Gilmore 2E_552-1.book Page 668 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 669

USER IDENTIFICATION

MySQL identifies a user not just by the supplied username, but by the combination of the supplied username
and the originating hostname. For example, jason@localhost is entirely different from
jason@www.wjgilmore.com. Furthermore, keep in mind that MySQL will always apply the most specific set
of permissions that matches the supplied user@host combination. Although this may seem obvious, some-
times unforeseen consequences can happen. For example, it’s often the case that multiple rows match the
requesting user/host identity; even if a wildcard entry that satisfies the supplied user@host combination is
seen before a later entry that perfectly matches the identity, the privileges corresponding to that perfect match
will be used instead of the wildcard match. Therefore, always take care to ensure that the expected privileges
are indeed supplied for each user. Later in this chapter, you’ll see how to view privileges on a per-user basis.

The User Privilege Columns

The next 26 columns listed in Table 28-1 comprise the user privilege columns:

• Select_priv: Determines whether the user can select data via the SELECT command.

• Insert_priv: Determines whether the user can insert data via the INSERT command.

• Update_priv: Determines whether the user can modify existing data via the UPDATE
command.

• Delete_priv: Determines whether the user can delete existing data via the DELETE
command.

• Create_priv: Determines whether the user can create new databases and tables.

• Drop_priv: Determines whether the user can delete existing databases and tables.

• Reload_priv: Determines whether the user can execute various commands specific to
flushing and reloading of various internal caches used by MySQL, including logs, privileges,
hosts, queries, and tables.

• Shutdown_priv: Determines whether the user can shut down the MySQL server. You
should be very wary of providing this privilege to anybody except the root account.

• Process_priv: Determines whether the user can view the processes of other users via the
SHOW PROCESSLIST command.

• File_priv: Determines whether the user can execute the SELECT INTO OUTFILE and LOAD
DATA INFILE commands.

• Grant_priv: Determines whether the user can grant privileges already granted to that
user to other users. For example, if the user can insert, select, and delete information
located in the foo database, and has been granted the GRANT privilege, that user can grant
any or all of these privileges to any other user located in the system.

Gilmore 2E_552-1.book Page 669 Wednesday, December 14, 2005 10:35 AM

670 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

• References_priv: Currently just a placeholder for some future function; it serves no
purpose at this time.

• Index_priv: Determines whether the user can create and delete table indexes.

• Alter_priv: Determines whether the user can rename and alter table structures.

• Show_db_priv: Determines whether the user can view the names of all databases residing
on the server, including those for which the user possesses adequate access privileges.
Consider disabling this for all users unless there is a particularly compelling reason
otherwise.

• Super_priv: Determines whether the user can execute certain powerful administrative
functions, such as the deletion of user processes via the KILL command, the changing of
global MySQL variables using SET GLOBAL, and the execution of various commands perti-
nent to replication and logging.

• Create_tmp_table_priv: Determines whether the user can create temporary tables.

• Lock_tables_priv: Determines whether the user can block table access/modification
using the LOCK TABLES command.

• Execute_priv: Determines whether the user can execute stored procedures. This privilege
is only relevant for MySQL 5.0 and greater.

• Repl_slave_priv: Determines whether the user can read the binary logging files used to
maintain a replicated database environment. This user resides on the master system,
and facilitates the communication between the master and the client machines.

• Repl_client_priv: Determines whether the user can determine the location of any repli-
cation slaves and masters.

• Create_view_priv: Determines whether the user can create a view. This privilege is only
relevant for MySQL 5.0 and greater. See Chapter 33 for more information about views.

• Show_view_priv: Determines whether the user can see a view or learn more about how it
executes. This privilege is only relevant for MySQL 5.0 and greater. See Chapter 33 for
more information about views.

• Create_routine_priv: Determines whether the user can create stored procedures and
functions. This privilege is only relevant for MySQL 5.0 and greater.

• Alter_routine_priv: Determines whether the user can alter or drop stored procedures
and functions. This privilege is only relevant for MySQL 5.0 and greater.

• Create_user_priv: Determines whether the user can execute the CREATE USER statement,
which is used to create new MySQL accounts.

The Remaining Columns

The remaining eight columns listed in Table 28-1 are so interesting that entire sections are
devoted to them later in this chapter. You can learn more about the max_questions, max_updates,
max_connections, and max_user_connections columns in the section “Limiting User Resources.”

Gilmore 2E_552-1.book Page 670 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 671

You can learn more about the ssl_type, ssl_cipher, x509_issuer, and x509_subject columns
in the section “Secure MySQL Connections.”

The db Table

The db table is used to assign privileges to a user on a per-database basis. It is examined if the
requesting user does not possess global privileges for the task she’s attempting to execute. If a
matching User/Host/Db triplet is located n the db table, and the requested task has been granted
for that row, then the request is executed. If the User/Host/Db/task match is not satisfied, one
of two events occurs:

• If a User/Db match is located, but the host is blank, then MySQL looks to the host table
for help. The purpose and structure of the host table is introduced in the next section.

• If a User/Host/Db triplet is located, but the privilege is disabled, MySQL next looks to the
tables_priv table for help. The purpose and structure of the tables_priv table is intro-
duced in a later section.

Wildcards, represented by the % and _ characters, may be used in both the Host and Db
columns, but not in the User column. Like the user table, the rows are sorted so that the most
specific match takes precedence over less-specific matches. An overview of the db table’s structure
is presented in Table 28-2.

Table 28-2. Overview of the db Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Gilmore 2E_552-1.book Page 671 Wednesday, December 14, 2005 10:35 AM

672 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

The host Table

The host table comes into play only if the db table’s Host field is left blank. You might leave the
db table’s Host field blank if a particular user needs access from various hosts. Rather than
reproducing and maintaining several User/Host/Db instances for that user, only one is added
(with a blank Host field), and the corresponding hosts’ addresses are stored in the host table’s
Host field.

Wildcards, represented by the % and _ characters, may be used in both the Host and Db
columns, but not in the User column. Like the user table, the rows are sorted so that the most
specific match takes precedence over less-specific matches. An overview of the host table’s
structure is presented in Table 28-3.

Show_view_priv enum('N','Y') No N

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Table 28-3. Overview of the host Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

Select_priv enum('N','Y') No N

Insert_priv enum('N','Y') No N

Update_priv enum('N','Y') No N

Delete_priv enum('N','Y') No N

Create_priv enum('N','Y') No N

Drop_priv enum('N','Y') No N

Grant_priv enum('N','Y') No N

References_priv enum('N','Y') No N

Index_priv enum('N','Y') No N

Alter_priv enum('N','Y') No N

Create_tmp_table_priv enum('N','Y') No N

Lock_tables_priv enum('N','Y') No N

Create_view_priv enum('N','Y') No N

Show_view_priv enum('N','Y') No N

Table 28-2. Overview of the db Table (Continued)

Column Datatype Null Default

Gilmore 2E_552-1.book Page 672 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 673

The tables_priv Table

The tables_priv table is intended to store table-specific user privileges. It comes into play only
if the user, db, and host tables do not satisfy the user’s task request. To best illustrate its use,
consider an example. Suppose that user jason from host example.com wants to execute an UPDATE
on the table staff located in the database company. Once the request is initiated, MySQL will
begin by reviewing the user table to see if jason@example.com possesses global INSERT privileges.
If this is not the case, the db and host tables are next reviewed for database-specific insertion
privileges. If these tables do not satisfy the request, MySQL then looks to the tables_priv table
to verify whether user jason@example.com possesses the insertion privilege for the table staff
found in the company database.

An overview of the tables_priv table is found in Table 28-4.

Because of space limitations, the term tableset is used as a placeholder for set(Select,
Insert, Update, Delete, Create, Drop, Grant, References, Index, Alter, Create view,
Show view). The term columnset is a placeholder for set(Select, Insert, Update, References).

All the columns found in the tables_priv table should be familiar, except for the following:

• Table_name: Determines the table to which the table-specific permissions set within the
tables_priv table will be applied.

• Grantor: Specifies the username of the user granting the privileges to the user.

Create_routine_priv enum('N','Y') No N

Alter_routine_priv enum('N','Y') No N

Execute_priv enum('N','Y') No N

Table 28-4. Overview of the tables_priv Table

Column Datatype Null Default

Host char(60) No No default

Db char(64) No No default

User char(16) No No default

Table_name char(64) No No default

Grantor char(77) No No default

Timestamp timestamp Yes Current timestamp

Table_priv tableset No No default

Column_priv columnset No No default

Table 28-3. Overview of the host Table

Column Datatype Null Default

Gilmore 2E_552-1.book Page 673 Wednesday, December 14, 2005 10:35 AM

674 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

• Timestamp: Specifies the exact date and time when the privilege was granted to the user.

• Table_priv: Determines which table-wide permissions are available to the user. The
following privileges can be applied in this capacity: SELECT, INSERT, UPDATE, DELETE, CREATE,
DROP, GRANT, REFERENCES, INDEX, and ALTER.

• Column_priv: Stores the names of any column-level privileges assigned to that user for
the table referenced by the Table_name column. The purpose for doing so is undocumented,
although one would suspect that it is done in an effort to improve general performance.

The columns_priv Table

The columns_priv table is responsible for setting column-specific privileges. It comes into play
only if the user, db/host, and tables_priv tables are unable to determine whether the requesting
user has adequate permissions to execute the requested task.

An overview of the columns_priv table is found in Table 28-5.

All columns found in this table should be familiar, except for Column_name, which specifies
the name of the table column affected by the GRANT command.

The procs_priv Table

The procs_priv table governs the use of stored procedures and functions. An overview of the
procs_priv table is found in Table 28-6.

Table 28-5. Overview of the columns_priv Table

Column Datatype Null Default

Host char(60) binary No No default

Db char(64) binary No No default

User char(16) binary No No default

Table_name char(60) binary No No default

Column_name char(64) binary No No default

Timestamp timestamp Yes Null

Column_priv columnset No No default

Table 28-6. Overview of the procs_priv Table

Column Datatype Null Default

Host char(60) binary No No default

Db char(64) binary No No default

User char(16) binary No No default

Routine_name char(64) binary No No default

Gilmore 2E_552-1.book Page 674 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 675

The term columnset is a placeholder for set(Execute, Alter Routine, Grant). The
Routine_type column can take the following values: FUNCTION and PROCEDURE.

User and Privilege Management
The tables located in the mysql database are no different from any other relational tables in the
sense that their structure and data can be modified using typical SQL commands. In fact, up
until version 3.22.11, this was exactly how the user information found in this database was
managed. However, with the release of version 3.22.11 came a new, arguably much more intu-
itive method for managing this crucial data: using the GRANT and REVOKE commands. With these
commands, users can be both created and disabled, and their access privileges can be both
granted and revoked on the fly. Their exacting syntax eliminates potentially horrendous mistakes
that could otherwise be introduced due to a malformed SQL query (for example, forgetting to
include the WHERE clause in an UPDATE query).

As of version 5.0, yet another feature was added to further improve the ease with which
new users can be added, deleted, and renamed. As you’ll soon learn, it’s possible to create and
effectively delete users by using the GRANT and REVOKE commands. However, the fact that you
can use these commands for such purposes may seem a tad nonintuitive given the command
names, which imply the idea of granting privileges to and revoking privileges from existing
users. Therefore, in version 5.0, two new commands were added to MySQL’s administration
arsenal: CREATE USER and DROP USER. A third command, RENAME USER, was added for renaming
existing users.

CREATE USER

CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']
 [, user [IDENTIFIED BY [PASSWORD] 'password']] ...

The CREATE USER command is used to create new user accounts. No privileges are assigned at
the time of creation, meaning you next need to use the GRANT command to assign privileges.
An example follows:

mysql>CREATE USER jason@localhost IDENTIFIED BY 'secret';
Query OK, 0 rows affected (0.47 sec)

As you can see from the command prototype, it’s also possible to simultaneously create
more than one user.

Routine_type enum No No default

Grantor char(77) binary No No default

Proc_priv columnset No No default

Timestamp timestamp Yes Null

Table 28-6. Overview of the procs_priv Table

Column Datatype Null Default

Gilmore 2E_552-1.book Page 675 Wednesday, December 14, 2005 10:35 AM

676 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

DROP USER

DROP USER user [, user]...

If an account is no longer needed, you should strongly consider removing it to ensure that it
can’t be used for potentially illicit activity. This is easily accomplished with the DROP USER
command, which removes all traces of the user from the privilege tables. An example follows:

mysql>DROP user jason@localhost;
Query OK, 0 rows affected (0.03 sec)

As you can see from the command prototype, it’s also possible to simultaneously delete
more than one user.

■Caution The DROP USER command was actually added in MySQL 4.1.1, but it could only remove
accounts with no privileges. This behavior changed in MySQL 5.0.2, and now it can remove an account
regardless of privileges. Therefore, if you’re running MySQL version 4.1.1 through 5.0.1 and use this
command, note the command response, because the user may indeed continue to exist even though you
thought it had been removed.

RENAME USER

RENAME USER old_user TO new_user
 [old_user TO new_user]...

On occasion you may want to rename an existing user. This is easily accomplished with the
RENAME USER command. An example follows:

mysql>RENAME USER jason@localhost TO jasongilmore@localhost;
Query OK, 0 rows affected (0.02 sec)

As the command prototype indicates, it’s also possible to simultaneously rename more
than one user.

The GRANT and REVOKE Commands
The GRANT and REVOKE commands are used to manage access privileges. As previously stated,
you can also use them to create and delete users, although, as of MySQL 5.0.2, you can more
easily accomplish this with the CREATE USER and DROP USER commands. The GRANT and REVOKE
commands offer a great deal of granular control over who can work with practically every
conceivable aspect of the server and its contents, from who can shut down the server, to who
can modify information residing within a particular table column. Table 28-7 offers a list of all
possible privileges that can be granted or revoked using these commands.

Gilmore 2E_552-1.book Page 676 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 677

■Tip Although modifying the mysql tables using standard SQL syntax is deprecated, you are not prevented
from doing so. Just keep in mind that any changes made to these tables must be followed up with the flush
privileges command. Because this is an outmoded method for managing user privileges, no further details
are offered regarding this matter. See the MySQL documentation for further information.

Table 28-7. Privileges Managed by GRANT and REVOKE

Privilege Description

ALL PRIVILEGES Affects all privileges except WITH GRANT OPTION

ALTER Affects the use of the ALTER TABLE command

CREATE Affects the use of the CREATE TABLE command

CREATE TEMPORARY TABLES Affects the use of the CREATE TEMPORARY TABLE command

CREATE VIEW Affects the use of the CREATE VIEW command

DELETE Affects the use of the DELETE command

DROP Affects the use of the DROP TABLE command

EXECUTE Affects the user’s ability to run stored procedures

FILE Affects the use of SELECT INTO OUTFILE and LOAD DATA INFILE

GRANT OPTION Affects the user’s ability to delegate privileges

INDEX Affects the use of the CREATE INDEX and DROP INDEX commands

INSERT Affects the use of the INSERT command

LOCK TABLES Affects the use of the LOCK TABLES command

PROCESS Affects the use of the SHOW PROCESSLIST command

REFERENCES Placeholder for a future MySQL feature

RELOAD Affects the use of the FLUSH command set

REPLICATION CLIENT Affects the user’s ability to query for the location of slaves and
masters

REPLICATION SLAVE Required privilege for replication slaves

SELECT Affects the use of the SELECT command

SHOW DATABASES Affects the use of the SHOW DATABASES command

SHOW VIEW Affects the use of the SHOW CREATE VIEW command

SHUTDOWN Affects the use of the SHUTDOWN command

SUPER Affects the use of administrator-level commands such as CHANGE
MASTER, KILL thread, mysqladmin debug, PURGE MASTER LOGS, and
SET GLOBAL

UPDATE Affects the use of the UPDATE command

USAGE Connection only, no privileges granted

Gilmore 2E_552-1.book Page 677 Wednesday, December 14, 2005 10:35 AM

678 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

In this section, the GRANT and REVOKE commands are introduced in some detail, followed by
numerous examples demonstrating their usage.

GRANT

You use the GRANT command when you need to assign new privileges to a user or group of users.
This privilege assignment could be as trivial as granting a user only the ability to connect to the
database server, or as drastic as providing a few colleagues root MySQL access (not recommended,
of course, but possible). The command syntax follows:

GRANT privilege_type [(column_list)] [, privilege_type [(column_list)] ...]
 ON {table_name | * | *.* | database_name.*}
 TO user_name [IDENTIFIED BY 'password']
 [, user_name [IDENTIFIED BY 'password'] ...]
 [REQUIRE {SSL|X509} [ISSUER issuer] [SUBJECT subject]]
 [WITH GRANT OPTION]

At first glance, the GRANT syntax may look intimidating, but it really is quite simple to use.
Some examples are presented in the following sections to help you become better acquainted
with this command.

■Note As soon as a GRANT command is executed, any privileges granted in that command take effect
immediately.

Creating a New User

The first example creates a new user and assigns that user a few database-specific privileges.
User michele would like to connect to the database server from IP address 192.168.1.103 with
the password secret. The following provides her ACCESS, SELECT, and INSERT privileges for all
tables found in the books database:

mysql>GRANT select, insert ON books.* TO michele@192.168.1.103
 ->IDENTIFIED BY 'secret';

Upon execution, two privilege tables will be modified, namely the user and db tables.
Because the user table is responsible for both access verification and global privileges, a new
row must be inserted, identifying this user. However, all privileges found in this row will be
disabled. Why? Because the GRANT command is specific to just the books database. The db table
will contain the user information relevant to map user michele to the books table, in addition to
enabling the Select_priv and Insert_priv columns.

Adding Privileges to an Existing User

Now suppose that user michele needs the UPDATE privilege for all tables residing in the books
database. This is again accomplished with GRANT:

mysql>GRANT update ON books.* TO michele@192.168.1.103;

Gilmore 2E_552-1.book Page 678 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 679

Once executed, the row identifying the user michele@192.168.1.103 in the db table is modified
so that the Update_priv column is enabled. Note that there is no need to restate the password
when adding privileges to an existing user.

Granting Table-Level Privileges

Now suppose that in addition to the previously defined privileges, user michele@192.168.1.103
requires DELETE privileges for two tables located within the books database, namely the authors
and editors tables. Rather than provide this user with carte blanche to delete data from any
table in this database, you can limit privileges so that she only has the power to delete from
those two specific tables. Because two tables are involved, two GRANT commands are required:

mysql>GRANT delete ON books.authors TO michele@192.168.1.103;
Query OK, 0 rows affected (0.07 sec)
mysql>GRANT delete ON books.editors TO michele@192.168.1.103;
Query OK, 0 rows affected (0.01 sec)

Because this is a table-specific privilege setting, only the tables_priv table will be touched.
Once executed, two new rows will be added to the tables_priv table. This assumes that there are
not already pre-existing rows mapping the authors and editors tables to michele@192.168.1.103. If
this is the case, those pre-existing rows will be modified accordingly to reflect the new table-
specific privileges.

Granting Multiple Table-Level Privileges

A variation on the previous example is to provide a user with multiple permissions that are
restricted to a given table. Suppose that a new user, rita, connecting from multiple addresses
located within the wjgilmore.com domain, is tasked with updating author information, and
thus needs only SELECT, INSERT, and UPDATE privileges for the authors table:

mysql>GRANT select,insert,delete ON books.authors TO rita@'%.wjgilmore.com'
 ->IDENTIFIED BY 'secret';

Executing this GRANT statement results in two new entries to the mysql database: a new row
entry within the user table (again, just to provide rita@%.wjgilmore.com with access permissions),
and a new entry within the tables_priv table, specifying the new access privileges to be applied to
the authors table. Keep in mind that because the privileges apply only to a single table, there
will be just one row added to the tables_priv table, with the Table_priv column set to
Select,Insert,Delete.

Granting Column-Level Privileges

Finally, consider an example that affects just the column-level privileges of a table. Suppose
that you want to grant UPDATE privileges on books.authors.name for user nino@192.168.1.105:

mysql>GRANT update (name) ON books.authors TO nino@192.168.1.105;

REVOKE

The REVOKE command is responsible for deleting previously granted privileges from a user or
group of users. The syntax follows:

Gilmore 2E_552-1.book Page 679 Wednesday, December 14, 2005 10:35 AM

680 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

REVOKE privilege_type [(column_list)] [, privilege_type [(column_list)] ...]
 ON {table_name | * | *.* | database_name.*}
 FROM user_name [, user_name ...]

As with GRANT, the best way to understand use of this command is through some examples.
The following examples demonstrate how to revoke permissions from, and even delete,
existing users.

■Note If the GRANT and REVOKE syntax is not to your liking, and you’d prefer a somewhat more wizard-like
means for managing permissions, check out the Perl script mysql_setpermission. Keep in mind that
although it offers a very easy-to-use interface, it does not offer all the features that GRANT and REVOKE have
to offer. This script is located in the MYSQL-INSTALL-DIR/bin directory, and assumes that Perl and the DBI
and DBD::MySQL modules have been installed. This script is bundled only for the Linux/Unix versions of MySQL.

Revoking Previously Assigned Permissions

Sometimes you need to remove one or more previously assigned privileges from a particular
user. For example, suppose you want to remove the UPDATE privilege from user
rita@192.168.1.102 for the database books:

mysql>REVOKE insert ON books.* FROM rita@192.168.1.102;

Revoking Table-Level Permissions

Now suppose you want to remove both the previously assigned UPDATE and INSERT privileges
from user rita@192.168.1.102 for the table authors located in the database books:

mysql>REVOKE insert, update ON books.authors FROM rita@192.168.1.102;

Note that this example assumes that you’ve granted table-level permissions to user
rita@192.168.1.102. The REVOKE command will not downgrade a database-level GRANT (one
located in the db table), removing the entry and inserting an entry in the tables_priv table.
Instead, in this case it simply removes reference to those privileges from the tables_priv table.
If only those two privileges are referenced in the tables_priv table, then the entire row is removed.

Revoking Column-Level Permissions

As a final revocation example, suppose that you have previously granted a column-level DELETE
permission to user rita@192.168.1.102 for the column name located in books.authors, and
now you would like to remove that privilege:

mysql>REVOKE insert (name) ON books.authors FROM rita@192.168.1.102;

In all of these examples of using REVOKE, it’s possible that user rita could still be able to
exercise some privileges within a given database if the privileges were not explicitly referenced
in the REVOKE command. If you want to be sure that the user forfeits all permissions, you can
revoke all privileges, like so:

Gilmore 2E_552-1.book Page 680 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 681

mysql>REVOKE all privileges ON books.* FROM rita@192.168.1.102;

However, if your intent is to definitively remove the user from the mysql database, be sure
to read the next section.

Deleting a User

A common question regarding REVOKE is how it goes about deleting a user. The simple answer
to this question is that it doesn’t at all. For example, suppose that you revoke all privileges from
a particular user, using the following command:

mysql>REVOKE all privileges ON books.* FROM rita@192.168.1.102;

Although this command does indeed remove the row residing in the db table pertinent to
rita@192.168.1.102’s relationship with the books database, it does not remove that user’s entry
from the user table, presumably so that you could later reinstate this user without having to
reset the password. If you’re sure that this user will not be required in the future, you need to
manually remove the row by using the DELETE command.

Of course, if you’re running MySQL 5.0.2 or greater, consider using the DROP USER command to
delete the user and all privileges simultaneously.

GRANT and REVOKE Tips

The following list offers various tips to keep in mind when you’re working with GRANT and REVOKE:

• You can grant privileges for a database that doesn’t yet exist.

• If the user identified by the GRANT command does not exist, it will be created.

• If you create a user without including the IDENTIFIED BY clause, no password will be
required for login.

• If an existing user is granted new privileges, and the GRANT command is accompanied by
an IDENTIFIED BY clause, the user’s old password will be replaced with the new one.

• Table-level GRANTs only support the following privilege types: ALTER, CREATE, CREATE VIEW,
DELETE, DROP, GRANT, INDEX, INSERT, REFERENCES, SELECT, SHOW VIEW, and UPDATE.

• Column-level GRANTs only support the following privilege types: INSERT, SELECT, and
UPDATE.

• The _ and % wildcards are supported when referencing both database names and host-
names in GRANT commands. Because the _ character is also valid in a MySQL database
name, you need to escape it with a backslash if it’s required in the GRANT.

• If you want to create and delete users, and are running MySQL 5.0.2 or greater, consider
using the CREATE USER and DROP USER commands instead.

• You can’t reference *.* in an effort to remove a user’s privileges for all databases. Rather,
each must be explicitly referenced by a separate REVOKE command.

Gilmore 2E_552-1.book Page 681 Wednesday, December 14, 2005 10:35 AM

682 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

Reviewing Privileges
Although you can review a user’s privileges simply by selecting the appropriate data from the
privilege tables, this strategy can become increasingly unwieldy as the tables grow in size.
Thankfully, MySQL offers a much more convenient means (two, actually) for reviewing user-
specific privileges. Both are examined in this section.

SHOW GRANTS FOR

The SHOW GRANTS FOR user command displays the privileges granted for a particular user. For
example:

mysql>SHOW GRANTS FOR rita@192.168.1.102;

This yields the table shown in Figure 28-1.

Figure 28-1. Typical results of the SHOW GRANTS FOR command

As with the GRANT and REVOKE commands, you must make reference to both the username
and the originating host in order to uniquely identify the target user.

Limiting User Resources
Monitoring resource usage is always a good idea, but it is particularly important when you’re
offering MySQL in a hosted environment, such as an ISP. If you’re concerned with such a matter,
you will be happy to learn that, as of version 4.0.2, it’s possible to limit the consumption of
MySQL resources on a per-user basis. These limitations are managed like any other privilege,
via the privilege tables. In total, four privileges concerning the use of resources exist, all of
which are located in the user table:

• max_connections: Determines the maximum number of times the user can connect to
the database per hour

• max_questions: Determines the maximum number of queries (using the SELECT command)
that the user can execute per hour

• max_updates: Determines the maximum number of updates (using the INSERT and UPDATE
commands) that the user can execute per hour

• max_user_connections: Determines the maximum number of simultaneous connections
a given user can maintain (added in version 5.0.3)

Gilmore 2E_552-1.book Page 682 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 683

Consider a couple examples. The first limits user dario@%.wjgilmore.com’s number of
connections per hour to 3,600, or an average of one per second:

mysql>GRANT insert, select, update ON books.* TO dario@'%.wjgilmore.com'
 ->IDENTIFIED BY 'secret' WITH max_connections_per_hour 3600;

The next example limits the total number of updates user dario@'%.wjgilmore.com' can
execute per hour to 10,000:

mysql>GRANT insert, select, update ON books.* TO dario@'%.wjgilmore.com'
 ->IDENTIFIED BY 'secret' WITH max_updates_per_hour 10000;

Secure MySQL Connections
Data flowing between a client and a MySQL server is not unlike any other typical network
traffic; it could potentially be intercepted and even modified by a malicious third party. Some-
times this isn’t really an issue, because the database server and clients often reside on the same
internal network and, for many, on the same machine. However, if your project requirements
result in the transfer of data over insecure channels, you now have the option to use MySQL’s
built-in security features to encrypt that connection. As of version 4.0.0, it became possible to
encrypt all traffic between the mysqld server daemon and any client using SSL and the X509
encryption standard.

To implement this feature, you need to complete the following prerequisite tasks first,
unless you’re running MySQL 5.0.10 or greater, in which case you can skip these tasks; these
versions come bundled with yaSSL support, meaning OpenSSL is no longer needed to imple-
ment secure MySQL connections. If you are running MySQL 5.0.10 or greater, skip ahead to the
following “Grant Options” section. Regardless of whether you’re using yaSSL or require OpenSSL,
all of the other instructions are identical.

• Install the OpenSSL library, available for download at http://www.openssl.org/.

• Configure MySQL with the --with-vio and --with-openssl flags.

You can verify whether MySQL is ready to handle secure connections by logging in to the
MySQL server and executing:

mysql>SHOW VARIABLES LIKE 'have_openssl'

Once these prerequisites are complete, you need to create or purchase both a server certif-
icate and a client certificate. The processes for accomplishing either task are out of the scope of
this book. You can get information about this process on the Internet, so take a few moments
to perform a search and you’ll turn up numerous resources.

Grant Options
There are a number of grant options that determine the user’s SSL requirements. These options are
introduced in this section.

Gilmore 2E_552-1.book Page 683 Wednesday, December 14, 2005 10:35 AM

684 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

REQUIRE SSL

This grant option forces the user to connect over SSL. Any attempts to connect in an insecure
fashion will result in an “Access denied” error. An example follows:

mysql>GRANT insert, select, update ON company.* TO jason@client.wjgilmore.com
 ->IDENTIFIED BY 'secret' REQUIRE SSL;

REQUIRE X509

This grant option forces the user to provide a valid Certificate Authority (CA) certificate. This
would be required if you want to verify the certificate signature with the CA certificate. Note
that this option does not cause MySQL to consider the origin, subject, or issuer. An example
follows:

mysql>GRANT insert, select, update on company.* to jason@client.wjgilmore.com
 ->identified by 'secret' REQUIRE SSL REQUIRE X509;

Note that this option doesn’t specify which CAs are valid and which are not. Any CA that
verified the certificate would be considered valid. If you’d like to place a restriction on which
CAs are considered valid, see the next grant option.

REQUIRE ISSUER

This grant option forces the user to provide a valid certificate, issued by a valid CA issuer.
Several additional pieces of information must be included with this, including the country of
origin, state of origin, city of origin, name of certificate owner, and certificate contact. An
example follows:

mysql>GRANT insert, select, update ON company.* TO jason@client.wjgilmore.com
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE ISSUER 'C=US, ST=Ohio,
 ->L=Columbus, O=WJGILMORE,
 ->OU=ADMIN, CN=db.wjgilmore.com/Email=admin@wjgilmore.com'

REQUIRE SUBJECT

This grant option forces the user to provide a valid certificate including a valid certificate
“subject.” An example follows:

mysql>GRANT insert, select, update ON company.* TO jason@client.wjgilmore.com
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE SUBJECT
 ->'C=US, ST=Ohio, L=Columbus, O=WJGILMORE, OU=ADMIN,
 ->CN=db.wjgilmore.com/Email=admin@wjgilmore.com'

REQUIRE CIPHER

This grant option enforces the use of recent encryption algorithms by forcing the user to
connect using a particular cipher. The options currently available include: EDH, RSA, DES,
CBC3, and SHA. An example follows:

Gilmore 2E_552-1.book Page 684 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 685

mysql>GRANT insert, select, update ON company.* TO jason@client.wjgilmore.com
 ->IDENTIFIED BY 'secret' REQUIRE SSL REQUIRE CIPHER 'DES-RSA';

SSL Options
The options introduced in this section are used by both the server and the connecting client to
determine whether SSL should be used, and if so, the location of the certificate and key files.

--ssl

This option simply acts as a signal that SSL should be used. More specifically, when used in
conjunction with the mysqld daemon, it tells the server that SSL connections should be allowed.
Used in conjunction with the client, it signals that an SSL connection will be used. Note that
including this option does not ensure, nor require, that an SSL connection is used. In fact, tests
have shown that the option itself is not even required to initiate an SSL connection. Rather, the
accompanying flags, introduced here, determine whether an SSL connection is successfully
initiated.

--ssl-ca

This option specifies the location and name of a file containing a list of trusted SSL certificate
authorities. For example:

--ssl-ca=/home/jason/openssl/cacert.pem

--ssl-capath

This option specifies the directory path where trusted SSL certificates in privacy-enhanced
mail (PEM) format are stored.

--ssl-cert

This option specifies the location and name of the SSL certificate used to establish the secure
connection. For example:

--ssl-cert=/home/jason/openssl/mysql-cert.pem

--ssl-cipher

This option specifies which encryption algorithms are allowable. The cipher-list syntax is the
same as that used by the following command:

%>openssl ciphers

For example, to allow just the TripleDES and Blowfish encryption algorithms, this option
would be set as follows:

--ssl-cipher=des3:bf

Gilmore 2E_552-1.book Page 685 Wednesday, December 14, 2005 10:35 AM

686 C H A P T E R 2 8 ■ SE C U R I N G M Y S Q L

--ssl-key

This option specifies the location and name of the SSL key used to establish the secure connection.
For example:

--ssl-key=/home/jason/openssl/mysql-key.pem

In the next three sections, you’ll learn how to use these options on both the command line
and within the my.cnf file.

Starting the SSL-Enabled MySQL Server
Once you have both the server and client certificates in hand, you can start the SSL-enabled
MySQL server like so:

%>./bin/mysqld_safe --user=mysql --ssl-ca=$SSL/cacert.pem \
 >--ssl-cert=$SSL/server-cert.pem --ssl-key=$SSL/server-key.pem &

$SSL refers to the path pointing to the SSL certificate storage location.

Connecting Using an SSL-Enabled Client
You can then connect to the SSL-enabled MySQL server by using the following command:

%>mysql --ssl-ca=$SSL/cacert.pem --ssl-cert=$SSL/client-cert.pem \
->--ssl-key=$SSL/client-key.pem -u jason -h www.wjgilmore.com -p

Again, $SSL refers to the path pointing to the SSL certificate storage location.

Storing SSL Options in the my.cnf File
Of course, you don’t have to pass the SSL options via the command line. Instead, you can place
them within a my.cnf file. An example my.cnf file follows:

[client]
ssl-ca = /home/jason/ssl/cacert.pem
ssl-cert = /home/jason/ssl/client-cert.pem
ssl-key = /home/jason/ssl/client-key.pem

[mysqld]
ssl-ca = /usr/local/mysql/ssl/ca.pem
ssl-cert = /usr/local/mysql/ssl/cert.pem
ssl-key = /usr/local/mysql/openssl/key.pem

Gilmore 2E_552-1.book Page 686 Wednesday, December 14, 2005 10:35 AM

C H A P T E R 2 8 ■ S E C U R I N G M Y S Q L 687

FREQUENTLY ASKED QUESTIONS

Because the SSL feature is so new, there is still some confusion surrounding its usage. This FAQ attempts to
offer some relief by answering some of the most commonly asked questions regarding this topic.

I’m using MySQL solely as a back end to my Web application, and I am using HTTPS to encrypt traffic to
and from the site. Do I also need to encrypt the connection to the MySQL server?

This depends on whether the database server is located on the same machine as the Web server. If this
is the case, then encryption will likely be beneficial only if you consider your machine itself to be insecure. If
the database server resides on a separate server, then the data could potentially be traveling unsecured from
the Web server to the database server, and therefore it would warrant encryption. There is no steadfast rule
regarding the use of encryption. You can reach a conclusion only after carefully weighing security and perfor-
mance factors.

I understand that encrypting Web pages using SSL will degrade performance. Does the same hold true
for the encryption of MySQL traffic?

Yes, your application will take a performance hit, because every data packet must be encrypted while
traveling to and from the MySQL server.

How do I know that the traffic is indeed encrypted?
The easiest way to ensure that the MySQL traffic is encrypted is to create a user account that requires

SSL, and then try to connect to the SSL-enabled MySQL server by supplying that user’s credentials and a valid SSL
certificate. If something is awry, you’ll receive an “Access denied” error.

On what port does encrypted MySQL traffic flow?
The port number remains the same (3306) regardless of whether you’re communicating in encrypted or

unencrypted fashion.

Summary
An uninvited database intrusion can wipe away months of work and erase inestimable value.
Therefore, although the topics covered in this chapter generally lack the glamour of other feats,
such as creating a database connection and altering a table structure, the importance of taking
the time to thoroughly understand these security topics cannot be understated. It’s strongly
recommended that you take adequate time to understand MySQL’s security features, because
they should be making a regular appearance in all of your MySQL-driven applications.

The next chapter introduces PHP’s MySQL library, showing you how to manipulate MySQL
database data through your PHP scripts. That chapter is followed by an introduction to the
MySQLi library, which should be used if you’re running PHP 5 and MySQL 4.1 or greater.

Gilmore 2E_552-1.book Page 687 Wednesday, December 14, 2005 10:35 AM

Gilmore 2E_552-1.book Page 688 Wednesday, December 14, 2005 10:35 AM

