Contents

PP OO~NOOPM~WNEPRE

[EnY
N = O

B
AW

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Contents

xit_loadtiles — Load an IFF with compressed tiles................... 4
xit_freetiles — Free atileset.. 5
xit_draw — Blit from a tileset into the specified SDISurface. 6
xit_gdraw — Blit to default surface from default tileset. 7
view_new — Allocate a small chunk of display memory with back store. 8
view_free — Deallocate an xiview and its surface(s)................. 9
view_show — Blit view image to surface itis created for.............. 10
view_hide — Restore the area behind a view from its backing store.. 11
Xi_init — Initialise Xiqual and all SDL subsystems................... 12
xi_inittag — This function gets called by xinit() when initialising. 14
xi_quit — Free the xiglob structure and all its related data, then release
Al SDLIESOUICES. . . . v et 1D
xi_main — Update mouse cursor (if using multicolour), and handle any
input, calling user-specified hooks.. 16
netcreate server — Create a new select() server.................... 17
netfree_server — Release all resources related to a Xiqual select?
SBIVEL. ...\ttt et e e e e e e 8
netprocess —Handle a select() server’'s incoming and outgoing data. 19
cfgfindnext — Find a named section starting at a specific section... 20
cfgfindsection — Find a named sectioninalist..................... 21
cfg freesection — Free a preferences section and its variables....... 22
cfgfreevar — Free a variable anditsstrings........................ 23
cfgisbool — Internal function for cfg_loadprefs(). 24
cfgloadprefs — Load preferences from an INI-style file.............. 25
cfg.newsection — Allocate a new preferences section............... 27
cfg saveprefs — Save a List of preferences sections tofile........... 28
xi_seterror — A generic way of setting error strings.................. 29
file_getsize — Stand-alone routine to get afile’ssize................. 30
fileenew — Openanautofile............o i 31
file_free — Close autofile and free all buffers........................ 32
file_initbuf — Allocate a buffer of the givensize..................... 33
fileload — Load an entire file intomemory.......................... 34
file_seek — Seek-wrapper for SEEKSET functionality. 35
file.scan — Seek-wrapper for SEEKCUR functionality. 36
file_read — Read a number of bytes into the buffer from an autofile.. 37
file.write — Write from an autofile’s buffer. 38
file_readhook — Set an autofile’s read hook pointer.................. 39
file.writehook — Set an autofile’s write hook pointer................. 40
iff_ close —Closesan|IFF. i i 41
iff_correctchunk — Correct and pad odd-sized IFF chunks.......... 42
iff_endchunk — Finishes writingachunk............................ 43
iff_new — Createsanew IFF........ 44
iff_newchunk — Startonanew chunkinanlIFF. 45
iff_writechunkdata — Write data to an IFF where you have just started
AChUNK. .. 46

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 1

Contents

42
43
44
45
46
47
48

49
50
51
52
53

54
55
56
57
58

59

60

61
62
63
64
65
66
67
68
69

70
71
72
73
74

75
76
77
78
79
80
81
82

83

listadd — AddaNodetoalList...............oiiiiiiiiiiiina... 47
list addhead — Add a Node tothetopofalList...................... 48
list delete — Remove a Node from a Listand free data. 49
list free — Free a List and all its attached Node structures........... 50
list. gethode — Return a Node at a specific index position............ 51
listinsert — Insert one Node after another given Node.............. 52
list makecircular — Make a List circular (first and last Node points to
€aChOthEr).. ... 93
list new — Create a new List and set the destructor. 54
list newitem — Allocates a new Node structure.. 55
list. remove — Remove a Node from a List without freeing any data.. 56
MDS5Init — Start MD5 accumulation..................oooii . 57
MD5Update — Update context to reflect the concatenation of another
buffer full of Dytes.t 58
MD5Final — Final wrapup. . ..o e 59
MD5Sum — MD5-checksum abuffer................, 60
MD5Ascii — Make a printable version of the MD5 sum.............. 61
nodeend — Return the last Node in a circular List.. 62
nodefindbycontents — Return a Node with datgpartially containing

the entire specified String.. 63
nodefindbyname — Return a Node with data containing the specified
114 1o 64
nodemakecircular — Make a chain of nodes circular (first and last
Node pointsto eachother). ..., 65
nodestart — Return the first Node in a circular List.. 66
strfind — Looks for a string within another string.................... 67
strisnum — Check if a string is all numbers and whitespace. 68
strlower — Turn a string into all-lowercase characters............... 69
str_tokenise — Create a tokeniser object fromastring............... 70
str_freetoken — Free a tokeniserobject............... 71
strupper — Turn a string into all-uppercase characters.............. 72
tag alloclist — Allocate a tag array big enough for numtags items.... 73
tag finditem — Look for a tag identifier in a taglist, and return a pointer
tothe tagitem.. ... 74
tag freelist — Free a tagarray previously created with tagfloclist(). .. 75
tag getdata — Find a tagitem'sdatabytag ID........................ 76
tagnext — Getnexttagiteminthearray............................ 77
autofile — Autofile structure. ... i 78
xi_textwidth — Calculate how many pixels wide a string printed with a
fixed-width xifontwillbe. 82
MAKE _ID — Quick macro to make a ulong of four characters....... 83
IFFHandle — Handle returned by iftnew() and iffopen() calls. 84
Node —Asimple Node.. ... e 87
List— Linked list structure. 89
list. nodemakecircular — Wrapper for nodemakecircular(). 91
list nodestart — Wrapper for nodestart(). 92
list nodeend — Wrapper fornodeend(). ..., 93
MD5Context — MD5 context for the Rivest/Plumb MD5 checksumming
FOULINS. et e e e e e e 94
preferences —A preferences section. ..., 95

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 2

Contents

84
85

86
87

88
89
90
91
92
93

variable — Avariable. 97
xiview — This is a view, for use as sprites, message boxes, or anything
else that might need to store the rectangle it is blitted over........... 100
Xiqual questions and ansSwWers. — e 105
xiglob — Global structure for Xiqual’'s automatic handling of miscella-

TS0 U 1S3 = L - 108
strtoken — The token structure............, 114
tagitem — Atagitem. 116
XI_-VARARG — Macro for vararg taghandling. 117
XI_VOIDARG — Macro for vararg taghandling. 118
xitiles — A tileset in-memory representation.. 119
xit_setdefaults — Set default screen and tileset 120

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 3

1 xit_loadtiles

1

xitiles* xit _loadtiles (char* name)

Load an IFF with compressed tiles.

Load an IFF with compressed tiles. The tiles have been previously compiled with
the tileset program. A tileset contains one or more tiles, the size of all tiles (same size
for all), the colour that is to be considered transparent (handled automatically by the
blitting functions) and a couple of rectangles for more efficient blitting.

See Also: xitiles, xit_draw(), xitqdraw(), xitfreetiles()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 4

http://docpp.sourceforge.net

2 xit_freetiles

2

void xit _freetiles (xitiles* tiles)

Free a tileset.

Free a tileset. You must deallocate each tileset before the program exits, of course.
This function frees all lists, arrays and surfaces allocated in a tileset.

See Also: xit_loadtiles(), tileset
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 5

http://docpp.sourceforge.net

3 xit_draw

3

void xit_draw (xitiles* tiles, ulong num, SDLSurface* dest,
Uintl6 x, Uintl6 y)

Blit from a tileset into the specified SChurface.

Blit from a tileset into the specified SDEurface. This is one of two calls available
to display tiles in a set. The recommended method is to calettlefaults() and use
xit_gdraw() for all main blits, and xitiraw() only for blits that don't happen very often.
Your program'’s structure may of course affect the validity of this method.

See Also: xit_loadtiles (), ftileset
Author: Ronny Bangsund

This page was generated with the help of DOC++ Se ptem ber 30 ’ 2002 6

http://docpp.sourceforge.net

4 xit_gdraw

4

void xit_gdraw (ulong num, Uint16 x, Uint16 y)

Blit to default surface from default tileset

Blit to default surface from default tileset Uses the defaults set by the most recent
call to xit_setdefaults() to blit a specified tile image to an SBurface.

See Also: xit_loadtiles (), Xxit_setdefaults(), tileset
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 7

http://docpp.sourceforge.net

5 view_new

5

xiview* view_new (ulong tagl, ...)

Allocate a small chunk of display memory with back store.

Allocate a small chunk of display memory with back store. This structure can be
used for sprites, cursors, message boxes or anything else that might need to display and
keep its background for re-blitting later.

Accepted tags:

XIVT _FLAGS: The flags areXIV _FILLBACK to fill the created rectangle in
view->image with the specified background colodty _NOSTORE to not create
any storage for the background area Xiid _NOKEY to avoid colourkey blitting with
the background colour as key (entire surface is copied instead of background showing
through).

XIVT _SCREEN: SDL surface to blit onto (need not be main screen).
XIVT _XPOS, XIVT _YPOS: Position in suface to be blitted to.

XIVT WIDTH , XIVT _HEIGHT : Size of view and background storage, unless an
image to be loaded is specified.

XIVT .BGCOL: It's recommended that you use SDlapRGB() from the desti-
nation surface’s format to set this, if you need it.

XIVT _IMAGE : An SDL_image supported file to load and use as vieitnage.

See Also: view_free(), view_show(), viewhide()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 8

http://docpp.sourceforge.net

6 view_free

6

void view_free (Xxiview* view)

Deallocate an xiview and its surface(s).

Deallocate an xiview and its surface(s). The view will be hidden upon destruction,
restoring any stored background. Note that this also means its screen element must be
valid until after destruction.

Parameters: view A view structure created with viewew()
See Also: view_new(), view_show(), viewhide()
Author: Ronny Bangsund

This page was generated with the help of DOC++ Se ptem ber 30 ’ 2002 9

http://docpp.sourceforge.net

7 view_show

7

void view_show (xiview* view)

Blit view image to surface it is created for.

Blit view image to surface it is created for. If there is backing store allocated, the
area at the view's position is copied to this backing store. If the view is already set as
displayed through a previous call to this function, nothing happens at all.

Parameters: view A view structure created with viewew()
See Also: view new(), view_free(), viewhide()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 10

http://docpp.sourceforge.net

8 view_hide

8

void view_hide (xiview* view)

Restore the area behind a view from its backing store.

Restore the area behind a view from its backing store. If the view flags has the
XIV _NOSTORE bit set, nothing happens.

Parameters: view A view structure created with viewew()
See Also: view new(), view_free(), viewshow()
Author: Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net September 30' 2002 11

9 Xi_init

9

xiglob* xi_init (ulong tagl, ...)

Initialise Xiqual and all SDL subsystems.

Initialise Xiqual and all SDL subsystems. The tags supplied allow you to selec-
tively initialise some SDL subsystems, create a mousepointer from anildBge sup-
ported file and more.

To intialise all supported SDL libraries and create the xiglob structure, with an
800x600x16 display:

xi_init(X \WIDTH, 800,
XI_HEIGHT, 600,
XI_DEPTH, 16, TAGEND);

This creates a mouse cursor, and tells Xiqual to also handle the cursor, in addition
to opening a typical display:

xi_init(XI ‘WIDTH, 800,
XI_HEIGHT, 600,
XI_DEPTH, 16,
XI_CURSOREFILE, "cursor.png”,
TAG_END);

<h2>Supported tags/h2>
<h3>Xiqual settings and hooksh3>

e XI_MAINHOOK A pointer to a function to be called at each input poll.
See xisetup.h/xmain() for information on the arguments passed.

e XI_PREF&/li> Load this configuration file. This is currently only for conve-
nience, but Xigual may start looking for a section of its own for various settings
in the future (type of SDL audio/video drivers to use etc.).

<h3>SDL settings/h3>

e XI_WIDTH, Xl _HEIGHT Screensize. Will be emulated if using an odd
resolution, or if it's not available according to the XF86Config (for example,
320x240 is usually not defined as available for 16-bit resolutions).

e XI_DEPTH</Ii > Bitplane depth (note that SDL may emulate this).

e XI_SDLFLAGS If you need to initialise threading, or only a few SDL sub-
systems, pass the replacement flags here. These will be used instead of the de-
faults, which is SDLINIT _EVERYTHING.

This page was generated with the help of DOC++

September 30, 2002 12

http://docpp.sourceforge.net

9 Xi_init

XI_SCRFLAGS/li> Xiqual will default to opening the screen with flags
SDL_HWSURFACE — SDLDOUBLEBUF, so pass a different set of flags here
if that isn’t what you want. Note that many other Xiqual functions also rely on
hardware buffers for blits, and these can't be changed (yet).

XI_CURSOR/li> You may pass a pointer to an xiview with this tag. Xiqual
frees this structure on exit.

XI_CURSORFILE/li> This tag is for those who prefer to create a mouse cursor
image with more colours. A view is created, and will be freed on exit, like
Xl _CURSOR.

XI_CURSORKEY<«/li> Pass a colourkey (as returned from SMapRGB())
here if you also specified a filename to load a cursor from. If specifying a cursor
directly, that view’s key will be used.

XI_CURSORHOTX, XI_CURSORHOTY This is the location of the
"hotspot”, the point on the cursor image that is considered the active (selecting)
part. The image will be drawn at mouse coordinates minus these coordinates.

<h3>SDL_mixer settings:/h3>

XI_MIXCHAN Maximum number of total mixing channels. Defaults to
eight.

XI_AUDIORATE Bitrate (frequency) to use for mixed audio, if SDhixer
is available. Defaults to 22050Hz.

XI_AUDIOCHAN Defines type of audio for music - 1 for mono, 2 for
stereo. See XMAXCHAN, if you're confused.

XI_AUDIOBUFSIZE Size of audio buffers - too small or too big may cause
stuttering or unexpected pauses on older systems and bad sound hardware. Note:
Must be a multiple of 16.

XI_AUDIO _FMT Audio format to use for audio mixing. May be one of:

— AUDIO _U8 Unsigned 8-bit.
— AUDIO _S8 Signed 8-bit.
— AUDIO _U16LSB 16-bit unsigned (Intel format).

— AUDIO_S16LSB 16-bit signed (Intel format). This is the default for
WAV.

— AUDIO_U16, AUDIO_S16 Shorthand for the two Intel formats.

— AUDIO _U16MSB Big-endian unsigned 16-bit.

— AUDIO _S16MSB Big-endian signed 16-bit.

— AUDIO_U16SY/li> 16-bit audio of whatever is the native byte-order.
— AUDIO_S16SY/li> 16-bit signed audio of native byte-order.

See Also: xi_inittag(), xi_main(), xiquit(), SDLInit(),

Mix _OpenAudio(), xiglob

Author: Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 13

10 xi_inittag

10

void xi_inittag (ulong tagl, ...)

This function gets called by mit() when initialising.

This function gets called by xnit() when initialising. You may pass similar tags
as xiinit() to this function after setup to change resolution, audio mode or shut down
subsystems.

See Also: xi_init(), xi_main(), SDLInit(), Mix_OpenAudio(),
Xi_quit()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 14

http://docpp.sourceforge.net

11 xi_quit

11

void xi_quit ()

Free the xiglob structure and all its related data, then release all SDL resources.

Free the xiglob structure and all its related data, then release all SDL resources.
This function replaces SDRuit(), so please check your atexit() calls.

See Also: xi_init (), Xi.nittag(), ximain(), Mix_CloseAudio(),
SDL_Quit()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 15

http://docpp.sourceforge.net

12 Xi_main

12

int xi_main ()

Update mouse cursor (if using multicolour), and handle any input, calling
user-specified hooks.

Update mouse cursor (if using multicolour), and handle any input, calling user-
specified hooks. Use xnit() or xi_inittag() to set an XIMAINHOOK tag pointing to
your input handler.

The hook will be called with a pointer to a keystate, a modstate and a mousestate
(Uint8 *, SDLMod and Uint8, respectively), and two integers (int) with the current
mouse coordinates.

Note: You'll have to use SDL’s joystick functions yourself in this main loop to read
any joysticks, as Xiqual currently has no code relating to joysticks. This might change
if anyone ever wants even easier handling.

See Also: xi_init (), xidnittag(), xi_quit()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 16

http://docpp.sourceforge.net

13 netcreateserver

13

SelectServerhet create server (ulong tagl, ...)

Create a new select() server.

Create a new select() server. All parameters are passed in as a taglist. To create
a simple server for no more than 8 connections, at port 1242, calling céad() to
process each incoming message:

SelectServer *server;

server = netreateserver(XNNUMCONNECTIONS, 16, XNTIMEOUT_S, 1,
XN_PORT, 1242, XNONREAD_FUNC, clientread, TAGEND);

The accepted tags for this function are as follows:

XN_NUMCONNECTIONS : Maximum number of connection nodes to make
available.

XN_TIMEOUT _S: Timeout in seconds before select() returns.

XN_TIMEOUT _MS: As above, but milliseconds - 10ms being the lowest you can
safely expect to work.

XN_PORT: Port to wait for connections on.

XN_LINGER : Number of seconds for sockets to linger after closing. If a socket
doesn't have the linger setting activated, it may take up to 5 minutes before the operat-
ing system releases all resources properly.

XN_CONNECT _FUNC: Hook called right after connection.
XN_CLOSE_FUNC: Hook called just before shutting down a socket.

XN_ONREAD_FUNC: Hook called to read incoming messages. There is no de-
fault reader in libxinet yet.

XN_QUEUE: Maximum listen() queue. Defaults to 5.

Return Value: A pointer to a valid SelectServer structure,
with sockets able to listen().
Parameters: tags Tags defining all server settings.
See Also: SelectServer, listen(), netprocess(), Xxipacket,
netfree server()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 17

http://docpp.sourceforge.net

14 netfree server

14

void net free_server (SelectServer* server)

Release all resources related to a Xiqual select() server.

Release all resources related to a Xiqual select() server. This shuts down the sock-
ets, calling each socket’s onclose() hook if available, and cleaning up Win32 sockets if
compiled for Win32.

See Also: SelectServer, netcreateserver()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 18

http://docpp.sourceforge.net

15 netprocess

15

int net_process(SelectServer* server)

Handle a select() server’s incoming and outgoing data.

Handle a select() server’s incoming and outgoing data. All user-supplied hooks
will be called as required. Sockets may be shut down on error.

Return Value: Returnvalue of the select() call.
Parameters: server SelectServer structure created with
netcreateserver().
See Also: SelectServer, netcreateserver(), xipacket,
netfree server()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 19

http://docpp.sourceforge.net

16 cfg findnext

16

preferencestfg findnext (preferences* prefs, char* section-

name)

Find a named section starting at a specific section.

Find a named section starting at a specific section. The given section is also com-
pared against the name.

Return Value: First matching section, or NULL.

Parameters: prefs Preferences section to start comparison at.
sectionname An exact match to look for.

See Also: preferences, cfg_findsection()

Author: Ronny Bangsund, Shane O’'Neill

This page was generated with the help of DOC++ September 30' 2002 20

http://docpp.sourceforge.net

17 cfg findsection

17

preferencestfg_findsection (List* list, char* sectionname)

Find a named section in a list.

Find a named section in a list. The search starts at the head every time; use
cfg_findnext() to search from the current node.

Return Value: First matching section, or NULL.

Parameters: list List of sections (preferences structures).
sectionname An exact match to look for.

See Also: preferences, cfg_findnext()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 21

http://docpp.sourceforge.net

18 cfg freesection

18

void cfg_freesection(preferences* prefs)

Free a preferences section and its variables.

Free a preferences section and its variables. If you usetbafiprefs() to load the
structures from a file, this function will be called as a destructor on each section. A
simple listfree() on the List will deallocate all resources.

Parameters: prefs Preferences structure (section), as created
by cfg_newsection().

See Also: preferences, cfg_loadprefs(), cfgnewsection()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 22

http://docpp.sourceforge.net

19 cfg freevar

19

variable*cfg_freevar (variable* var)

Free a variable and its strings.

Free a variable and its strings.

Return Value: Next variable.

Parameters: var Variable structure of any type.
See Also: preferences, variable, cfgnewvar()
Author: Ronny Bangsund

Thi was generated with the help of DOC++
Spamms geams e tepe September 30, 2002 23

http://docpp.sourceforge.net

20 cfg.isbool

20

int cfg_isbool (char* value)

Internal function for cfgloadprefs().

Internal function for cfgloadprefs(). This will returmRUEIf a string pointed to is
a boolean value. There is a special case, however; if there is no string, it also returns
TRUE cfg_loadprefs() will pass the value from strtel) unchecked because | couldn’t
be arsed to do it any other way.

Return Value: TRUE if the string pointed to is a boolean value,
or NULL.

Parameters: value A string pointer (probably).

See Also: variable, cfg_loadprefs()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 24

http://docpp.sourceforge.net

21 cfgloadprefs

21

extern List*cfg_loadprefs (ulong tagl, ...)

Load preferences from an INI-style file.

Load preferences from an INI-style file. The minimum configuration file accepted
has one line with a variable name on it:

mybool

A standalone variable like this would be considered a boolean variable. When
loaded into memory, you would be returned a List containing only one preferences
section, with no name.

A larger file should be divided into sections, like this:

[main]
mybool
something = something else

The List returned from cfdoadprefs() would now contain one preferences section
named "main”, with two variable - mybool is a boolean (set to TRUE), and the second
variable would be named "something”, a string variable set to "something else”.

Whenever a new set of square brackets are encountered, the name between them
is used in a new preferences section. All the following variables will be added to that
until yet another section name is found.

Legal variable names are anything not containing whatever your system considers
whitespace.

Accepted tags:
PREFS.FILENAME : Name of file to load. Required.
PREFS.STRINGS: Load all data as string variables.

PREFS.STRING _HOOK, PREFS VALUE HOOK : Normally, variables are to-
kenised to include the whole string (for string variables) or get numbers until atoi()
returns (integers). Use these tags to specify an alternate function to handle the process-
ing of the value. Useful if a string contains multiple filenames, or several numbers to
process.

A variable structure will not be created, but the hook gets the name of the variable
that otherwise would be created, along with the preferences section pointer and a string
containing the rest of the line. You will then need to duplicate any strings passed with
strdup().

The hook functions are declared as such in the sourcecode:
void (*strhook)(struct preferences *section, char *varname, char *values);

void (*valhook)(struct preferences *section, char *varname, char *values);

This page was generated with the help of DOC++

September 30, 2002 25

http://docpp.sourceforge.net

21

cfgloadprefs

See Also:

Author:

preferences, variable, cfgfindsection(), cfgfindvar(),
list_free() strtok(), atoi(), strdup()
Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 26

22 cfg.newsection

22

preferencestfg_newsection(ulong tagl, ...)

Allocate a new preferences section.

Allocate a new preferences section. This is used byladglprefs() when parsing
the loaded file.

Accepted tags:

PREFS.NAME : A name for the section. This is optional, but strongly recom-
mended to include.

PREFS STRINGS: TRUE if you want to load the file as strings.
PREFS.LIST: List to add section to. Strongly recommended.

Return Value: A section (preferences structure) if all went

well.
See Also: List, preferences, variable, cigadprefs(), cfgnewvar()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 27

http://docpp.sourceforge.net

23 cfg.saveprefs

23

int cfg_saveprefs(List* list, char* dirname, char* filename)

Save a List of preferences sections to file.

Save a List of preferences sections to file. All sections will be visited in order,
saving all variables without comments for each. If there is a previous file with the
supplied name, it will be deleted first.

Parameters: list The list containing pointers to all your pref-
erences sections.
dirname An optional directory to change to before

saving.
filename The filename to save the structure as.
See Also: List, preferences, variable, cligadprefs(),
cfg_newsection()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 28

http://docpp.sourceforge.net

24 xi_seterror

24

void xi_seterror (char* text)

A generic way of setting error strings.

A generic way of setting error strings. Sets thelasterror variable to a user-
specified string. The string is not duplicated, so it must stay alive for as long as the
program exists (preferably), or at least until a new error string is set.

A near-future version of this call will check for a user- supplied hook (passed to
xi_init() on startup) to call whenever a new error message is passed to it. This hook
could be used to display error-message boxes or a way to solve problems.

Using GNU gettext() etc. for internationalised, or even just English, text strings is
of course recommended.

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 29

http://docpp.sourceforge.net

25 file_getsize

25

sizet file_getsize(char* name)

Stand-alone routine to get a file’s size.

Stand-alone routine to get a file’s size. If the file specified exists, its size is returned.
Note that a file may be empty, in which case this fails miserably. This is fine for
file_new() in Xiqual, however. Reading in an empty file is not necessary when you can
just overwrite.

See Also: fopen (), fseek(), fclose(), filnew()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 30

http://docpp.sourceforge.net

26 file_new

26

autofile*file_new (char* filename, int write)

Open an autofile.

Open an autofile. This function will either open an existing file, or create a new one
for writing/append if the write parameter is set.

If a file exists and is opened for reading,aéize will contain its size.

Return Value: 1f the file exists or was created, return an aut-
ofile pointer.
Parameters: filename Name of afile to open/create.
write Non-NULL to create a file.
See Also: autofile, file_read(), filewrite(), file_scan(), fileseek(),
file_free()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 31

http://docpp.sourceforge.net

27 file_free

27

void file_free (autofile* af)

Close autofile and free all buffers.

Close autofile and free all buffers. Deallocates all structure members and the aut-
ofile after an fclose().

See Also: autofile, file_new(), fclose()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 32

http://docpp.sourceforge.net

28 file_initbuf

28

sizet file_initbuf (autofile* af, sizet s)

Allocate a buffer of the given size.

Allocate a buffer of the given size.

Parameters: af Autofile to create the buffer in. Only one
buffer is allowed.

s Number of bytes. Most programs can get
away with a few kiloytes.Bigger buffers
tend to get written from an operating sys-
tem’s cache quicker,but it’s still no guar-
antee. Larger buffers mean more efficient
readoperations, though.

See Also: autofile, file_new(), fileread(), filewrite()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 33

http://docpp.sourceforge.net

29 file_load

29

sizet file_load (autofile* af)

Load an entire file into memory.

Load an entire file into memory. Typically used on textfiles. If there is a readhook,
it will be called on the entire file before returning. An extra byte will be allocated to
ensure NULL termination.

See Also: autofile, file_new(), fileinitbuf(), file_read(), filefree()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 34

http://docpp.sourceforge.net

30 file_seek

30

sizet file_seek(autofile* af, sizet pos)

Seek-wrapper for SEEKET functionality.

Seek-wrapper for SEEISET functionality. Seek to a specified position from the
beginning of the file. The pos member of struct autofile is updated.

Return Value: Current position.
Parameters: af The autofile to seek in.
pos Exact position in file to go to. All reads will
continue from there.
See Also: autofile, file_new()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 35

http://docpp.sourceforge.net

31 file_scan

31

sizet file_scan(autofile* af, sizet skip)

Seek-wrapper for SEEKUR functionality.

Seek-wrapper for SEEKUR functionality. Seek from the current position to skip
bytes later in the file. The pos member of struct autofile is updated.

Return Value: Current position.
Parameters: af The autofile to seek in.
skip Skip this many bytes towards the end of the
file from current position.
See Also: autofile, file_new()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 36

http://docpp.sourceforge.net

32 file_read

32

sizet file_read (autofile* af, sizet s)

Read a number of bytes into the buffer from an autofile.

Read a number of bytes into the buffer from an autofile. If the read operation works
fine, the read hook will be called, if one exists. It will not read more than adfsize
per read.

Return Value: Number oOf bytes actually read. This is also passed
to the hook.
Parameters: af An autofile structure. The file will be

opened if not already open.
s Number of bytes to read.
See Also: autofile, file_new(), filereadhook()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 37

http://docpp.sourceforge.net

33 file_write

33

sizet file_write (autofile* af, sizet s)

Write from an autofile’s buffer.

Write from an autofile’s buffer. Write s bytes to file from the autofile’s buffer, or
the size of the buffer if smaller. That means it's safe to call with really large values,
kids.

Return Value: Number of bytes actually written. Your hook may
have gotten the passed-in number,which
may differ in disk-full conditions.

Parameters: af An autofile structure. The file will be

opened if not already open.
s Number of bytes to write.
See Also: autofile, file_new(), filewritehook()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 38

http://docpp.sourceforge.net

34 file_readhook

34

void file_readhook (autofile* af, void (*readhook)(char* buf,

sizet len))

Set an autofile’s read hook pointer.

Set an autofile’s read hook pointer.

Parameters: af An autofile.

readhook Your hook, or NULL to clear.
See Also: autofile, file_new(), fileread()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 39

http://docpp.sourceforge.net

35 file_writehook

35

void file_writehook (autofile* af, void (*writehook)(char* buf,

sizet len))

Set an autofile’s write hook pointer.

Set an autofile’s write hook pointer.

Parameters: af An autofile.

writehook Your hook, or NULL to clear.
See Also: autofile, file_new(), filewrite()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 40

http://docpp.sourceforge.net

36 iff_close

36

void iff _close(IFFHandle* handle)

Closes an IFF.

Closes an IFF. If it was opened with iffew(), the final filesize is written to its
header.

See Also: iff_open(), iff_new()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 41

http://docpp.sourceforge.net

37 iff_correctchunk

37

void iff _correctchunk (IFFHandle* handle, IFFChunk* chunk)

Correct and pad odd-sized IFF chunks.

Correct and pad odd-sized IFF chunks. Used internally when a chunk is ended, or
a new chunk is started.

See Also: iff_newchunk (), iff_endchunk()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 42

http://docpp.sourceforge.net

38 iff_endchunk

38
void iff _endchunk (IFFHandle* handle)

Finishes writing a chunk.

Finishes writing a chunk. This should be called when you are done with your
iff _writechunkdata() calls. If the resulting chunksize is odd, an extra null-byte will be
added at the end of the chunk, and the header will have its size set to the new value.

See Also: iff new(), iff _writechunkdata()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 43

http://docpp.sourceforge.net

39 iff_new

39

IFFHandle*iff _new (char* name, ulong type)

Creates a new IFF.

Creates a new IFF. Any existing file with the same name will be deleted. Note
that header information is written in big-endian format. It's recommended to convert
all numeric data to big-endian before saving if the data will be available on several
different platforms. Intel x86 is little-endian, and PPC is big-endian.

Parameters: name Name of file to create.
type IFF type.
See Also: iff_newchunk (), iff _writechunk(), iffendchunk(),
iff _close(), ift goodtype(), IFFHandle, SwapBE32()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 44

http://docpp.sourceforge.net

40 iff_newchunk

40

int iff _.newchunk (IFFHandle* handle, ulong id)

Start on a new chunk in an IFF.

Start on a new chunk in an IFF. You should finish writing any other chunks first
with iff__endchunk() before calling this. The supplied chunk identifier will be written in
big-endian format.

See Also: iff new(), iff _writechunkdata()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 45

http://docpp.sourceforge.net

41 iff_writechunkdata

41

sizet iff writechunkdata (IFFHandle* handle, char* buffer,

sizet size)

Write data to an IFF where you have just started a chunk.

Write data to an IFF where you have just started a chunk. Before you can write
arbitrary data to an IFF, you must create a chunk witméfvchunk(). You may repeat
this call any number of times if not all data is available on the first call.

See Also: iff new(), iff_newchunk()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 46

http://docpp.sourceforge.net

42 listadd

42

void list_add (List* list, Node* item)

Add a Node to a List.

Add a Node to a List. The Node structure passed in is either just a node with space
for pointers to previous and next node, and some data, or it can be the head of a larger
structure. It will be inserted at the bottom of the List, as elementilisi.

Each time an item is added to a List, its size element is increased by one. This can
be used to instantly tell how many items are in the list.

Parameters: list Astruct List to add item to
item A Node structure to add to list
See Also: List, Node, listnew(), listnewitem(),
list.insert(), listremove(), listdelete(), listfree(),
list_nodemakecircular()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 47

http://docpp.sourceforge.net

43 listaddhead

43

void list_addhead(List* list, Node* item)

Add a Node to the top of a List.

Add a Node to the top of a List. The Node structure passed in is either just a node
with space for pointers to previous and next node, and some data, or it can be the head
of a larger structure. It will be inserted at the top of the List, as elementlistad.

Each time an item is added to a List, its size element is increased by one. This can
be used to instantly tell how many items are in the list.

Parameters: list A struct List to add item to.

item A Node structure to add to list.

See Also: List, Node, listnew(), listnewitem(),
list.insert(), listremove(), listdelete(), listfree(),
list_nodemakecircular()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 48

http://docpp.sourceforge.net

44

listdelete

44

Node*list_delete(List* list, Node* item)

Remove a Node from a List and free data.

Remove a Node from a List and free data. If the List has been supplied with a

destructor function, this

will be called with item as its parameter. Otherwise, a simple

call to free() will be made.

Return Value:

Parameters:

See Also:

Author:

A pointer to the next Node after item, or
NULL.
list Astruct List to remove item from, and also
get a pointer to the destructor

item A Node structure to remove from list
List, Node, listnew(), listnewitem(), listadd(),
list_-remove(), listfree()
Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 49

45 list free

45

void list_free (List* list)

Free a List and all its attached Node structures.

Free a List and all its attached Node structures. Sincalétdte() does the actual
freeing of each Node, destructors will be called if available.

Parameters: list A struct List to remove all items from
See Also: List, Node, listremove(), listdelete()
Author: Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net September 30' 2002 50

46 listgetnode

46

Node* list_getnode(List* list, int index)

Return a Node at a specific index position.

Return a Node at a specific index position. This will simply traverse the List until
either a Node is found at position index, or there are no more items in the List.

Return Value: A pointer to a Node, or NULL if the index
was too high
Parameters: list Astruct List to get a Node from
index Node number to get a pointer to
See Also: List, Node, listnew(), listnewitem(), listadd(),
list_insert()
Author: Shane O’Neill

This page was generated with the help of DOC++

September 30, 2002 51

http://docpp.sourceforge.net

47 listinsert

47

void list_insert (List* list, Node* prev, Node* item)

Insert one Node after another given Node.

Insert one Node after another given Node. The Nitelawill be inserted after the
Node prev inlist. It will not fail, unless you pass NULL pointers. The sizelist will
also be incremented.

Parameters: list A struct List to insert Node item
prev Insert item after this
item The Node to be inserted into list

See Also: List, Node, listnew(), listnewitem(), listadd(),
list_-remove(), listdelete()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 52

http://docpp.sourceforge.net

48 list makecircular

48

void list_makecircular (List* list)

Make a List circular (first and last Node points to eachother).

Make a List circular (first and last Node points to eachother). A circular list is used
mostly for efficient looping of animations (which means only a typical, lazy program-
mer could have thought of it).

Parameters: node A Node used as reference point
See Also: List, Node, listnodemakecircular()
Author: Shane O’Neill, Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 53

http://docpp.sourceforge.net

49 list new

49

List* list_new (void (*destructor)())

Create a new List and set the destructor.

Create a new List and set the destructor. If no destructor is specified, a simple free()
will be called on items in lisdelete().

Return Value: 1f allis well, a pointer to a List
Parameters: destructor A function used to delete each Node. The
only parameter is a Node pointer.
See Also: List, Node, listnewitem(), listadd(), listremove(),
list_delete(), listfree()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 54

http://docpp.sourceforge.net

50 list newitem

50

Node* list_newitem (List* list, void* data)

Allocates a new Node structure.

Allocates a new Node structure. The node will be initialised with data and inserted
into list. If list is NULL, it merely creates the new Node and returns a pointer to it.

Return Value: A pointer to a Node, with all three fields ini-
tialised
Parameters: list An optional struct List to insert Node item
into

data Data for the data element in the created
node. Optional.

See Also: List, Node, listnew(), listadd(), listremove(),
list_delete()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 55

http://docpp.sourceforge.net

51 listremove

51

Node*list_remove (List* list, Node* item)

Remove a Node from a List without freeing any data.

Remove a Node from a List without freeing any data.

Return Value: A pointer to the next Node after item, or
NULL.
Parameters: list A struct List to remove item from
item A Node structure to remove from list
See Also: List, Node, listnew(), listnewitem(), listadd(),
list_delete(), listfree()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 56

http://docpp.sourceforge.net

52 MD5Init

52

void MD5Init (struct MD5Context* ctx)

Start MD5 accumulation.

Start MD5 accumulation. Set bit count to 0 and buffer to mysterious initialization
constants.

To sum a stream of data, you start by calling MD5Init() on the context buffer. Then
you pass MD5Update() with context and buffer as your parameters until there is no
more data to checksum. Get the final key with a call to MD5Final().

Parameters: ctx The context that all MD5 routines rely on.
See Also: MD5Sum (), MD5Update(), MD5Final(), MD5Ascii()
Author: Ron Rivest (algorithm), Colin Plumb (code)

This page was generated with the help of DOC++

http://docpp.sourceforge.net September 30' 2002 57

53 MD5Update

53

void MD5Update (struct MD5Context* ctx, unsigned char

const* buf, unsigned len)

Update context to reflect the concatenation of another buffer full of bytes.

Update context to reflect the concatenation of another buffer full of bytes. Finalise
with MD5Final after last part of stream to sum.

Parameters: ctx The context, initialised once by MD5Init()
buf A buffer of whatever data you want to sum.
len Size of the buffer.

See Also: MD5Sum (), MD5Init(), MD5Final(), MD5Ascii()

Author: Ron Rivest (algorithm), Colin Plumb (code)

This page was generated with the help of DOC++

September 30, 2002 58

http://docpp.sourceforge.net

54 MD5Final

54

void MD5Final (unsigned char digest[16], struct MD5Context]

ctx)

Final wrapup.

Final wrapup. Pads to a 64-byte boundary with the bit pattern 1 0* (64-bit count of
bits processed, MSB-first).

Parameters: digest The actual buffer to hold the final key.
ctx The temporary MD5 context to create key
from.
See Also: MD5Sum (), MD5Init(), MD5Update(), MD5Ascii()
Author: Ron Rivest (algorithm), Colin Plumb (code)

This page was generated with the help of DOC++ September 30' 2002 59

http://docpp.sourceforge.net

55 MD5Sum

55

void MD5Sum (unsigned char* key, unsigned char* buf, un

signed len)

MD5-checksum a buffer.

MD5-checksum a buffer. If you are not checksumming something piece by piece,
this function will do the whole calculation for you. If you need to read in one piece
of a stream to sum at a time, you must MD5Init() first, then MD5Update() with each
chunk and run MD5Final() when all has been read. Otherwise, MD5Sum() is the tool.

Parameters: key A 16-byte buffer with the MD5 key.

buf A buffer to sum, adding to the MD5 key.

len Size of the buffer.
See Also: MD5Init (), MD5Update(), MD5Final(), MD5AscIi()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 60

http://docpp.sourceforge.net

56 MD5ASciIi

56

void MD5Ascii (unsigned char* key, unsigned char* ascii)

Make a printable version of the MD5 sum.

Make a printable version of the MD5 sum. This converts a non-printable 16-byte
(128-hit) key to ASCII.

Parameters: key 16-byte buffer with the key after
MD5lInit(), MD5Update() and MD5Final()
are done.

ascii A buffer of 32 bytes and a NULL termina-
tor, preferably, to hold the printable key.

See Also: MD5Sum (), MD5Init(), MD5Update(), MD5Final()

Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 61

http://docpp.sourceforge.net

57 nodeend

57

Node* node end (Node* node)

Return the last Node in a circular List.

Return the last Node in a circular List. This function will actually return the last
Node in a List, whether it’s circular or not.

Parameters: node A Node used as reference point

See Also: List, Node, listadd(), listremove(), listdelete(),
list_.nodemakecircular(), lishodestart()

Author: Shane O’'Neill

This page was generated with the help of DOC++ September 30' 2002 62

http://docpp.sourceforge.net

58 nodefindbycontents

58

Node* node findbycontents (Node* node, char* nodename)

Return a Node with datpartially containing the entire specified string.

Return a Node with datpartially containing the entire specified string. This func-
tion is useful to find nodes that contain more than just the data you are looking for.
Safe to call on a circular chain of nodes.

Parameters: node A Node to start searching at.

nodename String that must exist in node-data.
See Also: List, Node, preferences, variable, statuscleaner.c
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 63

http://docpp.sourceforge.net

59 nodefindbyname

59

Node* node findbyname (Node* node, char* nodename)

Return a Node with data containing the specified string.

Return a Node with data containing the specified string. This function is useful to
find parts of preferences structures. Safe to call on a circular chain of nodes. NOTE:
The search starts at the given node.

Parameters: node A Node to start searching at.
nodename Name of node you are looking for.

See Also: List, Node, preferences, variable

Author: Ronny Bangsund, Shane O’Neill

This page was generated with the help of DOC++

September 30, 2002 64

http://docpp.sourceforge.net

60 nodemakecircular

60

int node_makecircular (Node* node)

Make a chain of nodes circular (first and last Node points to eachother).

Make a chain of nodes circular (first and last Node points to eachother). A circular
list is used mostly for efficient looping of animations (which means only a typical, lazy
programmer could have thought of it). This function does not necessarily require a List
structure.

Do NOT call on a Node in an already circular chain. That’s a waste of time ;)

Parameters: node A Node used as reference point.

See Also: List, Node, listadd(), listremove(), listdelete(),
list_nodeend(), lishodestart()

Author: Shane O’Neill

This page was generated with the help of DOC++ September 30' 2002 65

http://docpp.sourceforge.net

61 nodestart

61

Node* node start (Node* node)

Return the first Node in a circular List.

Return the first Node in a circular List. This function will actually return the first
Node in a List, whether it’s circular or not.

Parameters: node A Node used as reference point

See Also: List, Node, listadd(), listremove(), listdelete(),
list_.nodemakecircular(), lishodeend()

Author: Shane O’'Neill

This page was generated with the help of DOC++ September 30' 2002 66

http://docpp.sourceforge.net

62 strfind

62

char*strfind (char* haystack, char* needle, int sense)

Looks for a string within another string.

Looks for a string within another string. This is both a case-insensitive version of,
and a wrapper around, strstr(). If sense is non-zero, strstr() will be called. If zero, an
insensitive search will be used.

Return Value: A pointer to the position in haystack where
needle was found, or NULL
Parameters: haystack A string to look inside
needle The string to look for in haystack
sense Case-sensitivity (TRUE or FALSE)
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 67

http://docpp.sourceforge.net

63 strisnum

63

int strisnum (char* text)

Check if a string is all numbers and whitespace.

Check if a string is all numbers and whitespace. Any regular alphabetic symbols or
punctuation encountered invalidate the string as a numeric string. This can be used to
check a multiple-value string. The string must be NULL-terminated, or the call never
ends.

Return Value: TRUE if the string only contains whitespace and
numbers.

Parameters: text A string to check.

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 68

http://docpp.sourceforge.net

64 strlower

64

char* strlower (char* text)

Turn a string into all-lowercase characters.

Turn a string into all-lowercase characters. Uses tolower(), so locale will be han-
dled if supported by the local C library.

Return Value: A pointer to the string passed in
Parameters: text A string to change the case of
See Also: strupper (), tolower()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 69

http://docpp.sourceforge.net

65 strtokenise

65

strtoken*str_tokenise(char* s, char* delim)

Create a tokeniser object from a string.

Create a tokeniser object from a string. The supplied string is copied, and this copy
is modified with NULL bytes in place of its delimiters. This function does a better
job than strtok() and strtak(). Thread-safe, as long as the passed string doesn't get
deallocated before the strdup() in the beginning finishes.

See Also: str_freetoken(), strtoken, strtok(), strtak()
Author: Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net September 30' 2002 70

66 strfreetoken

66

void str_freetoken (strtoken* t)

Free a tokeniser object.

Free a tokeniser object.

Parameters: strtoken A strtoken structure created by
str_tokenise().

See Also: str_tokenise (), strtoken

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 71

http://docpp.sourceforge.net

67 strupper

67

char* strupper (char* text)

Turn a string into all-uppercase characters.

Turn a string into all-uppercase characters. Uses toupper(), so locale will be han-
dled if supported by the local C library.

Return Value: A pointer to the string passed in
Parameters: text A string to change the case of
See Also: strlower (), toupper()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 72

http://docpp.sourceforge.net

68 tagalloclist

68

tagitem*tag_alloclist (ulong numtags)

Allocate a tag array big enough for numtags items.

Allocate a tag array big enough for numtags items. This function is dusty, and may
disappear soon.

Parameters: numtags The number of tags to hold.
See Also: tag_finditem(), tagfreelist(), taggetdata(), tagnext()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 73

http://docpp.sourceforge.net

69 tagfinditem

69

tagitem*tag_finditem (ulong tag, tagitem** taglist)

Look for a tag identifier in a taglist, and return a pointer to the tagitem.

Look for a tag identifier in a taglist, and return a pointer to the tagitem.

Return Value: A pointer to a tagitem entry matching the tag
parameter, or NULL.
Parameters: tag A tag id (program/library specific)
taglist A pointerto a tagarray’s address
See Also: tag_alloclist (), tagfreelist(), taggetdata(), tagext()
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30' 2002 74

http://docpp.sourceforge.net

70 tagfreelist

70

void tag_freelist (tagitem** taglist)

Free a tagarray previously created with tagloclist().

Free a tagarray previously created with_&fpclist(). This function is just as dusty
as tagalloclist().

Parameters: taglist A pointerto a tagarray’s address
See Also: tag_alloclist (), tagfinditem(), taggetdata(), taghext()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 75

http://docpp.sourceforge.net

71 taggetdata

71

ulongtag getdata(ulong tag, ulong defaultval, tagitem**
taglist)

Find a tagitem’s data by tag ID.

Find a tagitem’s data by tag ID.

Return Value: Data in the tagitem structure, or defaultval if not

found.

Parameters: tag The program-specific identifier to look for
defaultval Value toreturn if a tag is not found
taglist A pointer to a tagarray’s address

See Also: tag_alloclist (), tagfreelist(), tagfinditem(), tagnext()

Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 76

http://docpp.sourceforge.net

72 tagnext

72

tagitem*tag_next (tagitem** taglist)

Get next tagitem in the array.

Get next tagitem in the array. Use this function to smooth over any uses of
TAG_SKIP, TAGIGNORE and TAGMORE.

Return Value: A pointer to the next tagitem in the array, or
NULL (=TAG _END).
Parameters: taglist A pointer to a tagarray’s address
See Also: tag_alloclist (), tagfreelist(), tagfinditem(),
tag getdata(), taqext()
Author: Ronny Bangsund

This page was generated with the help of DOC++

http://docpp.sourceforge.net September 30' 2002 77

73

autofile

73

typedef structautofile

Names
73.1

73.2
73.3
73.4

73.5
73.6

73.7
73.8
73.9

73.10

Autofile structure. Use filsew() to create a structure with a flename. The other

int

sizet
sizet

sizet

char*
char*

sizet
FILE*
void

void

Autofile structure.

w Boolean indicating the file is open for
WItING. ..o 78
size Sizeoffile., 79
pos Current position in an open file... 79
read Number of bytes read in last read op-
eration. ... 79
name Name offile. 80
buf A buffer used in filgead() and
file_write() operations. 80
bufsize Size of bufelement............... 80
f The actual FILE pointer. 81
(*readhook) (char* buf, sizet len)
Hook called when reading.. 81

(*writehook) (char* buf, sizet len)
Hook called when writing.. 81

file_* operations can be used to read, write and seek in the file.

See Also: filenew(), file_free(), filegetsize(), fileinitbuf(),
file_load(), fileseek(), filescan(), fileread(), filewrite(),
file_readhook(), filewritehook()

Author: Ronny Bangsund

73.1
intw

Boolean indicating the file is open for writing.

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 78

73 autofile

Boolean indicating the file is open for writing. It will be created if it doesn’t exist.

73.2

sizet size

Size of file.

Size of file. Writing operations will add the number of bytes written from each call.

73.3

sizet pos

Current position in an open file.

Current position in an open file. This usually equals size with a file being written
to.

73.4

sizet read

Number of bytes read in last read operation.

Number of bytes read in last read operation. The pos element will point to the point
after last byte read. Start point of the last read chunk of data is pos - read.

This page was generated with the help of DOC++

September 30, 2002 79

http://docpp.sourceforge.net

73 autofile

73.5

char* name

Name of file.

Name of file. No special checking is made on this name to ensure it is valid for the
OS to create.

73.6

char* buf

A buffer used in fileead() and filewrite() operations.

A buffer used in fileread() and filewrite() operations. You must create this buffer
with file_initbuf(). The buffersize shouldn’t need to be larger than the size of afile. You
may not always know how large a file being written will be, so a smaller buffer of a
few kilobytes is advisable.

73.7

sizet bufsize

Size of buf element.

Size of buf element. fileead() will not read more than this much per call. The
previous buffer contents are of course lost. No special care is made to clear the contents
before reading, so do not expect everything to be nicely NULL-terminated.

This page was generated with the help of DOC++

September 30, 2002 80

http://docpp.sourceforge.net

73 autofile

73.8
FILE* f

The actual FILE pointer.

The actual FILE pointer. For internal use.

73.9

void (*readhook) (char* buf, sizet len)

Hook called when reading.

Hook called when reading. This is called right after reading in all data and ensuring
anything was read. See md5.c in the base Xiqual directory for an example of simple
usage of a hook.

73.10

void (*writehook) (char* buf, sizet len)

Hook called when writing.

Hook called when writing. Before actually writing, this is called. Note that
file_write() may not always be able to write the entire requested buffer (if disk is full,
permissions are wrong etc.), so you should compare the return value with the requested
size.

This page was generated with the help of DOC++

September 30, 2002 81

http://docpp.sourceforge.net

74 Xi_textwidth

74

#definexi_textwidth (font, text)

Calculate how many pixels wide a string printed with a fixed-width xifont will be.

Calculate how many pixels wide a string printed with a fixed-width xifont will be.
This is merely a wrapper for a multiplication of the length of the text and the fornt
width. Use SDLLtf for nice variable width fonts.

Return Value: An integer indicating how many pixels wide
the text will be on screen.
Parameters: font A fontin Xiqual's own, peculiar format.
text A string you want to find space for.
See Also: xifont, Xi_loadfont(), xifreefont(), xiputtext()

This page was generated with the help of DOC++

September 30, 2002 82

http://docpp.sourceforge.net

75 MAKE_ID

75

#defineMAKE _ID (a,b,c,d)

Quick macro to make a ulong of four characters.

Quick macro to make a ulong of four characters. This only creates them in internal
order. You still need to convert to big-endian format before writing it to an IFF.

The first character is the leftmost in a string; little-endian machines will store this
backwards, saSwapBE32() will be required.

First character.
Second character.
Third character.
Fourth character.

Parameters:

0 Q0 O w

This page was generated with the help of DOC++ September 30' 2002 83

http://docpp.sourceforge.net

76 IFFHandle

76

typedef structlFFHandle

Handle returned by ifhew() and iffopen() calls.

Names
76.1 FILE* i 84
76.2 ulong type FORMtype. ...t 84
76.3 ulong id Identifier, somewhat less strict... 85
76.4 ulong chunksize Size of currentchunk............. 85
76.5 ulong prevchunksize Makes the reader able to scan back-
wards. ... 85
76.6 ulong size SizeofthelFF................... 86
76.7 ulong pos Positioninfile. 86
76.8 List chunks Linked list of chunk context nodes. 86
76.9 char write Are we in write mode?........... 86

Handle returned by ifhew() and iffopen() calls. All reading/writing functions
need this to see where they are, and to store temporary nodes while building an IFF.

See Also: iff new(), iff_open()
Author: Ronny Bangsund
76.1
FILE* iff
76.2
ulongtype

FORM type.

This page was generated with the help of DOC++

September 30, 2002 84

http://docpp.sourceforge.net

76 IFFHandle

FORM type. See the IFF85 text for a thorough introduction.

76.3

ulongid

Identifier, somewhat less strict.

Identifier, somewhat less strict. Used by the reading functions. Soon to be replaced.

76.4

ulongchunksize

Size of current chunk.

Size of current chunk. Used by the reading functions. Soon to be replaced.

76.5

ulongprevchunksize

Makes the reader able to scan backwards.

Makes the reader able to scan backwards. Used by the reading functions. Soon to
be replaced.

This page was generated with the help of DOC++

September 30, 2002 85

http://docpp.sourceforge.net

76 IFFHandle

76.6

ulongsize

Size of the IFF

Size of the IFF

76.7

ulongpos

Position in file.

Position in file. Usually the result of an ftell().

76.8

List chunks

Linked list of chunk context nodes.

Linked list of chunk context nodes. Not used by the reader functions yet. The
API is more or less locked down, but behind the scenes, there is some inconsistency
between reading and writing of IFF. Fixing it soon.

76.9

charwrite

Are we in write mode?

Are we in write mode? iffclose() checks this to see if the final filesize needs to be
corrected, and if chunks are to be finalised.

This page was generated with the help of DOC++

September 30, 2002 86

http://docpp.sourceforge.net

77 Node

77

typedef structNode

A simple Node.

A simple Node. Every programmer probably knows about lists and nodes, so |
won't elaborate.

Xiqual List functions make no assumptions about the contents and size of a Node
structure passed to them. If you have larger structures with data to be freed, the de-
structor callback is useful.

Author: Ronny Bangsund

77.1

struct Nodenext

Next node in List.

Next node in List. It can be any structure starting with a Node structure, as Xiqual
does not assume anything about data beyond the Node header.

77.2

struct Nodefprev

Previous Node in List.

Previous Node in List. It can be any structure starting with a Node structure, as
Xiqual does not assume anything about data beyond the Node header.

This page was generated with the help of DOC++

September 30, 2002 87

http://docpp.sourceforge.net

77 Node

77.3

void* data

Node-specific data.

Node-specific data. Xiqual routines use this pointer as a string pointer to a name,
or a pointer to sound/graphics data.

This page was generated with the help of DOC++

September 30, 2002 88

http://docpp.sourceforge.net

78 List
78
typedef structList
Linked list structure.
Names
78.1 Node* head First NodeinList 89
78.2 Node* tail Last NodeinList................ 90
78.3 ulong size Number of itemsin List........... 90
78.4 void (*destructor) (void*)

A destructor callback for items (op-
tional) 90

Linked list structure. The first Node will not have a previous Node pointer, and
the last will have no next Node pointer. Use the_lisakecircular() function to make it

loop.
See Also: Node, list_new(), listadd(), listinsert()
Author: Ronny Bangsund
78.1
Node* head

First Node in List

First Node in List

78.2

Node*tail

Last Node in List

This page was generated with the help of DOC++ September 30' 2002 89

http://docpp.sourceforge.net

78 List

Last Node in List

78.3

ulongsize

Number of items in List

Number of items in List

78.4

void (*destructor) (void*)

A destructor callback for items (optional)

A destructor callback for items (optional)

This page was generated with the help of DOC++

September 30, 2002 90

http://docpp.sourceforge.net

79 list nodemakecircular

79

#definelist_nodemakecircular (n)

Wrapper for nodemakecircular().

Wrapper for nodemakecircular().

This page was generated with the help of DOC++

September 30, 2002

http://docpp.sourceforge.net

91

80

list nodestart

80

#definelist_nodestart (n)

Wrapper for nodestart().

Wrapper for nodsstart().

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002

92

81

list nodeend

81

#definelist_nodeend(n)

Wrapper for node=nd().

Wrapper for nodeend().

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002

93

82 MD5Context

82

struct MD5Context

MD5 context for the Rivest/Plumb MD5 checksumming routines.

MD5 context for the Rivest/Plumb MD5 checksumming routines.

Author: Ron Rivest (algorithm), Colin Plumb (code)

This page was generated with the help of DOC++

September 30, 2002 94

http://docpp.sourceforge.net

83 preferences

83

typedef structpreferences

A preferences section.

Names

83.1 char* name Name of section................. 95
83.2 char* dir Directory we prefer to save thisin 95
83.3 List variables A chain of variables.............. 96
83.4 char stringonly Boolean - true if we don’t want to

convert numbers to integers...... 96

A preferences section. Each preferences file may consist of several sections like
this.

See Also: cfg_loadprefs (), cfg_newsection(), cfgrewvar(),
cfg_addvar(), variable
Author: Ronny Bangsund
83.1
char*name

Name of section

Name of section

83.2

char*dir

Directory we prefer to save this in

Directory we prefer to save this in

This page was generated with the help of DOC++

September 30, 2002 95

http://docpp.sourceforge.net

83 preferences

83.3

List variables

A chain of variables

A chain of variables

83.4

charstringonly

Boolean - true if we don’t want to convert numbers to integers.

Boolean - true if we don’t want to convert numbers to integers. When true, the func-
tion that scans each line will just blindly copy the variable data to the string element.
The type will be set to PREESTRING.

This page was generated with the help of DOC++

September 30, 2002 96

http://docpp.sourceforge.net

84 variable

84

typedef structvariable

A variable.
Names
84.1 struct variable
*next Next variable inList 97
84.2 struct variable
*prev Previous variable in List.......... 98
84.3 char* name The mandatory name of the variable.
................................. 98
84.4 ulong type Type of variable, as listed in prefsh 98
845 char* string A string, if type iPREFS.STRING
................................. 98
84.6 int value An integer (signed) if type
is PREFS.VALUE or
PREFSBOOLEAN. 99

A variable. This extended node contains the type of variable, currently one of
PREFS.STRING, PREFSVALUE andPREFSBOOL and the related data.

See Also: preferences, cfg_newvar()
Author: Ronny Bangsund

84.1

struct variablernext

Next variable in List

Next variable in List

This page was generated with the help of DOC++

September 30, 2002 97

http://docpp.sourceforge.net

84 variable

84.2

struct variablesprev

Previous variable in List

Previous variable in List

84.3

char* name

The mandatory name of the variable.

The mandatory name of the variable. c¢fdunctions will search by this only.
Anything recognised by isalpha() is legal as a variable name. Locale settings may
affect what is considered an alphabetical character.

84.4

ulongtype

Type of variable, as listed in prefsh

Type of variable, as listed in prefsh

84.5

char*string

A string, if type IPREFS.STRING

A string, if type iSPREFS.STRING

This page was generated with the help of DOC++

September 30, 2002 98

http://docpp.sourceforge.net

84 variable

84.6

int value

An integer (signed) if type BREFS VALUE or PREFS BOOLEAN.

An integer (signed) if type i®PREFS VALUE or PREFS BOOLEAN. If a lone
word without an equals sign is encountered in a configuration file, it is turned into a
boolean variable.

This page was generated with the help of DOC++

September 30, 2002 99

http://docpp.sourceforge.net

85 xiview

85

typedef structxiview

This is a view, for use as sprites, message boxes, or anything else that might need to
store the rectangle it is blitted over.

Names
85.1 struct Xiview
*next Next view, ifusedinalist....... 101
85.2 struct xiview
*prev Previous view, ifusedinalist... 101
85.3 char* name Optional name for this view. 101
85.4 SDLSurface*
store Rectangle we blitted this view over
(available by default)............. 101
85.5 SDLSurface*
image The image to blit onto screen. 102
85.6 SDLSurface*
screen This is the SDLSurface that this view
istiedto. ..., 102
85.7 ulong flags Various xiview flags, as documented
inviewnew() 102
85.8 Uint32 bgcol This will be used as fill colour if

XIV_FILLBACK is defined in flags,
or a colourkey unless XIWOKEY is

defined.......................... 102
859 int w Width of areato blitonto......... 103
85.10 int h Height of area to blitonto 103
85.11 int X X positioninscreen.............. 103
85.12 int y Y positioninscreen.............. 103
85.13 char hidden TRUE if hidden by vievhide() 104

This is a view, for use as sprites, message boxes, or anything else that might need
to store the rectangle it is blitted over.

See Also: view_new (), view_show(), viewhide()
Author: Ronny Bangsund

This page was generated with the help of DOC++

September 30, 2002 100

http://docpp.sourceforge.net

85 xiview

85.1

struct xiview*next

Next view, if used in a List

Next view, if used in a List

85.2

struct xiview*prev

Previous view, if used in a List

Previous view, if used in a List

85.3

char* name

Optional name for this view

Optional name for this view

85.4

SDL_Surface*store

Rectangle we blitted this view over (available by default)

Rectangle we blitted this view over (available by default)

This page was generated with the help of DOC++

September 30, 2002 101

http://docpp.sourceforge.net

85 xiview

85.5

SDL_Surface*image

The image to blit onto screen

The image to blit onto screen

85.6

SDL_Surface*screen

This is the SDLSurface that this view is tied to.

This is the SDLSurface that this view is tied to. Note that there is nothing stopping
you from using any old surface to blit onto.

85.7

ulongflags

Various xiview flags, as documented in vieew()

Various xiview flags, as documented in vigvew()

85.8

Uint32 bgcol

This will be used as fill colour if XIFILLBACK is defined in flags, or a colourkey
unless XIVNOKEY is defined

This will be used as fill colour if XIVFILLBACK is defined in flags, or a colourkey
unless XIV.NOKEY is defined

This page was generated with the help of DOC++

September 30, 2002 102

http://docpp.sourceforge.net

85

xiview

85.9

intw

Width of area to blit onto

85.10

Width of area to blit onto

inth

Height of area to blit onto

85.11

Height of area to blit onto

int X

X position in screen

85.12

X position in screen

inty

Y position in screen

Y position in screen

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002

103

85 xiview

85.13

charhidden

TRUE if hidden by vievhide()

TRUE if hidden by viewhide()

This page was generated with the help of DOC++

September 30, 2002 104

http://docpp.sourceforge.net

86 Xiqual questions and answers.

86

Xigual questions and answers.

<h1>Xiqual</h1>

1. What is it%/li> A collection of libraries that help me writing SDL programs,
and also do many other things.

2. What's in it/li> Several sub-libraries:

(@)

(b)

(©)

(d)

xitools This is the core library. All the other sub-libraries require this
to some extent, particularly for linked lists and all the related manipulation,
but sometimes also for file-handling.

If you need to read some configuration files, the_tfiginctions will do
most of what you need. Hooks are supported to do your own processing of
each variable, although this bit needs some more documentation.

The iff_* functions help you create EA-IFF85 style files. It's a simple stan-
dard for binary data, with some requirements that make them useful for
portable data. The basic FORM types can be used for pretty much any
purpose. You may know these filetypes from the Amiga platform.

Taglists also have some utility functions. If you want to avoid changing
the interface every time you feel a new option should be supported, this
is the way to do it. Using varargs, you can make your APl permanent,
only adding more tags for new features. Highly recommended for plugin
interfaces and dynamic libraries. If only the Gtk+ developers used tags..
MD5 calculation has been grabbed off the 'net, with one additional function
by me to create a printable string. Probably the most portable function in
the entire library :/

The string tokeniser in Linux’ C library, strtok(), is pretty daft. Even the
more recent strtak() isn't very good, as it’s not very portable. They both
have many bugs, so | had to write a new one. Usgaltenise() to create a

list of tokens more portably. Unlike strtok(), it should be thread-safe.

xigfx You'll find the initialisation functions here. xnit(), xi_main()

and xiquit() are the important calls. Utility functions for graphics are here,
too - views and tilesets are the only really evolved ones included. A map
loader, displayer and scroller is in the works, using tilesets as a foundation.

xicgi | started writing some utility functions for CGI creation, and
couldn’t find a better place to put them. If there are other pervs out there
who like to write everything in C, this could be useful. Cookies are sup-
ported, too.

xinet This sub-library only has a server-toolkit for now. It can create
select-servers (non-threaded servers). Mostly untested; works well locally,
but needs larger scale testing.

This page was generated with the help of DOC++

http://docpp.sourceforge.net

September 30, 2002 105

86 Xiqual questions and answers.

(e) xithings Various functions to handle objects, things, thingamajigs.
You know, players, monsters, inventory objects, magic, whatever. Scripting
support will somehow be integrated into this later.

3. What's needed to use and compile<ith> Development is happening under
Linux, as is fashionable these days. Several of the libraries have compiled nicely
on many common Unix- like platforms, even without GNU cc. Unless there is a
MacOS X port of SDL, that probably won't work, but the other parts worked on
the SourceForge compile farm.

Recommended setup:

Unix-derivative OS with SDL (http://libsdl.org), SDImage, SDLmixer and
SDL._ttf, at least the GNU C compiler and proper headers, plus GDB. DDD is a
nice frontend, and Valgrind has helped me squash many memory bugs. A profiler
would be a nice addition, but you'll be distracted by the lack of optimisation in
Xiqual itself.

4. What about Win322/li> Ah..yes..Windows..| analmostable to compile Xi-
qual with my cross-compiler now, but very far away from getting it to work with
VC++ 5.x. SDL is meant to ease cross-platform development, but I'm afraid
much of my non-SDL code is tied to Unix and POSIX code. Getting a GCC-
derivative to compile Xiqual natively or via cross- compilation is on the list of
things | want. Some of my projects are just too unique to leave anyone out ;)

I've been able to make MingW32 compile Xiqual with only a few warnings, but
linking with test-programs has not been successful. In some cases, | am sure
MingWa32 simply lacks certains POSIX/BSD/SysV functions in its C library, but
other times | suspect my code is the problem. Any help is appreciated, and gives
you a position in the AUTHORS file.

5. Right..and C++2/li> Much better support there. No Xiqual wrapper class has
been written, but it should link. C links with nearly anything. The headers have
definitions to ensure C++ compatibility, thanks to Mr. O’Neill.

6. What's the license2/li> LGPL. See the file of the same name. If you find any
code of use to you, feel free to simply use the sourcefile and related headers. Just
abide by the LICENSE and all is well. If you think I'm doing anything uncool,
let me know.

7. You mentioned SDL..what the heck is thatfl > Simple Directmedia Library.
The name gives some indication what it is..basically, it's a canvas for portable
graphics programming. It supplies the basic functions to create a 2D-display
(and also OpenGL with recent versions) and handle input from keyboard, mouse
and other controllers, timers, sound and threads (on some platforms), plus even
CD-ROM access. All this works in Win32, Linux and MacOS, plus a lot of
Unix-derivatives.

SDL has been used to port many games to Linux, and I'd recommend it for
input handling with OpenGL. For 2D programming, it has blitting functions,
image loading (extended a lot with SOimage) and all sorts of low-level screen
manipulation. But it is merely a canvas; you need to supply the drawing tools.
Read up on Bresenham’s algorithm ;)

Get SDL from http://libsdl.org, and grab SDimage, SDLmixer and SDLttf
while you're at it.

This page was generated with the help of DOC++

September 30, 2002 106

http://docpp.sourceforge.net

86 Xiqual questions and answers.

8. What does the name meaw/fi > It's Ouranian-Barbaric for "manifest”. It's a
verb.

9. How do | pronounce it2/li> How would you like to pronounce it?

<h6> Clumsily written in one of the headers.. Note the funny way DOC++ man-
gles this document x/h6>

Author: Ronny Bangsund, Shane O’Neill

This page was generated with the help of DOC++

September 30, 2002 107

http://docpp.sourceforge.net

87 xiglob

87

typedef structxiglob

Global structure for Xiqual’'s automatic handling of miscellaneous data

Names
87.1 SDLSurface*
screen This is the SDL surface returned by
SDL SetVideoMode()............. 109
87.2 xiview* cursor An xiview for the main cursor. 109
87.3 int hotx Cursor X offset 109
87.4 int hoty CursorYoffset.................. 109
87.5 SDLSurface*
tscreen Default surface for tile blits. 110
87.6 struct xitiledtileset Default tileset to blit from......... 110
87.7 int audio_rate Samplerate...................... 110
87.8 int audio_chan Number of channelstouse....... 110
879 int numchans Maximum number of channels to mix.
................................. 111
87.10 int audio_bufsize Size of audio buffers.............. 111
87.11 Uintl6 audio_fmt Audioformat. 111
87.12 List sounds Soundnodes..................... 111
87.13 List music Musicnodes..................... 112
87.14 List images Imagenodes..................... 112
87.15 List sprites Spritenodes. ... 112
87.16 void (*mainloop) (Uint8* keystate, SDLMod modstate,

Uint8 mousestate, int mx, int my)
User-definable hook, called once
each time ximain() is called. 113

Global structure for Xiqual's automatic handling of miscellaneous data

87.1

SDL _Surface*screen

This is the SDL surface returned by S3ketVideoMode()

This page was generated with the help of DOC++

September 30, 2002 108

http://docpp.sourceforge.net

87 xiglob

This is the SDL surface returned by S[8etVideoMode()

87.2

xiview* cursor

An xiview for the main cursor

An xiview for the main cursor

87.3

int hotx

Cursor X offset

Cursor X offset

87.4

int hoty

Cursor Y offset

Cursor Y offset

This page was generated with the help of DOC++

September 30, 2002 109

http://docpp.sourceforge.net

87 xiglob

87.5

SDL_Surface*tscreen

Default surface for tile blits.

Default surface for tile blits.

See Also: xit_setdefaults (), Xit_.qdraw()

87.6

struct xitiles*tileset

Default tileset to blit from

Default tileset to blit from

87.7

int audio_rate

Sample rate.

Sample rate. Measured in samples per second. Default is 44100 Hz.

87.8

int audio_chan

Number of channels to use.

Number of channels to use. Use 1 for mono and 2 for stereo.

This page was generated with the help of DOC++

September 30, 2002 110

http://docpp.sourceforge.net

87 xiglob

87.9

int numchans

Maximum number of channels to mix.

Maximum number of channels to mix. Default is eight.

87.10

int audio_bufsize

Size of audio buffers.

Size of audio buffers. This doesn’t have to be a particularly large number, but must
be a factor of two. Defaults to 4096 bytes.

87.11

Uintl16 audio_fmt

Audio format.

Audio format. The format definitions are in SDhixer.h.

87.12

List sounds

Sound nodes.

Sound nodes. Contents TBA.

This page was generated with the help of DOC++

September 30, 2002 111

http://docpp.sourceforge.net

87 xiglob

87.13

List music

Music nodes.
Music nodes. Contents TBA.
87.14
Listimages
Image nodes.

Image nodes. Contents TBA.

87.15

List sprites

Sprite nodes.

Sprite nodes. Contents TBA.

87.16

void (*mainloop) (Uint8* keystate, SDLMod modstate, Uint8

mousestate, int mx, int my)

User-definable hook, called once each timandin() is called.

This page was generated with the help of DOC++

September 30, 2002 112

http://docpp.sourceforge.net

87 xiglob

User-definable hook, called once each timendin() is called.

Parameters: keystate A pointer to an array of Uint8. Currently
pressed keys are non-zero.
modstate State of modifier keys
mousestate Flags for current mouse state (buttons).
mx Current X position of mouse cursor within
the main SDL surface
my Current Y position of mouse cursor within
the main SDL surface
See Also: ximain (), SDL.input.h
Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30, 2002 113

http://docpp.sourceforge.net

88 strtoken

88

typedef structstrtoken

The token structure.

Names

88.1 char* S A copy of the original string.. 114
88.2 sizet len The length of the string memory.. 114
88.3 char* d The delimiter string.............. 115
88.4 sizet dlen Length of the delimiter string.... . .. 115
88.5 List tokens The individual tokens or words. .. 115

The token structure.

See Also: strtokenise (), List

88.1

char*s

A copy of the original string.

A copy of the original string. There will be "holes” where the delimiters were, so
use the tokens list to access.

88.2

sizetlen

The length of the string memory.

The length of the string memory. Used internally, but might be useful to users.

This page was generated with the help of DOC++

September 30, 2002 114

http://docpp.sourceforge.net

88 strtoken

88.3

char*d

The delimiter string

The delimiter string

88.4

sizet dlen

Length of the delimiter string.

Length of the delimiter string. Maybe not the most useful element.

88.5

List tokens

The individual tokens or words.

The individual tokens or words. The size element in the list will contain the number
of tokens. Each token is a plain Node structure with its data pointer being a pointer to
a string (the token).

This page was generated with the help of DOC++

September 30, 2002 115

http://docpp.sourceforge.net

89 tagitem

89
typedef structtagitem
A tagitem.
Names
89.1 ulong tag A program/library-specific ID. 116
89.2 ulong data The tagitem’'sdata............... 116

Atagitem. Many Xiqual function calls accept an array of these as its sole parameter.

See Also: tag_alloclist (), tag freelist(), tagfinditem(),
tag getdata(), taqext()
Author: Ronny Bangsund
89.1
ulongtag

A program/library-specific ID.

A program/library-specific ID. Should be fairly unique within the program or
library, and not equal to one of TAGONE, TAG.IGNORE, TAGMORE or

TAG_SKIP.

89.2

ulongdata

The tagitem’s data.

The tagitem’s data. Can be just about anything that fits in a ulong. Common uses
are flags, pointers to further data/strings or simply integers.

This page was generated with the help of DOC++ September 30, 2002 116

http://docpp.sourceforge.net

90 XI_-VARARG

90

#defineXl "VARARG (call, ret)

Macro for vararg taghandling.

Macro for vararg taghandling. This macro is used internally in Xiqual to process
the taglists passed to many of its functions. It may also be of use if anyone else wants
to make use of tags in their functions.

Examples of its use can be found in the Xiqual sources. Basically, the calling
method in Xiqual has the function taking arguments (ulong tagl, ...), then calling
Xl _VARARG(function.nameA((tagitem *)&tagl), argtype). Not much easier, but less

typing.

Return Value: Whatever YOU pass as parameter ret.

Parameters: call A function call, passing (tagitem *)&tagl
as one of its parameters.You take all the pa-
rameters not automatically handled by this
macro in this.

ret A typedef for the returnvalue. Note: this

must be a pointer.Not very flexible, but
these macros are for special purposes, any-
way.

See Also: XI_VOIDARG (), vastart(), vaarg(), vaend()

This page was generated with the help of DOC++

September 30, 2002 117

http://docpp.sourceforge.net

91 XI_VOIDARG

91

#defineXl "VOIDARG (call)

Macro for vararg taghandling.

Macro for vararg taghandling. This works like XARARG(), but has no return
value.

Parameters: call As XI_VARARG().
See Also: XI_VARARG (), vastart(), vaarg(), vaend()

This page was generated with the help of DOC++

September 30, 2002 118

http://docpp.sourceforge.net

92 xitiles

92

typedef structxitiles

A tileset in-memory representation.

Atileset in-memory representation. This is the structure given to each tileset when
loaded from an IFF. See the tileset program for a description of the file formats used.

See Also: tileset, xit_loadtiles(), xitdraw(), xitgdraw()

This page was generated with the help of DOC++

September 30, 2002 119

http://docpp.sourceforge.net

93 xit_setdefaults

93

#definexit _setdefaults(screen, tiles)

Set default screen and tileset

Set default screen and tileset This call just puts the supplied pointers into the ap-
propriate places in the global structure. It could be a macro, probably, but shouldn’t be
necessary to call more than once in the lifetime of a program.

Parameters: screen An SDL_Surface to blit to by default.
tiles Tileset to use for quick blits.

See Also: xit_loadtiles (), Xit_gdraw(), tileset

Author: Ronny Bangsund

This page was generated with the help of DOC++ September 30, 2002 120

http://docpp.sourceforge.net

