
www.linuxformat.co.uk60 LXF62 JANUARY 2005

PERL 6

pretty good at it. Ever since I knew

how to program, I wanted to customise

and recustomise my own environment:

my shell environment, my window

environment, the whole works.

I had literally dozens of little shell

scripts that were doing the most

arcane things imaginable, and it was

just getting to be too difficult to do.

Then someone said to me, “Why don’t

you have a look at Perl? It’s kind of

like a souped-up shell.” So I had a look

at it, and I kind of fell in love with it,

and I realised that it would actually

work pretty well for my linguistic work,

and it would work well for the other

kinds of research that I was doing.

LXF: What kind of research was it
that you were working on?
DC: Well, I’ve always been a dabbler

in things. Most academics will get

themselves in some area and stay

there for five or ten years and

evolve over that time, and get a

long publication record in it. In the

ten or 12 years I was an academic, I

never did anything for more than

six months. I’ve published in dozens

of different areas and different

types of areas of computer science,

everything from the psychophysics

of perception to the user interface

design, to bio-informatics. There were

bits everywhere, and I guess, at the

time, I was kind of the academic that

got sent the problem postgraduate

students, the postgrads that didn’t

quite fit into anyone’s research group.

When we normalised our research

groups at the university a few years

ago, we basically clumped everyone

together into six groups, and five out

of those six put me in their group,

which kind of indicates how it was.

I think that kind of thing is

important, because in a group like

that, where you have very clustered

and cliqued research areas, what you

really need to make it work properly

are those long connections. A lot of

the mathematical research indicates

that the way you dramatically cut

down the cliquing problem of, you

know, how many steps is it to Kevin

Bacon, is you have a few people that

are reconnected in very wide, very

disparate kinds of groups. I guess I

filled that role at the university.

Then I went to my first Perl

conference, which was in fact the

second Perl conference at San Jose,

back in 2000 maybe. Anyway, I went

to this conference and I gave two

papers. One was on the inflection stuff

(see www.csse.monash.edu.au/~
damian/papers/extabs/Plurals.html
for more information), and the other

one was on a module that enabled

you to do command line argument

processing much more easily. It was

basically about writing yourself a

usage statement and it would

automate it, so it was the same trick I

used for smart comments (see

http://search.cpan.org/~autrijus/
Smart-Comments-0.01/lib/Smart/
Comments.pm).

T ell us a little bit about
what kind of things you
were working on before
you became a full
member of the Perl
developer community…

DAMIAN CONWAY: Before Perl I was

an academic at an Australian

university – in fact, at the largest

Australian university. I’d been teaching

since my undergraduate days. I had

been brought in fairly early to do

classes and things, which started

around 1986. I quickly became a

lecturer, which is kind of the first level

of professional academics, and I was

working my way up the academic

food chain doing the same kinds of

unusual research, the same thinking

about the interface of programming

languages, but I was doing it in C++

because I wasn’t aware of Perl. That

was stunningly difficult to do.

LXF: How long ago was that?
DC: We’re talking 1989 and after.

LXF: So this was before Perl was
really out there in the wild?
DC: It wasn’t big and it wasn’t on

anyone’s radar really. At that time,

C++ was just taking off and I was

involved very peripherally in the ANSI

standards process for that, and quickly

became very dispirited by the

difficulties of the standardisation

process. I was basically just a working

academic: I loved to teach and I was

Dr Damian Conway’s

PERLS of
WISDOM
We recently caught up with DAMIAN CONWAY and asked him about
life, the universe and Perl 6. Well, mostly Perl 6…

LXF: That’s a pretty dramatic entry
into the community!
DC: I think it was kind of indicative of

the ways in which my brain goes all

over the map, and the two of them

together won the inaugural Larry Wall

award. Apparently people were arguing

over which of the two they should give

it to, and then someone pointed out

they were both by the same person,

which simplified things a bit!

From that point on, my movement

into the Perl community was inevitable

because I found a group of people

that were interested in the same kind

of issues that I was interested in, and

in terms of programming, who were

receptive to my way of thinking about

the world and enjoyed what I had to

say and wanted to hear me speak.

It soon became apparent that they

would actually pay me money to have

me teach them stuff.

After a decade of teaching

undergraduates how to program from

scratch in C, you can teach pretty

much anything in programming, so

that was basically my entry into Perl.

LXF: Was it quite hard for you to
jump from being an academic into
working with Perl full-time?
DC: Well, it wasn’t so much hard

because it was very gradual. For three

or four years I was doing both – I was

a full-time academic, and then in my

four or so weeks of conference leave,

I would go to conferences and I would

teach people. My university was very

PERL 6

supportive of its academics also

engaging with industry, and it didn’t

have to be industry in Australia – it

could be industry anywhere. They said

they would give me one day a week to

do this kind of thing. Given what they

pay academics, it’s a good way of

keeping people that could go out and

get five times the salary, and certainly

in the mid- to late-90s, I could easily

have gone out and got five times the

salary if I wanted to. This way they

were keeping their staff there and

keeping their abilities, but also

engaging them with industry and with

the commercial world so they could

bring back relevant understanding.

The really nice thing they said was,

“Yes, we’ll give you a day a week to do

this and yes, we’ll let you take it in big

chunks, rather than actually taking one

individual day a week.” There was a

point where I said I needed three

weeks and they said that was fine. I

then told them it had to be in the

middle of the semester, but we worked

it all out. I was team teaching with

another person and we just chunked it

so that I wasn’t on deck for those

three weeks. They were incredibly

supportive of that.

LXF: And then you got the grant
from The Perl Foundation (TPF)…
DC: What that actually did was it

channelled through TPF on this side

so all the donors got their tax relief

for doing it, then TPF channelled it to

the university to basically buy out my

contract for those 12 months. The

exchange rates at that time were such

that just on the donations of a few big

companies, but mainly the individuals

in the Perl user community, they were

able to raise enough money that

would only have been a very

moderate kind of wage for a

programmer, but it was enough to

cover the costs of an Australian

academic for 12 months.

So that’s what I did. I still had my

office in the university, so I had access

to all that support structure, which was

a very generous donation on their

behalf because they weren’t actually

getting paid for that. I also had a travel

budget, I had my income, which was

just my normal salary for that period

of time, and I was able to travel

around the world. In the end it was 20

months that TPF covered me for, and I

was travelling for six of those months. I

was literally on the road for six of

those months, and I guess I visited 50

or so venues where I gave talks to

people about Perl, and at the same

time I wrote maybe 15 or 20 new

modules, four or five of which ended

up in the core distribution, and many

others are widely used and very

popular. These include things like

Parse::RecDescent (see http://search.
cpan.org/dist/Parse-RecDescent/lib/
Parse/RecDescent.pod), which I

developed quite a lot during that

period of time.

That gave me the opportunity to

see what it would be like to be living

and working for the Perl community,

and not actually for academic stuff. I

found that irresistible, because

wherever I would go, people were

keen to have me there, either having

paid or having heard about what I do,

and they were always very receptive

to what I was talking about. They

understood a great deal more than

my undergraduates. I love teaching

undergraduates, there’s no question

about that – I really enjoyed helping

them discover the world that I love.

However, there’s also tremendous

pleasure in dealing with people who

are experienced and knowledgeable,

who are very bright, and seeing

something light up in their faces.

I just saw that this morning:

people saying, “Wow, that is cool.” And

even more than that, saying, “Wow, I

could actually use that – that would

make my life better”.

LXF: What effect did those 20
months of working for the
TPF have on you?
DC: Well, after 20 months, when we

started to go into the downturn of the

economy and TPF couldn’t afford to

support a full-time servant, at that

point I had to make a decision. Was I

going to go back and be a full-time

academic again, or was I going to

chance my arm and see if I could

create a business for myself?

I had made some very good

business contacts because TPF had

some very large corporations that were

very generous in their donations to

support my work and Larry’s work

[Larry Wall] and other people’s work,

and so I had those contacts now.

I took them and said, “Look, I’m

effectively unemployed and I’m looking

for some training work. You’ve heard

me speak – I can do that for a full

day for five straight days, and I can

actually teach you serious stuff.” And so,

very gradually, I built up a clientele of

people who were willing to give it a go,

and things have pretty much gone on

from there.

Things have gone up and down a

great deal. The last couple of years

have been very, very hard, because

with the downturn, the two things

that people cut are buying books and

taking training. Oh, three things: going

to conferences, which is basically

where I make all my money. It’s been

tough over the last few years, and

I’ve had various small grants from

TPF that have certainly tided us over

and enabled me to keep working on

Perl 6. However, it looks like it might

be turning around this year. A lot of

my friends who are also trainers are

saying the same thing.

I’ve actually been able to do a bit

more this year, and it looks like we’re

actually going to be able to eat for

another year.

LXF: How does working as a Perl
trainer suit you? You must spend a
lot of time travelling.
DC: For me, of course, it’s much more

difficult than for many of the other

Perl trainers because most of them

are based in the US or in Europe and

can basically go somewhere at a

week’s notice, like fly across the States.

For starters I’m not a US citizen so I’m

not allowed to work in the US. In

addition to that, I live 14 hours from

LA, I live 23-24 hours from the east

coast, and I live 24 hours from Europe.

I really have to aggregate all my work

together and do one big trip.

That’s generally what I tend to do.

Every year I tend to go to the Yet

Another Perl Conference (YAPC) at

the start of summer, OSCon towards

the end of summer, and in between I

go wherever there’s employment to be

had, and I deliver training for the

company I work for in Australia.

LXF: For those conferences, how
much of it is teaching new things
and setting really high goals for

>>

“CAN I GIVE THESE PEOPLE
A SENSE OF EXCITEMENT,
A SENSE OF WONDER?”

people to reach, and how much is
evangelising Perl 6?
DC: It’s actually pretty easy to work

that out if we look at this conference

(OSCon). At this conference, out of

the four-and-a-half days, I spent one-

and-a-half days doing nothing but

teaching existing Perl techniques. Now

this was fairly advanced stuff, but still

stuff I would be teaching out in

industry as well. So, let’s say that a

third of my work here is doing that

kind of thing. That probably

generalises pretty well to my life, in

terms of the total amount of time I

have to spend preparing materials,

because that takes a long time, and

delivering materials to employers

around the world. I probably spend

about a third of my time doing that.

Of the setting the bar, of inspiring

people to go beyond what they’re

doing right now, I like to think that

everything I do is aimed at that. I’m

always thinking how I can engender in

these people a sense of excitement,

a sense of wonder; the sense they

had when they first discovered

programming. Can I take them back

to that feeling of energy? Wanting

to know more, wanting to do more?

Can I send them away from this

conference wanting to do nothing

more than get back in front of their

keyboard and do something new?

Whether I’m doing straight training

or talking about Perl 6, or talking

about this kind of out-there, edge

stuff – you know, pushing envelope

things – always in the back of my

mind is that people need to be

inspired. Because for most people,

the work they’re doing, even if they

are working in Perl and love what they

are doing, is a grind. And it’s a grind

every day, and it’s always pressure,

and it’s always, “We don’t have time to

do this properly, we have to do it

quickly.” It becomes a rut, because

you’re doing the same sorts of things

all the time, and it’s the same

business area. Even if you move,

you’re frantically trying to get up to

speed on something.

www.linuxformat.co.uk LXF62 JANUARY 2005 61

www.linuxformat.co.uk62 LXF62 JANUARY 2005

PERL 6

>>

wasn’t paid. Don’t tell anyone that…

well, too late! But for me, it doesn’t

feel like I’m working because when I’m

up on there on that stage, I’m just

enjoying myself – I’m having a great

time. I’m being fed as well as feeding.

When I’m at home and I’m not

frantically getting ready for my actual

business, I’m working on things like

Perl 6. I get to work with Larry Wall

every day, and that’s an extraordinary

opportunity. I’ve learnt so much from

him, and it’s been so much fun

working with people at that level. And

not just Larry – the rest of the design

team are incredibly smart people too.

I know a lot of people get up in

the morning and think, “Oh, damn, it’s

Tuesday – I’ve got to go to work for

another four days.” You get in the car

and you commute. I work from home

most of the time – I have an eight-

second commute down the hallway.

And you know what? Those eight

seconds seem too long to me because

I can’t wait to get in there and do stuff.

That’s what I want everyone to have: I

want everyone to find something that

works for them, that does that. Part of

that inspiration is to say, “Look, there

are things out there that you could be

doing that would engage more levels

of you, therefore enriching you, your

employer and ultimately, if you can

feed it back, the whole community”.

So, I have a whole lot of respect

for everyone in the community that

can do that, and there are so many

people. Just the number of modules

on CPAN – every one of those has

been made by someone excited by

and fanatical about something, and

wanting to make it better, and then

wanting to share it with everyone.

Giving of themselves. When I see the

whole community doing that, and

when I see the whole community

donating to TPF so that Larry can do

what he does, so that I have been

able to work for the community…

when I see that kind of generosity, I

want to do it too – I want to give back.

I’m very lucky to be in a position

where I can do that.

LXF: Guido van Rossum has
recently been giving a talk where
one of the opening points is that
he’s not really involved much in
Python any more because he’s
doing other things. However,
people always have this

perception that he is Python.
Equally, a lot of people must think
that you and Larry get paid lots of
money for all the work you do.
How do you combat that?
DC: Well, you saw some of that today.

Me not doing it for me, but me doing

it for Larry. I’m always astonished by

the number of people who don’t know

that Larry has been out of work for

coming on to three years now. The

assumption is that he’s still being paid

by O’Reilly, and if you sat down and

thought about it, it would seem

nonsensical to even think that because

we’ve all been through a recession, so

many of us have been thrown out of

work or made to work longer hours,

and seen cutbacks in conferences and

in the ability to buy textbooks.

Those are the two things that

O’Reilly does, so O’Reilly – not

because it wanted to, and I know that

it hurt Tim every single time it had to

let anyone go – had to let people go.

Like every company has had to do: to

downsize. And Larry was one they had

to let go, because when you do that

you have to keep the people who

generate the money in the company,

and as rich as Larry’s contribution was,

he wasn’t bringing money into O’Reilly,

except for the few books that he was

writing, and he was getting paid for

that in another channel.

LXF: And his book sales must have
been substantial…
DC: When you talk to Larry, he points

out that O’Reilly basically gave him

half a million dollars over a number of

years, and he doesn’t feel at all bad

because he was actually telling Tim,

“Come on, you’ve got to let me go.

You’ve got to say you’re cutting the

line, and I’m one of the ones you’ve

got to let go off the life raft.” However,

people don’t realise that. They don’t

think about that. They think that Larry

is okay, and I guess they think the

same thing about me.

I was looking at one of the regular

Python or Ruby newsgroups just the

other week, and someone wrote a

message that said we should get

together and set up a foundation, and

we should support developers like TPF

supports Damian Conway. There was a

big part of me that wanted to butt into

that conversation and say, “Well, that’s

not actually happening – that hasn’t

happened for two years now.” You get

the fanfare when something happens,

LXF: So you’re showing them that
there’s more to programming than
pressure and deadlines?
DC: What they need to see is that

there’s a level beyond that – there’s a

place that you can put yourself where

the sheer joy you experience in

coding comes back into your life. That

you can do it as a professional, but

you can do it as a professional at a

very high level, and you can shake

yourself out of that mental rut that

you feel. Like you have to be in to get

the job done, but you don’t have to be

in that rut, at least not all the time.

Yeah, you’ve got to slog and you’ve

got to cut code, and then there’s the

hard work and the design, but you

also have to make time, space and

calm so you can play again.

The only way you can be innovative,

the only way you can be creative, the

only way you can be imaginative is if

you have at least a little bit of play in

your life. And that’s what I do: I get up

on the stage and show them things

I’ve been playing with. I show them me

playing. I try to do it in a way that

engages them and entertains them,

and makes them go “wow!”. When

they do that, it inspires them to do it

themselves. They say, “Wow, I didn’t

realise that coding could be this much

more than what I’m doing, but I can

see how I could use this. I can take

this and go beyond it.”

I get so many patches from people

who say, “I love this thing that you did,

but I just thought if it would only do

this as well.” And I just think to myself,

“Man, I should have thought of that!

That’s just so clever – thank you for

giving that back to me!” Sometimes I

get emails back from people saying, “I

went away and took on board the

things that you said and thought about

it, and had these really weird dreams

after I went on your course. The next

day I got up and refactored this piece

of code and I tried this thing that you

said, and it saved up to 20% on

performance.” And I just think yeah,

that’s what I’m here for.

LXF: So would you say it’s almost
your reason for being?
DC: Sure. I would do this stuff if I

“THE ONLY WAY YOU CAN
BE IMAGINATIVE IS IF YOU
HAVE AT LEAST A LITTLE
BIT OF PLAY IN YOUR LIFE”

PERLS of
WISDOM

PERL 6

but when something stops happening,

of course, there’s no fanfare because it

doesn’t make sense for there to be a

fanfare when it’s not good news.

 I was tremendously generously

supported by them, and I have lots of

friends that don’t have the kind of

money they had two years ago. I don’t

have the kind of money I had two

years ago, so I understand that. How

do we combat that impression? I’m

not sure I want to, personally at least. I

definitely want to do it for Larry,

because without Larry you can forget

it – we don’t have Perl any more.

You know, the community swirls

around this man. He gives us so much

on so many levels and not just on the

technical level and the brilliant job

he’s doing on Perl 6 development. The

kind of the man he is, the way that

he keeps the community together,

the way he defuses situations. He’s

a focal point for our community and

something to aspire to, a genuine hero.

And not just in our community, as we

saw when he won the Nobel Prize for

Open Source.

Everyone feels that way about the

man. He’s an extraordinary man, and

yet here is, struggling not just with

health problems and the incredible

costs involved in that, but also with the

fact that he has a mortgage, he has

four kids, two of which are in college

and two of which are about to go into

college. He hasn’t had a full-time job

for that time. For myself, I don’t care. I

have been blessed with enough gifts

and with enough brains that I can

make a living. If necessary, I can just

say I have to leave the Perl community

and get an academic position again.

I’m pretty confident I could probably

land a position. Or I could go and cut

code for somebody, and I could

probably find somebody who would

pay me to do that.

LXF: So you’re doing this by your
own choice…
DC: At the moment I’m able to do it.

We don’t live like kings, but we live.

I’m able to come to these

conferences by the generous support

of O’Reilly – they’re covering my costs

to come here. I’m able to do my work,

and my real work is working for the

Perl community, so I’m able to do that

and we get by.

So, I don’t try to combat the idea,

because at some level, whatever

community it was that was saying we

should do the same thing that Perl

does for Damian, well, if I’d said that

Perl doesn’t actually do that, then that

just kills them. That stops their

enthusiasm for it, and I don’t want to

do that. I want them to be doing the

same sort of thing. So, I guess what I

do is that I go around and when

people ask why Perl 6 is taking so

long, I list the people who are working

on Perl 6, and when I do that list it’s

“X, unemployed; Y, unemployed; Z, part-

time employed cutting code for blah.”

And we have a lot of people who, at

some stage during the development

process, haven’t had any work at all,

and have just worked on that instead

of finding a job.

Each of us has gone in and out of

jobs, and we don’t expect special

treatment, we really don’t. We know

how tough the whole community is,

but people don’t realise that. So when

I say X, Y, and Z don’t have work,

they’re shocked. It doesn’t really seem

to make a huge amount of difference

in terms of what happens, but at least

people are aware of the situation.

I think that making people aware

of this, and making them aware of

Larry’s situation, of the fact that TPF

was run, until recently, by just one

person slogging away out of working

hours, we see others volunteering.

All the community have their own

lives to lead, their own families to take

care of. They have their jobs that are

no longer nearly as secure as they

used to be. They have their social lives.

Perl may be a large part of their lives,

but it’s not their life. And so for those

of us where Perl is a large part of our

life – apart from my wife who is, okay,

all of my life, so apart from her, then

the Perl community is it for me. It’s

where all my friends are, it’s where all

my income comes from, and, quite

separately, it’s where all my work is –

where my true vocational work is. So

for me, it’s a privilege to do what I do,

and I’m just thrilled I can do it.

LXF: If you had more monetary
resources at your disposal, how
would you spend them on Perl?
DC: If I had my way, if I had unlimited

amounts of money, then I would be

paying the rest of the team to just not

have to worry about having a day job

building websites, not have to worry

about looking for a job – that takes

more time than actually having a job,

and just say, “Look, work for us – do

what you want to do. Here’s a grant for

each of you to do what you want to do.”

I don’t have that, so I do what little

I can – to go around, talk to everybody

that I can possibly talk to, anywhere I

go in the world, if I’m there for more

than one night, I will offer to come out

and talk to the local Perl people, and

I’ve done that ever since I was invited

anywhere. That’s part of my job. It’s

really part of my job as a member of

the Perl community – and as a senior

member of the Perl community, a

member that’s well-known – is to say,

“Let me bring part of the Perl

community into your part of the world,

let me connect you with that for a

period of time. Let me bring some of

the wonder of Perl back into the

routine of your daily work”.

I’m sure their lives aren’t routine

and I’m sure they have many

wonderful things going on in their lives,

but work feels like routine. So I go in

there, I talk to them, and I’ve been

“O’REILLY BASICALLY GAVE
[LARRY WALL] HALF A
MILLION DOLLARS”

saying to them, “Larry has been out of

work for some time. You wonder why

Perl 6 is taking so long? Because he

has to feed his family as well.” So I

guess that’s how I address it.

For myself, I don’t care – I’ve

always felt that way. I’m so grateful for

the support I get from aspects of the

Perl community, and that I have had,

over historical periods, that I don’t

want to ask for any more. I’ve had my

bowl of porridge. There are other

people that need bowls of porridge.

As long as the corporate sections

of the Perl community continue to

want what I have to give, I can afford

to do that. I can afford to take a

quarter or a third of my year and

pause my other activities, although

going around, I can also do my

outreach stuff and get enough money

to live, at least out in rural Australia,

quite okay.

LXF: Couldn’t Larry take on some
of that same work?
DC: No, Larry can’t do that. He’s got a

skill set that’s quite different from that.

It would be an incredible waste of his

time travelling around teaching people

about regular expressions. So I guess

that’s what I try to do. Is that a third of

my time? I guess time-wise it’s a third

of my time, but in terms of what I

think is important, I think supporting

Larry’s work is a big part of my work –

that’s what I’m supposed to be doing.

I do that in different ways. I do that

in terms of evangelising his work, and

that’s another main role in terms of

the Perl 6 project. I guess one of my
>>

www.linuxformat.co.uk LXF62 JANUARY 2005 63

PERL 6

roles is to be one of the major public

faces of it. To be the guy that takes

the message to the people. The other

role is to be a foil for Larry. In a

keynote he gave, he made the point

very well. Larry’s brain and my brain

work unbelievably differently, and I’m

sure we’re incomprehensible to each

other sometimes. I know he’s

incomprehensible to me sometimes! I

wish I knew how he got from here to

this brilliant solution, and I don’t

always know that.

LXF: And you must have things
that fill in gaps for him too…
DC: We complement each other

nicely. Then you add in the other

members of the Perl 6 community

and the rest of the Perl 6

development team – the inner cabal

as we like to refer to ourselves,

although it’s no cabal – you look at

their skills. You look at Allison Randal’s

amazing skills, not just in terms of her

deep linguistic understanding and her

real connection with what actually

works in practice for people, but also

her organisational skills – we’d have

been totally lost without them! Larry

and I together couldn’t amass enough

organisational skills to get ourselves

out of a paper bag, but she has those

skills and she brings them to us.

We have people like Dan Sugalski,

who has incredible skills in the

implementation side, and has a deep

understanding of what’s actually

practical. When Larry and I get going,

we start hitting the stratosphere and

beyond, and Dan has on many

occasions said, “You know, that would

be great, and if we just solve this

halting problem first it’ll happen.” So

we have people like that.

We have Hugo van der Sanden,

who is the Perl 5.10 pumpking right

now [“pumpking” is a Perl community

term used to describe the leader of

project development – Ed], giving us

tremendous insights into how things

currently work, asking the questions

that, once he asks us, are incredibly

obvious. You know, why didn’t we ask

that question ourselves? Because of

our focus.

I could go on and on and on; there

are so many people involved. Luke

Palmer, who basically works on the

next layer of the onion of Perl 6

development, which is the Perl 6

mailing list. From time to time, Larry or

I or Dan or Allison will try to answer

their questions and try to give them

feedback about how their suggestions

are feeding into our process. However,

as our lives have become more and

more complex and busy, we’ve been

able to do that less and less, and Luke

has stepped up to the plate in an

extraordinary way.

Just to understand the language at

an incredibly deep level, and have the

patience to explain it to the people

that are coming on this mailing list for

the first time. Often they’re asking a

question that’s been answered 20

times before, just asking it slightly

differently and giving us something

extra, but needing someone to answer

so they don’t feel like they asked and

got no response. We need people like

that, and he’s another very public face

of our outreach.

This is why it’s such a collaborative

effort, and I think you can tell how

stoked I am to be doing this.

LXF: Something that’s confused us
is that you say there are lots of
important Perl people out of work,
but here at Linux Format we’d
easily pay someone like you
$1,000 for four pages of Perl, as
I’m sure other magazines would.
How come you guys aren’t doing
this sort of thing?
DC: Well, I do actually do some

magazine writing. I think, in part, that

writing for magazines – and in a

sense I do that when I do the exegesis

documents, that we are writing for

an online magazine essentially – I’m

not sure that it plays to our strengths.

I certainly know that when I write

an article, I don’t want to write four

pages. I want to write 20 pages,

understandably, and I want it to be

perfect. I want it to cover the ground

completely. , so that’s hard to move

away from.

LXF: Surely you could split it up
across five magazines?
DC: I could, yes, but I find that if I’m

writing an article for a magazine, it

takes me two weeks to do it because

it has to be perfect. Not only does it

have to be perfect from a code point

of view, but it has to be perfect from a

pedagogical point of view – it has to

be lucid and eloquent, it has to be well

written, and it has to be amusing. And

I know that magazines don’t care

about a lot of those things to that level,

but I care about a lot of those things

to that level. I would rather starve to

death than write an article I didn’t

think people would be glad to have

read and felt entertained by.

If we’re being honest here, I’m an

entertainer before I’m anything else. I

want people to have that experience. I

will do it if I write an article. I hope the

article would be funny, it would be

irreverent, it would be from a skewed

angle. You can’t do that in two days.

LXF: I see what you’re saying, but
for those two weeks spent writing
your feature, you’d get paid
$3,000 or $4,000 very easily.
DC: Yeah, and in those two weeks I

won’t be able to design Perl 6, I won’t

be able to answer anyone’s emails,

I won’t be able to write any more

modules and I won’t be able to travel

anywhere. It’s deciding.

To be honest, if I wanted to make

$3,000, I’d do a day of training in the

corporate world. I’m top-shelf there

and I get paid that way. So, frankly, as

much as I like doing magazine articles,

and I do a couple of them a year,

economically there are better ways of

earning money. Even non-economically,

I think that there are probably better

uses of my time.

LXF: Let’s get back to Perl. What
do you think of Perl 5 as it stands
right now?
DC: I love it! I think it’s wonderful. It’s

the only actual useable programming

language that I actively love. I admire

other languages a great deal – I think

Python has an enormous amount to

recommend it. There are other

languages that I think are simply

brilliant, like ML, Icon and some of the

object-oriented languages I quite like,

just for their elegance and the ways

they bring things together. Eiffel, for

example, strikes me as being a lovely

language, while Self is just such an

interesting take on object orientation.

However, it’s only Perl that actually

sings to me. When I very rarely have

time off and my wife is away or I’m

away from her and there’s nothing else

I’m doing, I sit down and recreationally

code. At that point I’m just playing in

Perl, so it fulfils my needs on so many

different levels: on a practical level of

getting work done, it fulfils my needs

and on an aesthetic level of getting

work done in interesting and

imaginative ways, it fulfils my needs. In

terms of performance, it almost always

satisfies my needs, so I think it’s an

extraordinary language.

LXF: But surely even Perl has
some flaws too…
DC: Yeah, I’m not blind to them – it

has very many, very serious flaws to it.

Things that it doesn’t do very well.

Things that feel like rough edges that

no one has got around to smoothing

off yet. Things that it makes more

difficult than they ought to be. Things

that it does incredibly well that were

important ten or 15 years ago that

aren’t any more. Things that are in the

core that no one uses any more.

I mean, how many people work

with sockets in Perl? There’s a small

core of people that do, and they love

the fact that sockets are core in the

language, but I’d venture to say that

95% of Perl programmers never use

them in their code.

It just kind of feels like it’s nicely

optimised for the late 80s, early 90s,

but some of the things aren’t really

optimised, and some of the things that

we do all the time aren’t pleasant to

do – dealing with Unicode still isn’t a

joy. It’s getting a lot better, but for a

long time it hasn’t been a joy.

Dealing with markup languages,

whether that’s HTML, XML or whatever,

is still not pleasant. There are now

tools you can do it with, but it’s not

nearly as easy as it ought to be. There

are bits that are missing that are fine

to be missing in a language that was a

scripting language, whatever that

means, which was basically a souped-

up shell.

PERLS of
WISDOM
>>

“TO BE HONEST, IF I SIMPLY
WANTED TO MAKE $3,000,
I’D DO A DAY OF TRAINING”

64 LXF62 JANUARY 2005 www.linuxformat.co.uk

www.linuxformat.co.uk LXF62 JANUARY 2005 65

“WE KNOW PEOPLE WHO
STILL CODE IN COBOL, IN
FORTRAN AND IN APL”

PERL 6

>>

LXF: Could you give us some
specific examples?
DC: Well, it was fine that subroutines

took all their arguments in @_ and

didn’t typecheck them or do these

other things. However, there wasn’t

really a strong type system underlying

the language that you could extend. I

mean, it has a type system but it’s not

really one that you can hook into and

do a lot with. Those things were fine

back when most people used Perl to

do things that type systems just get in

the way of doing. That’s changed

though, and it’s changed for me too.

There are things that I’d love to be

able to do, that I know are easy to do

in these other languages. They have

facilities that enable me to do

continuations or multiple dispatch or

co-routines, or very complicated

object-oriented structures and

component-based software

development, but I don’t want to do

them in the other languages because

the other languages suck compared to

Perl. I want to do them in Perl, and I

guess we’re moving into the whole

rationale of Perl 6.

LXF: So with Perl 6 coming over a
horizon far away, Perl 4 is still
being used. There’s stuff in there
that maybe can’t, or won’t,
migrate. Do you think another big
jump will leave these people so far
behind they just can’t catch up?
DC: It will certainly do that for some

people. And it will do that not only for

Perl 4 programmers, but for Perl 5

programmers as well – some of them

won’t make the jump. We know that

happened when folks went to Perl 5,

otherwise we wouldn’t have those Perl

4 users still. I don’t think it will be quite

as big a problem for Perl 5 to Perl 6,

because of the backwards-

compatibility modes that we’re leaving

in place. That will allow people to do it

on a gradual basis, as they wish to do

it, but yes, it is an issue that we looked

at very carefully.

The thing we looked at that we

think will be the saving grace is that

there is no sign that Perl 5 is going to

give up – that people are going to say,

“Right, let’s just drop Perl 5 and all go

over to this side of the boat.” For a

start, we actually have more of Perl 5

running on top of Parrot than we have

Perl 6 running on top of Parrot, so it’s

pretty clear to me that Perl 5 will run

on Parrot, so people will be able to

continue to use it if they want, and

they will get the performance benefits

that will come from that migration.

People won’t move, but new

people will come into the community.

A lot of new people will come into the

community when a lot of the Perl 6

code doesn’t have to be as scary any

more. You can do object-oriented

class development that looks just like

Java. Your boss might not even be able

to tell that it isn’t Java, so you can just

say, “Yes, we’re doing it in Java. All

those dollar signs? Yes, they’re new.”

And that will be it.

People will want to try it out. When

they see the kind of functionality we’re

putting in there, that will happen. We’re

not under the illusion that people will

suddenly say think that this is going to

be the messiah. We know that this

won’t happen. We know that people

will be slow. We know that, because we

know people who still code in COBOL,

in Fortran and in APL. That is the

nature of the beast.

There are always more people

coming into the industry than there are

currently in the industry because

computers continue to become closer

to ubiquitous, and everything’s going to

have to run on something. Some

people will migrate, some people won’t

migrate, and all of the new people

coming in won’t even know what Perl 5

is, so we’re not really worried.

LXF: If you had to limit yourself to
just four, what would you say the
key features in Perl 6 are for you?
DC: The four things that I most feel

are important in Perl 6… Well, one

is the underlying type system. The

fact that we have a real type system

on which we can build all types of

other features like multiple dispatch

and subtyping. Also, most importantly

from that point of view, compile-time

checking on a lot of things that

currently can only be checked at

run-time, if at all.

The new object-oriented system,

which kind of comes from the type

system, is also critically important.

There’s now a canonical way of

creating classes that is declarative,

largely compile-time checkable and

safe under multiple inheritance. All of

those things are critical improvements

that will allow Perl 6 to move into

production environments in a way that

Perl 5 often hasn’t been able to do, so

that’s number two.

If I can be allowed an indulgence,

number three would be something

that I invented and put into the

language – the concept of junctions.

A junction is a single scalar value that

effectively acts like a set of scalar

values, but a set that also has a logical

predicate with it, so you can have a set

that represents all of the values, a set

that represents any of the values, and

a set that represents one of the values.

The keyword here is quantum

superpositions, but we don’t talk about

that any more because it scares

people. We call them junctions now.

The thing about this is that they

open up an enormous number of

idioms, new algorithms and new ways

of structuring code with very much

less code, and yet that’s very much

more readable. So, for example, you

can say, “If any of my numbers is

greater than 1,” and you can literally

write “if any(@numbers) > 1)”, and

you can immediately see what that

means. You don’t need to put a

comment there because what

comment could you put there that

could tell you any more than the code

itself? But the really important thing

about that is that you’ve not only

made your code a lot cleaner, but

you’ve also written it in such a way

that the compiler can look at it and

say, “Hey, that’s something I can do in

parallel. When I see an operation on a

junction, because of the set-like

nature of it, that operation I can do in

parallel, and I can short-circuit if any

thread yields a value that decides

what the overall result answer will be.”

It may not be that the initial

versions of Perl 6 actually do that, but

what I wanted to open up was the

possibility of writing code that mere

mortals could write, that could be

inherently parallelisable. There are

other constructs in there too, like

hyper-operators, that will allow me to

do the same thing for operations. So,

for a hyper-operator, you can say,

“This is normally an operator between

two scalars, like a multiply operation,

but if I put these symbols around this

multiplication operator, it becomes a

vector operation I can do between

two arrays of values, and it will do it

element-by-element across the array”.

www.linuxformat.co.uk66 LXF62 JANUARY 2005

PERL 6

PERLS of
WISDOM
>>

“MAN, I WOULD LOVE TO
BE ABLE TO PROGRAM MY
REFRIGERATOR IN PERL!”

LXF: So, operator overloading?
DC: Not really. It’s the same operator,

but now instead of operating on just

one pair of scalars, it’s operating on

multiple pairs of scalars drawn from

two arrays. The tremendous

advantage of that is that it’s another

way the compiler can be told to

thread this out, to process this out, to

processor this out. That kind of

general support for parallelisation and

for cleaner ways of describing that

process is what I think is the third

really important feature of Perl 6.

For number four, as much as I

would like to say Perl 5 compatibility, I

won’t. What I’ll say is that living on top

of Parrot is the other critical thing.

What that gives us is not just

tremendously better performance on

a wide range of platforms, but it also

provides us with a much easier way to

build the compiler, because all we

have to build now is a translator to

Parrot representation.

In addition, this provides a much,

much, much cleaner operability with

all of the other languages that we

want to use in everyday development.

Perl has always been the glue

language. Well, now we’re moving up

the stage and Parrot becomes the

glue language.

LXF: Are there particular parts
from other languages that have
caught your eye?
DC: There are some tremendous

modules in Java, for example. There’s

stuff out there that allows you to build

enterprise applications that we just

don’t have anything like in Perl. There

are some tremendous things in Python,

hidden away in the Vaults of

Parnassus; some modules that we just

don’t have any equivalent for. There

are some amazing things you can do

with PHP that are really, really hard to

do with Perl. I’m sure there will be

great things you can do with C#. I

don’t know what it will be, but I’m sure

it will be great, even if just means you

don’t have to write Visual Basic for

Applications any more. I want to be

able to do all of that, and I want to be

able to hook in a C program that

doesn’t require me to sell my soul to

XS to hook it into a Perl program.

I want to be able to grab some of

the great C++ code out there that

does really cool stuff very quickly, and

Parrot is going to give me all of that.

It’s going to make all of that easier

and it’s going to give me a way of

taking a Java class and inheriting from

that Java class in Perl. The ability to

inherit from a Java class, and maybe

multiply inherit from a Java class and

an Eiffel class and put those things

together in a sensible kind of way in

my Perl program, which is where I

love to program… the kind of power

that’s going to give me, I can’t even

begin to imagine.

So, to me, that uniform platform

that everyone is going to be able to

work on, and is going to work

everywhere – not just on proprietary

Microsoft systems, or pseudo-Open

Source Sun systems, or Linux boxes or

whatever – the thing that’s going to

work on my Palm Pilot in five years’

time, that’s going to work embedded

in my refrigerator. Man, I would love to

be able to program my refrigerator in

Perl! And maybe I’ll be able to. And

maybe I’ll need to use the Java classes

that have been written for refrigerator

control, but I’m going to be able to

control it with Perl. So, I think that’s

the fourth big thing.

LXF: Looking at the kind of Perl 6
code we’ve been seeing so far, the
most apparent difference is visual:
half the code has gone. That is,
what used to ten lines of code can
now be done in five lines of code.
But, and this is a big but, it does it
at the expense of adding mojo –
adding magic to the code that

“just works”. Do you think that
increases the barrier for entry
for new programmers?

DC: What you’ve got to remember is

that when I’m showing that kind of

code, I’m showing them and explaining

that this is half the difficulty. The thing

that I almost always say is that what

I’m showing is a “diff” – a diff against

Perl 5. I’m showing you the things that

are different, and that sometimes

freaks people out, because I spend an

hour or sometimes five-and-a-half

hours, and it’s just new thing, new

thing, new thing, thing that’s different,

new thing, new thing, thing that’s

different, new thing. That’s why I fully

understand why people think it’s

going to be a totally different

language to Perl 5.

The next level up and you say,

“Yeah, that’s Perl-ish. That’s probably

how it should have been in the first

place.” However, the feeling is that

“everything is different. What people

forget is that I’m showing them about

15% of the language. About 85% of

the language looks and works exactly

the same as before.

What I’m showing when I’m talking

about the new ways of doing things is

demonstrating the optimised way of

doing it and then the native, idiomatic

way of doing it. What I occasionally do,

but not often enough, is say, “Okay,

here’s the literal translation between

Perl 5 and Perl 6 of this.” And what

you see then is you have a page of

text and, like, 10 characters change

between the two.

We really have worked very hard

not to pull out things from Perl 6 that

didn’t need to be taken out. There

were some things that absolutely had

to go – they were just wrong and were

leading people astray.

The most significant change is that

the sigils on variables – the dollar, the

at sign, the percentage sign – stay

with their variables no matter how you

use them. They don’t mutate

depending on how you use the

variables any more. That causes the

code to change a bit, but it actually

makes the code more readable.

LXF: So you can essentially use
Perl 6 as if it were Perl 5, but
there’s also a better, Perl 6-
specific way?
DC: I have this talk where I say, “Okay,

here’s this in Perl 5, here is the

straightforward, literal change to Perl 6.

Do you notice how few characters

change? And now here’s the idiomatic

way that we’re adding on.” So, the

answer to your question is that you’re

still going to be able to take the same

sort of baby steps, we’re still trying to

make that learning curve as gentle as

it is in Perl 5. Because it is very gentle:

people can spend years and years

getting confident before they ever use

a map operation.

You can do that in Perl 6,

absolutely. In fact, in Perl 6 it may

even be easier to do because it may

be fairly trivial for people to write

modules that restrict you to a subset

of the language. The problem with

doing baby steps with Perl 5 is that if

you teach people maybe 10% of the

language, which is enough for them to

do real applications, they’ll do that but

they’ll accidentally make a mistake

that will be meaningful. This means

they’ll get weird behaviour or error

messages they don’t understand.

In Perl 6, you’ll be able to take the

Perl 6 grammar that Perl 6 actually

uses and derive a new grammar from

it that cuts out 90% of the rules, so

that anything you do that’s out of the

normal, you can send back a message

that says, “Perl knows what this is, but

you don’t, so don’t do it.” Or just

“invalid syntax, don’t do this”.

We’re going to give them ways of

building themselves safe sandboxes of

varying sizes. There’s no one on board

to actually do that yet, but even so it’s

still going to be that process of gradual

learning that allows you to get better.

The thing about it is that the curve is

just going to get longer – it’s going to

get a lot longer because there’s a lot

more in the language.

There’s a lot more features and

things you can graduate to. I don’t

expect everyone to start using

junctions, except that you can use

junctions without understanding all of

the quantum physics underlying them.

You can just write: “If any of these is

less than 10.” You don’t have to

understand how it works behind the

scenes, because the fact that it reads

like that allows you to use it. As such,

a lot of the things we’re adding in can

be explained to people without

explaining the deep semantics, and

when they need the deep semantics

they can learn them, but slowly.

LXF: So how about something like
PCRE – the Perl-Compatible
Regular Expressions? In Perl 6
there’s a whole new way of doing
regular expressions that many

www.linuxformat.co.uk LXF62 JANUARY 2005 67

PERL 6

“IT TOOK US FIVE YEARS TO
DEVELOP PERL 5, IF YOU
COUNT PERLS 1-4 AS BEING
PART OF DEVELOPMENT”

This interview first appeared
in the January 2005 issue of
Linux Format magazine.

interpreter. You just couldn’t do it. It

was impossible. And so, all of the

extra features that Perl 5 provided

were for a long time denied to these

other languages simply because there

was no way of going out and actually

implementing it.

You see now that a lot of

languages have “Perl 5 regular

expressions compatible!” among all

the other features listed on the box

or in a splash in a corner, and I think

that’s largely attributable to PCRE. I

think that’s a wonderful thing that

was achieved there.

LXF: Larry said a while ago that
Perl 5 was his rewrite of Perl, and
he wanted Perl 6 to be the
community’s rewrite of Perl, but
some might say that the long wait
for Perl 6 is indicative of the

‘second system effect’, described
by Fred Brooks in his book The
Mythical Man-Month. What do you
think – is Perl 6 biting off more
than you can chew?
DC: I don’t believe so. I think that I

can understand people having that

impression, that we bit off more than

have said is a lot better. Do you
think PCRE will stick with the Perl
5 standard, or move to Perl 6?
DC: I think a lot of people will stick

with what they know, because Perl 5

regular expressions are at least close

to standard Unix regular expressions.

They are different enough that they do

actually confuse people occasionally –

the difference in behaviour of the

caret and the dollar sign, for example,

occasionally knocks people around.

In most of the other Unix

applications, the caret and dollar signs

mean the beginning and end of a line,

but in Perl they mean the beginning

and end of the string, which isn’t

necessarily the same thing.

LXF: That’s fixed now, though?
DC: Yeah, in Perl 6 that’s fixed so it

works how people would expect. The

thing about that is that a lot of people

will stay with PCRE because they’re

happy with it and they’re comfortable

with it, but Perl has always set the

benchmark for regular expressions –

for power, for flexibility. And when we

move on, when we improve ourselves,

other people will want to follow.

The thing that we’re looking at right

now is how we can implement the

Perl 6 regular expression engine so

that it will be easy for people from

other languages to pull that bit out

and plug it straight into their language.

We have ideas about that, and the

idea basically revolves around the

notion that we think the Parrot engine

is a virtual CPU, that we have an

assembler language we code for.

I want people to think about the

regex engine that will be in Parrot as

being a virtual co-processor, that won’t

be deeply integrated into the Parrot

internals, that will have a relatively

small interface back to Parrot, and

that interface will be vanilla enough for

people to be able to rip that box off

the side and plug it into their

interpreter for their language.

They’ll have to do work to make

the syntax of their language reflect the

new syntax and semantics of Perl 6

regular expressions. I’m not saying

you’ll be able to just plug it in and

everything will be just hunky-dory, but

we should give them a way of doing

that with a minimum amount of effort.

I think that’s been the incredible

thing about the PCRE project – you

couldn’t pull the Perl 5 regular

expression engine out from the Perl 5

we can chew, that it seems to be

taking forever, and that we must be

thrashing or whatever. However, the

thing that people forget about is that

when you think about Perl 5, it took

us five years to develop, if you count

Perls 1 through 4 as being part of that

development process.

Perl 5 is what most people think of

as Perl – it took us five years to do

that. For a lot of people, Perl 5 is

really only Perl 5.5.3 and later. That

was when people started thinking that

Perl was stable enough and you could

write applications using it. If you call it

that, then you’re saying it took ten

years to develop Perl 5. We’ve only

been going for four years. If we can

get it out within a year, we think we’re

pretty much ahead of the game!

People are saying that they had

Perls 1 through 4 during that time and

they could do stuff with them, but the

very act of doing that constrained us

to be backwards compatible at every

stage, and that’s what led us down so

many of the garden paths that we’re

now trying so hard to correct.

We get one go at changing the

syntax of Perl, at bringing in these

backwards incompatibilities to fix

where we went wrong. We only get

one chance at that because people

aren’t going to stand for it a second

time. I’m not going to stand for it a

second time.

That being the case, it behoves us

not to move too soon. It behoves us

not to rush in with the first idea we

had, because that’s how you get

second systems. It’d be great to do

this, let’s bolt it on the side and let’s

bolt this other thing on the other side,

and if you bolt enough things on

enough sides you’ve got Frankenstein’s

monster. And it looks like it, and it

works like it.

Now I have enough time to really

explain how Perl 6 works. In Toronto I

gave a five-and-a-half-hour lecture

just on how Perl 6 works and people

stayed, and the reason people stayed

was because by hour three, they

started to see how neatly this all fits

together. They saw how eloquently the

features I showed up front combine

together to give us things we don’t

have in other languages, or things that

we do have in other languages but

have to have their own syntax.

We feel that we’re primarily

developing this language so that it will

be up to the needs of the next 20

years of Perl programmers. That’s our

outlook. If we can’t take five years, one

quarter of that time frame, to get it

right, then we won’t get it right and

we’ll have to do Perl 7, and everyone

will have to go through the whole

agonising process again. We would

rather do it right than do it right now.

LXF: So what you’re trying to say
is that there are no plans to try to
speed up development?
DC: Right. What we plan to do is

make sure that everything that goes

in there can be done quickly and can

work in the way we expect it to work,

and provide an increase in power and

flexibility, while also providing an

increase in both the maintainability

and readability.

LXF: So, just one last question
then… when is Perl 6 coming out?
DC: Aha! I could tell you, but then I’d

have to kill you… LXF

