
5335ch02_final.qxd 15/8/05 11:08 am Page 12

2 JAVASCRIPT SYNTAX

5335ch02_final.qxd 15/8/05 11:08 am Page 13

What this chapter covers:

Statements

Variables and arrays

Operators

Conditional statements and looping statements

Functions and objects

This chapter is a brief refresher in JavaScript syntax, taking on the most important concepts.

What you’ll need
You don’t need any special software to write JavaScript. All you need is a plain text editor
and a web browser.

Code written in JavaScript must be executed from a document written in (X)HTML. There
are two ways of doing this. You can place the JavaScript between <script> tags within the
<head> of the document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<script type="text/javascript">
JavaScript goes here...
</script>
</head>
<body>
Mark-up goes here...
</body>
</html>

A much better technique, however, is to place your JavaScript code into a separate file.
Save this file with the file extension .js. You can then use the src attribute in a <script>
tag to point to this file:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<script type="text/javascript" src="file.js">
</script>
</head>
<body>
Mark-up goes here...
</body>
</html>

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

14

5335ch02_final.qxd 15/8/05 11:08 am Page 14

If you’d like to try the examples in this chapter, go ahead and create two files in a text editor.
First, create a simple bare-bones HTML or XHTML file. You can call it something like
test.html. Make sure that it contains a <script> tag in the <head> that has a src attribute
with a value like example.js. That’s the second file you can create in your text editor.

Your test.html file should look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Just a test</title>
<script type="text/javascript" src="example.js">
</script>

</head>
<body>
</body>
</html>

You can copy any of the examples in this chapter and write them into example.js. None
of the examples are going to be particularly exciting, but they may be illuminating.

In later chapters, I’ll be showing you how to use JavaScript to alter the behavior and con-
tent of your document. For now, I’ll be using simple dialog boxes to display messages.

Whenever you change the contents of example.js, you can test its effects by reloading
test.html in a web browser. The web browser will interpret the JavaScript code immediately.

Programming languages are either interpreted or compiled. Languages like Java or C++
require a compiler. A compiler is a program that translates the source code written in a
high-level language like Java into a file that can be executed directly by a computer.

Interpreted languages don’t require a compiler—they just need an interpreter instead.
With JavaScript, in the context of the World Wide Web, the web browser does the inter-
preting. The JavaScript interpreter in the browser executes the code directly from the
source. Without the interpreter, the JavaScript code would never get executed.

If there are any errors in the code written in a compiled language, those errors will pop up
when the code is compiled. In the case of an interpreted language, errors won’t become
apparent until the interpreter executes the code.

Although compiled languages tend to be faster and more portable than interpreted lan-
guages, they often have a fairly steep learning curve.

One of the nice things about JavaScript is that it’s relatively easy to pick up. Don’t let that
fool you though: JavaScript is capable of some pretty complex programming operations.
For now, let’s take a look at the basics.

JAVASCRIPT SYNTAX

15

2

5335ch02_final.qxd 15/8/05 11:08 am Page 15

Syntax
English is an interpreted language. By reading and processing these words that I have
written in English, you are acting as the interpreter. As long as I follow the grammatical
rules of English, my writing can be interpreted correctly. These grammatical rules include
structural rules known as syntax.

Every programming language, just like every written language, has its own syntax.
JavaScript has a syntax that is very similar to that of other programming languages like Java
and C++.

Statements
A script written in JavaScript, or any other programming language, consists of a series of
instructions. These are called statements. These statements must be written with the right
syntax in order for them to be interpreted correctly.

Statements in JavaScript are like sentences in English. They are the building blocks of any
script.

Whereas English grammar demands that sentences begin with a capital letter and end with
a period, the syntax of JavaScript is much more forgiving. You can simply separate state-
ments by placing them on different lines:

first statement
second statement

If you place a number of statements on the same line, you must separate them with semi-
colons like this:

first statement; second statement;

However, it is good programming practice to place a semicolon at the end of every state-
ment even if they are on different lines:

first statement;
second statement;

This helps to make your code more readable. Putting each statement on its own line
makes it easier to follow the sequence that your JavaScript is executed in.

Comments

Not all statements are (or need to be) executed by the JavaScript interpreter. Sometimes
you’ll want to write something purely for your own benefit, and you’ll want these state-
ments to be ignored by the JavaScript interpreter. These are called comments.

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

16

5335ch02_final.qxd 15/8/05 11:08 am Page 16

Comments can be very useful when you want to keep track of the flow of your code. They
act like sticky notes, helping you to keep track of what is happening in your script.

JavaScript allows you to indicate a comment in a number of different ways. For example, if
you begin a line with two forward slashes, that line will be treated as a comment:

// Note to self: comments are good.

If you use this notation, you must put the slashes at the start of each comment line. This
won’t work, for instance:

// Note to self:
comments are good.

Instead, you’d need to write

// Note to self:
// comments are good.

If you want to comment out multiple lines like that, you can place a forward slash and an
asterisk at the start of the comment block and an asterisk and forward slash at the end:

/* Note to self:
comments are good */

This is useful when you need to insert a long comment that will be more readable when it
is spread over many lines.

You can also use HTML-style comments, but only for single lines. In other words, JavaScript
treats <!— the same way that it treats //:

<!— This is a comment in JavaScript.

In HTML, you would need to close the comment with —>:

<!— This is a comment in HTML —>

JavaScript would simply ignore the closing of the comment, treating it as part of the com-
ment itself.

Whereas HTML allows you to split comments like this over multiple lines, JavaScript
requires the comment identifier to be at the start of each line.

Because of the confusing differences in how this style of comment is treated by JavaScript,
I don’t recommend using HTML-style comments. Stick to using two forward slashes for
single-line comments and the slash-asterisk notation for multi-line comments.

JAVASCRIPT SYNTAX

17

2

5335ch02_final.qxd 15/8/05 11:08 am Page 17

Variables
In our everyday lives there are some things about us that are fixed and some things that
are changeable. My name and my birthday are fixed. My mood and my age, on the other
hand, will change over time. The things that are subject to change are called variables.

My mood changes depending on how I’m feeling. Suppose I had a variable with the name
mood. I could use this variable to store my current state of mind. Regardless of whether this
variable has the value “happy” or “sad”, the name of the variable remains the same: mood.
I can change the value as often as I like.

Likewise, my age might currently be 33. In one year’s time, my age will be 34. I could use
a variable named age to store how old I am and then update age on my birthday. When
I refer to age now, it has the value 33. In one year’s time, the same term will have the
value 34.

Giving a value to a variable is called assignment. I am assigning the value “happy” to the
variable mood. I am assigning the value 33 to the variable age.

This is how you would assign these variables in JavaScript:

mood = "happy";
age = 33;

When a variable has been assigned a value, we say that the variable contains the value.
The variable mood now contains the value “happy”. The variable age now contains the value
33. You could then display the values of these two variables in annoying pop-up alert
windows by using the statements

alert(mood);
alert(age);

Here is an example of the value of the variable called mood:

Here is an example of the value of the variable called age:

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

18

5335ch02_final.qxd 15/8/05 11:08 am Page 18

We’ll get on to doing useful things with variables later on in the book, don’t you worry!

Notice that you can jump right in and start assigning values to variables without introducing
them first. In many programming languages, this isn’t allowed. Other languages demand
that you first introduce, or declare, any variables.

In JavaScript, if you assign a value to a variable that hasn’t yet been declared, the variable is
declared automatically. Although declaring variables beforehand isn’t required in JavaScript,
it’s still good programming practice. Here’s how you would declare mood and age:

var mood;
var age;

You don’t have to declare variables separately. You can declare multiple variables at the
same time:

var mood, age;

You can even kill two birds with one stone by declaring a variable and assigning it a value
at the same time:

var mood = "happy";
var age = 33;

You could even do this:

var mood = "happy", age = 33;

That’s the most efficient way to declare and assign variables. It has exactly the same
meaning as doing this:

var mood, age;
mood = "happy";
age = 33;

The names of variables, along with just about everything else in JavaScript, are case-
sensitive. The variable mood is not the same variable as Mood, MOOD or mOOd. These
statements would assign values to two different variables:

var mood = "happy";
MOOD = "sad";

The syntax of JavaScript does not allow variable names to contain spaces or punctuation
characters (except for the dollar symbol, $). The next line would produce a syntax error:

var my mood = "happy";

Variable names can contain letters, numbers, dollar symbols, and underscores. In order to
avoid long variables looking all squashed together, and to improve readability, you can use
underscores in variable names:

var my_mood = "happy";

JAVASCRIPT SYNTAX

19

2

5335ch02_final.qxd 15/8/05 11:08 am Page 19

The text “happy” in that line is an example of a literal. A literal is something that is liter-
ally written out in the JavaScript code. Whereas the word var is a keyword and my_mood is
the name of a variable, the text “happy” doesn’t represent anything other than itself. To
paraphrase Popeye, “It is what it is!”

Data types

The value of mood is a string literal, whereas the value of age is a number literal. These are
two different types of data, but JavaScript makes no distinction in how they are declared
or assigned. Some other languages demand that when a variable is declared, its data type
is also declared. This is called typing.

Programming languages that require explicit typing are called strongly typed languages.
Because typing is not required in JavaScript, it is a weakly typed language. This means that
you can change the data type of a variable at any stage.

The following statements would be illegal in a strongly typed language but are perfectly
fine in JavaScript:

var age = "thirty three";
age = 33;

JavaScript doesn’t care whether age is a string or a number.

Now let’s review the most important data types that exist within JavaScript.

Strings
Strings consist of zero or more characters. Characters include letters, numbers, punctua-
tion marks, and spaces. Strings must be enclosed in quotes. You can use either single
quotes or double quotes. Both of these statements have the same result:

var mood = 'happy';
var mood = "happy";

Use whichever one you like, but it’s worth thinking about what characters are going to be
contained in your string. If your string contains the double-quote character, then it makes
sense to use single quotes to enclose the string. If the single-quote character is part of the
string, you should probably use double quotes to enclose the string:

var mood = "don't ask";

If you wanted to write that statement with single quotes, you would need to ensure that
the apostrophe (or single quote) between the n and the t is treated as part of the string.
In this case, the single quote needs to be treated the same as any other character, rather
than as a signal for marking the end of the string. This is called escaping. In JavaScript,
escaping is done using the backslash character:

var mood = 'don\'t ask';

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

20

5335ch02_final.qxd 15/8/05 11:08 am Page 20

Similarly, if you enclose a string with double quotes, but that string also contains a double-
quote character, you can use the backslash to escape the double-quote character within
the string:

var height = "about 5'10\" tall";

These backslashes don’t actually form part of the string. You can test this for yourself by
adding this to your example.js file and reloading test.html:

var height = "about 5'10\" tall";
alert(height);

Here’s an example of an output of a variable using backslashes to escape characters:

Personally, I like to use double quotes. Whether you decide to use double or single quotes,
it’s best to be consistent. If you switch between using double and single quotes all the
time, your code could quickly become hard to read.

Numbers
If you want a variable to contain a numeric value, you don’t have to limit yourself to whole
numbers. JavaScript also allows you to specify numbers to as many decimal places as you
want. These are called floating-point numbers:

var age = 33.25;

You can also use negative numbers. A minus sign at the beginning of a number indicates
that it’s negative:

var temperature = -20;

Negative values aren’t limited to whole numbers either:

var temperature = -20.33333333

These are all examples of the number data type.

JAVASCRIPT SYNTAX

21

2

5335ch02_final.qxd 15/8/05 11:08 am Page 21

Boolean values
Another data type is Boolean.

Boolean data has just two possible values: true or false. Let’s say I wanted a variable to
store one value for when I’m sleeping and another value for when I’m not sleeping. I could
use the string data type and assign it values like “sleeping” or “not sleeping”, but it makes
much more sense to use the Boolean data type:

var sleeping = true;

Boolean values lie at the heart of all computer programming. At a fundamental level, all
electrical circuits use only Boolean data: either the current is flowing or it isn’t. Whether
you think of it in terms of “true and false”, “yes and no”, or “one and zero”, the important
thing is that there can only ever be one of two values.

Boolean values, unlike string values, are not enclosed in quotes. There is a difference
between the Boolean value false and the string value “false”.

This will set the variable married to the Boolean value true:

var married = true;

In this case, married is a string containing the word “true”:

var married = "true";

Arrays

Strings, numbers, and Boolean values are all examples of scalars. If a variable is a scalar,
then the variable can only ever have one value at any one time. If you want to use a vari-
able to store a whole set of values, then you need an array.

An array is a grouping of multiple values under the same name. Each one of these values
is an element of the array. For instance, you might want to have a variable called beatles
that contains the names of all four members of the band at once.

In JavaScript, you declare an array by using the Array keyword. You can also specify the
number of elements that you want the array to contain. This number is the length of the
array:

var beatles = Array(4);

Sometimes you won’t know in advance how many elements an array is eventually going to
hold. That’s OK. Specifying the number of elements is optional. You can just declare an
array with an unspecified number of elements:

var beatles = Array();

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

22

5335ch02_final.qxd 15/8/05 11:08 am Page 22

Adding elements to an array is called populating. When you populate an array, you specify
not just the value of the element, but also where the element comes in the array. This is the
index of the element. Each element has a corresponding index. The index is contained in
square brackets:

array[index] = element;

Let’s start populating our array of Beatles. We’ll go in the traditional order of John, Paul,
George, and Ringo. Here’s the first index and element:

beatles[0] = "John";

I know it might seem counterintuitive to start with an index of zero instead of one, but I’m
afraid that’s just the way that JavaScript works. It’s easy to forget this. Many novice pro-
grammers have fallen into this common pitfall when first using arrays.

Here’s how we’d declare and populate our entire beatles array:

var beatles = Array(4);
beatles[0] = "John";
beatles[1] = "Paul";
beatles[2] = "George";
beatles[3] = "Ringo";

You can now retrieve the element “George” in your script by referencing the index 2
(beatles[2]). It might take a while to get used to the fact that the length of the array is
four when the last element has an index of three. That’s an unfortunate result of arrays
beginning with the index number zero.

That was a fairly long-winded way of populating an array. You can take a shortcut by pop-
ulating your array at the same time that you declare it. When you are populating an array
in a declaration, separate the values with commas:

var beatles = Array("John","Paul","George","Ringo");

An index will automatically be assigned for each element. The first index will be zero, the
next will be one, etc. So referencing beatles[2] will still give us “George”.

You don’t even have to specify that you are creating an array. Instead, you can use square
brackets to group the initial values together:

var beatles = ["John","Paul","George","Ringo"];

Still, it’s good to get into the habit of using the Array keyword when you declare or pop-
ulate an array. Your scripts will be more readable and it will be easy to spot arrays at a
glance.

The elements of an array don’t have to be strings. You can store Boolean values in an array.
You can also use an array to store a series of numbers:

var years = Array(1940,1941,1942,1943);

JAVASCRIPT SYNTAX

23

2

5335ch02_final.qxd 15/8/05 11:08 am Page 23

You can even use a mixture of all three:

var lennon = Array("John",1940,false);

An element can be a variable:

var name = "John";
beatles[0] = name;

This would assign the value “John” to the first element of the beatles array.

The value of an element in one array can be an element from another array. This will
assign the value “Paul” to the second element of the beatles array:

var names = Array("Ringo","John","George","Paul");
beatles[1] = names[3];

In fact, arrays can hold other arrays! Any element of an array can contain an array as its
value:

var lennon = Array("John",1940,false);
var beatles = Array();
beatles[0] = lennon;

Now the value of the first element of the beatles array is itself an array. To get the values
of each element of this array, we need to use some more square brackets. The value
of beatles[0][0] is “John”, the value of beatles[0][1] is 1940 and the value of
beatles[0][2] is false.

This is quite a powerful way of storing and retrieving information, but it’s going to be a
frustrating experience if we have to remember the numbers for each index (especially
when we have to start counting from zero). Luckily, there is a far more readable way of
populating arrays.

Associative arrays
The beatles array is an example of a numeric array. The index for each element is a
number that increments with each addition to the array. The index of the first element is
zero, the index of the second element is one, and so on.

If you only specify the values of an array, then that array will be numeric. The index for
each element is created and updated automatically.

It is possible to override this behavior by specifying the index of each element. When you
specify the index, you don’t have to limit yourself to numbers. The index can be a string
instead:

var lennon = Array();
lennon["name"] = "John";
lennon["year"] = 1940;
lennon["living"] = false;

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

24

5335ch02_final.qxd 15/8/05 11:08 am Page 24

This is called an associative array. Actually, all arrays are associative arrays when you
think about it. It just so happens that each index of a numeric array is created automati-
cally. Each index is still associated with a specific value. So a numeric array is really just
another example of an associative array.

Using associative instead of numeric arrays means you can reference elements by name
instead of relying on numbers. It also makes for more readable scripts.

Let’s create a new array named beatles and populate one of its elements with the array
lennon that we created previously. Remember, an element in an array can itself be an array:

var beatles = Array();
beatles[0] = lennon;

Now we can get at the elements we want without using any numbers. beatles[0]["name"]
is “John”, beatles[0]["year"] is 1940, and beatles[0]["living"] is false.

That’s an improvement, but we can go one further. What if beatles was an associative
array instead of a numerical array? Then, instead of using numbers to reference each ele-
ment of the array, we could use descriptive strings like “drummer” or “bassist”:

var beatles = Array();
beatles["vocalist"] = lennon;

Now the value of beatles["vocalist"]["name"] is “John”, beatles["vocalist"]["year"]
is 1940, and beatles["vocalist"]["living"] is false.

Operations
All the statements I’ve shown you have been very simple. All I’ve done is create different
types of variables. In order to do anything useful with JavaScript, we need to be able to do
calculations and manipulate data. We want to perform operations.

Arithmetic operators

Addition is an operation. So are subtraction, division, and multiplication. Every one of
these arithmetic operations requires an operator. Operators are symbols that JavaScript
has reserved for performing operations. You’ve already seen one operator in action. We’ve
been using the equals sign (=) to perform assignment. The operator for addition is the plus
sign (+), the operator for subtraction is the minus sign (-), division uses the forward slash
(/), and the asterisk (*) is the symbol for multiplication operations.

Here’s a simple addition operation:

1 + 4

JAVASCRIPT SYNTAX

25

2

5335ch02_5P.qxd 9/28/06 1:37 PM Page 25

You can also combine operations:

1 + 4 * 5

To avoid ambiguity, it’s best to separate operations by enclosing them in parentheses:

1 + (4 * 5)
(1 + 4) * 5

A variable can contain an operation:

var total = (1 + 4) * 5;

Best of all, you can perform operations on variables:

var temp_fahrenheit = 95;
var temp_celsius = (temp_fahrenheit - 32) / 1.8;

JavaScript provides some useful operators that act as shortcuts in frequently used opera-
tions. If you wanted to increase the value of a numeric variable by one, you could write

year = year + 1;

You can achieve the same result by using the ++ operator:

year++;

Similarly, the -- operator will decrease the value of a numeric variable by one.

The + operator is a bit special. You can use it on strings as well as numbers. Joining strings
together is a straightforward operation:

var message = "I am feeling " + "happy";

Joining strings together like this is called concatenation. This also works on variables:

var mood = "happy";
var message = "I am feeling " + mood;

You can even concatenate numbers with strings. This is possible because of JavaScript’s
weakly typed nature. The number will automatically be converted to a string:

var year = 2005;
var message = "The year is " + year;

Remember, if you concatenate a string with a number, the result will be a longer string, but
if you use the same operator on two numbers, the result will be the sum of the two num-
bers. Compare the results of these two alert statements:

alert ("10" + 20);
alert (10 + 20);

The first alert returns the string “1020”. The second returns the number 30.

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

26

5335ch02_final.qxd 15/8/05 11:08 am Page 26

Here’s the result of concatenating the string “10” and the number 20:

The result of adding the number 10 and the number 20 is as follows:

Another useful shorthand operator is += which performs addition and assignment (or con-
catenation and assignment) at the same time:

var year = 2005;
var message = "The year is ";
message += year;

The value of message is now “The year is 2005”. You can test this yourself by using another
alert dialog box:

alert(message);

The result of concatenating a string and a number is as follows:

Conditional statements
All the statements you’ve seen so far have been relatively simple declarations or opera-
tions. The real power of a script is its ability to make decisions based on the criteria it is
given. JavaScript makes those decisions by using conditional statements.

JAVASCRIPT SYNTAX

27

2

5335ch02_final.qxd 15/8/05 11:08 am Page 27

When a browser is interpreting a script, statements are executed one after another. You
can use a conditional statement to set up a condition that must be successfully evaluated
before more statements are executed. The most common conditional statement is the if
statement. It works like this:

if (condition) {
statements;

}

The condition is contained within parentheses. The condition always resolves to a Boolean
value, which is either true or false. The statement or statements contained within the curly
braces will only be executed if the result of the condition is true. In this example, the
annoying alert message never appears:

if (1 > 2) {
alert("The world has gone mad!");

}

The result of the condition is false because one is not greater than two.

I’ve indented everything between the curly braces. This is not a syntax requirement of
JavaScript—I’ve done it purely to make my code more readable.

In fact, the curly braces themselves aren’t completely necessary. If you only want to exe-
cute a single statement based on the outcome of an if statement, you don’t have to use
curly braces at all. You can just put everything on one line:

if (1 > 2) alert("The world has gone mad!");

However, the curly braces help make scripts more readable so it’s a good idea to use them
anyway.

The if statement can be extended using else. Statements contained in the else clause
will only be executed when the condition is false:

if (1 > 2) {
alert("The world has gone mad!");

} else {
alert("All is well with the world");

}

This is returned when 1>2 is false:

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

28

5335ch02_final.qxd 15/8/05 11:08 am Page 28

Comparison operators

JavaScript provides plenty of operators that are used almost exclusively in conditional
statements. There are comparison operators like greater than (>), less than (<), greater
than or equal to (>=), and less than or equal to (<=).

If you want to find out if two values are equal, you can use the equality operator. It con-
sists of two equals signs (==). Remember, a single equals sign is used for assignment. If you
use a single equals sign in a conditional statement, the operation will always be true as
long as the assignment succeeds.

This is the wrong way to check for equality:

var my_mood = "happy";
var your_mood = "sad";
if (my_mood = your_mood) {
alert("We both feel the same.");

}

I’ve just assigned the value of your_mood to my_mood. The assignment operation was carried
out successfully so the result of the conditional statement is true.

This is what I should have done:

var my_mood = "happy";
var your_mood = "sad";
if (my_mood == your_mood) {
alert("We both feel the same.");
}

This time, the result of the conditional statement is false.

There is also an operator that tests for inequality. Use an exclamation point followed by an
equals sign (!=).

if (my_mood != your_mood) {
alert("We're feeling different moods.");

}

Logical operators

It’s possible to combine operations in a conditional statement. Say I want to find out if a
certain variable, let’s call it num, has a value between five and ten. I need to perform two
operations. First, I need to find out if the variable is greater than or equal to five, and next
I need to find out if the variable is less than or equal to ten. These operations are called
operands. This is how I combine operands:

if (num>=5 && num<=10) {
alert("The number is in the right range.");

}

JAVASCRIPT SYNTAX

29

2

5335ch02_final.qxd 15/8/05 11:08 am Page 29

I’ve used the “and” operator, represented by two ampersands (&&). This is an example of a
logical operator.

Logical operators work on Boolean values. Each operand returns a Boolean value of either
true or false. The “and” operation will be true only if both operands are true.

The logical operator for “or” is two vertical pipe symbols (||). The “or” operation will be
true if one of its operands is true. It will also be true if both of its operands are true. It will
be false only if both operands are false.

if (num > 10 || num < 5) {
alert("The number is not in the right range.");

}

There is one other logical operator. It is represented by a single exclamation point (!). This
is the “not” operator. The “not” operator works on just a single operand. Whatever
Boolean value is returned by that operand gets reversed. If the operand is true, the “not”
operator switches it to false:

if (!(1 > 2)) {
alert("All is well with the world");

}

Notice that I’ve placed the operand in parentheses to avoid any ambiguities. I want the
“not” operator to act on everything between the parentheses.

You can use the “not” operator on the result of a complete conditional statement to
reverse its value. I’m going to use another set of parentheses so that the “not” operator
works on both operands combined:

if (!(num > 10 || num < 5)) {
alert("The number IS in the right range.");

}

Looping statements
The if statement is probably the most important and useful conditional statement. The
only drawback to the if statement is that it can’t be used for repetitive tasks. The block of
code contained within the curly braces is executed once. If you want to execute the same
code a number of times, you’ll need to use a looping statement.

Looping statements allow you to keep executing the same piece of code over and over.
There are a number of different types of looping statements, but they all work in much the
same way. The code within a looping statement continues to be executed as long as the
condition is met. When the condition is no longer true, the loop stops.

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

30

5335ch02_final.qxd 15/8/05 11:08 am Page 30

while

The while loop is very similar to the if statement. The syntax is the same:

while (condition) {
statements;

}

The only difference is that the code contained within the curly braces will be executed
over and over as long as the condition is true. Here’s an example of a while loop:

var count = 1;
while (count < 11) {
alert (count);
count++;

}

Let’s take a closer look at the code I just showed you. I began by creating a numeric vari-
able, count, containing the value one. Then I created a while loop with the condition that
the loop should repeat as long as the value of count is less than eleven. Inside the loop
itself, the value of count is incremented by one using the ++ operator. The loop will exe-
cute ten times. In your web browser, you will see an annoying alert dialog box flash up
ten times. After the loop has been executed, the value of count will be eleven.

do...while
As with the if statement, it is possible that the statements contained within the curly
braces of a while loop may never be executed. If the condition evaluates as false on the
first loop, then the code won’t be executed even once.

There are times when you will want the code contained within a loop to be executed at
least once. In this case, it’s best to use a do loop. This is the syntax for a do loop:

do {
statements;

} while (condition);

This is very similar to the syntax for a regular while loop, but with a subtle difference. Even
if the condition evaluates as false on the very first loop, the statements contained within
the curly braces will still be executed once.

It’s important that something happens within the while loop that will affect the
test condition. In this case, we increase the value of count within the while loop.
This results in the condition evaluating to false after ten loops. If we didn’t
increase the value of the count variable, the while loop would execute forever.

JAVASCRIPT SYNTAX

31

2

5335ch02_final.qxd 15/8/05 11:08 am Page 31

Let’s look at our previous example, reformatted as a do...while loop:

var count = 1;
do {
alert (count);
count++;

} while (count < 11);

The result is exactly the same as the result from our while loop. The alert message
appears ten times. After the loop is finished, the value of the variable count is eleven.

Now consider this variation:

var count = 1;
do {
alert (count);
count++;

} while (count < 1);

In this case, the condition never evaluates as true. The value of count is one to begin with
so it is never less than one. Yet the do loop is still executed once because the condition
comes after the curly braces. You will still see one alert message. After these statements
are executed, the value of count is two even though the condition is false.

for

The for loop is a convenient way of executing some code a specific number of times. In
that sense, it’s similar to the while loop. In a way, the for loop is just a reformulation of
the do loop we’ve already used. If we look at our do loop example, we can formulate it in
full like this:

initialize;
while (condition) {
statements;
increment;

}

The for loop simply reformulates that as follows:

for (initial condition; test condition; alter condition) {
statements;

}

This is generally a cleaner way of executing loops. Everything relevant to the loop is con-
tained within the parentheses of the for statement.

If we reformulate our do loop example, this is how it looks:

for (var count = 1; count < 11; count++) {
alert (count);

}

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

32

5335ch02_5P.qxd 9/28/06 1:47 PM Page 32

Everything related to the loop is contained within the parentheses. Now we can put code
between the curly braces, secure in the knowledge that the code will be executed exactly
ten times.

One of the most common uses of the for loop is to act on every element of an array. This
is achieved using array.length, which provides the number of elements in array:

var beatles = Array("John","Paul","George","Ringo");
for (var count = 0 ; count < beatles.length; count++) {
alert(beatles[count]);

}

If you run this code, you will see four alert messages, one for each Beatle.

Functions
If you want to re-use the same piece of code more than once, you can wrap the state-
ments up inside a function. A function is a group of statements that can be invoked from
anywhere in your code. Functions are, in effect, miniature scripts.

It’s good practice to define your functions before you invoke them.

A simple function might look like this:

function shout() {
var beatles = Array("John","Paul","George","Ringo");
for (var count = 0 ; count < beatles.length; count++) {
alert(beatles[count]);

}
}

This function performs the loop that pops up the names of each Beatle. Now, whenever
you want that action to occur later in your script, you can invoke the function by simply
writing

shout();

That’s a useful way of avoiding lots of typing whenever you want to carry out the same
action more than once. The real power of functions is that you can pass data to them and
then have them act on that data. When data is passed to a function, it is known as an
argument.

Here’s the syntax for defining a function:

function name(arguments) {
statements;

}

JAVASCRIPT SYNTAX

33

2

5335ch02_final.qxd 15/8/05 11:08 am Page 33

JavaScript comes with a number of built-in functions. You’ve seen one of them already: the
alert function takes a single argument and then pops up a dialog box with the value of
the argument.

You can define a function to take as many arguments as you want by separating them with
commas. Any arguments that are passed to a function can be used just like regular vari-
ables within the function.

Here’s a function that takes two arguments. If you pass this function two numbers, the
function will multiply them:

function multiply(num1,num2) {
var total = num1 * num2;
alert(total);

}

You can invoke the function from anywhere in your script, like this:

multiply(10,2);

The result of passing the values 10 and 2 to the multiply() function is as follows:

This will have the effect of immediately popping up an alert dialog with the answer (20).
It would be much more useful if the function could send the answer back to the statement
that invoked the function. This is quite easily done. As well as accepting data (in the form
of arguments), functions can also return data.

You can create a function that returns a number, a string, an array, or a Boolean value. Use
the return statement to do this:

function multiply(num1,num2) {
var total = num1 * num2;
return total;

}

Here’s a function that takes one argument (a temperature in degrees Fahrenheit) and
returns a number (the same temperature in degrees Celsius):

function convertToCelsius(temp) {
var result = temp - 32;
result = result / 1.8;
return result;

}

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

34

5335ch02_final.qxd 15/8/05 11:08 am Page 34

The really useful thing about functions is that they can be used as a data type. You can
assign the result of a function to a variable:

var temp_fahrenheit = 95;
var temp_celsius = convertToCelsius(temp_fahrenheit);
alert(temp_celsius);

The result of converting 95 degrees Fahrenheit into Celsius is as follows:

In this example, the variable temp_celsius now has a value of 35, which was returned by
the convertToCelsius function.

You might be wondering about the way I’ve named my variables and functions. For my
variables, I’ve used underscores to separate words. For my functions, I’ve used capital
letters after the first word (this is called camel case). I’ve done this purely for my own
benefit so that I can easily distinguish between variables and functions. As with variables,
function names cannot contain spaces. Camel casing is simply a convenient way to work
within that restriction.

Variable scope
I’ve mentioned already that it’s good programming practice to use var when you are
assigning a value to a variable for the first time. This is especially true when you are using
variables in functions.

A variable can be either global or local. When we differentiate between local and global
variables, we are discussing the scope of variables.

A global variable can be referenced from anywhere in the script. Once a global variable
has been declared in a script, that variable can be accessed from anywhere in that script,
even within functions. Its scope is global.

A local variable exists only within the function in which it is declared. You can’t access the
variable outside the function. It has a local scope.

So, you can use both global and local variables within functions. This can be useful, but it
can also cause a lot of problems. If you unintentionally use the name of a global variable
within a function, JavaScript will assume that you are referring to the global variable, even
if you actually intended the variable to be local.

Fortunately, you can use the var keyword to explicitly set the scope of a variable within a
function.

JAVASCRIPT SYNTAX

35

2

5335ch02_final.qxd 15/8/05 11:08 am Page 35

If you use var within a function, the variable will be treated as a local variable. It only exists
within the context of the function. If you don’t use var, the variable will be treated as a
global variable. If there is already a variable with that name, the function will overwrite its
value.

Take a look at this example:

function square(num) {
total = num * num;
return total;

}
var total = 50;
var number = square(20);
alert(total);

The value of the variable has been inadvertently changed:

The value of the variable total is now 400. All I wanted from the square() function was
for it to return the value of number squared. But because I didn’t explicitly declare that the
variable called total within the function should be local, the function has changed the
value of the global variable called total.

This is how I should have written the function:

function square(num) {
var total = num * num;
return total;

}

Now I can safely have a global variable named total, secure in the knowledge that it won’t
be affected whenever the square() function is invoked.

Remember, functions should behave like self-contained scripts. That’s why you should
always declare variables within functions as being local in scope. If you always use var
within functions, you can avoid any potential ambiguities.

Objects
There is one very important data type that we haven’t looked at yet: objects. An object is a
self-contained collection of data. This data comes in two forms: properties and methods:

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

36

5335ch02_final.qxd 15/8/05 11:08 am Page 36

A property is a variable belonging to an object.

A method is a function that the object can invoke.

These properties and methods are all combined in one single entity, which is the object.

Properties and methods are both accessed in the same way using JavaScript’s dot syntax:

Object.property
Object.method()

You’ve already seen how variables can be used to hold values for things like mood and age.
If there were an object called, say, Person, then these would be properties of the object:

Person.mood
Person.age

If there were functions associated with the Person object—say, walk() or sleep()—then
these would be methods of the object:

Person.walk()
Person.sleep()

Now all these properties and methods are grouped together under one term: Person.

To use the Person object to describe a specific person, you would create an instance of
Person. An instance is an individual example of a generic object. For instance, you and I
are both people, but we are also both individuals. We probably have different properties
(our ages may differ, for instance), yet we are both examples of an object called Person.

A new instance is created using the new keyword:

var jeremy = new Person;

This would create a new instance of the object Person, called jeremy. I could use the prop-
erties of the Person object to retrieve information about jeremy:

jeremy.age
jeremy.mood

I’ve used the imaginary example of a Person object just to demonstrate objects, properties,
methods, and instances. In JavaScript, there is no Person object. It is possible for you to
create your own objects in JavaScript. These are called user-defined objects. But that’s
quite an advanced subject that we don’t need to deal with for now.

Fortunately, JavaScript is like one of those TV chefs who produce perfectly formed cre-
ations from the oven, declaring, “Here’s one I made earlier.” JavaScript comes with a range
of pre-made objects that you can use in your scripts. These are called native objects.

JAVASCRIPT SYNTAX

37

2

5335ch02_final.qxd 15/8/05 11:08 am Page 37

Native objects

You’ve already seen objects in action. Array is an object. Whenever you initialize an array
using the new keyword, you are creating a new instance of the Array object:

var beatles = new Array();

When you want to find out how many elements are in an array, you do so by using the
length property:

beatles.length;

The Array object is an example of a native object supplied by JavaScript. Other examples
include Math and Date, both of which have very useful methods for dealing with numbers
and dates respectively. For instance, the Math object has a method called round which can
be used to round up a decimal number:

var num = 7.561;
var num = Math.round(num);
alert(num);

The Date object can be used to store and retrieve information about a specific date and
time. If you create a new instance of the Date object, it will be automatically be pre-filled
with the current date and time:

var current_date = new Date();

The date object has a whole range of methods like getDay(), getHours(), and getMonth()
that can be used to retrieve information about the specified date. getDay(), for instance,
will return the day of the week of the specified date:

var today = current_date.getDay();

Native objects like this provide invaluable shortcuts when you’re writing JavaScript.

Host objects

Native objects aren’t the only kind of pre-made objects that you can use in your scripts.
Another kind of object is supplied not by the JavaScript language itself, but by the
environment in which it’s running. In the case of the Web, that environment is the web
browser. Objects that are supplied by the web browser are called host objects.

Host objects include Form, Image, and Element. These objects can be used to get informa-
tion about forms, images, and form elements within a web page.

I’m not going to show you any examples of how to use those host objects. There is another
object that can be used to get information about any element in a web page that you
might be interested in: the document object. For the rest of this book, we are going to be
looking at lots of properties and methods belonging to the document object.

DOM SCRIPTING: WEB DESIGN WITH JAVASCRIPT AND THE DOCUMENT OBJECT MODEL

38

5335ch02_final.qxd 15/8/05 11:08 am Page 38

What’s next?
In this chapter, I’ve shown you the basics of the JavaScript language. Throughout the rest
of the book, I’ll be using terms that have been introduced here: statements, variables,
arrays, functions, and so on. Some of these concepts will become clearer once you see
them in action in a working script. You can always refer back to this chapter whenever you
need a reminder of what these terms mean.

I’ve just introduced the concept of objects. Don’t worry if it isn’t completely clear to you
just yet. The next chapter will take an in-depth look at one particular object, the document
object. I want to start by showing you some properties and methods associated with this
object. These properties and methods are provided courtesy of the Document Object
Model.

In the next chapter, I want to introduce you to the idea of the DOM and show you how to
use some of its very powerful methods.

JAVASCRIPT SYNTAX

39

2

5335ch02_final.qxd 15/8/05 11:08 am Page 39

