The Regina Rexx Interpreter

Anders Christensen

<Anders.Christensen@idi.ntnu.no>
Norwegian Institute of Technology
University of Trondheim

May 5, 2002

Reqgina

Additions and corrections by Mark HesslinyldHessling@qut.edu.au
Copyright © 1992-1998 Anders Christensen
Copyright © 1998-2002 Mark Hessling




Introduction to Regina

This chapter provides an introduction Regina, an Open SourcRexx Interpreter distributed under
the GNU General Library License.

1 Purpose of this document

The purpose of this document is to provide an overview oRbagx language and theegina
implementation of th&®exx language. It is not intended as a definitive referendeexrx; you should
really have a copy of thRexx "bible"; The Rexx Languagéy Mike CowlishawTRLZ2].

2 Implementation

TheRegina Rexx Interpreter is implemented as a library suitable for linking into third-party
applications. Access teegina from third-party applications is via tiieegina API, which is
consistent with the IBM's REXX SAA API. This API is implemented on most oRexx
interpreters.

The library containingRegina is available either as a static library or as a dynamically loadable

library. The only functional difference between the two libraries is that the ability to dynamically load

Rexx external function packages via the built-in functi®xFuncAdd, is only available with the
dynamically loadable library.

TheRegina distribution also includes a front end to tRegina library, to enable the execution of
Rexx programs directly from the command line. Té@mmand lingeferred to here relates to the a
Unix shell, an OS/2 or DOS command window or a Windows NT/9x command prompt.



3 Ports of Regina

Regina has been ported to many operating systems. The following table provides implementation
details of each of the ports &fegina.

Operating System Dynamic Static Library Dynamic Static
Library Executable Executable
HP-UX libregina.sl libregina.a regina rexx
AIX libregina.a libregina.a regina rexx
Other Unix libregina.so libregina.a regina rexx
32-bit DOS (DJGPP) N/A libregina.a N/A rexx.exe
(Uses DPMI memory
manager)
32-bit DOS (EMX) N/A regina.a N/A rexx.exe
(Uses VCPI memory
manager)
0S/2 (EMX) regina.dll regina.a regina.exe rexx.exe
(regina.lib)

Windows regina.dll rexx.lib regina.exe rexx.exe
Ix/Me/NT/2k/IXP (regina.lib)
BeOS libregina.so libregina.a regina rexx
AmigaOS N/A libregina.a N/A rexx
EPOC32 N/A N/A N/A rexx.exe
AtheOS libregina.so libregina.a regina rexx
QNX 4.2x N/A regina.lib N/A rexx

4 Executing Rexx programs with Regina
Rexx programs are generally executedRBgina for thecommand linen the following manner:

regina [switche§[program] [program parameteis

where:
regina is the name of th®egina executable (see table above)
switches are optional switches. See the section below for an explanation of the
switches currently supported Regina
program the name of th&exx program to be executed. See the sechgternal

Rexx Programs below, for details on hoWRegina interprets this
argument. If no program name is specifiBggina waits forRexx
commands to be typed in and will execute those commands when the
appropriate end-of-file character (“D on Unix and ~Z on DOS, OS/2 and
Windows NT/95) is typed.

program parametersany optional parameters to be passed tdReex program.

Rexx programs to be executed Regina can take advantage of a feature of Unix shell programs



calledmagic numbersByYy having the first line of &exx program consist of the special sequencg!of
followed by the full file name of th&®egina executable, you can invoke this program simply by
typing the name of thRexx program on theommand lindollowed by any parameters you wish to
pass to thd&kexx program. The file name must also have the appropriate execute bit set for this to
work. As an example suppose ydrexx programmyprog, contained:

#!/usr/local/bin/regina
Parse Version ver
Say ver

When executing this program from themmand lindy typingmyprog, the Unix shell program would
execute the prograrusr/local/bin/regina and pass the remainder of the lines in the file to
this program viastdin

The special processing done Rggina to find the file name iREGINA_MACROS and the file
extension searching is not able to be carried out when using the magic number method of invocation.

4.1 Switches

The following switches allow the user to control h&®egina executes the supplidglexx program.
Switches are recognised by a leading hyphen chara¢tdéojlowed immediately by a single alphabetic
character. Some switches allow for optional parameters. These, too must follow the switch without
any intervening spaces. All switches and their optional parameters are case-sensitive.

-t[trace parametdr Turn on the specified tracing level. The optiotralce parameter
indicates the tracing level to be used. See the TRACE command later in
this document for an explanation of each trace level.

-a Without this switch, all command line parameters are passBeina
as a single argument. Specifying -a, ensures thdRé&x& program
invoked has access to the command line parameters as separate
arguments, as passed from the command line interpreter. ie. The BIF
ARG() can return a value of other than 1 or 0. Also PARSE SOURCE
will return SUBROUTINE instead of the normal COMMAND value.

-r RunRegina in restricted mode. See the sectionRegina Restricted
Mode for more detalils.

4.2 External Rexx programs

Regina searches foRexx programs, using a combination of ttREGINA_MACROS environment
variable and the addition of filename extensions. This rule applies to both external function calls and
theprogram specified on theommand line

Assume you have a call to an external function, and it is coded as follows:

Call myextfunc argl, arg2

First,Regina looks for a file callednyextfunc in the current directory. If it can't find that file, it looks



in each directory specified in tiREGINA_MACROS environment variable for a file called
myextfunc. If the file is not found Regina then attempts to find a file calladyextfunc.rexxin the
current directory, then in each directoryREGINA_MACROS. Regina continues, next by
appendingrex to the supplied external function name, followedbynd and.rx

Only if a file does not exist in either the current directory, or any directoREGINA_ MACROS,
either with the supplied filename or with that filename appended wettx, .rex, .rx or .cmd does
Regina complain that the external function is unknown.



Rexx Language Constructs

In this chapter, the concept and syntaXREXX clauses are explained. At the end of the chapter there
is a section describing hoRegina differs from standardREXX are described in the first part of the
chapter.

5 Definitions

A program in theREXX language consists of clauses, which are divided into four groups: null clauses,
commands, assignments, and instructions. The three latter groups (commands, assignments, and
instructions) are collectively referred to as statements. This does not match the terminology in [TRLZ2],
where "instruction” is equivalent to what is known here as "statement", and "keyword instruction” is
equivalent to what is known here as "instructioiowever, | find the terminology used here simpler

and less confusing.

Incidentally, the terminology used here matches [DANEY].

A clause is defined as all non-clause-delimiters (i.e. blanks and tokens) up to and including a clause
delimiter. A token delimiter can be:

* An end-of-line, unless it lies within a comment. An end-of-line within a constant string is
considered a syntax error {6}.

* A semicolon character that is not within a comment or constant string.

* A colon character, provided that the sequence of tokens leading up to it consists of a single symbol
and whitespace. If a sequence of two symbol tokens is followed by a colon, then this implies
SYNTAXcondition {13}.

Some systems have the ability to store a text file having a last line unterminated by an end-of-line
character sequence. In general, this applies to systems that use an explicit end-of-line character
sequence to denote end-of-lines, e.g. Unix and MS-DOS systems. Under these systems, if the last line is
unterminated, it will strictly speaking not be a clause, since a clause must include its terminating clause
delimiter. However, some interpreters are likely to regard the end-of-file as a clause delimiter too. The
functionality ofINTERPRETgives some weight to this interpretation. But other systems may ignore

that last, unterminated line, or maybe issue a syntax error. (However, ther8 Y&\ McAXcondition

number adequately covering this situation.

Example: Binary transferring files

Suppose &REXX program is stored on an MS-DOS machine. Then, an end-of-line sequence is marked
in the file as the two characters carriage return and newline. If this file is transferred to a Unix system,
then only newline marks the end-of-line. For this to work, the file must be transferred as a text file. If it
is (incorrectly) transferred as a binary file, the result is that on the Unix system, each line seems to
contain a trailing carriage return character. In an editor, it might look like this:



say 'hello world'*M
say 'that"s it'"M

This will probably raiseSYNTAXcondition {13}.

6 Null clauses

Null clauses are clauses that consist of only whitespace, or comments, or both; in addition to the
terminating clause delimiter. These clauses are ignored when interpreting the code, except for one
situation: null clauses containing at least one comment is traced when appropriate. Null clauses not
containing any comments are ignored in every respect.

Example: Tracing comments

The tracing of comments may be a major problem, depending on the context. There are basically two
strategies for large comments: either box multiple lines as a single comment, or make the text on each
line an independent comment, as shown below:

trace all

/*
This is a single, large comment, which spans multiple lines.
Such comments are often used at the start of a subroutine or
similar, in order to describe both the interface to and the
functionality of the function.

*/

[* This is also a large comment, but it is written as multiple

*/

[* comments, each on its own line. Thus, this is several clauses
*/

* while the comment above is a single comment.

*/

During tracing, the first of these will be displayed as one large comment, and during interactive tracing,
it will only pause once. The second will be displayed as multiple lines, and will make several pauses
during interactive tracing. An interpreter may solve this situation in several ways, the main objective
must be to display the comments nicely the to programmer debugging the code. Preferably, the code is
shown in a fashion that resembles how it is entered in the file.

If a label is multiple defined, the first definition is used and the rest are ignored. Multiple defined labels
is not anSYNTAXcondition.

A null clause is not a statement. In some situations, like aftef HieNsubclause, only a statement
come. If a null clause is provided, then it is ignored, and the next statement is used instead.



Consider the following code:
parse pull foo

if foo=2 then

say 'foois not 2'
else

/* do nothing */
say 'that "sit'

This will not work the way indentation indicates, since the comment in this example is not a statement.
Thus, theELSEreads beyond the comment, and connects t&#éinstruction which becomes the

ELSE part. (That what probably not what the programmer intended.) This code withagy it ,

only whenfoo is different from2. A separate instructiodNOPhas been provided in order to fill the

need that was inadequately attempted filled by the comment in the code fragment above.

Example: Trailing comments

The effect that comments are not statements can be exploited when documenting the program, and
simultaneously making the program faster. Consider the following two loops:

sum=0

doi=1to 10

[Fsum123..8910%*
sum=sum +i

end
sum=0
doi=1to 10
sum=sum+i /Asum123..8910%
end

In the first loop, there are two clauses, while the second loop contains only one clause, because the
comment is appended to an already existing clause. During execution, the interpreter has to spend time
ignoring the null clause in the first loop, while the second loop avoids this problem (assuming tracing is
unenabled). Thus, the second loop is faster; although only insignificantly faster for small loops. Of
course, the comment could have been taken out of the loop, which would be equally fast to the second
version above.

7 Commands

7.1 Assignments

Assignments are clauses where the first token is a symbol and the second token is the eggelal sign (
This definition opens for some curious effects, consider the following clauses:



a ==
This is not a command, but an assignment of the expressiorto the variablea. Of course,
the expression is illegakp) and will trigger aSYNTAXcondition for syntax error {35}. TRL2
defines the operater= as consisting of two tokens. Thus, in the first of these examples, the
second token is, the third token is alse, while the fourth token i®.

3=5
This is an assignment of the valGeo the symboB, but since this is not a variable symbol, this
is an illegal assignment, and will trigger tB& NTAXcondition for syntax error {31}.

"hello" = foo

This is not an invalid assignment, since the first token in the clause is not a symbol. Instead, this
becomes a command.

arg =(foo) bar
The fourth statement is a valid assignment, which will space-concatenate the two variable
symbolsfoo andbar , and assign the result to the variable synmdrgl . It is specifically not an
ARGinstruction, even though it might look like one. If you needfGinstruction which
template starts with an absolute indirect positional pattern, udeARSE UPPER ARG
instruction instead, or prepend a dot in front of the template.

An assignment can assign a value to a simple variable, a stem variable or a compound variable. When
assigning to a stem variable, all possible variable symbols having that stem are assigned the value.
Note specifically that this is not like setting a default, it is a one time multiple assignment.

Example: Multiple assignment

The difference betwedREXX's multiple assignment and a default value can be seen from the
following code:

foo. ="'bar'

foo.1 ='baz’'

drop foo.1

say foo.1 [* says "FOO.1" */

Here, theSAYinstruction writes ouFOO.1, notbar . During theDROHnNstruction, the variable

FOO.1 regains its original, uninitialized valueO0.1, not the value of its stem variabOO., i.e.
bar , because stem assignments does not set up a default.

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stem is initialized, then
you may use the following code:



if (symbol(‘foo.")) then
foo.1 = foo.
else
drop foo.1

In this example, th&0O.1 variable is set to the value of its stem if the stem currently is assigned a
value. Else, th&0O0.1 variable is dropped.

However, this is probably not exactly the same, since the internal storage of the computer is likely to
store variables lik&OO.2 andFOO.3 only implicitly (after all, it can not explicitly store every
compound havingrOO. as stem). After the assignment of the valué&6O. to FOO.1, theFOO.1
compound variable is likely to be explicitly stored in the interpreter.

There is no way you can discover the difference, but the effects are often that more memory is used, and
some functionality that dumps all variables may dup@O.1 but notFOO.2 (which is inconsistent).
See sectiofRexxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

foo. ="'bar'
drop foo.1

Although apparently very simple, there is no way that an interpreter can release all memory referring to
FOO.1. After all, FOO.1 has a different value thaf00.2, FOO.3, etc., so the interpreter must store
information that tells it thaFOO.1 has the uninitialized value.

These considerations may seem like nit-picking, but they will matter if you drop lots of compound
variables for a stem which has previously received a value. Some programming idioms do this, so be
aware. If you can do without assigning to the stem variable, then it is possible for the interpreter to
regain all memory used for that stem's compound variables.

8 Instructions

In this section, all instructions in standdR&EXX are described.
Extensions are listed later in this chapter.

First some notes on the terminology. What is called an instruction in this document is equivalent to a
"unit” of clauses. That is, each instruction can consist of one or more clauses. For instaSeey the
instruction is always a single instruction, but tReinstruction is a multi-clause instruction. Consider
the following script, where each clause has been boxed:

if a=b then

say 'hello’
else

say 'bye’



Further, theTHENor ELSE parts of this instruction might consist o 2ZOENDpair, in which case the
IF instruction might consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the instructions. The
rules applying to these diagrams can be listed as:

* Anything written incourier  font in the syntax diagrams indicates that it should occur as-is in the
REXX program. Whenever something is writtentalic font, it means that the term should be
substituted for another value, expression, or terms.

* Anything contained within matching pairs of square brackets (][...]) are optional, and may be left
out.

* Whenever a pair or curly braces is used, it contains two or more subclauses that are separated by the
vertical bar [ ). It means that the curly braces will be substituted for one of the subclauses it
contains.

* Whenever the ellipsis (...) is used, it indicates that the immediately following subclauses may be
repeated zero or more times. The scope of the ellipsis is limited to the contents of a set of square
brackets or curly braces, if it occurs there.

* Whenever the vertical baris used in any of the syntax diagrams, it means that either the term to
the left, or the term to the right can be used, but not both, and at least one of the must be used. This
"operatot is associative (can be used in sequence), and it has lower priority than the square brackets
(the scope of the vertical bar located within a pair of square brackets or curly braces is limited to the
text within those square brackets or curly braces.

* Whenever a semicolon J is used in the syntax diagram, it indicates that a clause separator must be
present at the point. It may either be a semicolon character, or an end-of-line.

* Whenever the syntax diagram is spread out over more lines, it means that any of the lines can be
used, but that the individual lines are mutually exclusive. Consider the syntax:

SAY = symbol
string

This is equivalent to the syntax:
SAY [ symbol | string ]

Because in the first of these two syntaxes,3lAeY part may be continued at either line.

* Sometimes the syntax of an instruction is so complex that parts of the syntax has been extracted,
and is shown below in its expanded state. The following is an example of how this looks:

SAY something TO someone
something : = HI

HELLO

BYE

someone : = THE BOSS
YOUR NEIGHBOR

You can generally identify these situations by the fact that they comes a bit below the real
syntax diagram, and that they contains a colon character after the name of the term to be



expanded.

In the syntax diagrams, some generic names have been used for the various parts, in order to indicate
common attributes for the term. For instance, whenever a term in the syntax diagrams iexqa]l#d
means that any valiREXX expression may occur instead of that term. The most common such names
are:

condition
Indicates that the subclause can be any of the names of the conditiois/H-TGAXNOVALUE
HALT, etc.

expr

Indicates that the subclause can be any \REXX expression, and will in general be evaluated
as normal during execution.

statement
Indicates that extra clauses may be inserted into the instruction, and that exactly one of them
must be a true statement.

string
Indicates that the subclause is a constant string, i.e. either enclosed by single quotes ('...") or
double quotes ("...").

symbol
Indicates that the subclause is a single symbol. In general, whesyeubolis used as the name
for a subclause, it means that the symbol will not automatically be expanded to the value of the
symbol. But instead, some operation is performed on the name of the symbol.

template
Indicates that the subclause is a parsing template. The exact syntax of this is explain in a chapter
on tracing, to be written later.

In addition to this, variants may also exists. These variants will have an extra letter or number appended
to the name of the subclause, and is used for differing between two or more subclauses having the same
"type" in one syntax diagram. In the case of other names for the subclauses, these are explained in the
description of the instruction.

8.1 The ADDRESS Instruction

ADDRESS [ environment [ command] [ redirection]];
[[ VALUE ] expression [redirection]];

and redirection has one of the forms:



WITH INPUT standard_redir [ OUTPUT out_redir ] [ ERROR out_redir
WITH INPUT standard_redir [ ERROR out_redir ] [ OUTPUT out_redir

WITH OUTPUT out_redir [ INPUT standard_redir ] [ ERROR out_redir

WITH OUTPUT out_redir [ ERROR out_redir ] [ INPUT standard_redir
1;
ITH ERROR out_redir [ INPUT standard_redir ] [ OUTPUT out_redir
1;
ITH ERROR out_redir [ OUTPUT out_redir ] [ INPUT standard_redir
1;

standard_redir is defined as:

NORMAL :
[ STREAM | STEM | LIFO | FIFO ] symbol ;

and out_redir s defined as:

NORMAL ;
[ APPEND | REPLACE ] [ STREAM | STEM | LIFO | FIFO ] symbol ;

We will dicuss redirection later.

The ADDRESSnstruction controls where commands to an external environment are sent. If both
environmenandcommandre specified, the given command will be executed in the given

environment. The effect is the same as issuing an expression to be executed as a command (see section
Commands), except that the environment in which it is to be executed can be explicitly specified in

the ADDRESS®Iause. In this case, the special varid{@will be set as usual, and tiERRORr

FAILURE conditions might be raised, as for normal commands.

In other words: Allnormalcommands are ADDRESS statements with a suppressed keyword and environment.

Theenvironmenterm must be a symbol or a literal string. If it is a symbol, its "name" is used, i.e. itis
not tail substituted or swapped for a variable value. dtmmandandexpressiorterms can be any
REXX expression. eg.

SYSTEM="PATH'
ADDRESS SYSTEM "echo Hello"

i s equivalentto a plain

ADDRESS SYSTEM "echo Hello"
or
ADDRESS "SYSTEM" "echo Hello"

for the externabchocommand.

A symbol specified as an environment name isn't case-sensitive, whereas a string must match the case. Builtin environments
are always uppercased.

REXX maintains a list of environments, the size of this list is at least two. If you select a new



environment, it will be put in the front of this list. Note thattbmmands specified, the contents of the
environment stack is not changed. If you ooommandenvironmentvill always be put in the front of

the list of environmentsRegina has an infinite list and never pushs out any entry. Possible values are listed below. If
you supply acommandvith the ADDRESS statement, tle@vironments interpreted as a temporary change for just this
command.

What happens if you specify an environment that is already in the list, is not completely defined.
Strictly speaking, you should end up with both entries in the list pointing to the same environment, but
some implementations will probably handle this by reordering the list, leaving the selected environment

in the front.This is Regina's behaviour. Every environment exists only once. The redirection command below always
changes the behaviour of one -- the given -- environment. You can imagine a set of playing cards in your hand. The
operation is to draw one card by name and put it to the front.

If you do not specify any subkeywords or paramete SDORESSthe effect is to swap the two first
entries in the list of environments. Consequently, execlADPRESInultiple times will toggle
between two environments.

The second syntax form &DDRESSs a special case of the first form widtbmmancdmitted. If the

first token aftetADDRESSs VALUE, then the rest of the clause is taken to be an expression, naming
the environment which is to be made the current environment. WskigJEmakes it possible to
circumvent the restriction that the name of the new environment must be a symbol or literal string.
However, you can not combine bo#ALUEandcommandn a single clause.



Example: Examples of the ADDRES$nstruction

Let's look at some examples, they can sometimes be combined with a redirection:
ADDRESS COMMAND
ADDRESS SYSTEM 'copy' fromfile tofile
ADDRESS system
ADDRESS VALUE newenv
ADDRESS

ADDRESS (oldenv)
The first of these sets the environm@&@®MMAN&SES the current environment.

The second performs the commawdpy' in the environmen8YSTEMusing the values of the
symbolsfromfile ~ andtofile  as parameters. Note that this will not S&(STEMas the current
environment.

The third example sefSYSTEMas the current environment (it will be automatically converted to upper
case).

The fourth example sets as the current environment the contents of the syammriv , pushing
SYSTEMlown one level in the stack.

The fifth clause swaps the two uppermost entries on the stacks'é8d EMends up at the top pushing
the environment specfied mewenwbelow it.

The sixth clause is equivalent to the fourth example, but is not allowed by ANSI. Since Regina 3.0 this style is deprecated
and can't be used if OPTIONS STRICT_ANSI is in effect. Again, avoid this kind of ADDRESS statement style, and use the
VALUE version instead.

Example: The VALUEsubkeyword

Let us look a bit closer at the last example. Note the differences between the two clauses:
ADDRESS ENV

ADDRESS VALUE ENV

The first of these sets the current default environmeBN®, while the second sets it to the value of
the symboENV.

If you are still confused, Don't Panic; the syntaXddIDRES$s somewhat bizarre, and you should not
put too much effort into learning all aspects of it. Just make sure that you understand how to use it in
simple situations. Chances are that you will not have use for its more complicated variants for quite



some time.

Then, what names are legal as environments? Well, that is implementation-specific, but some names
seems to be in common use. The nad@MMANID sometimes used to refer to an environment that

sends the command to the operating system. Likewise, the name of the operating system is often used
for this CMSUNIX, etc.). You have to consult the implementation specific documentation for more
information about this. Actually, there is not really any restrictions on what constitutes a legal
environment name (even the nullstring is legal). Some interpreters will allow you to select anything as
the current environment; and if it is an illegal name, the interpreter will complain only when the
environment is actually used. Other implementations may not allow you to select an invalid
environment name at all.

Regina allows every name as an environment naR®gina gives an error message about wrong names only when the
name is used. The error string looks somewhat strangedfna is used as a separate program, since the extension of the
environment name space is only useful when running as part of a program which extends the standard names.

Regina uses three kinds of environments. Some have alias names. The environment names are:

SYSTEM
alias OS2ENVIRONMENT
alias ENVIRONMENT

This is the default environment which is selected at startup. The standard operating system command line
interpreter will be loaded to execute the commands. You can use the builtin commands of the command line
interpreter, often called shell, or any other program which the command line interpreter can find and load.

COMMAND
alias CMD

This environment loads the named program directly. You have to supply a path if this is needed for the current
operating system to load the program. You can't use builtin shell functionality like system redirections like you can
with SYSTEM.Regina's redirections are more powerful and work in either environment.

PATH

This works like the environment COMMAND b&egina uses the standard operating system search rules for
programs. This is done by searching through the items of the PATH system-environment variable in most operation
systems.

The definition ofREXX says nothing about which environment is preselected when you invoke the
interpreter, although TRL defines that one environment is automatically preselected when starting up a
REXX script. Note that there is TdONEenvironment in standafdEXX, i.e. an environment that

ignores commands, but some interpreters implemenf R&CEsetting ??? to accomplish this.

Regina uses the environment SYSTEM as the preselected environment as mentioned above. More implementation
specific details can be found in the section implementation specific documentation for Regina.

The list of environments will be saved across subroutine calls; so the effect ATADRESRlauses in
a subroutine will cease upon return from the subroutine.

ADDRESS Redirections

ANSI defines redirections for the ADDRESS statement. This feature has been missirgegina until version 3.0;
although you have had the chance to redirect input and output by Lisi@y> and >FIFO modifiers on command strings.



These command modifiers still exist and have a higher precedence thaN8ielefined redirections. Note, thatFO and
FIFO can be used by the newer redirection system. But, first of all, some examples show the usage of ADDRESS
redirections.

ADDRESS SYSTEM "sort" WITH INPUT STEM names. OUTPUT STEM names.

ADDRESS SYSTEM "myprog" WITH INPUT STEM somefood. OUTPUT STREAM
prg.out ERROR STEM oops.

ADDRESS PATH WITH INPUT FIFO " OUTPUT NORMAL

ADDRESS SYSTEM WITH INPUT FIFO " OUTPUT FIFO " ERROR NORMAL

ADDRESS SYSTEM "fgrep 'bongo™ WITH INPUT STREAM feeder

The first command instructs the default command line interpreter to call the programsmaiiethe input for the command

is read from the stemames(note the trailing period) and the output is sent back to the same stem variable

after the command terminates. Thus, bothering about the implementation of a fast sort algorithm for a stem is as simple as
calling a program which can actually do the sort.

A program callednyprogis called in the second case. The input is fetched from the stenefood(again note the trailing
period), and the standard output of the program is redirected to the stream called PRG.OUT (note it is uppercased using
standardRexx rules). Any generated error messages via the standard error stream are redirected to the steopsalled
Note the problematic PRG.OUT. You have to use a symbol and can't use strings.

In the third example, the redirection behaviour of the environment PATH is changed for all future uses. The input for all
commands addressed to this environment is fetched from the standard stack in FIFO order. After each call the stack will be
flushed. The output is sent to the default output stream, which is the current console in most cases. The behaviour for error
messages is not changed.

The fourth example allows pipes between commands in the environment; SYSTEM for all future uses. The input is fetched
from the default stack and sent to the default stack after each command. The stack itself is flushed in between. Each executed
program will write to something which is the input to the next called command. The error redirection is set or set back to the
initial behaviour of writing to the standard error stream.

The fifth example relates to the fourth. The default stack has to be filled with something initially. This is done by the
redirection to the stream FEEDER while writing the output offtirepcommand to the default FIFO as declared in

example four. After this, a single line with a simglert command will sort the output d§repand place it in the default

stack. You can fetch the final output of your pipe cascade by reading the stack contents. This statement overwrites some of
the rules of the fourth example temporarily.

You can see the powerful possibilities of the redirection command. The disadvantage is the loss of a direct overview of what
happens after a permanent redirection command has executed.

Its now the time to show you all rules and semantics of the redirection.

Rules for the redirection by the keyword WITH of the ADDRESS statement:

« Every environment has its own defarddirection set

» Everyredirection setonsists of three independeedirection streamsstandard input (INPUT), standard output
(OUTPUT) and standard error (ERROR). Users with some experiences with Unix, DOS & Windows or OS/2 may
remember the redirection commands of the command line interpreter which can redirect each of the streams, too. This is
nearly the same.

» Eachredirection streanstarts with the program-startup streams giveREXX when invoking the interpreter. These can
be reset to the startup default by specifying the argument NORMAL for reatitection stream

« The sequence of thedirection streamss irrelevant.

» You can specify each stream only once per statement.

« Redirections can be intermixed. This means you can let both the OUTPUT and the ERROR redirection point to the same
"thing". The data from the different channels will be put to the assigned "thing" as they &N&l's point of view isn't
very clear at this point. They state to keep the output different for files and put them together after the called program



finished while the data shall be mixed at once when using stems.
Regina always mixes the fetched data at once.

- Redirections from and to the same source/destination try to keep the data consistent. If the INPUT/OUTPUT pair or the
INPUT/ERROR pair points to the same destination, the content of the input or output channel is buffered so that writing
to the output won't overwrite the input.

« All redirection streamsare entered by its name (e.g. INPUT), a redirection processor (e.g. STREAM) and a destination
symbol (e.g. OUT_FN) following the rules to the redirection processor. This means that you have to enter a dot after a
symbol name for a stem, or any symbol for the rest of the processors, in which case the content of the symbol is used as
for normal variables.

+ Both OUTPUT and ERROR streams can replace or append the data to the destination. Simply append either APPEND
or REPLACE immediately after the OUTPUT or ERROR keywords. REPLACE is the default.

- The destination is checked or cleared prior to the execution of the command.

« ANSI defines two redirection processors: STEM and STREAM. The processors LIFO and FIFO are allowed extensions
to the standard.

« The processor STEM uses the content of the symbol destination.0 to access the count of the currently accessible lines.
destination is the given destination name, of course. destination.0 must be filled with a whole, non-negative number in
terms of the DATATYPE builtin function. Each oflines can be addressed by appending the whole numbers orte to
the stem. Example: STEM foo. is given, FOO.0 contains 3. This indicates three content lines. They are the contents of
the symbols FOO.1 and FOO.2 and FOO.3.

« The processor STREAM uses the content of the symbol destination to use a stream as known in the STREAM builtin
function. The usage is nearly equivalent to the commands LINEIN destination or LINEOUT destination for accessing the
contents of the file. An empty variable (content set to the empty string) as the content of the destination is allowed and
indicates the default input, output or error streams given téEXX program. This is equivalent to the NORMAL
keyword.

« The processor LIFO uses the content of the symbol destination as a queue name. New lines are pushed in last-in, first-out
order to the queue. An empty destination string is allowed and describes the default queue. Lines are fetched from the
queue if this processor is used for the INPUT stream.

« The processor FIFO uses the content of the symbol destination as a queue name. New lines are pushed in first-in, first-
out order to the queue. An empty destination string is allowed and describes the default queue. Lines are fetched from the
queue if this processor is used for the INPUT stream.

« On INPUT, all the data in the input stream is read up to either the end of the input data or until the called process
terminates. The latter one may be determined after feeding up the input stream of the called process with unused data.
Thus, there is no way to say if data is used or not. This isn't a problem with STEMs. But all file related sequential access
objects including LIFOs and FIFOs may have lost data between two calls. Imagine an input file (STREAM) with three
lines:

One line
DELIMITER
Second line

and furthermore two processes andp2 called WITH INPUT STREAM( with f containing the three lines abovgL

reads lines up until a line containing DELIMITER ap@ processes the rest. It is very likely that the second process

won't fetch any line because the stream may be processed by REXX, and REXX may has put one or more lines ahead
into the feeder pipe to the process. This might or might not happen. It is implementation dependent and Regina shows
this behaviour. The input object is checked for existence and if it is properly set up before the command is started.

In short: INPUT may or may not use the entire input.

+ Both OUTPUT and ERROR objects are checked for being properly set up just before the command starts. REPLACE is
implemented as a deletion just before the command starts. NotA&itdoesn't force STEM lines to be dropped in
case of a replacement. A big stem with thousands of lines will still exist after a replacement operation if the called
command doesn't produce any output. Just destination.0 is set to 0.

The redirection of commands is a mystery to many people and it will continue be. You can thank all the people who
designed stacks, queues, pipelines and all the little helper utilities of a witch's kitchen of process management.

8.2 The ARG Instruction
ARG [ template ];



The ARGinstruction will parse the argument strings at the current procedural level into the template.
Parsing will be performed in upper case mode. This clause is equivalent to:

PARSE UPPER ARG [ template ];

For more information, see tHARSENstruction. Note that this is the only situation where a
multistring template is relevant.

Example: Beware assignments

The similarity betweeARGandPARSE UPPER ARGhas one exception. Suppose BwRSE
UPPER ARGhas an absolute positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

This is not equivalent to aARGinstruction, becaus&RGinstruction would become an assignment. A
simple trick to avoid this problem is just to prepend a placeholder periptbthe pattern, thus the
equal sign£) is no longer the second token in the nARGinstruction. Also, unless the absolute
positional pattern is indirect, the equal sign can be removed without changing the meaning of the
statement.

8.3 The CALL Instruction

CALL= routine [ parameter ]
[[ parameter ]...];
{ON | OFF} condition [ NAME label ];

The CALL instruction invokes a subroutine, namedrbytine, which can be internal, built-in, or
external; and the three repositories of functions are searched in that order. are seanchgithén

that order. The tokeroutine must be either a literal string or a symbol (which is taken literally).
However, ifroutineis a literal string, the pool of internal subroutines is not searched. Note that some
interpreters may have additional repositories of labels to search.

In aCALL instruction, eaclparameteiis evaluated, strictly in order from left to right, and passed as an
argument to the subroutine. parametemight be left out (i.e. an empty argument), which is not the
same as passing the nullstring as argument.

Users often confuse a parameter which is the nullstring with leaving out the parameter. However, this is
two very different situations. Consider the following calls to the built-in funcli®ANSLATE():

say translate('abcDEF' ) /* says ABCDEF */
say translate('abcDEF',"") /* says abcDEF */

say translate(‘abcDEF',,"") /*says' '*/

The TRANSLATE() function is able to differ between receiving the nullstring (i.e. a defined string
having zero length), from the situation where a parameter was not specified (i.e. the undefined string).
SinceTRANSLATE() is one of the few functions where the parameters' default values are very



different from the nullstring, the distinction becomes very visible.

For theCALL instruction, watch out for interference with line continuation. If there are trailing

commas, it might be interpreted as line continuation.@Ad_L instruction use line continuation

between two parameters, two commas are needed: one to separate the parameters, and one to denote
line continuation.

A number of settings are stored across internal subroutine calls. An internal subroutine will inherit the
values in effect when the call is made, and the settings are restored on exit from the subroutine. These
settings are:

« Conditions traps, see chaptéonditions.

» Current trapped condition, see sectOnsS.

«  NUMERIGsettings, see sectidsumeric.

» ADDRES®nvironments, see sectidaldress.

TRACEmMOode, see sectiofrace and chapter [not yet written].
» The elapse time clock, see sectibme.

Also, theOPTIONSsettings may or may not be restored, depending on the implementation. Further, a
number of other things may be saved across internal subroutines. The effect on variables are controlled
by thePROCEDURIgSstruction in the subroutine itself. The state ofdloops will be preserved

during subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace setloly;RICsettings, etc. Thus, the
following code will not work as intended:

say digits() /* says 9, maybe */
call inc_digits

say digits() /* still says 9 */
exit

inc_digits:
numeric digits digits() + 1
return

The programmer probably wanted to call a routine which incremented the precision of arithmetic
operations. However, since the settinglMERIC DIGITS is saved across subroutine calls, the new
value set innc_digits is lost at return from that routine. Thus, in order to work correctly, the
NUMERIdnstruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitly defined side effects. Nor
will external subroutines change the settings. For all practical purposes, an external subroutine is
conceptually equivalent to reinvoking the interpreter in a totally separated process.

If the name of the subroutine is specified by a literal string, then the name will be used as-is; it will not
be converted to upper case. This is important because a routine which contains lower case letters can



only be invoked by using a literal string as the routine name IIC®HEL instruction.
Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted nor substituted for the value of the
variable. Further, this also means that the settilglWMERIC DIGITS has no influence on the
section of labels, even when the labels are numeric symbols. Consider the following code:

call 654.32
exit

654.321:
say here
return

654.32:
say there
return

In this example, the second of the two subroutines are always chosen, independent of the setting of
NUMERIC DIGITS. Assuming thaNUMERIC DIGITS are set to 5, then the number 654.321 is
converted to 654.32, but that does not affect labels. Nor would a stat€A&ht6.5432E2 call the
second label, even though the numeric value of that symbol is equal to that of one of the labels.

The called subroutines may or may not return data to the caller. In the calling routine, the special
variableRESULTwill be set to the return value or dropped, depending on whether any data was
returned or not. Thus, tH@ALL instruction is equivalent to calling the routine as a function, and
assigning the return value RESULT except when theoutinedoes not return data.

In REXX, recursive routines are allowed. A minimum number of 100 nested internal and external
subroutine invocations, and support for a minimum of 10 parameters for each call are required by
REXX. See chaptdrimits for more information concerning implementation limits.

When the token followin@ALL is eitherONor OFF, the CALL instruction is not used for calling a
subroutine, but for setting up condition traps. In this case, the third token of the clause must be the
name of a condition, which setup is to be changed.

If the second token waBN then there can be either three or five tokens. If the five token version is
used, then the fourth token must BAMEand the fifth token is taken to be the symbolic name of a
label, which is the condition handler. This name can be either a constant string, or a symbol, which is
taken literally. WherOFFis used, the named condition trap is turned off.

Note that the@ONandOFFforms of theCALL instruction were introduced in TRL2. Thus, they are not
likely to be present on older interpreters. More information about conditions and condition traps are
given in a chapteConditions.



8.4 The DO/END Instruction

DO [ repetitor ][ conditional 1;
[ clauses ]
END[ symbol ];

repetitor = symbol = expri [TO exprt ]
[BY exprb ][FOR exprf ]
exprr
FOREVER
conditional : = WHILE exprw
UNTIL expru

The DOENDiInstruction is the instruction used for looping and grouping several statements into one
block. This is a multi-clause instruction.

The most simple case is when there israpetitoror conditional in which case it works like
BEGINENDIn Pascal of ...} in C. l.e. it groups zero or mof@EXX clauses into one conceptual
statement.

Therepetitorsubclause controls the control variable of the loop, or the number of repetitions. The
exprrsubclause may specify a certain number of repetitions, or you mayQREVERo go on
looping forever.

If you specify the control variabkymbo] it must be a variable symbol, and it will get the initial value
expriat the start of the loop. At the start of each iteration, including the first, it will be checked whether
it has reached the value specifieddxprt At the end of each iteration the valagprbis added to the
control variable. The loop will terminate after at mesprfiterations. Note that all these expressions

are evaluated only once, before the loop is entered for the first iteration.

You may also specif NTIL or WHILE which take a boolean expressia®HILE is checked before

each iteration, immediately after the maximum number of iteration has been perf&MeElL is

checked after each iteration, immediately before the control variable is incremented. It is not possible to
specify bothUNTIL andWHILEin the samédQOinstruction.

The FOREVEReyword is only needed when there isaanditional and therepetitorwould also be
empty ifFOREVERvas not specified. Actually, you could rewrite this® WHILE 1 . The two
forms are equivalent, except for tracing output.

The subclauseBO, BY, andFORmay come in any order, and their expressions are evaluated in the
order in which they occur. However, the initial assignment must always come first. Their order may
affect your program if these expressions have any side effects. However, this is seldom a problem,
since it is quite intuitive. Note that the counting of iterations, if H@Rsubclause has been specified,

IS never affected by the settinghUMERIC DIGITS.

Example: Evaluation order

What may prove a real trap, is that although the value to which the control variable is set is evaluated



before any other expressions in tiepetitor, it is assigned to the control variable after all expressions
in therepetitorhave been evaluated.

The following code illustrates this problem:

ctrl=1

do ctrl=f(2) by f(3) to f(5)
call func(6)

end

call func(7)

exit

f:
say 'ctrl="ctrl 'arg="arg(1)
return arg(1)

This code produces the following output:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output. Failure to understand this may give
you a surprise later, when you happen to write a compl@nstruction, and do not get the expected
result.

If the TOexpression is omitted, there is no checking for an upper bound of the expressiorB Y the
subclause is omitted, then the default increment of 1 is used. F@Rsubclause is omitted, then there
IS no checking for a maximum number of iterations.

Example: Loop convergence For the reasons just explained, the instruction:

do ctrl=1
nop /* and other statements */
end

will start with CTRLbeing 1, and then iterate through 2, 3, 4, ..., and never terminate excepNWE,
RETURNSIGNAL, orEXIT .

Although similar constructs in other languages typically provokes an overflow at some point,
something "strange" happensREXX. Whenever the value @firl becomes too large, the
incrementation of that variable produces a result that is identical to the old vadtré of For
NUMERIC DIGITS set to 9, this happens whetrl becomes 1.00000000E+9. When adding 1 to
this number, the result is still 1.00000000E+9. Thus, the loop "converges" at that value.

If the value oNUMERIC DIGITS is 1, then it will "converge" at 10, or 1E+1 which is the "correct"”



way of writing that number und&UMERIC DIGITS 1 . You can in general disregard loop
"convergence", because it will only occur in very rare situations.

Example: Difference between UNTIL and WHILE

One frequent misunderstanding is that WElILEandUNTIL subclauses of thBQENDinstruction are
equivalent, except tha/HILEis checked before the first iteration, whilINTIL is first checked before
the second iteration.

This may be so in other languages, buRIBXX. Because of the order in which the parts of the loop are
performed, there are other differences. Consider the following code:

count=1
do i=1 while count \=5
count=count+ 1

end
say i count
count=1

do i=1 until count=5

count =count + 1
end
say i count

After the first loop, the numbers 6 and 5, while in the second loop, the numbers 5 and 5 are written out.
The reason is thatWHILE clause is checked after the control variable of the loop has been
incremented, but adNTIL expression is checked before the incrementation.

A loop can be terminated in several waysRETURNr EXIT instruction terminates all active loops

in the procedure levels terminated. FurtheBI&@NAL instruction transferring control (i.e. neither a
SIGNAL ON nor SIGNAL OFF) terminates all loops at the current procedural level. This applies even
to "implicit” SIGNAL instructions, i.e. when triggering a condition handler by the meth@&GNAL.

A LEAVE instruction terminates one or more loops. Last but not least, a loop can terminate itself,
when it has reached its specified stop conditions.

Note that theSIGNAL instruction terminates also non-repetitive loops (or ratB€¥ENDpairs), thus

after anSIGNAL instruction, you must not execute BNDinstruction without having executed its
correspondindOfirst (and after the&SIGNAL instruction). However, as long as you stay away from the
ENDs, it is all right according to TRL to execute code within a loop without having properly activated
the loop itself.

Note that on exit from a loop, the value of the control variable has been incremented once after the last
iteration of the loop, if the loop was terminated by WellLE expression, by exceeding the number of

max iterations, or if the control variable exceeded the stop value. However, the control variable has the
value of the last iteration if the loop was terminated byWNTIL expression, or by an instruction

inside the loop (e.d-EAVE SIGNAL, etc.).

The following algorithm inREXX code shows the execution o¥instruction, assuming thaixpri,



exprt exprly exprf, exprw expru andsymbolhave been taken from the syntax diagrandGf

@expri=  expri

@exprt= exprt
@exprb = exprb
@exprf= exprf
@iters=0

symbol = @expri

start_of_loop:
if symbol > @extrt then signal after_loop
if @iters > @exprf then signal after_loop
if exprw then signal after_loop
instructions
end_of _loop:
if\ expru then signal after_loop
symbol = symbol + @exprb
signal start_of loop

after_loop:

Some notes are in order for this algorithm. First, it usesSi@&NAL instruction, which is defined to
terminate all active loops. This aspect of BkSNAL instruction has been ignored for the purpose of
illustrating theDQ and consequently, the code shown above is not suitable for nested loops. Further,
the order of the first four statements should be identical to the order in the corresponding subclauses in
therepetitor. The code has also ignored that iM¢ILEand theUNTIL subclauses can not be used in

the saméDOinstruction. And in addition, all variables starting with the at si@h ére assumed to be

internal variables, private to this particular loop. Witimistructions a LEAVEinstruction is equivalent

to signal after_loop , While alTERATE instruction is equivalent teignal end_of loop

8.5 The DROP Instruction
DROPsymbol [ symbol ...];

The DROHRnNstruction makes the namedriables uninitialized, i.e. the same state that they had at the
startup of the program. The list of variable names are processed strictly from left to right and dropped
in that order. Consequently, if one of the variables to be dropped is used in a tail of another, then the
order might be significant. E.g. the following ti@ROHRNstructions are not equivalent:

bar ='a’
drop bar foo.bar /* drops 'BAR' and 'FOO.BAR' */
bar ='a’

drop foo.bar bar /* drops 'FOO.a' and 'BAR'

Thevariableterms can be either a variable symbol or a symbol enclosed in parentheses. The former
form is first tail-substituted, and then taken as the literal name of the symbol to be dropped. The result
names the variable to drop. In the latter form, the value of the variable symbol inside the parentheses is
retrieved and taken as a space separated list of symbols. Each of these symbols is tail-substituted (if
relevant); and the result is taken as the literal name of a variable to be dropped. However, this process is
not recursive, so that the list of names referred to indirectly can not itself contain parentheses. Note that



the second form was introduced in TRL2, mainly in order to MAKEERPRETunnecessary.

In general, things contained in parentheses can be anyREKX expression, but this does not apply
to theDRORPPARSE andPROCEDURIESstructions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it will not set a default
value, rather it will assign "all possible variables” in that stem collection at once. So dropping a
compound variable in a stem collection for which the stem variable has been set, will set that
compound variable to the original uninitialized value; not the value of the stem variable. See section
Assign for further notes on assignments. To illustrate consider the code:

foo. = 'default’
drop baz bar foo.bar
say foo.bar foo.baz /* says 'FOO.BAR default' */

In this example, th&AY instruction writes out the value of the two compound variablé®©.BARand
FOO.BAZ When performing tail-substitution for these, the interpreter finds thatBARandBAZ are
uninitialized. FurtherFOO.BARhas also been made uninitialized, wH®0O.BAZhas the value
assigned to it in the assignment to the stem variable.

Example: Tail-substitutionin  DROP

For instance, suppose that the varidgb@0has the valubar . After being droppedr-OOwill have its
uninitialized value, which is the same as its naf@Q If the variable to be dropped is a stem variable,
then both the stem variable and all compound variables of that stem become uninitialized.

bar = 123
drop foo.bar /* drops 'FOO.123" */

Technically, it should be noted that some operations involving dropping of compound variables can be
very space consuming. Even though the standard does not operate with the term "default value" for the
value assigned to a stem variable, that is the way in which it is most likely to be implemented. When a
stem is assigned a value, and some of its compound variables are dropped afterwards, then the
interpreter must use memory to store references to the variables dropped. This might seem
counterintuitive at first, since dropping ought to release memory, not allocate more.

There is a parallel betweddROPandPROCEDURE EXPOSHowever, there is one important
difference, althougPROCEDURE EXPOSEill expose the name of a variable enclosed in parentheses
before starting to expose the symbols that variable refers to, this is notB&@PIf DROFhad

mimicked the behavior ?PROCEDURE EXPOSE this matter, then the whole purpose of indirect
specifying of variables iDRORwvould have been defeated.

Dropping a variable which does not have a value is not an error. There is no upper limit on the number
of variables that can be dropped in ddBORlause, other than restrictions on the clause length. If an
exposed variable is dropped, the variable in the caller is dropped, but the variable remains exposed. If it



reassigned a value, the value is assigned to a variable in the caller routine.

8.6 The EXIT Instruction
EXIT[ expr ];

Terminates th&REXX program, and optionally returns the expres®&prto the caller. If specified,
exprcan be any string. In some systems, there are restrictions on the range of valid valuesxpr. the
Often the return expression must be an integer, or even a non-negative integer. This is not really a
restriction on thd(REXX language itself, but a restriction in the environment in which the interpreter
operates, check the system dependent documentation for more information.

If expris omitted, nothing will be returned to the caller. Under some circumstances that is not legal,
and might be handled as an error or a default value might be use@&Xifieinstruction behaves
differently in a "program” than in an external subroutine. In a "program”, it returns control to the caller
e.g. the operating system command interpreter. While for an external routine, it returns control to the
calling REXX script, independent of the level of nesting inside the external routine being terminated.

RETURN EXIT
At the main level of the program Exits program Exits program
At an internal subroutine level of the = Exits subroutine, and returns EXits program
program to caller
At the main level of an external Exits the external subroutine = EXxits the external
subroutine subroutine
At a subroutine level within an externalExits the subroutine, returning Exits the external
subroutine to calling routine within subroutine
external subroutine script

Actions of RETURMNINd EXIT Instructions

If terminating an external routine (i.e. returning to the callRigXX script) any legaREXX string

value is allowed as a return value. Also, no return value can be returned, and in both cases, this
information is successfully transmitted back to the calling routine. In the case of a function call (as
opposed to a subroutine call), returning no value will r&@8&TAXcondition {44}. The table above
describes the actions taken by #¢IT andRETURNnNstruction in various situations.

8.7 The IF/THEN/ELSE Instruction

IF expr [;] THEN ;] statement
[ ELSE [;] statement ]

This is a normal if-construct. First the boolean expressixpris evaluated, and its value must be either
0 or 1 (everything else is a syntax error which raiS&&NTAXcondition number {34}). Then, the
statement following eitheFHENor ELSE is executed, depending on whetlegprwas1 or O,
respectively.

Note that there must come a statement aftéENandELSE. It is not allowed to put just a null-clause
(i.e. acomment or a label) there. If you want T¢ENor ELSE part to be empty, use ti¢OP
instruction. Also note that you can not directly put more than one statement aifstNor ELSE, you



have to package them inZXOENDpair to make them a single, conceptual statement.

After THEN afterELSE, and beforefHEN you might put one or more clause delimiters (newlines or
semicolons), but these are not required. AlsoBEh&E part is not required either, in which case no
code is executed é#xpris false (evaluates t@). Note that there must also be a statement separator
beforeELSE, since the that statement must be terminated. This also applies to the statement after
ELSE However, sincstatemenincludes a trailing clause delimiter itself, this is not explicitly shown
in the syntax diagram.

Example: Dangling ELSE

Note the case of the "danglingLSE If an ELSE part can correctly be thought of as belonging to
more than ondé /THENinstruction pair, it will be parsed as belonging to the closest (i.e. innermost)
IF instruction:

parse pull foo bar
if foo then
if bar then
say 'foo and bar are true'
else
say 'one or both are false'

In this code, thé&ELSE instruction is nested to the innermdBt, i.e. tolF BAR THEN .

8.8 The INTERPRET Instruction
INTERPRET expr ;

TheINTERPRETInstruction is used to dynamically build and exedd&XX instructions during run-
time. First, it evaluates the expressixpr, and then parses and interprets the result as a (possibly
empty) list ofREXX instructions to be executed. For instance:

foo = 'hello, world'
interpret 'say "'foo'"

executes the statemedfY "hello, world!" after having evaluated the expression following
INTERPRET. This example shows several important aspectSIOERPRET. Firstly, it's very easy to

get confused by the levels of quotes, and a bit of caution should be taken to nest the quotes correctly.
Secondly, the use dNTERPRETdoes not exactly improve readability.

Also, INTERPRETwill probably increase execution time considerably if put inside loops, since the
interpreter may be forced to reparse the source code for each iteration. Many optREXXg
interpreters (and in particul®EXX compilers) has little or no support ftNTERPRET. Since

virtually anything can happen inside it, it is hard to optimize, and it often invalidates assumptions in
other parts of the script, forcing it to ignore other possible optimizations. Thus, you should avoid
INTERPRETwhen speed is at a premium.

There are some restrictions on which statements can be insIdE&RPRETstatement. Firstly, labels
cannot occur there. TRL states that they are not allowed, but you may find that in some



implementations labels occurring there will not affect the label symbol table of the program being run.
Consider the statement:

interpret 'signal there; there: say hallo’
there:

This statement transfers control to the labEIEREN the program, never to tiHEHERHabel inside the
expression of thtNTERPRETInstruction. Equivalently, angIGNAL to a labelTHEREelsewhere in
the program never transfers control to the label insidéNfi€RPRETIinstruction. However, labels are
strictly speaking not allowed insidB TERPRETSstrings.

Example: Self-modifying Program

There is an idea for a self-modifying programREXX which is basically like this:

string ="
do i=1 to sourceline()

string = string ';' sourceline(i)
end

string = transform( string )
interpret string
exit

transform: procedure
parse arg string
[* do some transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not waREKXX, and it may be
instructive to investigate why. Firstly, it uses the [abRBIANSFORMvhich is not allowed in the
argument tdNTERPRET The interpret will thus refer to thERANSFORKbutine of the "outermost”
invocation, not the one "in" theNTERPRETSstring.

Secondly, the program does not take line continuations into mind. WorseQb&CELINE() built-
in function refers to the data of the main program, even inside the code executed WYy HRPRET
instruction. Thirdly, the program will never end, as it will nest itself up till an implementation-
dependent limit for the maximum number of nestd@ERPRETinstructions.

In order to make this idea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructionsifikendSELECToccur inside an
INTERPRETexpression, but only if the whole instruction is there; you can not start a structured
instruction inside atNTERPRETinstruction and end it outside, or vice-versa. However, the
instructionSIGNAL is allowed even if the label is not in the interpreted string. Also, the instructions
ITERATE andLEAVEare allowed in atlNTERPRET, even when they refer to a loop that is external
to the interpreted string.

Most of the timeNTERPRETIs not needed, although it can yield compact and interesting code. If you



do not strictly needNTERPRET, you should consider not using it, for reasons of compatibility, speed,
and readability. Many of the traditional useddTERPREThave been replaced by other mechanisms
in order to decrease the necessityMTERPRET, e.g. indirect specification of variablesiKPOSE
andDRORthe improvedVALUE() built-in function, and indirect specification of patterns in
templates.

Only semicolony() is allowed as a clause delimiter in the string interpreted bWafEERPRET

instruction. The colon of labels can not be used, since labels are not allowed. Nor does specific end-of-
line character sequences have any defined meaning there. However, most interpreters probably allow
the end-of-line character sequence of the host operating system as alternative clause delimiters. It is
interesting to note that in the context of iNMTERPRETinstruction, an implicit, trailing clause

delimiter is always appended to the string to be interpreted.

8.9 The ITERATE Instruction
ITERATE[ symbol ];

ThelTERATE instruction will iterate the innermost, active loop in which thi&RATE instruction is
located. Ifsymbolis specified, it will iterate the innermost, active loop havaygnbolas control
variable. The simpl® GENDstatement without eepetitorandconditionalis not affected by
ITERATE. All active multiclause structure®Q SELECT, andIF ) within the loop being iterated are
terminated.

The effect of anTERATE is to immediately transfer control to tlENDstatement of the affected loop,
so that the next (if any) iteration of the loop can be started. It only affects loops on the current
procedural level. All actions normally associated with the end of an iteration is performed.

Note thatsymbolmust be specified literally; i.e. tail substitution is not performed for compound
variables. So if the control variable in tB®instruction isFOO.BAR thensymbolmust useFO0O.BAR
if it is to refer to the control variable, no matter the value of B#ARvariable.

Also note thal TERATE (andLEAVE) are means of transferring control in the program, and therefore
they are related t8IGNAL, but they do have the effect of automatically terminating all active loops on
the current procedural level, whi&GNAL has.

Two types of errors can occur. Eithr@mboldoes not refer to any loop active at the current procedural
level; or (if symbolis not specified) there does not exist any active loops at the current procedural level.
Both errors are reported &/ NTAXcondition {28}.

8.10The LEAVE Instruction
LEAVE[ symbol ];

This statement terminates the innermost, active loagyrtibolis specified, it terminates the innermost,
active loop havingymbolas control variable. As for scope, syntax, errors, and functionality, it is
identical tolITERATE, except thaL EAVEterminates the loop, whilEERATE lets the loop start on

the next iteration normal iteration. No actions normally associated with the normal end of an iteration
of a loop is performed for REAVEinstruction.



Example: Iterating a simple DQEND

In order to circumvent this, a simpl2OENDcan be rewritten as this:

if foo then do until 1
say 'This is a simple DO/END group'
say 'but it can be terminated by
leave
say 'iterate or leave'

end

This shows howTERATE has been used to terminate what for all practical purposes is a simple
DOENDgroup. EitheiTERATE or LEAVEcan be used for this purpose, althoudbAVEis perhaps
marginally faster.

8.11The NOP Instruction
NOP ;

The NOPinstruction is the "no operation” statement; it does nothing. Actually, that is not totally true,
since theNOPinstruction is a "real" statement (and a placeholder), as opposed to null clauses. I've only
seen this used in two circumstances.

» After anyTHENor ELSE keyword, where a statement is required, when the programmer wants an
emptyTHENor ELSE part. By the way, this is the intended useNSDP Note that you can not use a
null clause there (label, comment, or empty lines), since these are not parsed as "independent”
statements.

* | have seen it used as "trace-bait". That is, when you start interactive trace, the statement
immediately after th@ RACEnNstruction will be executed before you receive interactive control. If
you don't want that to happen (or maybe THRACENSstruction was the last in the program), you
need to add an extra dummy statement. However, in this context, labels and comments can be used,
too.

8.12The NUMERIC Instruction

NUMERIC =DIGITS[ expr ];
FORM [ SCIENTIFIC | ENGINEERING | [ VALUE ] expr 1;
FUZZ[ expr ];

REXX has an unusual form of arithmetic. Most programming languages use integer and floating point
arithmetic, where numbers are coded as bits in the computers native memory words. HREeVer,

uses floating point arithmetic of arbitrary precision, that operates on strings representing the numbers.
Although much slower, this approach gives lots of interesting functionality. Unless number-crunching
is your task, the extra time spent by the interpreter is generally quite acceptable and often almost
unnoticeable.

The NUMERIGstatement is used to control most aspects of arithmetic operations. It has three distinct
forms:DIGITS , FORMandFUZZ which to choose is given by the second token in the instruction:



DIGITS
Is used to set the number of significant digits in arithmetic operations. The initial value is 9,
which is also the default value éxpris not specified. Large values fMGITS tend to slow
down some arithmetic operations considerably. If speci@gdrmust be a positive integer.
FUZZ
Is used in numeric comparisons, and its initial and default value is 0. Normally, two numbers
must have identical numeric values for a number of their most significant digits in order to be
considered equal. How many digit are considered is determinBd®\'S . If DIGITS is 4,
then 12345 and 12346 are equal, but not 12345 and 12356. HoweverFWE&hs non-zero,
then only theDIGITS minusFUZZ most significant digits are checked. E.gDIIGITS is 4
andFUZZare 2, then 1234 and 1245 are equal, but not 1234 and 1345.

The value folFUZZ must be a non-negative integer, and less than the valD&3ITS . FUZZ
is seldom used, but is useful when you want to make comparisons less influenced by
inaccuracies. Note that using with values=tfZZthat is close tdIGITS may give highly
surprising results.

FORM
Is used to set the form in which exponential numbers are written. It can be set to either
SCIENTIFIC or ENGINEERING The former uses a mantissa in the range 1.000... to 9.999...,
and an exponent which can be any integer; while the latter uses a mantissa in the range 1.000...
t0 999.999..., and an exponent which is dividable by 3. The initial and default setting is
SCIENTIFIC . Following the subkeyworBEORMnay be the subkeywor@&CIENTIFIC and
ENGINEERING or the subkeywor®YALUE In the latter case, the rest of the statement is
considered an expression, which will evaluate to eiB@IENTIFIC or ENGINEERING
However, if the first token of the expression followiN@\LUEis neither a symbol nor literal
string, then th&/ ALUEsubkeyword can be omitted.

The setting oFORMever affects the decision about whether to choose exponential form or normal

floating point form; it only affects the appearance of the exponential form once that form has been
selected.

Many things can be said about the usefulnedslifZ My impression is that it is seldom used in

REXX programs. One problem is that it only addresses relative inaccuracy: i.e. that the smaller value
must be within a certain range, that is determined by a percentage of the larger value. Often one needs
absolute inaccuracy, e.g. two measurements are equal if their difference are less than a certain absolute
threshold.

Example: Simulating relative accuracy with absolute accuracy

As explained aboveREXX arithmetic has only relative accuracy, in order to obtain absolute accuracy,
one can use the following trick:

numeric fuzz 3
if a=b then

say 'relative accuracy'
if abs(a-b)<=500 then

say 'absolute accuracy'



In the firstlF instruction, ifAis 100,000, then the range of values Bwhich makes the expression
true is 99,500-100,499, i.e. an inaccuracy of about +-5089hHs the value 10,000,000, thBmust be
within the range 9,950,000-10,049,999; i.e. an inaccuracy of about +-50,000.

However, in the seconiF instruction, assuming is 100,000, the expression becomes true for values
of B in the range 99,500-100,500. Assuming tAas 10,000,000, the expression becomes true for
values ofB in the range 9,999,500-10,000,500.

The effect is largely to force an absolute accuracy for the second example, no matter what the values of
A andB are. This transformation has taken place since an arithmetic subtraction is not affected by the
NUMERIC FUZZ only numeric comparison operations. Thus, the effeddMERIC FUZZon the

implicit subtraction in the operationin the firstIF has been removed by making the subtraction

explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by
transforming the expression into something more complex.

To retrieve the values set fdUMERICyou can use the built-in functio@GITS() , FORM(), and
FUZZ() . These values are saved across subroutine calls and restored upon return.

8.13The OPTIONS Instruction
OPTIONS expr ;

The OPTIONSInstruction is used to set various interpreter-specific options. Its typical uses are to select
certainREXX dialects, enable optimizations (e.g. time versus memory considerations), etc. No standard
dictates what may follow th@PTIONSkeyword, except that it should be a vaREXX expression,

which is evaluated. Currently, no specific options are required by any standard.

The contents oéxpris supposed to be word based, and it is the intention that more than one option can
be specified in on®PTIONSInstruction. REXX interpreters are specifically instructed to ignore
OPTIONSwords which they do not recognize. That way, a program can use run-time options for one
interpreter, without making other interpreters trip when they see those options. An exai@p&IaiN

may be:

OPTIONS 4.00 NATIVE_FLOAT

The instruction might instruct the interpreter to start enforcing language level 4.00, and to use native
floating point numbers in stead of tlREXX arbitrary precision arithmetic. On the other hand, it might
also be completely ignored by the interpreter.

It is uncertain whether modes selecteddTIONSwill be saved across subroutine calls. Refer to
iImplementation-specific documentation for information about this.

Example: Drawback of OPTIONS

Unfortunately, the processing of tk#PTIONSInstruction has a drawback. Since an interpreter is
instructed to ignore option-settings that it does not understand, it may ignore options which are
essential for further processing of the program. Continuing might cause a fatal error later, although the



behavior that would most precisely point out the problem is a complaint about the non-supported
OPTION setting. Consider:

options ‘cms_bifs'
pos = find( haystack, needle )

If this code fragment is run on an interpreter that does not suppactibebifs  option setting, then

the OPTIONSInstruction may still seem to have been executed correctly. However, the second clause
will generally crash, since tHND() function is still not available. Even though the real problem is

in the first line, the error message is reported for the second line.

8.14The PARSE Instruction

PARSE [UPPER] type [ template ];
type ={ARG | LINEIN | PULL | SOURCE | VERSION }
VALUE[ expr JWITH
VAR symbol

The PARSENstruction takes one or more source strings, and then parses them udiem phestefor
directions. The process of parsing is one where parts of a source string are extracted and stored in
variables. Exactly which parts, is determined by the patterns. A complete description of parsing is
given in chapter [not yet written].

Which strings are to be the source of the parsing is defined hyplesubclause, which can be any of:

ARG.
The data to use as the source during the parsing is the argument strings given at the invocation
of this procedure level. Note that this is the only case where the source may consist of multiple
strings.

LINEIN.
Makes the®?ARSEnstruction read a line from the standard input stream, as it tR&IN()
built-in function had been called. It uses the contents of that line (after stripping off end-of-line
characters, if necessary) as the source for the parsing. This may rad@ TREAD¥ondition
if problems occurred during the read.

PULL.
Retrieves as the source string for the parsing the topmost line from the stack. If the stack is
empty, the default action for reading an empty stack is taken. That is, it will read a whole line
from the standard input stream, strip off any end-of-line characters (if necessary), and use that
string as the source.

SOURCE.
The source string for the parsing is a string containing information about how this invocation of
theREXX interpreter was started. This information will not change during the execution of a
REXX script. The format of the string is:

system invocation filename

Here, the first space-separated waystenis a single word describing the platform on which



the system is running. Often, this is the name of the operating system. The second word
describes how the script was invoked. TRL2 suggestdrtliatationcould beCOMMAND
FUNCTION or SUBROUTINEDbut notes that this may be specific to VM/CMS.

Everything after the second word is implementation-dependent. It is indicated that it should
refer to the name of thREXX script, but the format is not specified. In practice, the format will
differ because the format of file names differs between various operating systems. Also, the part
after the second word might contain other types of information. Refer to the implementation-
specific notes for exact information.

VALUE expr WITH.
This form will evaluateexprand use the result of that evaluation as the source string to be
parsed. The tokeWITHmay not occur insidexpr, since it is a reserved subkeyword in this
context.

VAR symbol.
This form uses the current value of the named variaptebol(after tail-substitution) as the
source string to be parsed. The variable may be any variable symbol. If the variable is
uninitialized, then &OTREAD¥ondition will be raised.

VERSION.
This format resembleSOURCRout it contains information about the versionREXX that the
interpreter supports. The string contains five words, and has the following format:

language level date month year

Wherelanguageis the name of the language supported byREXX interpreter. This may

seem like overkill, since the languageREXX, but there may be various different dialects of
REXX. The word can be just about anything, except for two restrictions, the first four letters
should beREXX(in upper case), and the word should not contain any periods. [TRL2] indicates
that the remainder of the word (after the fourth character) can be used to identify the
implementation.

The second word is tHREXX language level supported by the interpreter. Note that this is not

the same as the version of the interpreter, although several implementations makes this mistake.
Strictly speaking, neither [TRL1] nor [TRL2] define the format of this word, but a numeric

format is strongly suggested.

The last three wordslate month andyear) makes up the date part of the string. This is the
release date of the interpreter, in the default format oXA&E() built-in function.

Much confusion seems to be related to the second woRAS&SE VERSION It describes the

language level, which is not the same as the version number of the interpreter. In fact, most interpreters
have a version numbering which is independent oREXX language level. Unfortunately, several
interpreters makes the mistake of using this field as for their own version number. This is very
unfortunate for two reasons; first, it is incorrect, and second, it makes it difficult to determine which
REXX language level the interpreter is supposed to support.

Chances are that you can find the interpreter version numiBkRSE SOURCIer the first word of
PARSE VERSION

The format of theREXX language level is not rigidly defined, but TRL1 corresponds to the language



level 3.50, while TRL2 corresponds to the language level 4.00. Both implicitly indicate the that
language level description is a number, and states that an implementation less than a certain number
"may be assumed to indicate a subset" of that language level. However, this must not be taken to
literally, since language level 3.50 has at least two features which are missing in language level 4.00
(theScan trace setting, and tietROCEDURIAstruction that is not forced to be the first instruction in

a subroutine). [TRH:PRICE] gives a very good overview over the varying functionality of different
language levels dREXX up to level 4.00.

With the release of thANSI REXX Standard [ANSI] in 1996, thREXX language IS now rigidly

defined. The language level ANSI REXX is 5.00.Regina is attempting to keep pace with tA&SI
Standard. Itincludes some features of language level 5.00 such as date and time conversions in the
DATE() andTIME() BIFs plus the new BIFEOUNTSTR() andCHANGESTR(). Regina does not

supply a complete set of multiple-level error messages as defined ANBEeStandard, nor the

extensions to ADDRESS, so does not comply to language level 5.00, but currently is a hybrid between
4.00 and 5.00. ThuBARSE VERSION will return 4.xx :-)

Note that even though the information of RARSE SOURCES constant throughout the execution of
aREXX script, this is not necessarily correct for FARSE VERSION If your interpreter supports
multiple language levels (e.g. through ETIONSInstruction), then it will have to change the
contents of thé® ARSE VERSIONString in order to comply with different language levels. To some
extent, this may also apply RARSE SOURCEsince it may have to comply with several
implementation-specific standards.

After the source string has been selected bytthesubclause in th ARSEnstruction, this string is
parsed into the template. The functionality of templates is common fGARSE ARGandPULL
instructions, and is further explained in chapter [not yet written].

8.15The PROCEDURE Instruction
PROCEDURE [ EXPOSE [ varref [ varref ..]1]];
varref  ={ symbol |( symbol )}

The PROCEDURIASstruction is used biREXX subroutines in order to control how variables are shared
among routines. The simplest use is without any parameters; then all future references to variables in
that subroutine refer to local variables. If there iFFROCEDURIBSstruction in a subroutine, then all
variable references in that subroutine refer to variables in the calling routine's name space.

If the EXPOSEsubkeyword is specified too, then any references to the variables in the list following
EXPOSHefer to local variables, but to variables in the name space of the calling routine.

Example: Dynamic execution of PROCEDURE

The definition opens for some strange effects, consider the following code:



call testing

testing:
say foo
procedure expose bar
say foo

Here, the first reference ©00QOis to the variabld&=OO0in the caller routine's name space, while the

second reference t©00is to a local variable in the called routine's name space. This is difficult to

parse statically, since the names to expose (and even when to expose them) is determined dynamically
during run-time. Note that this use BROCEDURE allowed in [TRL1], but not in [TRL2].

Several restrictions have been imposed&OCEDURIA [TRL2] in order to simplify the execution of
PROCEDURgNd in particular, to ease the implementation of optimizing interpreters and compilers).

» The first restriction, to which alREXX interpreters adhere as far as | know, is that each invocation
of a subroutine (i.e. not the main program) may exeBlROCEDUR& most once. Both TRL1 and
TRL2 contain this restriction. However, more than ®#ROCEDURIBstruction may exist "in"
each routine, as long as at most one is executed at each invocation of the subroutine.

* The second restriction is that tReROCEDURIBstruction must be the first statement in the
subroutine. This restriction was introduced betwB&XX language level 3.50 and 4.00, but
several level 4.00 interpreters may not enforce it, since there is no breakage when allowing it.

There are several important consequences of this second restriction:

(1) it implicitly includes the first restriction listed above, since only one instruction can be the first; (2)

it prohibits selecting one of several possiBIROCEDURIBstructions; (3) it prohibits using the same
variable name twice; first as an exposed and then as a local variable, as indicated in the example above;
(4) it prohibits the customary use BROCEDUR&NJINTERPRET, where the latter is used to create a

level of indirectness for thEROCEDURIBstruction. This particular use can be exemplified by:

testing:
interpret 'procedure expose' bar

whereBARholds a list of variable names which are to be exposed. However, in order to make this
functionality available without having to resortfdTERPRET, which is generally considered "bad"
programming style, new functionality has been adddeROCEDUREetween language levels 3.50

and 4.00. If one of the variables in the list of variables is enclosed in parentheses, that means
indirection. Then, the variables exposed are: (1) the variable enclosed in parentheses; (2) the value of
that variable is read, and its contents is taken to be a space-separated list of variable names; and (3) all
there variable names are exposed strictly in order from left to right.

Example: Indirect exposing

Consider the following example:



testing:
procedure expose foo (bar) baz

Assuming that the variabBARholds the valu@ne two , then variables exposed are the following:
FOQBAR ONE TWOBAZ in that order. In particular, note that the variabl@Ois exposed
immediately before the variables which it names are exposed.

Example: Order of exposing

Then there is another fine point about exposing, the variables are hidden immediately d&€PHBSE
subkeyword, so they are not initially available when the variable list is processed. Consider the
following code:

testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the variBBIRholds the valud 23, thenFO0.123

is exposed as the second item, siB&Ris visible after having already been exposed as the first item.
On the other hand, the third item will always expose the variB@l®.BAZ no matter what the value

of BAZis in the caller, since thBAZ variable is visible only after it has been used in the third item.
Therefore, the order in which variables are exposed is important. So, if a compound variable is used
inside parentheses in ®ROCEDURIAstruction, then any simple symbols needed for tail substitution
must previously to have been explicitly exposed. Compare this tOR@Hnstruction.

What exactly is exposing? Well, the best description is to say that it makes all future uses (within that
procedural level) to a particular variable name refer to the variable in the calling routine rather than in
the local subroutine. The implication of this is that even if it is dropped or it has never been set, an
exposed variable will still refer to the variable in the calling routine. Another important thing is that it
is the tail-substituted variable name that is exposed. So if you eXf@€eBAR andBARhas the value
123, then onlyFOO.123 is exposed, and continues to be so, evédBARIlater changes its value to e.g.
234.

Example: Global variables

A problem lurking on neWREXX users, is the fact that exposing a variable only exposes it to the
calling routine. Therefore, it is incorrect to speak of global variables, since the variable might be local
to the calling routine. To illustrate, consider the following code:



foo = 'bar"
call subl
call sub2
exit

subl: procedure expose foo
say foo /*first says 'bar’, then 'FOQO' */
return

sub2: procedure
say foo /* says 'FOO' */
call subl
return

Here, the first subroutine call in the "main” program writeslmart , since the variableOOin SUB1

refers to thé=OOvariable in the main program's (i.e. its caller routine's) name space. During the second
call from the main progran§UB2writes outFOQ since the variable is not exposed. Howe&iiB2
callsSUBZ, which expose§0OQ but that subroutine also writes de®©QO The reason for this is that
EXPOSEwvorks on the run-time nesting of routines, not on the typographical structure of the code. So
the PROCEDURIB SUB1(on its second invocation) exposge®0to SUB2 not to the main program as
typography might falsely indicate.

The often confusing consequence of the run-time binding of variable names is that an exposed variable
of SUB1can be bound to different global variables, depending on from where it was called. This

differs from most compiled languages, which bind their variables independently of from where a
subroutine is called. In turn, the consequence of this iSRE2X has severe problems storing a

persistent, static variable which is needed by one subroutine only. A subroutine needing such a variable
(e.g. a count variable which is incremented each time the subroutine is called), must either use an
operating system command, or all subroutines calling that subroutine (and their calling routines, etc.)
must expose the variable. The first of these solution is very inelegant and non-standard, while the
second is at best troublesome and at worst seriously limits the maximum practical sSREXKa

program. There are hopes that WaLUE() built-in function will fix this in future standards of

REXX.

Another important drawback witAROCEDURIE that it only works for internal subroutines; for
external subroutines it either do not work,RIROCEDURay not even be allowed on the main level
of the external subroutine. However, in internal subroutines inside the external subroutines,
PROCEDURE allowed, and works like usual.

8.16 The PULL Instruction
PULL[ template ];

This statement takes a line from the top of the stack and parse it into the variablesemiate It
will also translate the contents of the line to uppercase.

This statement is equivalent RPARSE UPPER PULL [ template ] with the same exception as
explained for theARGinstruction. See chapter [not yet written] for a description of parsing and chapter
Stack for a discussion of the stack.



8.17The PUSH Instruction
PUSH|[ expr ];

The PUSHinstruction will add a string to the stack. The string added will either be the result of the
expr, or the nullstring ifexpris not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first line normally extracted
from the stack. For a thorough discussion of the stack and the methods of manipulating it, see chapter
Stack for a discussion of the stack.

8.18The QUEUE Instruction
QUEUE[ expr J;

The QUEURRNstruction is identical to th®USHinstruction, except for the position in the stack where
the new line is inserted. While tH&8JSHputs the line on the "top" of the stack, t@&JEUENStruction
inserts it at the bottom of the stack (FIFO), or in the bottom of the topmost buffer, if buffers are used.

For further information, refer to documentation for fldSHinstruction, and see chaptstack for
general information about the stack.

8.19The RETURN Instruction
RETURN|[ expr ];

The RETURNRNstruction is used to terminate the current procedure level, and return control to a level
above. WherRETURNS executed inside one or more nesting constructDi@IF , WHENor
OTHERWISEhen the nesting constructs (in the procedural levels being terminated) are terminated too.

Optionally, an expression can be specified as an argument REM&IRNnstruction, and the string

resulting from evaluating this expression will be the return value from the procedure level terminated to
the caller procedure level. Only a single value can be returned. WE&WRNs executed with no

argument, no return value is returned to the caller, and tIi@&¥Nar AXcondition {44} is raised if the
subroutine was invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of S&€HRN
instructions. A routine can also have multiple entry points, i.e. several routine entry points can be
terminated by the sanRETURNNstruction. However, this is rarer than having multiple exit points,
because it is generally perceived that it creates less structured and readable code. Consider the
following code:



call foo

call bar

call baz

exit

foo:
if datatype(name, 'w') then

drop name

signal baz

bar:
name = 'foo’

baz:

if symbol('name’)=="VAR' then

say 'NAME currently has the value' name
else

say 'NAME is currently an unset variable'
return

Although this is hardly a very practical example, it shows how the main bulk of a routine can be used
together with three different entry points. The main part of the routine ig-th&atement having two
SAY statements. It can be invoked by calllR@Q BAR or BAZ

There are several restrictions to this approach. For instancBR@&CEDURS&atement becomes
cumbersome, but not impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return a return value only at
some of those exit points.

When a routine is located at the very end of a source file, there is an inipEGiURNNstruction after

the last explicit clause. However, according to good programming practice, you should avoid taking
advantage of this feature, because it can create problems later if you append new routines to the source
file and forget to change the impli@ETURNo an explicit one.

If the current procedure level is the main level of either the program or an external subroutine, then a
RETURNRNstruction is equivalent to aBXIT instruction, i.e. it will terminate th®EXX program or
the external routine. The table in tE&it section shows the actions of both RETURNNdEXIT
instructions depending on the context in which they occur.
The SAY Instruction
SAY [ expr ];
Evaluates the expressienpr, and prints the resulting string on the standard output strearplis
not specified, the nullstring is used instead. After the string has been written, an implementation-

specific action is taken in order to produce an end-of-line.

The SAYinstruction is roughly equivalent to



call lineout , expr

The differences are that there is no way of determining whether the printing was successfully completed
if SAYis used, and the special varialR&ESULTis never set when executingsAY instruction.

Besides, the effect of omittingxpris different. In SAA API, theRXSIOSAYsubfunction of the

RXSIO exit handler is able to trap @AY instruction, but not a call to theINEOUT() built-in

function. Further, th&lOTREAD¥ondition is never raised for@AY instruction.

8.20The SELECT/WHEN/OTHERWISE Instruction

SELECT; whenpart [ whenpart ...][ OTHERWISE [;]
[ statement ...]]END;

whenpart : WHEN expr [;] THEN [;] statement

This instruction is used for general purpose, nefftedtructures. Although it has certain similarities
with CASEin Pascal andwitch in C, itis in some respects very different from these. An example of
the general use of tHeELECTinstruction is:

select
when exprl then statementl
when expr2 then do
statement2a
statement2b
end
when expr3 then statement3
otherwise
ostatementl
ostatement2
end

When theSELECTinstruction is executed, the next statement aftelSBeECTstatement must be a
WHENMtatement. The expression immediately following\tid ENoken is evaluated, and must result

in a valid boolean value. If it is true (i.&), the statement following thEHENtoken matching the

WHENs executed, and afterwards, control is transferred to the instruction followirgNBtoken
matching theSELECTinstruction. This is not completely true, since an instruction may transfer control
elsewhere, and thus implicitly terminate tBELECTinstruction; e.gLEAVE EXIT, ITERATE,

SIGNAL, or RETURMNr a condition trapped by meth&@&GNAL.

If the expression of the fir&HENs not true (i.e. 0), then the next statement must be either another
WHEMr anOTHERWISEtatement. In the former case, the process explained above is iterated. In the
latter case, the clauses following tB&@ HERWISkIp to theENDstatement are interpreted.

It is considered &YNTAXcondition, {7} if no OTHERWISEtatement when none of tRéHEN
expressions evaluates to true. In general this can only be detected during runtime. However, if one of
theWHENIis selected, the absence of@QRHERWISES not considered an error.

By the nature of th&ELECTinstruction, theVHEBNI are tested in the sequence they occur in the source.
If more than on&VHENhave an expression that evaluates to true, the first one encountered is selected.



If the programmer wants to associate more than one statement WikkEdétatement, ® O/ENDpair

must be used to enclose the statements, to make them one statement conceptually. However, zero, one,
or more statements may be put after MEHERWISEvithout having to enclose them inZXJENDpair.

The clause delimiter is optional aft&@THERWISEand before and aftdiHEN

Example: Writing SWITCHas IF

Although CASEin Pascal andwitch in C are in general table-driven (they check an integer constant
and jumps directly to the correcase , based on the value of the consta®fELECTin REXX is not

so. It is a just a shorthand notation for nedtedinstructions. Thus 8WITCHinstruction can always

be written as set of nestéd statements; but for very lar@WVITCHstatements, the corresponding
nestedF structure may be too deeply nested for the interpreter to handle.

The following code shows how tH&WITCHstatement shown above can be written as a néBted
structure:

if exprl then statementl
else if expr2 then do

statement2a
statement2b
end else if expr3 then statement3
else
ostatementl
ostatement2
end
8.21The SIGNAL Instruction
SIGNAL={ string | symbol };

[VALUE] expr ;
{ON | OFF} condition [ NAME
{ string | symbol }];

The SIGNAL instruction is used for two purposes: (a) to transfer control to a named label in the
program, and (b) to set up a named condition trap.

The first form in the syntax definition transfers control to the named label, which must exist somewhere
in the program; if it does not exist,%YNTAXcondition {16} is raised. If the label is multiple defined,

the first definition is used. The parameter can be either a symbol (which is taken literally) or a string. If
it is a string, then be sure that the case of the string matches the case of the label where it is defined. In
practice, labels are in upper case, so the string should contain only uppercase letters too, and no space
characters.

The second form of the syntax is used if the second token of the instruc¥#LIJE Then, the rest of
the instruction is taken as a geneRit XX expression, which result after evaluation is taken to be the
name of the label to transfer control to. This form is really just a special case of the first form, where
the programmer is allowed to specify the label as an expression. Note that if the stept ofs such

that it can not be misinterpreted as the first form (i.e. the first tokexpfis neither a string nor a



symbol), then th& ALUEsubkeyword can be omitted.
Example: Transferring control to inside a loop

When the control of execution is transferred b$I&NAL instruction, all active loops at the current
procedural level are terminated, i.e. they can not continued later, although they can of course be
reentered from the normal start. The consequence of this is that the following code is illegal:

do forever
signal there
there:
nop
end

The fact that the jump is altogether within the loop does not prevent the loop from being terminated.
Thus, after the jump to the loop, tRENDinstruction is attempted executed, which will result in a
SYNTAXcondition {10}. However, if control is transferred out of the loop after the label, but before the
END then it would be legal, i.e. the following is legal:

do forever
signal there
there:
nop
signal after
end

after:

This is legal, simply because tE#Dinstruction is never seen during this script. Although both TRL1
and TRL2 allow this construct, it will probably be disallowed in ANSI.

Just as loops are terminated b8&NAL instruction,SELECTandIF instructions are also

terminated. Thus, itis illegal to jump to a location within a block of statements contained/HEN
OTHERWISEor IF instruction, unless the control is transferred out of the block before the execution
reaches the end of the block.

Whenever execution is transferred durin§I&NAL instruction, the special variab&GL is set to the
line number of the line containing tIBGNAL instruction, before the control is transferred. If this
instruction extends over several lines, it refers to the first of this. Note that even blanks are part of a
clause, so if the instruction starts with a line continuation, the real line of the instruction is different
from that line where the instruction keyword is located.

The third form of syntax is used when the second token in the instruction is @NarOFF. In both

cases must the third token in the instruction be then name of a condition (as a constant string or a
symbol, which is taken literally), and the setup of that condition trap is changed. If the second token is
OFF, then the trap of the named condition is disabled.

If the second token i©N then the trap of the named condition is enabled. Further, in this situation two
more tokens may be allowed in the instruction: the first mustiA®Eand the second must be the



name of a label (either as a constant string or a symbol, which is taken literally). If the five token form
is used, then the label of the condition handler is set to the named label, else the name of the condition
handler is set to the default, which is identical to the name of the condition itself.

Note that theNAMEsubclause of th&IGNAL instruction was a new construct in TRL2, and is not a
part of TRL1. Thus, older interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is not specified) is the
name of the condition, not the condition handler from the previous time the condition was enabled.
Thus, after the following code, the name of the condition handler for the con@WNTAXis
SYNTAXnot FOOBAR:

signal on syntax name foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to pdREXX code from a TRL2 interpreter to a TRL1 interpreter, is
that explicitly named condition traps are not supported. There exist ways to circumvent this, like:

syntax_name ='SYNTAX_HANDLER'

signal on syntax

if 1 + 2 then /* will generate SYNTAX condition */
nop

syntax:

oldsigl = sigl

signal value translate(syntax_name)

syntax_handler:
say 'condition at line' oldsigl 'is being handled...'
exit

Here, a "global" variable is used to store the name of the real condition handler, in the absence of a field
for this in the interpreter. This works fine, but there are some problems: the va®#ghl€AX_NAME

must be exposed to everywhere, in order to be available at all times. It would be far better if this value
could be stored somewhere from which it could be retrieved from any part of the script, no matter the
current state of the call-stack. This can be fixed with programs3ik® BALWnder VM/CMS and

putenv under Unix.

Another problem is that this destroys the possibility of setting up the condition handler with the default
handler name. However, to circumvent this, add a BEFAULT_SYNTAX_HANDLH&bel which
becomes the new name for the @ NTAXabel.

Further information about conditions and condition traps are given in ch@ptetitions.



8.22The TRACE Instruction

TRACE[ number | setting |[VALUE] expr ];
setting =A|S|C|E|F|I|L|N|JO|R]|S

The TRACHENstruction is used to set a tracing mode. Depending on the current mode, various levels of
debugging information is displayed for the programmer. Also interactive tracing is allowed, where the
user can re-execute clauses, change values of variables, or in general, B¥¢(dteode interactively
between the statements of tREXX script.

If settingis not specified, then the default valbies assumed. If the second token aff®ACESs

VALUE then the remaining parts of the clause is interpreted as an expression, which value is used as
the trace setting. Else, if the second token is either a string of a symbol, then it is taken as the trace
setting; and a symbol is taken literally. In all other circumstances, whatever follows thelieR&PE S

taken to be an expression, which value is the trace setting.

If a parameter is given to thERACEnNstruction, and the second token in the instruction is\tUE
then there must only be one token affl@ACE and it must be either a constant string or a symbol
(which is taken literally). The value of this token can be either a whole number or a trace setting.

If is it a whole number and the number is positive, then the number specifies how many of interactive
pauses to skip. This assumes interactive tracing; if interactive tracing is not enabl&RATE

instruction is ignored. If the parameter is a whole, negative number, then tracing is turned off
temporarily for a number of clauses determined by the absolute vailuerdier

If the second token is a symbol of string, but not a whole number, then it is taken to be one of the
settings below. It may optionally be preceded by one or more question farkdracters. Of the rest

of the token, only the first letter matter; this letter is translated to upper case, and must be one of the
following:

[Al

(All) Traces all clauses before execution.
[d

(Commands) Traces all command clauses before execution.
[El

(Errors) Traces any command that would raiseER&RORondition (whether enabled or not)
after execution. Both the command clause and the return value is traced.

[FI
(Failures) Trances any command that would raisd-thi URE condition (whether enabled or
not) after execution. Both the command clause and the return value is traced.

[1]
(Intermediate) Traces not only all clauses, but also traces all evaluation of expressions; even
intermediate results. This is the most detailed level of tracing.



[L]

(Labels) Traces the name of any label clause executed; whether the label was jumped to or not.

[N

(Normal or Negative) This is the same as Balure  setting.
[C

(Off) Turns off all tracing.
[R

(Results) Traces all clauses and the results of evaluating expressions. However, intermediate
expressions are not traced.

TheErrors andFailures  settings are not influenced by whether BERRORr FAILURE
conditions are enabled or not. Th@¥RACEsettings will trace the command and return value after the
command have been executed, but before the respective condition is raised.

The levels of tracing might be set up graphically, as in the figure below. An arrow indicates that the
setting pointed to is a superset of the setting pointed from.

[-> Failures -> Errors -> Commands
Off \

\----- > Labels -------- > All -> Results -> Intermediate
Hierarchy of TRACEsettings

According to this figurelntermediate Is a superset dResult , which is a superset &Il .
Further,All is a superset of botBommandsandLabels . Commandsis a superset dErrors
which is a superset ¢failures . BothFailure andLabels are supersets @ff . Actually,
Commands strictly speaking not a supersetixfrors , sinceErrors traces after the command,
while Commandraces before the command.

Scan is not part of this diagram, since it provides a completely different tracing functionality. Note that
Scan is part of TRL1, but was removed in TRL2. It is not likely to be part of neREXX
interpreters.

8.23The UPPER Instruction
UPPER symbol [ symbol [ symbol [...] ]];

The UPPER instruction is used to translate the contents of one or more variables to uppercase. The
variables are translated in sequence from left to right.

Each symbol is separated by one or more blanks.

While it is more convenient and probably faster than individual calls to TRANSLATE, UPPER is not
part of the ANSI standard and is not common in other interpreters so should be avoided. It is provided



to ease porting of programs from CMS.

Only simple and compound symbols can be specified. Specification of a stem variable results in an
error.

9 Operators

An operator represents an operation to be carried out between two terms, such as division. There are 5
types of operators in thiRexx Language:Arithmetig AssignmentComparative Concatenationand
Logical Operators. Each is described in further details below.

9.1 Arithmetic Operators

Arithmetic operators can be applied to numeric constantsaxd variables that evaluate to valid
Rexx numbers. The following operators are listed in descreasing order of precedence:

- Unary prefix. Same a3 - number.

+ Unary prefix. Same a3 + number.

b Power

* Multiply

/ Divide

% Integer divide. Divide and return the integer part of the division.

/l Remainder divide. Divide and return the remainder of the
division.

+ Add

- Subtract.

9.2 Assignment Operators

Assignment operators are a means to change the value of a variable. Rexx only has one assignment
operator.

= Assign the value on the right side of the "="to the variable on
the left.

9.3 Comparative Operators

The Rexx comparative operators compare two terms and return the logicallvathe result of the
comparison is true, d if the result of the comparison is false. The non-strict comparative operators

will ignore leading or trailing blanks for string comparisons, and leading zeros for numeric
comparisons. Numeric comparisons are made if both terms to be compared are valid Rexx numbers,
otherwise string comparison is done. String comparisons are case sesitive, and the shorter of the two
strings is padded with blanks.

The following lists the non-strict comparative operators.

= Equal

=, = Not equal

> Greater than.
< Less than.

>= Greater than or equal.



<= Less than or equal
<>, >< Greater than or less than. Same as Not equal.

The following lists the strict comparative operators. For two strings to be considered equal when using
the strict equal comparative operator, both strings must be the same length.

== Strictly equal

\==, A== Strictly not equal.

>> Strictly greater than.

<< Strictly less than.

>>= Striclty greater than or equal.
<<= Strictly less than or equal.

9.4 Concatenation Operators

The concatenation operators combine two strings to form one, by appending the seond string to the
right side of the first. Th&Rexx concatenation operators are:

(blank) Concatenation of strings with one space between them.
(abuttal)  Concatenation of strings with no intervening space.
I Concatenation of strings with no intervening soace.

Examples:
a=abc;b ="def'
Sayab -> results in ‘abc def'
Sayal|b -> results in ‘abcdef'
Say a'xyz' -> results in ‘abcxyz'

9.5 Logical Operators

Logical operators work with thRexx strings 1 and 0, usually as a result of a comparative operator.
These operators also only result in logical TRUE; 1 or logical FALSE; O.

& And Returns 1 if both terms are 1.

| Inclusive or Returns 1 if either term is 1.

&& Exclusive or Returns 1 if either term is 1 but NOT both terms.
\ Logical not Reverses the result; 0 becomes 1 and 1 becomes 0.

10 Implementation-Specific Information

10.1 Miscellaneous

OPTIONSsettings
Are saved across subroutines, just like other pieces of information, like conditions settings,
NUMERIGsettings, etc. See chapteptions for more information abouDPTIONSsettings.

Return value
To the program that callegdegina is limited to being an integer, when this is required by the
operating systems. All current implementations are for operating systems that require this.



Default return value
From aREXX program is0 under most systems, specifically Unix, OS/2, MS-DOS. Here,
VMS deviates, since it usdsas the default return value. Usifgunder VMS tends to make
VMS issue a warning saying that no error occurred.

Transferring control into a loop
Works fine inRegina, as long as n&NDQ THEN ELSE, WHENor OTHERWISHnstructions
are executed afterwards; unless the normal entrypoint for the construct has been executed after
the transfer of control.

PARSE SOURCE information

PARSE VERSIONinformation

Last line of source code
Is implicitly taken to be terminated by an end-of-line sequené&sigina, even if such a
sequence is not present in the source code dREVEX script. This applies only to source code.
Also, the end-of-string INTERPRETSstrings is taken to be implicitly terminated by an end-of-
line character sequence.

Moving code MS-DOS to Unix
Is simplified byRegina, since it will accept the MS-DOS type end of line sequences as valid.
l.e. any Ctrl-M in front of a Ctrl-J in the source file is ignored on Unix systemRégina.
This applies only to source code.

Labels in INTERPRET
Is handled byregina in the following way: A label can occur inside 84TERPRETSstring,
but it is ignored, and can never be jumped to BI&NAL or CALL instruction.

10.2Implementation of the ADDRESS environment

10.2.Windows
ADDRESS SYSTEM

Regina uses the system() library call. This is typically done by the C code layer invoking something like
cmd.exe /c YourCommand

Every character of your command is passed to the command processor, which name is often
command.com in 16-bit systems depending on the value of COMSPEC.

Unfortunately the invoked Microsoft interpreter doesn't like double quotes more than once if the
program part of your command needs to be surrounded by double quotes. If you need to supply blanks
within arguments you should use single quotes except for the program name part itself! This is a valid
example with two arguments:

"C:\Program Files\Test\test.exe" 'arg 1' 'arg 2'

The characters of the command line will not be interpreted by the command processor except when
determining the command name itself. The choping in different word groups aka arguments is done by
the process startup code of the called command itself. Thus, some code in test.exe creates the two
different arguments without quotes for the above example in the very beginning.

Regina will never try to change any character passed to the SYSTEM environment.



ADDRESS PATH or ADDRESS CMD

Regina doesn't try to simulate the above buggy design to determine the first part of the command line.
The command line is passed to the program completely; the first argument in the command line is the
program name part. This part is either the first word or the first word group surrounded by a pair of
single or double quotes. You can supply these quote signs inside of the program part by using the
command interpreter's escape character """ (circumflex).

Examples:

"C:\Program Files\Test\test.exe" ‘arg 1' ‘arg 2'
"C:\Program Files\Test\test.exe" "arg 1" "arg 2"
are equivalent.

"C:\joe's nickname is "'gonzo™"\prop.exe
will hopefully call the program

C:\joe's nickname is "gonzo"\prop.exe
10.2.2Jnix

ADDRESS SYSTEM

arg 1' "arg 2"

Regina uses the system() library call. This is typically done by the C code layer invoking something
like

sh -c YourCommand
Every character of your command is passed to the shell.

The shell itself chops the command into different arguments according to the rules the shell itself has.
The grouping of words into arguments follows different rules depending on the shell used. Read the
manual pages for the shell being used.

The shell passes these arguments as an array of strings to the program.

Generally, single or double paired quotes collect the arguments and the quotation marks are removed. A
backslash (\) can be used to hide a quote from being interpreted. One kind of quote can be placed in a
pair of the other kind of quotes without a special interpretation.

Regina will never try to change any character passed to the SYSTEM environment.
ADDRESS PATH or ADDRESS CMD

Regina tries to simulate the behaviour of the shell. As already mentioned, the command line is choped
into arguments. The first argument will be the program name.

An argument is either a single word or a collection of words between delimiters which will be removed
before passing the arguments to the command.

Example:

mount /dev/fd0 '/mnt/floppy disk’

has three arguments. The program mount won't see the single quotes.

One can use either single or double quotes. Although quotes must come paired for each argument,
different arguments may have different quotation signs.
See the following example.

A quote can be enclosed within a quoted argument of a different kind without masking. Masking is
needed if a quote of one kind should be placed within a quotation of the same kind. A backslash must



be used for it. A backslash always quotes the next character including a backslash.
Example:

"Joe's" 'garage\'s' empty

is treated agoe's garage's empty with three arguments.

Different arguments without intermediate word delimiter are treated as one argument.

Example:
"ab™cd'
IS equivalent tabcd .

10.2.30S/2
ADDRESS SYSTEM

Regina uses the system() library call. This is typically done by the C code layer invoking something
like

cmd.exe /c YourCommand
Every character of your command is passed to the command processor.

If you need to supply blanks within arguments you should use single or double quotes. You should
prefer double quotes since not all programs recognize single quotes. There is an escape character to
hide any special meaning. It is the circumflex (?).

The characters of the command line will not be interpreted by the command processor except when
determining the command name itself. Only the command is split off by cmd.exe and the rest of the
command line is put in a second string. The choping in different word groups aka arguments is done by
the process startup code of the called command itself. Thus, some code in a called program creates the
two different arguments without any surrounding quotes.

The behaviour may be different in different interpreter. Chopping the arguments in two pieces instead
of the correct number seems not to be designed very well, since OS/2 has the possibility to start a
program with different word groups.

Regina will never try to change any character to passed to the SYSTEM environment.
ADDRESS PATH or ADDRESS CMD

Regina tries to be conforming to the default command interpreter and chops the command line in two
pieces, the program name and the arguments. The arguments will be passed without changes. The
program part may be delimited by a paired single or double quote. The circumflex (*) may be used to
hide a character from interpretion as a quote or something else. Without quotation or hiding the first
word is used as the program name part.

Examples:

"C:\joe's nickname is "'gonzo™"\prop.exe
will hopefully call the program

C:\joe's nickname is "gonzo"\prop.exe

arg 1" "arg 2"

10.3List of All Environment Names in Use
Regina supports the following environments:



ENVIRONMENT
OS2ENVIRONMENT
SYSTEM

PATH

COMMAND

CMD

10.4Regina Restricted Mode

Many language interpreters provide a mechanism where code executed within that interpreter is limited
to affecting the environment of the interpreter and cannot change the external environment in which the
interpreter runs.

Restricted mode is used in situations where you need to guarantee that the autRexxfaogram is
unable to affect the user's environment.

Situations where a restricted mode is applicable include, using Regina as a database procedural
language, or as a language plugin for a Web browser.

Features oRegina that are disabled in restricted mode are:
LINEOUT, CHAROUT, POPEN, RXFUNCADD BIFs
"OPEN WRITE", "OPEN BOTH" subcommands of STREAM BIF
The "built-in" environments eg. SYSTEM, CMD or PATH of ADDRESS command
Setting the value of a variable in the external environment with VALUE BIF.
Calling external functions

To runRegina in restricted mode, you can start tRegina interpreter from the command line with the
"-r' switch, or when using the Rexx SAA ARDRing RXRESTRICTED to the CallType parameter of
RexxStart() function.

10.5Native Language Support
Regina provides native language support in the following ways:
* Error messages can be displayed in a user-selectable native language.

10.5.Error Messages

All native language error messages are contained in binary files (*.mtb) that are built with the Regina
executables from source files (*.mts).

The mechanism Regina uses to determine what native language to use to display error messages
depends on the operating system.

On EPOC32, the language is supplied when installing; the selected language is contained in
default.mtb. On all other platforms, Regina uses environment variables if you want to use a language
other than English.

The English language messages are built into the interpreter for two reasons:

1. to staisfy the ANSI requirement that error messages can be obtained in English using the
ERRORTEXT BIF and specifying a value of 'S’ for argument 2.

2. used as a fallback position when no native langugae support is available



10.5.2mplementation
To specify a native language, up to 2 environment variables are used.

REGINA_LANG environment variable is set to an ISO 639, 2 character language abbreviation as
defined in the following table.

REGINA_LANG Language Translation By

de German Floran Grosse-Coosmann
es Spanish Pablo Garcia-Abia

no Norwegian Vidar Tysse

pt Portuguese Susana and Brian Carpenter

(to get your name in this table, contact the maintainer with the language you wish to support)

If REGINA_LANG is not set, the default isn. The case of the value is irrelevait\ is the same as
en.

REGINA LANG_DIR is required if Regina does not know where the language files will be at
runtime.

Any binary distribution that includes an installation routine; RPM, Windows InstallShield or EPOC32,
will set the location of the .mtb files automatically. Similarly building and installing Regina on Unix-
like platforms using configure;make install combination will also set the location automatically. All
other platforms will require this environment variable to bet set manually.



REXX Built-in Functions

This chapter describes tHREXX library of built-in functions. It is divided into three parts:

e First a general introduction to built-in functions, pointing out concepts, pitfalls, parameter
conventions, peculiarities, and possible system dependencies.

e Then there is the reference section, which describes in detail each function in the built-in library.

* Atthe end, there is documentation that describes where andRemwa differs from standard
REXX, as described in the two other sections. It also IRegina’'s extensions to the built-in
library.

It is recommended that you read the first part on first on first reading of this documentation, and that
you use the second part as reference. The third part is only relevant if you are goingRegise.

11 General Information

This section is an introduction to the built-in functions. It describes common behavior, parameter
conventions, concepts and list possible system-dependent parts.

11.1The Syntax Format

In the description of the built-in functions, the syntax of each one is listed. For each of the syntax
diagrams, the parts written italic font names the parameters. Terms enclosg¢dsquare brackels
denote optional elements. And tbeurier  font is used to denote that something should be written as
is, and it is also used to mark output from the computer. At the right of each function syntax is an
indication of where the function is defined.

(ANSI) ANSI Standard foREXX 1996
(EXT-ANSI) ExtendedREXX

(SAA) System Application Architecture - IBM
(0S/2) IBM OS/2 REXX

(CMS) REXX on CMS

(REGINA) Additional function provided byregina

Note that in standarBEXX it is not really allowed to let the last possible parameter be empty if all
commas are included, although some implementations allow it. In the following calls:

say D2X(61)
say D2X(61,1)
say D2X(61,)

The two first return the string consisting of a single chara&tavhile the last should return error. If the
last argument of a function call is omitted, you can not safely include the immediately preceding
comma.

11.2Precision and Normalization

The built-in library uses its own internal precision for whole numbers, which may be the range from



-999999999 to +999999999. That is probably far more than you will ever need in the built-in functions.
For most functions, neither parameters nor return values will be effected by any seltiod//&RICIn
the few cases where this does not hold, it is explicitly stated in the description of the function.

In general, only parameters that are required to be whole numbers are used in the internal precision,
while numbers not required to be whole numbers are normalized according to the seltloyIBERIC

before use. But of course, if a parameter is a numeric expression, that expression will be calculated and
normalized under the settings SMUMERICoefore it is given to the function as a parameter.

11.3Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used for parameters, to indicate
something about the type and use of that parameter, e.g. valid range. To avoid repeating the same
information for the majority of the functions, some common "rules" for the standard parameter names
are stated here. These rules implicitly apply for the rest of this chapter.

Note that the following list does not try to classify any genB@KX "datatypes”, but provides a
binding between the sub-datatypes of strings and the methodology used when naming parameters.

* Lengthis a non-negative whole number within the internal precision of the built-in functions.
Whether it denotes a length in characters or in words, depends on the context.

» Stringcan be any normal character string, including the nullstring. There are no further
requirements for this parameter. Sometimes a string is called a "packed string" to explicitly show
that it usually contains more than the normal printable characters.

» Optionis used in some of the functions to choose a particular action, dXATE() to set the
format in which the date is returned. Everything except the first character will be ignored, and case
does not matter. note that the string should consequently not have any leading space.

» Startis a positive whole number, and denotes a start position in e.g. a string. Whether it refers to
characters or words depends on the context. The first position is always nuribargess
explicitly stated otherwise in the documentation. Note that when return values denotes positions,
the numbeD is generally used to denote a nonexistent position.

» Padcharmust be a string, exactly one character long. That character is used for padding.

« Streamids a string that identifies REXX stream. The actual contents and format of such a string
Is implementation dependent.

* Numbers any validREXX number, and will be normalized according to the settingd WMERIC
before it is used by the function.

If you see one of these names having a number appended, that is only to separate several parameters of
the same type, e.gtringl, string2etc. They still follow the rules listed above. There are several

parameters in the built-in functions that do not easily fall into the categories above. These are given
other names, and their type and functionality will be described together with the functions in which they
occur.



11.4Error Messages

There are several errors that might occur in the built-in functions. Just one error message is only
relevant for all the built-in functions, that is number 4@dorrect call to routing. In fact, an
implementation oREXX can choose to use that for any problem it encounters in the built-in functions.
Regina also provides further information in errors in built-in functions, as defined by the ANSI
standard. This additional information is provided as sub-error messages and usually provide a more
detailed explanation of the error.

Depending on the implementation, other error messages might be used as well. Error message number
26 (Invalid whole numbérmight be used for any case where a parameter should have been a whole
number, or where a whole number is out of range. Itis implied that this error message can be used in
these situations, and it is not explicitly mentioned in the description of the functions.

Other general error messages that might be used in the built-in functions are error nunideat 41 (
arithmetic conversionfor any parameter that should have been a \REXX number. The error
message 13ifvalid binary or hexadecimal strihgnight occur in any of the conversion routines that
converts from binary or hexadecimal formB2K() , X2B() , X2C() , X2D() ). And of course the
more general error messages like error messaly@mbhine resources exhausjaran occur.

Generally, it is taken as granted that these error messages might occur for any relevant built-in function,
and this will not be restated for each function. When other error messages than these are relevant, it will
be mentioned in the text.

In REXX, itis in general not an error to specify a start position that is larger than the length of the
string, or a length that refers to parts of a string that is beyond the end of that string. The meaning of
such instances will depend on the context, and are described for each function.

11.5Possible System Dependencies

Some of the functions in the built-in library are more or less system or implementation dependent. The
functionality of these may vary, so you should use defensive programming and be prepared for any
side-effects that they might have. These functions include:

» ADDRESS()is dependent on your operating system and the implementatREXK, since there
is not standard for naming environments.

* ARG() atthe main level (not in subroutines and functions) is dependent on how your
implementation handles and parses the parameters it got from the operating system. It is also
dependent on whether the user specifies the -a command line switch.

 BITAND() ,BITOR() andBITXOR() are dependent on the character set of your machine.
Seemingly identical parameters will in general return very different results on ASCIl and EBCDIC
machines. Results will be identical if the parameter was given to these functions as a binary or
hexadecimal literal.

« C2X(),C2D(),D2C() andX2C() will be effected by the character set of your computer since
they convert to or from characters. Note tha€#X() andC2D() get their first parameter as a
binary or hexadecimal literal, the result will be unaffected by the machine type. Also note that the
functionsB2X() , X2B() , X2D() andD2X() are not effected by the character set, since they do



not use character representation.

CHARIN() , CHAROUT() CHARS(), LINEIN() ,LINEOUT() ,LINES() andSTREAM() are

the interface to the file system. They might have system dependent peculiarities in several ways.
Firstly, the naming of streams is very dependent on the operating system. Secondly, the operation of
stream is very dependent on both the operating system and the implementation. You can safely
assume very little about how streams behave, so carefully read the documentation for your
particular implementation.

CONDITION() is dependent on the condition system, which in turn depends on such
implementation dependent things as file I/O and execution of commands. Although the general
operation of this function will be fairly equal among systems, the details may differ.

DATATYPE() andTRANSLATE() know how to recognize upper and lower case letters, and how
to transform letters to upper case. If yREXX implementation supports national character sets,
the operation of these two functions will depend on the language chosen.

DATE() has the optionMonth , Weekday andNormal , which produce the name of the day or
month in text. Depending on how your implementation handles national character sets, the result
from these functions might use the correct spelling of the currently chosen language.

DELWORD() SUBWORD()WORD() WORDINDEX() WORDLENGTH(WORDPOS(and
WORDS()requires the concept of a "word", which is defined as a non-blank characters separated by
blanks. However, the interpretation of what is a blank character depends upon the implementation.

ERRORTEXT()might have slightly different wordings, depending on the implementation, but the
meaning and numbering should be the same. However, note that some implementations may have
additional error messages, and some might not follow the standard numbering. Error messages may
also be returned in the user's native language.

QUEUED()refers to the system specific concept of a "stack”, which is either internal or external to
the implementation. The result of this function may therefore be dependent on how the stack is
implemented on your system.

RANDOM()will differ from machine to machine, since the algorithm is implementation dependent.

If you set the seed, you can safely assume that the same interpreter under the same operating system
and on the same hardware platform will return a reproducible sequence. But if you change to

another interpreter, another machine or even just another version of the operating system, the same
seed might not give the same pseudo-random sequence.

SOURCELINE() has been changed betwdeBXX language level 3.50 and 4.00. In 4.00 it can
returnO if the REXX implementation finds it necessary, and any request for a particular line may
get a nullstring as result. Before assuming that this function will return anything useful, consult the
documentation.

TIME() will differ somewhat on different machines, since it is dependent on the underlying
operating system to produce the timing information. In particular, the granularity and accuracy of
this information may vary.



*  VALUE() will be dependent on implementation and operating system if it is called with its third
parameter specified. Consult the implementation specific documentation for more information
about how each implementation handles this situation.

«  XRANGE() will return a string, which contents will be dependent on the character set used by your
computer. You can safely make very few assumptions about the visual representation, the length, or
the character order of the string returned by this function.

As you can see, eveREXX interpreters that are within the standard can differ quite a lot in the built-in
functions. Although the points listed above seldom are any problem, you should never assume anything
about them before you have read the implementation specific documentation. Failure to do so will give
you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow the standard completely.
So, in fact, you should never assume anything at all. Sorry ...

11.6Blanks vs. Spaces

Note that the description differs between "blanks" and the <space> character. A blank is any character
that might be used as "whitespace" to separate text into groups of characters. The <space> character is
only one of several possible blanks. When this text says "blank™ it means any one from a set of
characters that are used to separate visual characters into words. When this text says <space>, it means
one particular blank, that which is generally bound to the spacebar on a normal computer keyboard.

All implementation can be trusted to treat the <space> character as blank. Additional characters that
might be interpreted as blanks are <tab> (horizontal tabulator), <ff> (formfeed), <vt> (vertical
tabulator), <nl> (newline) and <cr> (carriage return). The interpretation of what is blank will vary
between machines, operating systems and interpreters. If you are using support for national character
sets, it will even depend on the language selected. So be sure to check the documentation before you
assume anything about blank characters.

Some implementations use only one blank character, and perceives the set of blank characters as
equivalent to the <space> character. This will depend on the implementation, the character set, the
customs of the operating system and various other reasons.

12 REXX Standard Built-in Functions

Below follows an in depth description of all the functions in the library of built-in functions. Note that
all functions in this section are available on all port®RRefgina. Each function is designated as being
part of the ANSI standard, or from other implementations. Following sections describe those built-in
functions that are available on specific ports of Regina, or when Regina is built with certain switches.

ABBREV(long,short[,length]) (ANSI)

Returnsl if the stringshortis strictly equal to the initial first part of the stringng, and return®
otherwise. The minimum length whighortmust have, can be specifiedlaagth If lengthis
unspecified, no minimum restrictions for the lengttsbbrtapplies, and thus the nullstring is an
abbreviation of any string.



Note that this function is case sensitive, and that leading and trailing spaces are not stripped off before
the two strings are compared.

ABBREV('Foobar','Foo’) 1
ABBREV('Foobar','Foo',4) 0 /*Too short */
ABBREV('Foobar’,'foo’) 0 /*Different case */
ABS(number) (ANSI)

Returns the absolute value of thember which can be any valiBREXX number. Note that the result
will be normalized according to the current settinddd MERIC

ABS(-42) 42
ABS(100) 100
ADDRESS() (ANSI)

Returns the current default environment to which commands are sent. The value is set with the
ADDRESSIlause, for more information, see documentation on that clause.

- ADDRESS)() UNIX /* Maybe */ |

ARG([argnol[,option]]) (ANSI)

Returns information about the arguments of the current procedure level. For subroutines and functions
it will refer to the arguments with which they were called. For the "main” program it will refer to the
arguments used when tREXX interpreter was called.

Note that under some operating systeRIEXX scripts are run by starting tiREXX interpreter as a
program, giving it the name of the script to be executed as parameter. THREX)€interpreter might
process the command line and "eat" some or all of the arguments and options. Therefore, the result of
this function at the main level is implementation dependent. The parts of the command line which are
not available to th&EXX script might for instance be the options and arguments meaningful only to

the interpreter itself.

Also note that how the interpreter on the main level divides the parameter line into individual
arguments, is implementation dependent. The standard seems to define that the main procedure level
can only get one parameter string, but don't count on it.

For more information on how the interpreter processes arguments when called from the operating
system, see the documentation on how to riREXX script.

When called without any parametefRRG() will return the number of comma-delimited arguments.
Unspecified (omitted) arguments at the end of the call are not counted. Note the difference between
using comma and using space to separate strings. Only comma-separated arguments will be interpreted
by REXX as different arguments. Space-separated strings are interpreted as different parts of the same
argument.



Argnomust be a positive whole number. If ordygnois specified, the argument specified will be
returned. The first argument is numbered Jartjnorefers to an unspecified argument (either omitted
or argnois greater than the number of arguments), a nullstring is returned.

If optionis also specified, the return value will heor O, depending on the value optionand on
whether the numbered parameter was specified or not. Option can be:

[C
(Omitted) Returnd if the numbered argument was omitted or unspecified. Other@ise,
returned.
[El
(Existing) Returnd if the numbered argument was specified, @ratherwise.
If called as:
CALL FUNCTION 'This''is', 'a',, 'test',,
ARG() 4 [*Last parameter omitted */
ARG(1) ‘This is'
ARG(2) ‘a’
ARG(3) "
ARG(9) " [*Ninth parameter doesn't exist*/
ARG(2,'E) 1
ARG(2,'0"
ARG(3,'E") 0 /*Third parameter omitted */
ARG(9,'0" 1
B2X(binstring) (ANSI)

Takes a parameter which is interpreted as a binary string, and returns a hexadecimal string which
represent the same informatiddinstringcan only contain the binary digi@Gsand1. To increase
readability, blanks may be includedbmstringto group the digits into groups. Each such group must
have a multiple of four binary digits, except from the first group. If the number of binary digits in the
first group is not a multiple of four, that group is padded at the left with up to three leading zeros, to
make it a multiple of four. Blanks can only occur between binary digits, not as leading or trailing
characters.

Each group of four binary digits is translated into on hexadecimal digit in the output string. There will
be no extra blanks in the result, and the upper six hexadecimal digits are in upper case.

B2X('0010 01011100 0011 '26C3'
B2X('100101 11111111 '26FF'
B2X('0100100 0011") '243'




BEEP(frequency],duration]) (0S/2)

Sounds the machine's bell. Tiiequencyandduration(in milliseconds) of the tone are specified. If no
durationvalue is specified, it defaults to 1. Not all operating systems can sound their bells with the
given specifications.

- BEEP(50,1000) |
BITAND(stringl1[,[string2][,padchar]]) (ANSI)

Returns the result from bytewise applying the operator AND to the characters in the two sthimgs
andstring2 Note that this is not the logical AND operation, but the bitwise AND operatirning2
defaults to a nullstring. The two strings are left-justified; the first characters in both strings will be
AND'ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is definedfmdittear
character. If it is undefined, the remaining part of the longer string is appended to the result after all
characters in the shorter string have been processeadt¢haris defined, each char in the remaining
part of the longer string is logically AND'ed with tipadchar(or rather, the shorter string is padded on
the right length, usingadchal).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will be
dependent on the character set used. To lowercase a string in EBCDEITA$¢D() with apadchar
value of'bf'x . To do the same in ASCII, u#dTOR() with apadcharvalue of'20'x

BITAND('123456', '3456'X) '101456'

BITAND('foobar',, 'df'x) 'FOOBAR' /*For ASCII*/

BITAND('123456'%, '3456'X, 'f0'X) '101450'x
BITOR(stringl[,[string2][,padchar]]) (ANSI)

Works like BITAND() , except that the logical function OR is used instead of AND. For more
information seBITAND() .

\ BITOR('123456'%, '3456'X) '367656'% \
BITOR(FOOBAR',, '20'x) ‘foobar' /*For ASCII */
BITOR('123456'%, '3456'X, 'f0'X) '3676F6'X
BITXOR(stringl[,[string2][,padchar]]) (ANSI)

Works like BITAND() , except that the logical function XOR (exclusive OR) is used instead of AND.
For more information seBITAND() .

BITXOR('123456'%, '3456'X) '266256'X
BITXOR('FooBar',, '20'x) fOObAR' /*For ASCII */
BITXOR('123456'%, '3456'X, 'f0'X) '2662A6'X




BUFTYPE() (CMS)

This function is used for displaying the contents of the stack. It will display both the string and notify
where the buffers are displayed. It is meant for debugging, especially interactive, when you need to
obtain information about the contents of the stack. It always returns the nullstring, and takes no
parameters.

Here is an example of the output from calliBY FTYPHEnote that the second and fourth buffers are
empty):

==> Lines: 4

==> Buffer: 3

"fourth line pushed, in third buffer"
==> Buffer: 2

==> Buffer: 1

“third line pushed, in first buffer”

==> Buffer: 0

"second line pushed, in 'zeroth' buffer”
"first line pushed, in 'zeroth' buffer"
==> End of Stack

C2D(string[,length]) (ANSI)

Returns an whole number, which is the decimal representation of the packedsingginterpreted

as a binary number. Iéngth(which must be a non-negative whole number) is specified, it denotes the
number of characters string to be converted, angtringis interpreted as a two's complement
representation of a binary number, consisting of the length rightmost charadeisgnif lengthis

not specifiedstring is interpreted as an unsigned number.

If lengthis larger than the length string, stringis sign-extended on the left. l.e. if the most
significant bit of the leftmost char @itring is set,stringis padded withiff'’x ~ chars at the left side. If
the bitis not set00'x  chars are used for padding.

If lengthis too short, only théengthrightmost characters string are considered. Note that this will
not only in general change the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.

If it is not possible to express the final result as a whole number under the current settiigsIBRIC
DIGITS , an error is reported. The number to be returned will not be stored in the internal
representation of the built-in library, so size restrictions on whole numbers that generally applies for
built-in functions, do not apply in this case.



C2D('fo0") '6713199' /*For ASCII machines */
C2D('103'x) '259'
C2D('103'%,1) 3
C2D('103'%,2) '259'
C2D('0103'%,3) '259'
C2D('ffff'x,2) -1
C2D('ffff'x) '65535'
C2D(’ffff'x,3) '65535'
C2D('fff9'x,2) '-6'
C2D('ff80'%,2) '-128'
C2X(string) (ANSI)

Returns a string of hexadecimal digits that represents the charactersstimggConverting is done

bytewise, the six highest hexadecimal digits are in uppercase, and there are no blank characters in the
result Leading zeros are not stripped off in the result. Note that the behavior of this function is
dependent on the character set that your computer is running (e.g. ASCIl or EBCDIC).

C2X('ffff'x) 'FFFF

C2X('Abc’) '416263' /*For ASCII Machines */

C2X('1234'%x) 1234

C2X('011 0011 1101'b) ‘033D’
CD(directory) (REGINA)
CHDIR(directory) (REGINA)

Changes the current process's directory talthextoryspecified. A more portable, though non-
standard alternative is to use the DIRECTORY BIF.

CHDIR('/tmp/aa’) /* new directory now /tmp/aa */
CENTER(string, length [, padchar ] ) (ANSI)
CENTRE(string, length [, padchar ] ) (ANSI)

This function has two names, to support both American and British spelling. It will cetniteg in a
string total of lengthengthcharacters. llength(which must be a non-negative whole number) is
greater than the length sfring, stringis padded wittpadcharor <space> ipadcharis unspecified. If
lengthis smaller than the length string character will be removed.

If possible, both ends aitring receives (or loses) the same number of characters. If an odd number of
characters are to be added (or removed), one character more is added to (or removed from) the right end
than the left end o$tring.



CENTER('Foobar',10) ' Foobar '
CENTER('Foobar’,11) " Foobar '
CENTRE('Foobar',3) ‘oob’
CENTER('Foobar',4) ‘ooba’
CENTER('Foobar',10,™*") **Foobar**'
CHANGESTR(needle, haystack, newneedle ) (ANSI)

The purpose of this function is to replace all occurrencexefllein the stringhaystackwith
newneedleThe function returns the changed string.

If haystackdoes not containeedle then the originahaystacks returned.

CHANGESTR('a','fred",'c") 'fred'
CHANGESTR(",",'x") )
CHANGESTR('a','abcdef’,'x’) 'Xbcdef'
CHANGESTR('0','0,'1") 1
CHANGESTR('a','def','xyz") ‘def'
CHANGESTR('a',",'x") "
CHANGESTR(",'def','xyz") 'def’
CHANGESTR('abc','abcdef','xyz") 'xyzdef'
CHANGESTR((‘abcdefg’,'abcdef’,'xyz") ‘abcdef'
CHANGESTR(‘abc','abcdefabccdabced’,'z") 'zdefzcdzd'
CHARIN([streamid][,[start][,length]]) (ANSI)

This function will in general read characters from a stream, and return a string containing the characters
read. Thestreamidparameter names a particular stream to read from. If it is unspecified, the default
input stream is used.

Thestart parameter specifies a character in the stream, on which to start reading. Before anything is
read, the current read position is set to that character, and it will be the first character staatlidf
unspecified, no repositioning will be done. Independent of any conventions of the operating system,
the first character in a stream is always numbered 1. Note that transient streams do not allow
repositioning, and an error is reported if #tart parameter is specified for a transient stream.

Thelengthparameter specifies the number of characters to read. If the reading did work, the return
string will be of lengthength There are no other ways to how many characters were read than
checking the length of the return value. After the read, the current read position is moved forward as
many characters as was readetgthis unspecified, it defaults tb. If lengthis O, nothing is read, but

the file might still be repositioned gtart was specified.

Note that this function read the stream raw. Some operating systems use special characters to differ



between separate lines in text files. On these systems these special characters will be returned as well.
Therefore, never assume that this function will behave identical for text streams on different systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is implementation
dependent. The implementation may choose to sslMEREAD¥ondition (does not exist IREXX
language level 3.50). For more information, see chapt&toram Input and Output.

(Assuming that the file/tmp/file " contains the first line: This is the first line "):
CHARIN() 'F' *Maybe ¥/
CHARIN(,,6) 'Foobar' /*Maybe */
CHARIN('/tmpffile',,6) ‘This i'
CHARIN('/tmpffile',4,6) 'Sist'

CHAROUT ([streamid][,[string][,start]]) (ANSI)

In general this function will writestring to astreamid If streamidis not specified the default output
stream will be used.

If startis specified, the current write position will be set to #tartth character irstreamid before any
writing is done. Note that the current write position ca not be set for transient streams, and attempts to
do so will report an error. Independent of any conventions that the operating system might have, the
first character in the stream is numbefedf startis not specified, the current write position will not

be changed before writing.

If stringis omitted, nothing is written, and the effect is to set the current write positstartis

specified. If neithestring nor startis specified, the implementation can really do whatever it likes, and
many implementations use this operation to close the file, or flush any changes. Check implementation
specific documentation for more information.

The return value is the number of characterstimg that was not successfully written, 8alenotes a
successful write. Note that in maREXX implementations there is no need to open a stream; it will be
implicitly opened when it is first used in a read or write operation.

(Assuming the file referred to byutdata was empty, it will contain the stringoobWowafterwards.
Note that there might will not be an End-Of-Line marker after this string, it depends on the
implementation.)

- CHAROUT(,'Foobar’) 0" |
CHAROUT (outdata,'Foobar") '0'
CHAROUT (outdata,"Wow',5) ‘0

CHARS([streamid]) (ANSI)

Returns the number of characters left in the nasteshmid or the default input stream streamidis
unspecified. For transient streams this will always be eithémore characters are available,®if



the End-Of-File condition has been met. For persistent streams the number of remaining bytes in the
file will be possible to calculate and the true number of remaining bytes will be returned.

However, on some systems, it is difficult to calculate the number of characters left in a persistent
stream; the requirements @HARS() has therefore been relaxed, so it can refumstead of any
number other thaf. If it returnsl, you can therefore not assume anything more than that there is at
least one more character left in the input stream.

CHARS() '"1' /* more data on def. input stream */
CHARS() '0' /* EOF for def. input stream */
CHARS(‘outdata’) '94' I* maybe */
COMPARE(stringl,string2[,padchar]) (ANSI)

This function will comparestring1to string2, and return a whole number which will be 0 if they are
equal, otherwise the position of the first character at which the two strings differ is returned. The
comparison is case-sensitive, and leading and trailing space do matter.

If the strings are of unequal length, the shorter string will be padded at the right hand end with the
padcharcharacter to the length of the longer string before the comparisopaldieharis not specified,
<space> is used.

COMPARE('FooBar','Foobar’) '4'
COMPARE('Foobar','Foobar’) '0'
COMPARE('Foobarrr','Fooba’) '6'
COMPARE('Foobarrr','Fooba’,'r") '0'
CONDITION([option]) (ANSI)

Returns information about the current trapped condition. A condition becomes the current trapped
condition when a condition handler is called @G®LL or SIGNAL) to handle the condition. The
parameteoptionspecifies what sort of information to return:

[C
(Condition) The name of the current trapped condition is return, this will be one of the condition
named legal t&IGNAL ON, like SYNTAXHALT, NOVALUENOTREADMERRORY
FAILURE.

[Dl
(Description) A text describing the reason for the condition. What to put into this variable is
implementation and system dependent.

[1]
(Instruction) Returns eith€EALL or SIGNAL, depending on which method was current when
the condition was trapped.

[S]
(State) The current state of the current trapped condition. This can be @i¢OFFor
DELAY. Note that this option reflect the current state, which may change, not the state at the



time when the condition was trapped.

For more information on conditions, consult the chagtenditions. Note that condition may in
several ways be dependent on the implementation and system, so read system and implementation
dependent information too.

COPIES(string,copies) (ANSI)

Returns a string witlcopiesconcatenated copies siring. Copiesmust be a non-negative whole
number. No extra space is added between the copies.

COPIES('Fo0',3) 'FooFooFoo
COPI ES('*' , 16) Ikkkkkkkhkkhkkhkkhkkkhx!
COPIES('Bar ',2)'Bar Bar'

COPIES(",10000) "

COUNTSTR(needle,haystack) (ANSI)

Returns a count of the number of occurrencesesdlen haystackhat do not overlap.

COUNTSTR(",")
COUNTSTR('a','abcdef")
COUNTSTR(0,0)
COUNTSTR('a','def")
COUNTSTR('a',")

COUNTSTR(",'def")
COUNTSTR('abc','abcdef")
COUNTSTR('abcdefg’,'abcdef’
COUNTSTR('abc','abcdefabccdabced’)

W o r O o ok O

CRYPT(string,salt) (REGINA)

Encrypts the givestring using the suppliedaltand returns the encrypted string. Only the first two
characters ofaltare used. Not all operating systems support encryption, and on these platforms, the
string is returned unchanged. It is also important to note that the encrypted string is not portable
between platforms.

‘ CRYPT('a string’, '1x") "IXYWPPWI1zRJs' /* maybe */ ‘

DATATYPE(string[,option]) (ANSI)

With only one parameter, this function identifies the "datatypestiofig. The value returned will be
"NUMIf stringis a validREXX number. Otherwise CHAR is returned. Note that the interpretation
of whetherstringis a valid number will depend on the current settingN@fMERIC



If optionis specified too, it will check itring is of a particular datatype, and return eith&t &6r "0"
depending on whethstring is or is not, respectively, of the specified datatype. The possible values of
optionare:

[Al
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or mixed case) and
decimal digits.

[ Bl
(Binary) Consisting of only the two binary digidsand1. Note that blanks are not allowed
within string, as would have allowed been within a binary string.

[L]
(Lower) Consisting of only alphabetic characters in lower case.

[M
(Mixed) Consisting of only alphabetic characters, but the case does not matter (i.e. upper, lower
or mixed.)

[N
(Numeric) Ifstringis a validREXX number, i.eDATATYPEGtring ) would returnNUM

[S]
(Symbolic) Consists of characters that are leg& XX symbols. Note that this test will pass
several strings that are not legal symbols. The characters includes plus, minus and the decimal
point.

[U
(Upper) Consists of only upper case alphabetic characters.

[W
(Whole) If string is a validREXX whole number under the current setting\\iMERICNote
that13.0 is a whole number since the decimal part is zero, whdE+1 is not a whole
number, since it must be interpreted as 130 plus/minus 5.

[X]

(Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal digits 0-9 and the
alphabetic characters A-F in either case (or mixed.) Note that blanks are not allowed within
string, as it would have been within a hexadecimal string.

If you want to check whether a string is suitable as a variable name, you should consider using the
SYMBOL() function instead, since ti&ymbolic option only verifies which charactesring

contains, not the order. You should also take care to watch out for lower case alphabetic characters,
which are allowed in the tail of a compound symbol, but not in a simple or stem symbol or in the head
of compound symbol.

Also note that the behavior of the optioAsL, MandU might depend on the setting of language, if you
are using an interpreter that supports national character sets.



DATATYPE( - 1.35E-5") ‘NUM'
DATATYPE('1E999999999") '‘CHAR'
DATATYPE('1E9999999999") 'CHAR'
DATATYPE(! @#&#$(&*%™") 'CHAR'
DATATYPE('FooBar','A") 1
DATATYPE('Foo Bar','A") ‘0’
DATATYPE('010010111101','B") 1
DATATYPE('0100 1011 1101','B") '0'
DATATYPE('foobar','L") 1
DATATYPE('FooBar','M") 1
DATATYPE(' -34E3','N") 1
DATATYPE('‘A_SYMBOL!?!"'S" 1
DATATYPE('1.23.39E+4.5','S") 1
DATATYPE('Foo bar','S") '0'
DATATYPE('FOOBAR','U") 1
DATATYPE('123deadbeef','X") 1
DATE([option_out [,date [,option_in]]]) (ANSI)

This function returns information relating to the current date. Ifapon_outcharacter is specified, it
will set the format of the return string. The default valuedption_outis "N".

Possible options are:

[ B]

[C]

[ D]

[ E]

[M
[N

(Base) The number of complete days from Janu&§0D1 until yesterday inclusive, as a whole
number. This function uses the Gregorian calendar extended backwards. Therefore Date('B") // 7
will equal the day of the week where 0 corresponds to Monday and 6 Sunday.

(Century) The number of days in this century from Janu&@ry0D until today, inclusive. The
return value will be a positive integer.

(Days) The number of days in this year from Janu&nyrtil today, inclusive. The return value
will be a positive integer.

(European) The date in European format, idel/inm/yy ". If any of the numbers is single
digit, it will have a leading zero.

(Month) The unabbreviated name of the current month, in English.
(Normal) Return the date with the name of the month abbreviated to three letters, with only the

first letter in upper case. The format will bdd Mmm yyyy ", whereMmns the month
abbreviation (in English) andd is the day of the month, without leading zeros.



[C
(Ordered) Returns the date in the ordered format, whicinisrim/dd .

[S]
(Standard) Returns the date according the format specified by International Standards
Organization Recommendation ISO/R 2014-1971 (E). The format wiNyg/immdd", and
each part is padded with leading zero where appropriate.

[U
(USA) Returns the date in the format that is normally used in USA,men/tdd/yy ", and each
part is padded with leading zero where appropriate.

[W
(Weekday) Returns the English unabbreviated name of the current weekday for today. The first
letter of the result is in upper case, the rest is in lower case.

[T]

(time_) Returns the current date/time in UNtkne_tformat. time_tis the number of seconds
since January*11970.

Note that the C' option is present iREXX language level 3.50, but was removed in level 4.00. The
new 'B" option should be used instead. When porting code that us&thaption to an interpreter that
only have the B" option, you will can use the conversion that Janudrgd00 is day 693595 in the
Gregorian calendar.

Note that none of the formats in whi@ATE() return its answer are effected by the settings of
NUMERICAIso note that if there are more than one calDbTE() (andTIME() ) in a single clause
of REXX code, all of them will use the same basis data for calculating the date (and time).

If the REXX interpreter contains national support, some of these options may return different output for
the names of months and weekdays.

Assuming that today is Januar{ $992:

DATE(B') '727203'
DATE('C) ~ '33609'
DATE(D) '6'
DATE(E) ~'06/01/92"
DATE(M') ~ ‘January'
DATE(N) '6 Jan 1992"
DATE(O)) '~ '92/01/06'
DATE('S)) ' '19920106'
DATE('U) '01/06/92"
DATE('W)) " 'Monday'
DATE(T) ' 694620000

If the dateoption is specified, the function provides for date conversions. The optiqtiain_in
specifies the format in whictiateis supplied. The possible values fogption_inare: BDEOUNST.
The default value fooption_inis N.



DATE('O','13 Feb 1923 '23/02/13'
DATE('0','06/01/50','U") '50/06/01'

If the datesupplied does not include a century in its format, then the result is chosen to make the
year within 50 years past or 49 years future of the current year.

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

DELSTR(string,start[,length]) (ANSI)

Returnsstring, after the substring of lengtengthstarting at positiorstart has been removed. The
default value fotengthis the rest of the stringstartmust be a positive whole number, whigngth
must be a non-negative whole number. It is not an errstaift or length(or a combination of them)
refers to more characters thsining holds

DELSTR('Foobar',3) 'Foo’
DELSTR('Foobar',3,2) 'Foor’
DELSTR('Foobar',3,4) 'Foo’
DELSTR('Foobar',7) 'Foobar’
DELWORD(string,start[,length]) (ANSI)

Removedengthwords and all blanks between them, freimng, starting at word numbestart The
default value fotengthis the rest of the string. All consecutive spaces immediately after the last
deleted word, but no spaces before the first deleted word is removed. Nothing is remewngthis
zero.

The valid range os$tartis the positive whole numbers; the first wordstring is numbered.. The valid
range oflengthis the non-negative integers. It is not an erratért or length(or a combination of
them) refers to more words thatring holds.

DELWORD('This is a test',3) Thisis'
DELWORD('This is a test',2,1) "This a test'
DELWORD('This is a test',2,5) "This'
DELWORD('This is a test',1,3) 'test' /*No leading space*/
DESBUF() (CMS)

This function removes all buffers on the stack, it is really just a way of clearing the whole stack for
buffers as well as strings. Functionally, it is equivalent to execlRR@PBUmith a parameter dd.
(Actually, this is a lie, sinc®ROPBUKs not able to take zero as a parameter. Rather, it is equivalent
to executing ROPBURwith 1 as parameter and then executibigOPBURvithout a parameter, but this
IS a subtle point.) It will return the number of buffers left on the stack after the function has been
executed. This should liein all cases.



- DESBUF() 0 |

DIGITS() (ANSI)

Returns the current precision of arithmetic operations. This value is set usiNgJt&RIGstatement.
For more information, refer to the documentationNldMERIC

~ DIGITS() '9' /* Maybe */ |
DIRECTORY ([new directory]) (OS/2)

Returns the current directory for the running process, and optionally changes directory to the specified
new directory

DIRECTORY() ‘tmp' I* Maybe */
DIRECTORY/(‘c:\temp’) ‘c:\temp' /* Maybe */
D2C(integer][,length]) (ANSI)

Returns a (packed) string, that is the character representatiotegér, which must be a whole

number, and is governed by the settingblofMERIC not of the internal precision of the built-in

functions. Iflengthis specified the string returned will bengthbytes long, with sign extension. If
length(which must be a non-negative whole number) is not large enough to hold the result, an error is
reported.

If lengthis not specifiedintegerwill be interpreted as an unsigned number, and the result will have no
leading <nul> characters. ititegeris negative, it will be interpreted as a two's complement,langth
must be specified.

D2C(0) "

D2C(127) - 7F'X

D2C(128) '80'X

D2C(128,3) '~ '000080'X

D2C(-128) - '80'X

D2C(-10,3) "5

D2X(integer[,length]) (ANSI)

Returns a hexadecimal number that is the hexadecimal representatitegef: Integermust be a
whole number under the current setting®NefMERICit is not effected by the precision of the built-in
functions.

If lengthis not specified, themtegermust be non-negative, and the result will be stripped of any
leading zeros.



If lengthis specified, then the resulting string will have that length. If necessary, it will be sign-
extended on the left side to make it the right lengthemigthis not large enough to hoidteger, an
error is reported.

D2X(0) {0}
D2X(127) TF'
D2X(128) ‘80’
D2X(128,5) '‘00080'x
D2X(-128) '‘80'x
D2X(-10,5) "ffff5'x
DROPBUF([number]) (CMS)

This function will remove zero or more buffers from the stack. Called without a parameter, it will
remove the topmost buffer from the stack, provided that there were at least one buffer in the stack. If
there were no buffers in the stack, it will remove all strings in the stack, i.e. remove the zeroth buffer.

If the parametenumberwas specified, and the stack contains a buffer with an assigned number equal
to number then that buffer itself, and all strings and buffers above it on the stack will be removed; but
no strings or buffers below the numbered buffer will be toucheduihberrefers to a buffer that does

not exist in the stack; no strings or buffers in the stack is touched.

As an extra extension, iRegina the DROPBUF() built-in function can be given a non-positive integer

as parameter. If the name is negative then it will convert that number to its absolute value, and remove
that many buffers, counted from the top. This is functionally equivalent to repda®QPBUF()

without parameters for so many times as the absolute value of the negative number specifies. Note that
using-0 as parameter is equivalent to removing all strings and buffers in the stack;&inge

equivalent to norm&D. The number is converted during evaluation of parameters prior to the call to the
DROPBUF()routine, so the sing is lost.

The value returned from this function is the number of buffers left on the stack after the buffers to be
deleted have been removed. Obviously, this will be a non-negative integer. This too, deviates from the
behavior of thODROPBUEommand under CMS, where zero is always returned.

DROPBUF(3) 2 [* remove buffer 3 and 4 */
DROPBUF(4) 0 /* no buffers on the stack */
DROPBUK() 4 [* if there where 5 buffers */
ERRORTEXT (errnol, lang]) (ANSI)

Returns thd&REXX error message associated with error nungogro. If the lang character is specified,
it will determine the native language in which the error message is returned. The default véding for
is "N".

Possible options are:



[N
[ S]

(Normal) The error text is returned in the default native language.
(Standard English) The error text is returned in English.

For more information on how Regina supports different native languageNasi#e Language

Support.
If the error message is not defined, a nullstring is returned.

The error messages REXX might be slightly different between the various implementations. The
standard says thatrnomust be in the range 0-99, but in some implementations it might be within a

less restricted range which gives room for system specific messages. You should in general not assume
that the wordings and ordering of the error messages are constant between implementations and
systems.

ERRORTEXT(20) 'Symbol expected'
ERRORTEXT(30) ‘Name or string too long’
ERRORTEXT(40) 'Incorrect call to routine'

errno can also be specified as arrno followed by a sub error number, with a period between. The
resulting string will be the text of the sub-error number with placemarkers indicating where substitution
values would normally be placed.

ERRORTEXT(40.24) <bif> argument 1 must be a binary string;
found "<value>"

Regina also supports messages in several native languages. See the sétiitivedranguage
Support for details on how this is configured. WIDE as the native language in effect:

ERRORTEXT(40.24) Routine <bif>, Argument 1 mul eine
Binatzeichenkette sein; "<value>"
ERRORTEXT(40.24,'S") <bif> argument 1 must be a binary string;

found "<value>"

FIND(string,phrase) (CMS)

Searchestring for the first occurrence of the sequence of blank-delimited wphaase and return the
word number of the first word gfhrasein string. Multiple blanks between words are treated as a
single blank for the comparison. Returns @lirasenot found. Deprecated: see WORDPOS().

‘ FIND('now is the time','is the time') ‘
FIND('now is the time','is the’)
FIND('now is the time','is time’)

O NN



FORK() (REGINA)

This function spawns a new process as a child of the current process at the current point in the program
where FORK is called. The program then continues from this point as two separate processes; the
parent and the child. FORK returns 0 to the child process, and the process id of the child process
spawned to the parent (always non-zero). A negative return value indicates an error while attempting to
create the new process. FORK is not available on all platforms. If FORK is not supported, it will

always return '1". It is safe to assume that a return value of '1' means that FORK is not supported. All
platforms AFAIK, will never return '1' as a child process id; that number is usually reserved for the first
process that starts on a machine.

~ FORK()

0" /* To child */ |
'3456' /* maybe to parent */ ‘

FORM() (ANSI)
Returns the current "form", in which numbers are presented when exponential form is used. This might

be eithelISCIENTIFIC (the default) oENGINEERING This value is set through tifUMERIC
FORMlause. For more information, see the documentatioRGWMERIC

- FORM()

'SCIENTIFIC' /* Maybe */ |

FORMAT (numberl[,[before][,[after][,[expp][,[expt]]]]]) (ANSI)

This function is used to control the format of numbers, and you may request the size and format in
which the number is written. The parametemberis the number to be formatted, and it must be a
valid REXX number. note that before any conversion or formatting is done, this number will be
normalized according to the current settindNdiMERIC

Thebeforeandafter parameters determines how many characters that are used before and after the
decimal point, respectively. Note tHag¢foredoesnot specify the number of digits in the integer part, it
specifies the size of the field in which the integer part of the number is written. Remember to allocate
space in this field for a minus too, if that is relevant. If the field is not long enough to hold the integer
part (including a minus if relevant), an error is reported.

Theafter parameter will dictate the size of the field in which the fractional part of the number is
written. The decimal point itself is not a part of that field, but the decimal point will be omitted if the
field holding the fractional part is empty. If there are less digits in the number than the size of the field,
it is padded with zeros at the right. If there is more digits then it is possible to fit into the field, the
number will be rounded (not truncated) to fit the field.

Beforemust at least be large enough to hold the integer partiofber Therefore it can never be less
thanl, and never less théhfor negative numbers. The integer field will have no leading zeros, except
a single zero digit if the integer part otimberis empty.

The parametegxppthe size of the field in which the exponent is written. This is the size of the numeric
part of the exponent, so th&"and the sign comes in addition, i.e. the real length if the exponent is two
more tharexppspecifies. Ifexppis zero, it signalizes that exponential form should not be ugeghp



must be a hon-negative whole numbeexppis positive, but not large enough to hold the exponent, an
error is reported.

Exptis the trigger value that decides when to switch from simple to exponential form. Normally, the
default precisionJUMERIC DIGITS) is used, but iexptis set, it will override that. Note that éxpt

is set to zero, exponential form will always be used. Howevexpttries to force exponential form,
simple form will still be used iexppis zero. Negative values fexptwill give an error. Exponential
form is used if more digits thaexptis needed in the integer part, or more than tvegptdigits are
needed in the fractional part.

Note that theafter number will mean different things in exponential and simple formaftéris set to
e.g.3, then in simple form it will force the precision to 0.001, no matter the magnitude of the number.
If in exponential form, it will force the number to 4 digits precision.

FORMAT(12.34,3,4) ' 12.3400'
FORMAT(12.34,3,,3,0) ' 1.234E+001'
FORMAT(12.34,3,1) '12.3400'
FORMAT(12.34,3,0) '12.3'
FORMAT(12.34,3,4) 12"
FORMAT(12.34,,,,0) '1.234E+1"
FORMAT(12.34,,,0) '12.34'
FORMAT(12.34,,,0,0) '12.34'
FUZZ() (ANSI)

Returns the current number of digits which are ignored when comparing numbers, during operations
like = and>. The default value for this i8. This value is set using tifUMERIC FUZZstatement, for
more information see that.

- FUZZ() '0' /* Maybe */ |

GETENV(environmentvar) (REGINA)
Returns the named UNIX environment variable. If this variable is not defined, a nullstring is returned.
It is not possible to use this function to determine whether the variable was unset, or just set to the
nullstring.
This function is now obsolete, instead you should use:

VALUE( environmentvar, ,'SYSTEM')
GETPID() (REGINA)

Returns the process id of the currently running process.



GETPID() '234' [* Maybe */

GETTID() (REGINA)

Returns the thread id of the currently running process.

- GETTID() '2' [* Maybe */ |
INDEX(haystack,needle][,start]) (CMS)

Returns the character position of the strivegedlein haystackIf needles not found, O is returned. By
default the search starts at the first character of haysséak ic 1). This can be overridden by giving a
differentstart, which must be a positive, whole number. See POS function for an ANSI function that
does the same thing.

INDEX('abcdef','cd") '3

INDEX('abcdef','xd") ‘0’

INDEX('abcdef','bc',3) '0'

INDEX(‘abcabc','bc',3) '5'

INDEX(‘abcabc','bc',6) ‘0’
INSERT((string1,string2[,position[,length[,padchar]]]) (ANSI)

Returns the result of insertirggringlinto a copy ofstring2 If positionis specified, it marks the
character irstring2which stringlit to be inserted aftePositionmust be a non-negative whole
number, and it defaults 1@, which means thadtring2is put in front of the first character stringl

If lengthis specifiedstringlis truncated or padded on the right side to make it exadetigth
characters long before it is inserted. If padding occurs, plagicharis used, or <space> [fadcharis
undefined.

INSERT((‘first','SECOND") 'SECOND(first'
INSERT('first','SECOND',3) 'fiSECONDrst'
INSERT(‘first','SECOND',3,10) fiSECOND rst'
INSERT(‘first','SECOND',3,10,*") . 'fiISECOND****rst’
INSERT((‘first','SECOND',3,4) 'fISECOrst'
INSERT((‘first','SECOND',8) first SECOND'
JUSTIFY(string,length[,pad]) (CMS)

Formats blank-delimited words string, by addingpad characters between words to justify to both
margins. That is, to widtlkength(lengthmust be non-negative). The defap#td character is a blank.
string is first normalized as though SPACHi(ng) had been executed (that is, multiple blanks are
converted to single blanks, and leading and trailing blanks are removéshgthis less than the width



of the normalized string, the string is then truncated on the right and any trailing blank is removed.
Extrapadcharacters are then added evenly from the left to right to provide the required length, and the
blanks between words are replaced withplae character.

JUSTIFY('The blue sky',14) ‘The blue sky'

JUSTIFY('The blue sky',8) "The blue'

JUSTIFY('The blue sky',9) "The blue'

JUSTIFY('The blue sky',9,'+) ‘The++blue'
LASTPOS(needle,haystack],start]) (ANSI)

Searches the strirftpystackor the stringneedle and returns the position imaystackof the first
character in the substring that matcimeetdle The search is started from the right side, soeédle
occurs several times, the last occurrence is reported.

If startis specified, the search starts at character nuisterin haystackNote that the standard only
states that the search starts atgtetth character. It is not stated whether a match can partly be to the
right of thestart position, so some implementations may differ on that point.

LASTPOS('be’, To be or not to be") 17

LASTPOS('to',to be or not to be',10) 3

LASTPOS('is',to be or not to be") 0

LASTPOS('to',to be or not to be’,0) 0
LEFT(string,length[,padchar]) (ANSI)

Returns thdéengthleftmost characters istring. If length(which must be a non-negative whole number)
is greater than the length sfring, the result is padded on the right with <space>p@icharif that is
specified) to make it the correct length.

LEFT('Foo bar',5) 'Foo b’
LEFT('Foo bar',3) 'Foo’
LEFT('Foo bar',10) 'Foo bar
LEFT(Foo bar',10,*) 'Foo bar***'
LENGTH(string) (ANSI)

Returns the number of charactersstning.

LENGTH(") 0"
LENGTH('Foo') |3
LENGTH('Foo bar) 7"
LENGTH( foo bar’) 10



LINEIN([streamid][,[line][,count]]) (ANSI)

Returns a line read from a file. When ordiyeamidis specified, the reading starts at the current read
position and continues to the first End-Of-Line (EOL) mark. Afterwards, the current read position is set
to the character after the EOL mark which terminated the read-operation. If the operating system uses
special characters for EOL marks, these are not returned by as a part of the string read..

The default value fostreamidis default input stream. The format and range of the sstngamidare
implementation dependent.

Theline parameter (which must be a positive whole number) might be specified to set the current
position in the file to the beginning of line numtdare before the read operation startdlitie is
unspecified, the current position will not be changed before the read operation. Nadietisabnly
valid for persistent steams. For transient streams, an error is repaolitegiisf specified. The first line in
the stream is numbered

Countspecifies the number of lines to read. However, it can only take the valaed1. When it is1
(which is the default), it will read one line. When it@sit will not read any lines, and a nullstring is
returned. This has the effect of setting the current read position of thelfite iivas specified.

What happens when the functions finds a End-Of-File (EOF) condition is to some extent
implementation dependent. The implementation may interpret the EOF as an implicit End-Of-Line
(EOL) mark is none such was explicitly present. The implementation may also choose to raise the
NOTREADondition flag (this condition is new frolREXX language level 4.00).

Whether or nostreammust be explicitly opened before a read operation can be performed, is
implementation dependent. In many implementations, a read or write operation will implicitly open the
stream if not already open.

Assuming that the filétmp/file contains the three linesElrst line", Second linkand "Third line":

LINEIN('/tmpf/file’,1) 'First line'
LINEIN('/tmpf/file’) 'Second line'
LINEIN(/tmp/file’,1,0) " /* But sets read position */
LINEIN(/tmp/file’) ' 'First line'
LINEIN() 'Hi, there!" /* maybe */
LINEOUT ([streamid][,[string][,line]]) (ANSI)

Returns the number of lines remaining after having positioned the sseaamidto the start of line

line and written oustring as a line of text. Istreamidis omitted, the default output stream is used. If

line (which must be a positive whole number) is omitted, the stream will not be repositioned before the
write. If stringis omitted, nothing is written to the stream.stfingis specified, a system-specific

action is taken after it has been written to stream, to mark a new line.

The format and contents of the first parameter will depend upon the implementation and how it names
streams. Consult implementation-specific documentation for more information.



If stringis specified, but noline, the effect is to writestring to the stream, starting at the current write
position. Ifline is specified, but nostring, the effect is only to position the stream at the new position.
Note that thdine parameter is only legal if the stream is persistent; you can not position the current
write position for transient streams.

If neitherline nor string is specified, the standard requires that the current write position is set the end
of the stream, and implementation specific side-effects may occur. In practice, this means that an
implementation can use this situation to do things like closing the stream, or flushing the output.
Consult the implementation specific documentation for more information.

Also note that the return value of this functions may be of little or no value, If just a half line is written,
1 may still be returned, and there are no way of finding out how much (if arstyiofy was written. If
string is not specified, the return value will always ®eeven ifLINEOUT() was not able to correctly
position the stream.

If it is impossible to correctly writstring to the stream, thBlOTREADYlag will be raised. It is not
defined whether or not tidOTREADYag is raised whehINEOUT() is used for positioning, and
this is not possible.

Note that if you writestringto a line in the middle of the stream (ilee is less than the total number

of lines in the stream), then the behavior is system and implementation specific. Some systems will
truncate the stream after the newly written line, other will only truncate if the newly written line has a
different length than the old line which it replaced, and yet other systems will overwrite and never
truncate.

In general, consult your system and implementation specific documentation for more information about
this function. You can safely assume very little about how it behaves.

LINEOUT(,'First line") ‘1
LINEOUT('/tmpf/file','Second line',2) 1
LINEOUT (‘/tmpl/file’, Third line") 1
LINEOUT(/tmpf/file','"Fourth line',4) ‘0
LINES([streamid][,option]) (ANSI)

Returns 1 if there is at least one complete line remaining in the namexdrgemor O if no complete

lines remain in the file. A complete line is not really as complete as the name might indicate; a
complete line is zero or more characters, followed by an End-Of-Line (EOL) marker. So, if you have
read half a line already, you still have a "complete” line left. Note that it is not defined what to do with
a half-finished line at the end of a file. Some interpreters might interpret the End-Of-File as an implicit
EOL mark too, while others might not.

The format and contents of the streatreamidis system and implementation dependent. If omitted,
the default input stream will be used.

The ANSI Standard has extended this function from TRL2. It allowsgiorn



[C
(Count) Returns the actual number of complete lines remaining in the stream, irrespective of
how expensive this operation is.

[N
(Normal) Returns 1 if there is at least one complete line remaining in the file or O if no lines
remain. This is the default. To maintain backwards compatibility with older releastsgifia,
the OPTION; NOFAST_LINES_ BIF_DEFAULT can be used to make the default option
behave as though LINES(streamid,'C") was specified.

LINES will only return O or 1 for all transient streams, as the interpreter can not reposition in these
files, and can therefore not count the number of remaining lines.

As a result, defensive programming indicates that you can safely only assume that this function will
return eithe or a non-zero result. If you want to use the non-zero result to more than just an indicator
on whether more lines are available, you must check that it is larger than one. If so, you can safely
assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume very little about this function, so
consult the system and implementation specific documentation.

LINES() '1' /* Maybe */
LINES() '0' /* Maybe */
LINES('/tmp/file','C") '2' [* Maybe */
LINES('/tmp/file") "1' I* Maybe */
MAKEBUF() (CMS)

Creates a new buffer on the stack, at the current top of the stack. Each new buffer will be assigned a
number; the first buffer being assigned the nunmhek new buffer will be assigned a number which is

one higher than the currently highest number of any buffer on the stack. In practice, this means that the
buffers are numbered, with the bottom-most having the nurhlaerd the topmost having a number

which value is identical to the number of buffers currently in the stack.

The value returned from this function is the number assigned to the newly created buffer. The assigned
number will be one more than the number of buffers already in the stack, so the numbers will be
“recycled". Thus, the assigned numbers will not necessarily be in sequence.

‘ MAKEBUF() 1 /* if no buffers existed */ ‘
- MAKEBUF() 6 /* if 5 buffers existed */ |
MAX(numberl[,number2]...) (ANSI)

Takes any positive number of parameters, and will return the parameter that had the highest numerical
value. The parameters may be any v&EXX number. The number that is returned, is normalized
according to the current settingsMUMERIC so the result need not be strictly equal to any of the
parameters.



Actually, the standard says that the value returned is the first number in the parameter list which is
equal to the result of adding a positive number or zero to any of the other parameters. Note that this
definition opens for "strange” results if you are brave enough to play around with the settings of
NUMERIC FUZZ

MAX(1,2,3,5,4) '5'
MAX(6) '6'
MAX(-4,.001E3,4) '4'
MAX(1,2,05.0,4) '5.0'
MIN(number[,number]...) (ANSI)

Like MAX() , except that the lowest numerical value is returned. For more informatioMAXé) .

MAX(5,4,3,1,2) 1
MAX(6) '6'
MAX(-4,.001E3,4) Al
MAX(1,2,05.0E-1,4) '0.50'
OVERLAY (stringl,string2[,[start][,[length][,padchar]]]) (ANSI)

Returns a copy ddtring2, totally or partially overwritten bgtringl If these are the only arguments, the
overwriting starts at the first characterstring2

If startis specified, the first character gtringl overwrites character numbstartin string2 Start
must be a positive whole number, and default$ toe. the first character aftringl If the start
position is to the right of the end sfring2, thenstring2is padded at the right hand end to make it
start- 1 characters long, befostringlis added.

If lengthis specified, themstring2will be stripped or padded at the right hand end to match the
specified length. For padding (of both stringsidcharwill be used, or <space> gfadcharis
unspecifiedLengthmust be non-negative, and defaults to the lengttrafig L

OVERLAY('NEW', 'old-value’) 'NEW-value'
OVERLAY('NEW','old-value',3) ~'oldNEWIue'
OVERLAY('NEW','old-value',3,5) 'oldNEW ¢
OVERLAY('NEW!','old-value',3,5),™*") 'oldNEW**e'
OVERLAY('NEW','old-value',3,2) 'oldNEalue'
OVERLAY('NEW','old-value',8) 'old-valuNEW'
OVERLAY('NEW','old-value',10) ‘'old-value NEW'
OVERLAY('NEW','old-value',8,,"*") ' 'old-value*NEW’
OVERLAY('NEW','old-value',8,5,*") ‘'old-value**NEW**'




POPEN(command][,stem.]) (REGINA)

Runs the operating systescommandIf the optionalstem is supplied all output from theommands

placed in the specified stem variable as a REXX array. Note that only the command's stdout can be
captured.

This command is now deprecated. ADDRESS WITH can do the same thing, and can also capture the
command's stderr.

POPEN(Is -I', 'lists.") [* LISTS. stem has list */
ADDRESS SYSTEM'ls -I' WITH OUTPUT /* same as above */
STEM LISTS.

POS(needle,haystack],start]) (ANSI)

Seeks for an occurrence of the strimgpdlein the stringhaystackIf needles not found, ther® is
returned. Else, the position mystackof the first character in the part that matched is returned, which
will be a positive whole number. Htart (which must be a positive whole number) is specified, the
search foneedlewill start at positionstartin haystack

POS('be','to be or not to be") 4
POS('to','to be or not to be',10) 14
POS(is','to be or not to be") 0
POS('to','to be or not to be',18) 0
QUALIFY ([streamid]) (ANSI)

Returns a name for thedreamid The two names are currently associated with the same resource and
the result of this function may be more persistently associated with that resource.

‘ QUALIFY('../mypath/fred.the’) ''home/mark/mypath/fred.the’ ‘

QUEUED (ANSI)

Returns the number of lines currently in the external data queue (the "stack"). Note that the stack is a
concept external tREXX, this function may depend on the implementation and system Consult the
system specific documentation for more information.

QUEUED() '0' /* Maybe */
QUEUED() '42' [* Maybe */




RANDOM(max) (ANSI)
RANDOM([min][,[max][,seed]]) (ANSI)

Returns a pseudo-random whole number. If called with only the first parameter, the first format will be
used, and the number returned will be in the rabge the value of the first parameter, inclusive. Then
the parametemaxmust be a non-negative whole number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not the first, the second format
will be used. Themin andmaxmust be whole numbers, antixcan not be less thamin, and the
differencemax min can not be more than 100000. If one or both of them is unspecified, the default for
minis 0, and the default fomaxis 999. Note that bothmin andmaxare allowed to be negative, as

long as their difference is within the requirements mentioned.

If seeds specified, you may control which numbers the pseudo-random algorithm will generate. If you
do not specify it, it will be set to some "random" value at the first caRAEANDOM()(typically a
function of the time). When specifyirgged it will effect the result of the current call RANDOM()

The standard does not require that a specific method is to be used for generating the pseudo-random
numbers, so the reproducibility can only be guaranteed as long as you use the same implementation on
the same machine, using the same operating system. If any of these changesaeagi&y produce a
different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly increased chance of
turning up than other. If thREXX implementation uses a 32 bit pseudo-random generator provided by
the operating system and returns the remainder after integer dividing it by the differeniceaot

max low numbers are favored if the 232 is not a multiple of that difference. Supposing that the call is
RANDOM(100000) and the pseudo-random generator generates any 32 bit number with equal chance,
the change of getting a number in the rang6T296 is about 0.000010000076, while the changes of
getting a number in the range 672900000 is about 0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be random
at all. Under one operating system (name withheld to protect the guilty), the system's pseudo-random
routine returned numbers where the last binary digit alternated between 0 and 1. On that machine,
RANDOM(1)would return the series 0, 1, 0, 1, O, 1, O, 1 etc., which is hardly random at all. You should
therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the special syntax, there is a big difference betweenRAMQOM(10)and
RANDOM(10,). The former will give a pseudo-random number in the rangE)Qwhile the latter will
give a pseudo-random number in the rangeQd®.

Also note that it is not clear whether the standard allavirsto be equal tanax so to program
compatible, make sure thataxis always larger thamin.



RANDOM() '123' [*Between 0 and 999 */

RANDOM(10) '5' [*Between 0 and 10 */

RANDOM(,10) '3' *Between 0 and 10 */

RANDOM(20,30) '27' I*Between 20 and 30 */

RANDOM(,,12345) "765' *Between 0 and 999, and sets seed */
REVERSE(string) (ANSI)

Returns a string of the same lengthsétsng, but having the order of the characters reversed.

- REVERSE('FooBar') 'raBooF" |
REVERSE(' Foo Bar’) 'raB ooF '
REVERSE('3.14159") '95141.3'

RIGHT (string,length[,padchar]) (ANSI)

Returns thdéengthrightmost characters istring. If length(which must be a non-negative whole
number) is greater than the lengthstfing the result is padded on the left with the necessary number of
padchas to make it as long dengthspecifiesPadchardefaults to <space>.

RIGHT('Foo bar',5) '0 bar'

RIGHT('Foo bar',3) ‘bar'

RIGHT('Foo bar',10) ' Foo bar'

RIGHT('Foo bar',10,™) "***E00 bar'
RXFUNCADD(externalname,library,internalname) (SAA)

Registers thenternalnaman library as an external function callable from with the current program by
referencingexternalname library is a REXX external functon package in the format of shared library

or dynamic link library (DLL)library and internalname are case-sensitilerary is thebasename of

the shared library or dynamic link library. On platforms that support DLLs, the full name of the external
function package ibrary.dll. On Unix environments, the full name of the shared library is

liblibrary.a (AlX), liblibrary.sl (HPUX) orliblibrary.so(most other Unixes). External function

packages are searched for in the location where shared libraries or DLLs are normally foundby the
operating system. DLLs are normally located in directories specified irAfd¢l or LIBPATH

environment variables. Shared libraries are normally searchedlf@ ihIBRARY_PATH or

LIBPATH environment variables.

This function returns O if the function is registered successfully.

RXFUNCADD('SQLLoadFuncs','rexxsgl','SQLLoadFuncs’) 0



RXFUNCDROP (externalname) (SAA)

Removes the specified externalname from the list of external functions available to be called. This
function returns 0 if the function was successfully dropped.

RXFUNCDROP('SQLLoadFuncs') 0 |

RXFUNCERRMSG() (REGINA)

Returns the error message associated with the last call to RXFUNCADD. This function is generally
used immediately after a failed call to RXFUNCADD to determine why it failed.

~ RXFUNCERRMSG()

'rexxsgl.dll not found' /* Maybe */ ‘

RXFUNCQUERY (externalname) (SAA)

Returns 0 if theexternalnamés already registered, or 1 if tlexternalnameés not registered.

RXFUNCQUEURY('SQLLoadFuncs') 1 /* Maybe */

RXQUEUEommand[,queue]) (0S/2)

This function interfaces to the Regina internal or external queue mechanism. If OPTIONS
INTERNAL_QUEUES is set, all operations on queues are internal to the interpreter.

[C
(Create) Request the interpreter or rxstack to create a new rgueed If the queuename
already exists, a new unigue queue name is generated. The name of the queue that was created
(either the specified queue or the system-generated queue) is returned. All queue names are
case-insensitive; ie the queue name FRED and fred are the same.
[Dl
(Delete) Deletes the specifiegieue The default queue; SESSION becomes the current queue.
e
(Get) Returns the currequeuename.
[S]
(Set) Sets the current queue name to theuespecified. The previously current queue is
returned. It is valid to set a queue name to a queue that has not been created.
[T]

(Timeout) Sets the timeout period (in milliseconds) to wait for something to appear on the
specified queue. By default, when a line is read from a queue will a PULL command, it either
returns immediately with the top line in the stack, or it will wait for a line to be entered by the
user via the process' stdin. If O is specified, Regina will wait forever for a line to be ready on
the stack.



RXQUEUE('Create’) 'S0738280"
RXQUEUE('Create','fred") 'FRED'
RXQUEUE('Create’, 'fred’) 'S88381'
RXQUEUE('Get") 'S88381'
RXQUEUE('Delete','fred") 'SESSION'
RXQUEUE('Set','fred") 'SESSION'
RXQUEUE('Timeout','fred’,10) "

SIGN(number) (ANSI)

Returns eitherl , 0 or 1, depending on wheth@umberis negative, zero, or positive, respectively.
Numbermmust be a valilREXX number, and are normalized according to the current settings of
NUMERIChefore comparison.

SIGN(-12) -1
SIGN(42) 7!
SIGN(-0.00000012) -1
SIGN(0.000) ‘0’
SIGN(-0.0) ‘0’
SLEEP(seconds) (CMS)

Pauses for the supplied number of seconds.

‘ SLEEP(5) * sleeps for 5 seconds */ ‘

SOURCELINE([linena]) (ANSI)

If lineno(which must be a positive whole number) is specified, this function will return a string
containing a copy of thREXX script source code on that line liienois greater than the number of
lines in theREXX script source code, an error is reported.

If linenois unspecified, the number of lines in tR&XX script source code is returned.

Note that fromREXX language level 3.50 to 4.00, the requirements of this function were relaxed to
simplify execution when the source code is not available (compiled or pre-fRES€H). An
implementation might make two simplifications: to retd@rif called without a parameter. If so, any

call to SOURCELINE() with a parameter will generate an error. The other simplification is to return a
nullstring for any call tdcSOURCELINE() with a legal parameter.

Note that the code executed by I ERPRETclause can not be retrieved BPURCELINE().



SOURCELINE() '42' [*Maybe */
SOURCELINE(1) '* This Rexx script will ... */'
SOURCELINE(23) ‘'var = 12' *Maybe */'
SPACE(string[,[length][,padchar]]) (ANSI)

With only one parametestring is returned, stripped of any trailing or leading blanks, and any
consecutive blanks insidgring translated to a single <space> charactepéaicharif specified).

Lengthmust be a non-negative whole number. If specified, consecutive blanks gifitimg is replaced

by exactlylengthinstances of <space> (padcharif specified). Howeverpadcharwill only be used

in the output string, in the input string, blanks will still be the "magic" characters. As a consequence, if
there exist anypadchas in string, they will remain untouched and will not affect the spacing.

SPACE(' Foo bar") 'Foo bar’
SPACE(' Foo bar',2) 'Foo bar'
SPACE(' Foo bar',,"”*") 'Foo*bar’
SPACE('Foo bar',3, '-") 'Foo--bar’
SPACE(Foo bar',,'0") 'Fooobar’
STATE(streamid) (CMS)

Returns O if thestreamidexists, or 1 if it deos not. Use STREAM(streamid, 'C', 'QUERY EXISTS') for
portability.

STREAM(streamid[,option[,command]]) (ANSI)

This function was added tREXX in language level 4.00. It provides a general mechanism for doing
operations on streams. However, very little is specified about how the internal of this function should
work, so you should consult the implementation specific documentation for more information.

Thestreamididentifies a stream. The actual contents and format of this string is implementation
dependent.

Theoptionselects one of several operations WHEFREAM() is to perform. The possible operations
are:

[C]
(Command) If this option is selected, a third parameter must be presemtangdwhich is the
command to be performed on the stream. The conterdsrafnands implementation
dependent. FdRegina, the valid commands follow. Commands consist of one or more space
separated words.

[Dl

(Description) Returns a description of the statstoéamid The return value is implementation
dependent.



[ S]
(Status) Returns a state which describes the staredmid The standard requires that it is
one of the followingERRORNOTREADYREADYandUNKNOWNhe meaning of these are
described in the chapteBtream Input and Output.

Note that the optionBescription andStatus really have the same function, but ti&tatus in
general is implementation independent, wiiMescription Is implementation dependent.

Thecommandspecifies the command to be performedstreamid The possible operations are:

[ READ
Open for read access. The file pointer will be positioned at the start of the file, and only read
operations are allowed. This commandRisgina-specific; useOPEN READN its place.

[ WRITH
Open for write access and position the current write position at the end of the file. An error is
returned if it was not possible to get appropriate access. This commBRegjiisa-specific; use
OPEN WRITEIn its place.

[ APPEND
Open for append access and position the current write position at the end of the file. An erroris
returned if it was not possible to get appropriate access. This commBRegjiisa-specific; use
OPEN WRITE APPEND its place.

[ UPDATE
Open for append access and position the current write position at the end of the file. An error is
returned if it was not possible to get appropriate access. This commBRedjiisa-specific; use
OPEN BOTHn its place.

[ CREATHE
Open for write access and position the current write position at the start of the file. An error is
returned if it was not possible to get appropriate access. This commBRedjiisa-specific; use
OPEN WRITE REPLACHN its place.

[ CLOSH
Close the stream, flushing any pending writes. An error is returned if it was not possible to get
appropriate access.

[ FLUSH
Flush any pending write to the stream. An error is returned if it was not possible to get
appropriate access.

[ STATUS
Returns status information about the stream in human readable forRdbata stores about
the stream.

[ FSTAT]
Returns status information from the operating system about the stream.

[ RESET
Resets the stream after an error. Only streams that are resettable can be reset.

[ READABLE
Returns 1 if the stream is readable by the user or 0 otherwise.

[ WRITABLH
Returns 1 if the stream is writeable by the user or 0 otherwise.

[ EXECUTABLE
Returns 1 if the stream is executable by the user or 0 otherwise.



[ QUERY
Returns information about the named stream. If the named stream does not exists, then the
empty string is returned. This command is further broken down into the following sub-

commands:

DATETIME returns the date and time of last modification of the streaRerx
US Date format; MM-DD-YY HH:MM:SS.

EXISTS returns the fully-qualified file name of the specified stream.

HANDLE returns the internal file handle of the stream. This will only return a
valid value if the stream was opened explicitly or implicitly by
Regina.

SEEK READ CHAR returns the current read position of the open stream expressed in
characters.

SEEK READ LINE returns the current read position of the open stream expressed in
lines.

SEEK WRITE CHAR returns the current write position of the open stream expressed in
characters.

SEEK WRITE LINE returns the current write position of the open stream expressed in
lines.

SEEK SYS returns the current read position of the open stream as the operating
reports it. This is expressed in characters.

SIZE returns the size, expressed in characters, of the persistent stream.

STREAMTYPE returns the type of the stream. One of TRANSIENT, PERSISTENT
or UNKNOWN is returned.
TIMESTAMP returns the date and time of last modifcation of the stream. The
format of the string returned is YYYY-MM-DD HH:MM:SS.
You can usé’OSITION in place ofSEEK in the above options.

[ OPEN
Opens the stream in the optional mode specified. If no optional mode is specified, the default is
OPEN BOTH
READ The file pointer will be positioned at the start of the file, and only
read operations are allowed.
WRITE Open for write access and position the current write pointer at the

end of the file. On platforms where it is not possible to open a file
for write without also allowing reads, the read pointer will be
positioned at the start of the file. An error is returned if it was not
possible to get appropriate access.

BOTH Open for read and write access. Position the current read pointer at
the start of the file, and the current write pointer at the end of the
file. An error is returned if it was not possible to get appropriate
access.

WRITE APPEND  Open for write access and position the write pointer at the end of the
file. On platforms where it is not possible to open a file for write
without also allowing reads, the read pointer will be positioned at
the start of the file.

WRITE REPLACE Open for write access and position the current write position at the
start of the file. On platforms where it is not possible to open a file
for write without also allowing reads, the read pointer will be
positioned at the start of the file. This operation will clear the



contents of the file. An error is returned if it was not possible to get
appropriate access.

BOTH APPEND Open for read and write access. Position the current read position at
the start of the file, and the current write position at the end of the
file. An error is returned if it was not possible to get appropriate
access.

BOTH REPLACE  Open for read and write access. Position both the current read and
write pointers at the start of the file. An error is returned if it was
not possible to get appropriate access.

[SEEK positi on READ|WRITE [CHAR|LINE]]
Positions the file's read or write pointer in the file to the specifiesition SEEK is a synonym

for POSITION .
position A position can be of the following formstdlative] offset
relativecan be one of:

= The file pointer is moved to he
specifiledoffset relative to
the start of the file. This is the default.

< The file pointer is moved to he
specifiledoffset relative to
the send of the file.

- The file pointer is moved backwards
relative to the current
position.

+ The file pointer is moved forwards
relative to the current
position.
offsetis a positive whole number.

READ The read file pointer will be positioned.

WRITE The write file pointer is positioned.

CHAR The offsetspecified inpositionabove is in terms of characters.
LINE The offsetspecified inpositionabove is in terms of lines.

Assume a file; '/home/mark/myfile' last changed March 30th 2002 at 15:07:56, with 100 lines, each line
10 characters long, and the following command executed in sequence.



STREAM('myfile','C',)QUERY EXISTS') ‘'home/mark/myfile’

STREAM('myfile',C',QUERY SIZE') 1100
STREAM('myfile',C','QUERY TIMESTAMP") 2002-03-30 15:07:56
STREAM('myfile',C',QUERY DATETIME) 03-30-02 15:07:56
STREAM('myfile',D")

STREAM('myfile','S") UNKNOWN

STREAM('myfile','C''QUERY SEEK READ')

STREAM('myfile','C',OPEN READ)) READY:
STREAM('myfile','D')

STREAM('myfile','S") READY
STREAM('myfile',C',QUERY SEEK READ) 1
STREAM('myfile','C','CLOSE") UNKNOWN
STREAM('myfile','C','STATUS")

STREAM('myfile',C','FSTAT') 773 35006 064 1 mark
STREAM('myfile','C', READABLE') 1
STREAM('myfile','C','WRITABLE') 1
STREAM('myfile',C',/EXECUTABLE) 0

STREAM('myfile','C','??")

STRIP(string[,[option][,char]]) (ANSI)
Returnsstring after possibly stripping it of any number of leading and/or trailing characters. The default
action is to strip off both leading and trailing blanksckfar (which must be a string containing exactly
one character) is specified, that character will be stripped off instead of blanks. Inter-word blanks (or
chars if defined, that are not leading of trailing) are untouched.

If optionis specified, it will define what to strip. The possible valuesdptionare:

[L]

[T]

[ B]

(Leading) Only strip off leading blanks, ohars if specified.
(Trailing) Only strip off trailing blanks, ochars if specified.

(Both) Combine the effect df andT, that is, strip off both leading and trailing blanks,atrars
if it is specified. This is the default action.



STRIP(' Foo bar?) 'Foo bar'

STRIP(' Foo bar','L") 'Foo bar'

STRIP(' Foo bar''t) 'Foo bar'

STRIP(' Foo bar ','Both’") 'Foo bar'

STRIP('0.1234500',,'0") 12345

STRIP('0.1234500 ',,'0") '.1234500
SUBSTR(string,start[,[length][,padchar]]) (ANSI)

Returns the substring atring that starts astart, and has the lengtlength Lengthdefaults to the rest
of the string.Startmust be a positive whole, whilengthcan be any non-negative whole number.

It is not an error fostartto be larger than the length sfring. If lengthis specified and the sum of
lengthandstart minus 1 is greater that the lengthsifing, then the result will be padded with
padchas to the specified length. The default value padcharis the <space> character.

SUBSTR('Foo bar',3) '0 bar'
SUBSTR('Foo bar',3,3) 'ob’
SUBSTR('Foo bar',4,6) "bar '
SUBSTR('Foo bar',4,6,™*") " bar**'
SUBSTR('Foo bar',9,4,"*") Pekkk!
SUBWORDB(¢ ri ng, start[, | ength]) (ANSI)

Returns the part dftring that starts at blank delimited wostiart (which must be a positive whole
number). Iflength(which must be a non-negative whole number) is specified, that number of words are
returned. The default value fangthis the rest of the string.

It is not an error to specifiengthto refer to more words thastring contains, or fostartandlength
together to specify more words thsining holds. The result string will be stripped of any leading and
trailing blanks, but inter-word blanks will be preserved as is.

SUBWORD('To be or not to be',4) 'not to be'
SUBWORD('To be or not to be',4,2) 'not to'
SUBWORD('To be or not to be',4,5) 'not to be'
SUBWORD('To be or not to be',1,3) To be or'
SYMBOL(name) (ANSI)

Checks if the stringnameis a valid symbol (a positive number or a possible variable name), and returns
a three letter string indicating the result of that checknalineis a symbol, and names a currently set
variable,VARIs returned, ilhameis a legal symbol name, but has not a been given a value (or is a
constant symbol, which can not be used as a variable na&uifife)is returned to signify that it is a

literal. Else, ifnameis not a legal symbol name the striB@\Dis returned.



Watch out for the effect of "double expansioNameis interpreted as an expression evaluating naming
the symbol to be checked, so you might have to quote the parameter.

SYMBOL('Foobar’) 'VAR' I* Maybe */
SYMBOL('Foo bar') '‘BAD'
SYMBOL('Foo.Foo bar’) 'VAR' /* Maybe */
SYMBOL('3.14") LIT
SYMBOL('.Foo->bar") '‘BAD'
TIME([option_out [,time [option_in]]]) (ANSI)

Returns a string containing information about the time. To get the time in a particular format, an
option_outcan be specified. The defawlption_outis Normal . The meaning of the possible options
are:

[C]
(Civil) Returns the time in civil format. The return value might i 'mmXX', whereXXare
eitheramor pm Thehh part will be stripped of any leading zeros, and will be in the randgE21
inclusive.

[El
(Elapsed) Returns the time elapsed in seconds since the internal stopwatch was started. The
result will not have any leading zeros or blanks. The output will be a floating point number
with six digits after the decimal point.

[H
(Hours) Returns the number of complete hours that have passed since last midnight in the form
"hh". The output will have no leading zeros, and will be in the rang23)

[L]
(Long) Returns the exact time, down to the microsecond. This is called the long format. The
output might be Hh:mm:ss.mmmmmrh Be aware that most computers do not have a clock of
that accuracy, so the actual granularity you can expect, will be about a few milliseconds. The
hh, mmandss parts will be identical to what is returned by the optibhdlandS respectively,
except that each part will have leading zeros as indicated by the format.

[M
(Minutes) Returns the number of complete minutes since midnight, in a format having no
leading zeros, and will be in the range3®.

[N
(Normal) The output format idth:mm:ss ", and is padded with zeros if needed. Tite mm
andss will contain the hours, minutes and seconds, respectively. Each part will be padded with
leading zeros to make it double-digit.

[RI
(Reset) Returns the value of the internal stopwatch just lik&tbtion, and using the same
format. In addition, it will reset the stopwatch to zero after its contents has been read.

[S]
(Seconds) Returns the number of complete seconds since midnight, in a format having no
leading spaces, and will be in the range 0-59.



[T]
(time_) Returns the current date/time in UNtkne_tformat. time_tis the number of seconds
since January®*11970.

Note that the time is never rounded, only truncated. As shown in the examples below, the seconds do
not get rounded upwards, even though the decimal part implies that they are clE8eh&m to58.

The same applies for the minutes, which are clos88tthan to32, but is truncated t32.

None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654 on Mar¢h2802, the following will be true:

TIME(C)) '2:32pm’
TIME(E') '0.01200' /* Maybe */
TIME(H?) '14'

TIME(L') '14:32:58.987654'
TIME(M) '32'

TIME(N') '14:32:58'

TIME(R)) '0.430221' /* Maybe */
TIME(S') '58'

If the time option is specified, the function provides for time conversions. The optaptain_in
specifies the format in whictimeis supplied. The possible values fogption_inare: CHLMNS.
The default value fooption_inis N.

TIME('C','11:27:21") 11:27am'
TIME(N','11:27am’,'C") '11:27:00'

The time conversion capability of the TIME BIF was introduced with the ANSI standard.
TRACE([setting]) (ANSI)

Returns the current value of the trace setting. If the ssettingis specified, it will be used as the new
setting for tracing, after the old value have be recorded for the return value. Note thettihgis not

an option, but may be any of the trace settings that can be specified to theTiRAGE except that

the numeric variant is not allowed wittRACE() . In practice, this can be a word, of which only the
first letter counts, optionally preceded by a question mark.

TRACE() 'C' I* Maybe */
TRACE(N") 'C'
TRACE('?") 'N'
TRANSLATE(string[,[tableout][,[tablein][,padchar]]]) (ANSI)

Performs a translation on the characterstimg. As a special case, if neith&ableinnortableoutis



specified, it will translatestring from lower case to upper case. Note that this operation may depend on
the language chosen, if your interpreter supports national character sets.

Two translation tables might be specified as the striagkinandtableout If one or both of the tables
are specified, each charactesining that exists irtableinis translated to the charactertableoutthat
occupies the same position as the character didilein Thetableindefaults to the whole character
set (all 256) in numeric sequence, whidleoutdefaults to an empty set. Characters ndainieinare
left unchanged.

If tableoutis larger thartablein the extra entries are ignored. If it is smaller thalleinit is padded
with padcharto the correct lengtiRPadchardefaults to <space>.

If a character occurs more than onceabhlein only the first occurrence will matter.

TRANSLATE('FooBar’) 'FOOBAR'
TRANSLATE('FooBar',’ABFORabfor','abforABFOR") TOObAR'
TRANSLATE('FooBar','abfor") 'FB'
TRANSLATE('FooBar','abfor',,'#") 'FH#BH##'
TRUNC(numberf[,length]) (ANSI)

Returnsnumbertruncated to the number of decimals specifieddngth Lengthdefaults to0, that is
return an whole number with no decimal part.

The decimal point will only be present if the is a non-empty decimal partengthis non-zero. The
number will always be returned in simple form, never exponential form, no matter what the current
settings oNUMERICmight be. Iflengthspecifies more decimals thammberhas, extra zeros are
appended. llengthspecifies less decimals thanmberhas, the number is truncated. Note thaimber

Is never rounded, except for the rounding that might take place during normalization.

TRUNC(12.34) 12’
TRUNC(12.99) 12’
TRUNC(12.34,4) '12.3400'
TRUNC(12.3456,2) '12.34'
UNAME (([option]) (REGINA)

Returns details about the current platform. This function is basically a wrapper for the Unix command;
uname. Valid values fasptionare:

[Al
(All) The default. Returns a string with the all following option values. Equivalent to:
UNAME('S") UNAME('N') UNAME('R') UNAME('V') UNAME('M").

[S]
(System) The name of the operating system.

[N

(Nodename) The name of the machine.



[R]
[V]
[M

(Release) The release of the operating system.
(Version) The version of the operating system.
(Machine) The machine's hardware type.

Example running Linux Redhat 6.1 on 'boojum’, Athalon K7

UNAME('S) Linux

UNAME(N)) boojum

UNAME(RY) 2.2.12.-20

UNAME('V) #1 Mon Sep 27 10:40:35 EDT 1999
UNAME('M) i686

Example running Windows NT 4.0 on 'VM_NT', Intel Pentium

UNAME('S') WINNT
UNAME('N’) VM_NT
UNAME('R’) 0
UNAME('V') 4
UNAME('M’) 586
UNIXERROR(errorno) (REGINA)

This function returns the string associated withé¢hneo error number thagrrorno specifies. When
some UNIX interface function returns an error, it really is a reference to an error message which can be
obtained througtdNIXERROR

This function is just an interface to tis¢rerror() function call in UNIX, and the actual error
messages might differ with the operating system.

This function is now obsolete, instead you should use:

ERRORTEXT(100 + errorno)

USERID() (REGINA)

Returns the name of the current user. A meaningful name will only be returned on those platforms that
support multiple users, otherwise an empty string is returned.

‘ USERID() 'mark’ /* Maybe */




VALUE((symbol[,[value],[pool]]) (ANSI)

This function expects as first parameter straygnbo] which names an existing variable. The result

returned from the function is the value of that variablesyiinboldoes not name an existing variable,
the default value is returned, and tN®VALUEondition is not raised. Bymbolis not a valid symbol

name, and this function is used to access an noR&Ex{X variable, an error occurs. Be aware of the
"double-expansion” effect, and quote the first parameter if necessary.

If the optional second parameter is specified, the variable will be set to that value, after the old value
has been extracted.

The optional parametg@ool might be specified to select a particular pool of variables to search for
symbol The contents and format pbolis implementation dependent. The default is to search in the
variables at the current procedural leveREXX. Which pools that are available is implementation
dependent, but typically one can set variables in application programs or in the operating system.

Note that ifVALUE() is used to access variable in pools outsideREXX interpreter, the

requirements to format (a valid symbol) will not in general hold. There may be other requirements
instead, depending on the implementation and the system. Depending on the validity of the name, the
value, or whether the variable can be set or readyieUE() function can give error messages when
accessing variables in pools other than the normal. Consult the implementation and system specific
documentation for more information.

If it is used to access compound variables inside the interpreter the tail part of this function can take any
expression, even expression that are not normally ledqREXX scripts source code.

By using this function, it is possible to perform an extra level of interpretation of a variable.

VALUE('FOO") ‘bar'
VALUE('FOO','new") ‘bar'
VALUE(FOO) new’
VALUE(USER','root','SYSTEM") ‘guest’ /* If SYSTEM exists */
VALUE(USER',,'SYSTEM) ‘root’
VERIFY (string,ref[,[option][,start]]) (ANSI)

With only the first two parameters, it will return the position of the first charactstring that is not
also a character in the strimgf. If all characters irstring are also irref, it will return O.

If optionis specified, it can be one of:

[N
(Nomatch) The result will be the position of the first charactestimg that does exist imef, or
zero if all exist inref. This is the default option.

[M
(Match) Reverses the search, and returns the position of the first charastr@ngrthat exists in
ref. If none exists irref, zero is returned.



If start(which must be a positive whole number) is specified, the search will start at that position in
string. The default value fostartis 1.

VERIFY (‘foobar','barfo’) '2'
VERIFY (‘foobar','barfo’,'M") '2'
VERIFY (‘foobar','fob’,'N") '5'
VERIFY (‘foobar','barf','N',3) ‘3'
VERIFY (‘foobar','barf','N',4) ‘0
WORD(string,wordno) (ANSI)

Returns the blank delimited word numbweordnofrom the stringstring. If wordno(which must be a
positive whole number) refers to a non-existing word, then a nullstring is returned. The result will be
stripped of any blanks.

WORD('To be or not to be',3) ‘or'
WORD('To be or not to be',4) 'not’
WORD('To be or not to be',8) "

WORDINDEX(string,wordno) (ANSI)

Returns the character position of the first character of blank delimited word nuvobenoin string,
which is interpreted as a string of blank delimited wordsaufber(which must be a positive whole
number) refers to a word that does not exisstinng, thenO is returned.

WORDINDEX('To be or not to be',3) 7

WORDINDEX('To be or not to be',4) '10'

WORDINDEX('To be or not to be',8) '0'
WORDLENGTH(string,wordno) (ANSI)

Returns the number of characters in blank delimited word numib@berin string. If number(which
must be a positive whole number) refers to an non-existent word Otieereturned. Trailing or leading
blanks do not count when calculating the length.

WORDLENGTH('To be or not to be',3) '2'
WORDLENGTH('To be or not to be',4) '3
WORDLENGTH('To be or not to be',0) '0'




WORDPOS(phrase,string[,start]) (ANSI)

Returns the word number string which indicates at whicphrasebegins, provided thaihraseis a
subphrase ddtring. If not, O is returned to indicate that the phrase was not found. A phrase differs from
a substring in one significant way; a phrase is a set of words, separated by any number of blanks.

For instance,i$ a "is asubphrase of This is a phrase ". Notice the different amount of
whitespace betweens" " and 'a".

If startis specified, it sets the word Btring at which the search starts. The default valuestartis 1.

WORDPOS('or not','to be or not to be’) ‘3
WORDPOS('not to','to be or not to be") ‘4
WORDPOS('to be','to be or not to be") 1
WORDPOS('to be','to be or not to be',3) '6'
WORDS(string) (ANSI)

Returns the number of blank delimited words in gheng.

WORDS('To be or not to be’) '6'
WORDS('Hello world") '2'
WORDS(") ‘0’
XRANGE([start][,end]) (ANSI)

Returns a string that consists of all the characters start throughend inclusive. The default value

for charactestartis '00'x , while the default value for charactendis 'ff'x . Without any

parameters, the whole character set in "alphabetic” order is returned. Note that the actual representation
of the output fromXRANGE() depends on the character set used by your computer.

If the value ofstartis larger than the value @nd the output will wrap around frofif'x  to'00'x
If startor endis not a string containing exactly one character, an error is reported.

XRANGE('A','J") 'ABCDEFGHIJ'
XRANGE('FC'X) 'FCFDFEFF'Xx
XRANGE(,'05'%) '000102030405'x
XRANGE('FD'x,'04'x) 'FDFEFF0001020304'x
X2B(hexstring) (ANSI)

Translatenexstringto a binary string. Each hexadecimal digithexstringwill be translated to four
binary digits in the result. There will be no blanks in the result.



X2B(") "
X2B('466f6f 426172") '010001100110111101101111010000100110000101
110010
X2B('46 6f 6f) '010001100110111101101111"
X2C(hexstring) (ANSI)

Returns the (packed) string representatiohexstring Thehexstringwill be converted bytewise, and
blanks may optionally be inserted into thexstringbetween pairs or hexadecimal digits, to divide the
number into groups and improve readability. All groups must have an even number of hexadecimal
digits, except the first group. If the first group has an odd number of hexadecimal digits, it is padded
with an extra leading zero before conversion.

\ X2C(") " \
X2C('466f6f 426172") 'FooBar'
X2C('46 6f 6f) 'Foo'

X2D(hexstring[,length]) (ANSI)

Returns a whole number that is the decimal representatibaxstring If lengthis specified, then
hexstringis interpreted as a two's complement hexadecimal number consistingrafrttierightmost
hexadecimal numerals mexstring If hexstringis shorter thamumber it is padded to the left with
<NUL> characters (that i00'x ).

If lengthis not specifiedhexstringwill always be interpreted as an unsigned number. Else, it is
interpreted as an signed number, and the leftmost hi€kstringdecides the sign.

X2D('03 24') 792"
X2D('0310") 784"
X2D(ffff') '65535'
X2D(ffff',5) | '65535'
X2D('ffff',4) T
X2D('ff80',3) 128"
X2D('12345',3) - '837'




13 Implementation specific documentation for Regina

13

13

.1Deviations from the Standard

For those built-in functions where the last parameter can be onmRegina allows the last comma
to be specified, even when the last parameter itself has been omitted.

The error messages are slightly redefined in two ways. Firstly, some of the have a slightly more
definite text, and secondly, some new error messages have been defined.

The environments available are described in chapter [not yet written].
Parameter calling

Stream 1/0O

Conditions

National character sets

Blanks

Stacks have the following extra functionaliy)ROPBUF(), DESBUF() andMAKEBUF() and
BUFTYPE().

Random()
Sourceline
Time

Character sets

2lInterpreter Internal Debugging Functions

ALLOCATED([opt i on])

Returns the amount of dynamic storage allocated, measured in bytes. This is the memory allocated by

themalloc() call, and does not concern stack space or static variables.

As

[Al

[C]

parameter it may take aption, which is one of the single characters:
This is the default value if you do not specify an option. It will return a string that is the number
of bytes of dynamic memory currently allocated by the interpreter.

Returns a number that is the number of bytes of dynamic memory that is currently in use (i.e.
not leaked).



[L]
[S]

Returns the number of bytes of dynamic memory that is supposed to have been leaked.

Returns a string that is nicely formatted and contains all the other three options, with labels. The
format of this string is:

"Memory: Allocated=XXX, Current=YYY, Leaked=27ZZ

This function will only be available if the interpreter was compiled withTIRACEME dreprocessor
macro defined.

DUMPTREE()

Prints out the internal parse tree for REXX program currently being executed. This output is not
very interesting unless you have good knowledge of the interpreter's internal structures.

DUMPVARS()

This routine dumps a list of all the variables currently defined. It also gives a lot of information which
is rather uninteresting for most users.

LISTLEAKED()

List out all memory that has leaked from the interpreter. As a return value, the total memory that has
been listed is returned. There are several option to this function:

a Do not list anything, just calculate the memory.

A List all memory allocations currently in use, not only that which has been marked as leaked.
] Only list the memory that has been marked as leaked. This is the default option.
TRACEBACK()

Prints out a traceback. This is the same routine which is called when the interpreter encounters an error.
Nice for debugging, but not really useful for any other purposes.



13.3REXX VMS Interface Functions
F$CVSI
F$CVTIME
F$CVUI
F$DIRECTORY
FSELEMENT
F$SEXTRACT
F$FAO
F$FILE_ATTRIBUTES
F$GETDVI
F$GETJPI
F$GETQUI
F$SGETSYI
F$IDENTIFIER
FSINTEGER
FSLENGTH
F$SLOCATE
F$SLOGICAL
FSMESSAGE
F$MODE
F$SPARSE
F$PID
F$PRIVILEGE

F$PROCESS



F$SEARCH
F$SETPRV
F$STRING
F$TIME
F$TRNLNM
F$TYPE

F$SUSER



Conditions

In this chapter, thdREXX concept of "conditions" is described. Conditions allow the programmer to
handle abnormal control flow, and enable him to assign special piece&¥iX code to be executed in
case of certain incidences.

e In the first section the concept of conditions is explained.
* Then, there is a description of how a standard conditioREXX would work, if it existed.

* Inthe third section, all the existing conditionsREXX are presented, and the differences
compared to the standard condition described in the previous section are listed.

* The fourth sections contains a collections of random notes on the conditi®EXX.

* The last section describes differences, extensions and peculiarifkegina on the of subject
conditions, and the lists specific behavior.

14 What are Conditions

In this section, the concept of "conditions"” are explained: What they are, how they work, and what they
mean in programming.

14.1What Do We Need Conditions for?

14.1.1Terminology

First, let's look at the terminology used in this chapter. If you don't get a thorough understanding of
these terms, you will probably not understand much of what is said in the rest of this chapter.

[Incident:]
A situation, external or internal to the interpreter, which it is required to respond to in certain
pre-defined manners. The interpreter recognizes incidents of several different types. The
incident will often have a character of "suddenness"”, and will also be independent of the normal
control flow.

[Event:]
Data Structure describing one incident, used as a descriptor to the incident itself.

[Condition:]
Names thdREXX concept that is equivalent to the incident.

[Raise a Condition:]
The action of transforming the information about an incident into an event. This is done after
the interpreter senses the condition. Also includes deciding whether to ignore or produce an
event.

[Handle a Condition:]
The act of executing some pre-defined actions as a response to the event generated when a
condition was raised.

[(Condition) Trap:]
Data Structure containing information about how to handle a condition.



[(Trap) State:]
Part of the condition trap.

[(Condition) Handler:]
Part of the condition trap, which points to a piecdREEXX code which is to be used to handle
the condition.

[(Trap) Method:]
Part of the condition trap, which defined how the condition handler is to be invoked to handle
the condition.

[Trigger a Trap:]
The action of invoking a condition handler by the method specified by the trap method, in order
to handle a condition.

[Trap a Condition:]
Short of trigger a trap for a particular condition.

[Current Trapped Condition:]
The condition currently being handled. This is the same as the most recent trapped condition on
this or higher procedure level.

[(Pending) Event Queue:]
Data Structure storing zero or more events in a specific order. There are only one event queue.
The event queue contains events of all condition types, which have been raised, but not yet
handled.

[Default-Action:]
The pre-defined default way of handling a condition, taken if the trap state for the condition
raised iSOFF

[Delay-Action:]
The pre-defined default action taken when a condition is raised, and the trap Si&ileA¥!

15 The Mythical Standard Condition

REXX Language Level 4.00 has six different conditions. However, each of these is a special case of a
mythical, non-existing, standard condition. In order to better understand the real conditions, we start by
explaining how a standard condition work.

In the examples below, we will call our non-existing standard condMdiTH Note that these
examples will not be executable on aREXX implementation.

15.1Information Regarding Conditions (data structures)
There are mainly five conceptual data structures involved in conditions.

[Event queue.]
There is one interpreter-wide queue of pending conditions. Raising a condition is identical to
adding information about the condition to this queue (FIFO). The order of the queue is the
same order in which the conditions are to be handled.

Every entry in the queue of pending conditions contains some information about the event: the
line number of thdREXX script when the condition was raised, a descriptive text and the
condition type.

[Default-Action.]
To each, there exists information about the default-action to take if this condition is raised but
the trap is in stat®FF. This is called the "default-action”. The standard default-action is to



ignore the condition, while some conditions may abort the execution.
[Delay-Action.]
Each condition will also have delay-action, which tells what to do if the condition is raised
when condition trap is in stal@eELAY. The standard delay-action is to queue the condition in
the queue of pending conditions, while some conditions may ignore it.
[Condition traps.]
For each condition there is a trap which contains three pieces of status information: the state; the
handler; and the method. The state caOibEOFFor DELAY.

The handler names tHREXX label in the start of th&@EXX code to handle the event. The
method can be eith&IGNAL or CALL, and denotes the method in which the condition is to be
handled. If the state ©FF, then neither handler nor method is defined.

[Current Trapped Condition.]
This is the most recently handled condition, and is set whenever a trap is triggered. It contains
information about method, which condition, and a context-dependent description. In fact, the
information in the current trapped condition is the same information that was originally put into
the pending event queue.

Note that the event queue is a data structure connected to the interpreter itself. You operate on the same
event queue, independent of subroutines, even external ones. On the other hand, the condition traps and
the current trapped condition are data structures connected to each single routine. When a new routine
is called, it will get its own condition traps and a current trapped condition. For internal routines, the

initial values will be the same values as those of the caller. For external routines, the values are the
defaults.

The initial value for the event queue is to be empty. The default-action and the delay-action are static
information, and will always retain their values during execution. The initial values for the condition
traps are that they are all in st&@@&F. The initial value for the current trapped condition is that all
information is set to the nullstring to signalize that no condition is currently being trapped.

15.2How to Set up a Condition Trap

How do you set the information in a condition trap? You do it witBI&GNAL or CALL clause, with the
ONor OFFsubkeyword. Remember that a condition trap contain three pieces of information? Here are
the rules for how to set them:

* To set the trap method, use eitf&3GNAL or CALL as keyword.

* To set state t®Nor OFF, use the appropriate subkeyword in the clause. Note that there is no clause
or function INREXX, capable of setting the state of a traftaLAY.

* To set the condition handler, append the teNAME handler " to the command. Note that this
term is only legal if you are setting the stateiy you can not specify a handler when setting the
state toOFF

The trap is said to be "enabled" when the state is efflidor DELAY, and "disabled” when the state is
OFFE Note that neither the event queue, nor the current trapped condition can be set explicitly by
REXX clauses. They can only be set as a result of incidents, when raising and trapping conditions.



It sounds very theoretical, doesn't it? Look at the following examples, which sets tihé\iEtp

/*1* SIGNAL ON MYTH NAME TRAP_IT
* 2 */ SIGNAL OFF MYTH

/*3* CALL ON MYTH NAME MYTH_TRAP
/*4* CALL ON MYTH

[*5* CALL OFF MYTH

Line 1 sets state tON method taSIGNAL and handler tdRAP_IT. Line 2 sets state tOFF, handler
and method becomes undefined. Line 3 sets stali\tonethod toaCALL, and handler ttdYTH_TRAP
Line 4 sets state tON method toCALL and handler td1YTHthe default). Line 5 sets state @-F,
handler and method become undefined.

Why should method and handler become undefined when the trap irfO$tB&eeFor two reasons:
firstly, these values are not used when the trap is in Q& and secondly, when you set the trap to
stateON they are redefined. So it really does not matter what they are inQidie

What happens to this information when you call a subroutine? All information about traps are inherited
by the subroutine, provided that it is an internal routine. External routines do not inherit any

information about traps, but use the default values. Note that the inheritance is done by copying, so any
changes done in the subroutine (internal or external), will only have effect until the routine returns.

15.3How to Raise a Condition

How do you raise a condition? Well, there are really no explicit waHXX to do that. The
conditions are raised when an incident occurs. What sort of situations that is, depends on the context.
There are in general three types of incidents, classified by the origin of the event:

» Internal origin. The incident is only dependent on the behavior dRE¥X script. TheSYNTAX
condition is of this type.

» External origin. TheREXX script and the interpreter has really no control over when this incident.
It happens completely independent of the control oRE&XX script or interpreter. ThEIALT
condition is of this type.

* Mixed origin. The incident is of external origin, but the situation that created the incident, was an
action by theREXX script or the interpreter. THERRORondition is of this type: the incident is a
command returning error, but it can only occur when the interpreter is executing commands.

For conditions trapped by meth@ALL, standardREXX requires an implementation to at least check

for incidents and raise condition at clause boundaries. (But it is allowed to do so elsewhere too;
although the actual triggering must only be performed at clause boundaries.) Consequently, you must
be prepared that in some implementations, conditions trappable by n@&iddmight only be raised

(and the trap triggered) at clause boundaries, even if they are currently trapped by Si6iNAdL..

The six standard conditions will be raised as result of various situations, read the section describing
each one of them for more information.



|Incident| |Condition| /Trap \ Off |Default |
| occurs | -> Jisraised | -> \ State /--> | action |
\-----/

—— T o — +  \e---- —— +
/
/On |Delay
/ I
/ Y,
—— +/  (S——— \ S — +

| Queue | Yes /DelayAction\ No |Ilgnore|
|an event] <-- \isqueue? / -->|event|

B — R e —— — +
|
v
[-=-=--- \
/Method is\
\CALL? /
\---o-- /\
/ \
/No Yes\
/ \ [-===mm--- \

/ \ / \
Fommeee- + Fomomeee- + \ Decision /
| Set state | | Set state | \-ommeee- /
| OFF | | DELAY |
R ——— + R ——— + . +
| Trigger | | | | _
| trap | | Return | | Action |
B + B + Fommmmeee +

The triggering of a condition

When an incident occurs and the condition is raised, the interpreter will check the state of the condition
trap for that particular condition at the current procedure level.

» Ifthe trap state i©FF the default-action of the condition is taken immediately. The "standard"
default-action is to ignore the condition.

« Ifthe trap state IDELAY, the action will depend on the delay-action of that condition. The standard
delay-action is to ignore, then nothing further is done. If the delay-action is to queue, the interpreter
continues as if the state was\

» Ifthe state of the trap I®N an event is generated which describes the incident, and it is queued in
the pending event queue. The further action will depend on the method of trapping.

» If the method iCALL, the state of the trap will be set RELAY. Then the normal execution is
resumed. The idea is that the interpreter will check the event queue later (at a clause boundary), and
trigger the appropriate trap, if it finds any events in the event queue.



« Else, if method of trapping iISIGNAL, then the action taken is this: First set the trap to SD4tE,
then terminate clause the interpreter was executing at this procedure level. Then it explicitly trigger
the condition trap.

This process has be shown in the figure above. It shows how an incident makes the interpreter raise a
condition, and that the state of the condition trap determines what to do next. The possible outcomes of
this process are: to take the default-action; to ignore if delay-action is not to queue; to just queue and
the continue execution; or to queue and trigger the trap.

15.4How to Trigger a Condition Trap

What are the situations where a condition trap might be triggered? It depends on the method currently
set in the condition trap.

If the method iISSIGNAL, then the interpreter will explicitly trigger the relevant trap when it has raised
the condition after having sensed the incident. Note that only the particular trap in question will be
triggered in this case; other traps will not be triggered, even if the pending event queue is non-empty.

In addition, the interpreter will at each clause boundary check for any pending events in the event
queue. If the queue is non-empty, the interpreter will not immediately execute the next normal
statement, but it will handle the condition(s) first. This procedure is repeated until there are no more
events queued. Only then will the interpreter advance to execute the next normal statement.

Note that theREXX standard does not require the pending events to be handled in any particular order,
although the model shown in this documentation it will be in the order in which the conditions were
raised. Consequently, if one clause generates several events that raise conditions before or at the next
clause boundary, and these conditions are trapped by m€ilod Then, the order on which the

various traps are triggered is implementations-dependent. But the order in which the different instances
of the same condition is handled, is the same as the order of the condition indicator queue.

15.5Trapping by Method SIGNAL

Assume that a condition is being trapped by metBHENAL, that the state i©Nand the handler is
MYTH_TRAPThe followingREXX clause will setup the trap correctly:

SIGNAL ON MYTH NAME MYTH_TRAP
Now, suppose thmYTHncident occurs. The interpreter will sense it, queue an event, set the trap state
to OFFand then explicitly trigger the trap, since the metho8IGNAL. What happens when the trap is
triggered?

» It collects the first event from the queue of pending events. The information is removed from the
queue.

* The current trapped condition is set to the information removed from the pending event queue.

* Then, the interpreter simulate S&GNAL clause to the label named by trap handler of the trap for
the condition in question.

» As all SIGNAL clauses, this will have the side-effects of setting$h@L special variable, and



terminating all active loops at the current procedure level.

That's it for metho&IGNAL. If you want to continue trapping conditidY THyou have to execute a
newSIGNAL ON MYTH clause to set the state of the trapabl But no matter how quick you reset
the trap, you will always have a short period where it is in St#€ This means that you can not in
general use the meth@IGNAL if you really want to be sure that you don't loose M¥THevents,
unless you have some control over wid¥iTHcondition may arise.

Also note that since the statement being executed is terminated; all active loops on the current
procedure level are terminated; and the only indication where the error occurred is the line number (the
line may contain several clauses), then it is in general impossible to pick up the normal execution after
a condition trapped b8IGNAL. Therefore, this method is best suited for a "graceful death" type of
traps. If the trap is triggered, you want to terminate what you were doing, and pick up the execution at
an earlier stage, e.g. the previous procedure level.

15.6Trapping by Method CALL

Assume that the conditioMY THs being trapped by methd@ALL, that the state i©Nand the handler
isMYTH_HANDLER

The followingREXX clause will setup the trap correctly:

CALL ON MYTH NAME MYTH_HANDLER

Now, suppose that theYTHncident occurs. When the interpreter senses that, it will rais&t¥eH
condition. Since the trap state@Nand the trap method SALL, it will create an event and queue it in

the pending event queue and set the trap stddEIOAY. Then it continues the normal execution. The

trap is not triggered before the interpreter encounters the next clause boundary. What happens then?

* Atthe every clause boundaries, the interpreter check for any pending events in the event queue. If
one is found, it is handled. This action is done repeatedly, until the event queue is empty.

« It will simulate a normal function call to the label named by the trap handler. As witiCAhy.
clause, this will set the special varial3éGL to the line of from which the call was made. This is
done prior to the call. Note that this is the current line at the time when the condition was raised, not
when it was triggered. All other actions normally performed when calling a subroutine are done.
Note that the arguments to the subroutine are set to empty.

* However, just before execution of the routine starts, it will remove the first event in the pending
event queue, the information is instead put into the current trapped condition. Note that the current
trapped condition is information that is saved across subroutine calls. ltafiesethe condition
handler is called, and will be local to the condition handler (and functions called by the condition
handler). To the "caller" (i.e. the procedure level active when the trap was triggered), it will seem as
if the current trapped condition was never changed.

» Then the condition handler finishes execution, and returns by executiRifheRNlause. Any
expression given as argumentR&TURNvill be ignored, i.e. the special variadRESULTwill not
be set upon return from a condition handler.



e Atthe return from the condition handler, the current trapped condition and the setup of all traps are
restored, as with a normal return from subroutine. As a special case, the state of the trap just
triggered, will not be put back intbELAYstate, but is set to sta@N

« Afterwards (and before the next normal clause), the interpreter will again check for more events in
the event queue, and it will not continue on RREXX script before the queue is empty.

During the triggering of a trap by meth@RLL at a clause boundary, the state of the trap is not
normally changed, it will continue to H2ELAY, as was set when the condition was raised. It will
continue to be in statBELAYuntil return from the condition handler, at which the state of the trap in
the caller will be changed tON If, during the execution of the condition trap, the state of the condition
being trapped is set, that change will only last until the return from the condition handler.

Since new conditions are generally delayed when an condition handler is executing, new conditions are
queued up for execution. If the trap state is chang&aNdhe pending event queue will be processed

as named at the next clause boundary. If the state is chan@deFtohe default action of the conditions

will be taken at the next clause boundary.

15.7The Current Trapped Condition

The interpreter maintains a data structure called the current trapped condition. It contains information
relating the most recent condition trapped on this or higher procedure level. The current trapped
condition is normally inherited by subroutines and functions, and restored after return from these.

* When trapped by methdslGNAL the current trapped condition of the current procedure level is
set to information describing the condition trapped.

* When trapped by methddALL, the current trapped condition at the procedure level which the trap
occurred at, is not changed. Instead, the current trapped condition in the condition handler is set to
information describing the condition.

The information stored in the current trapped condition can be retrieved by the built-in function
CONDITION() . The syntax format of this function is:

CONDITION(option )

whereoptionis an option string of which only the first character matters. The valid options are:
Condition name , Description , Instruction andState . These will return: the name of

the current trapped condition; the descriptive text; the method; and the current state of the condition,
respectively. The defaubiptionis Instruction . See the documentation on the built-in functions.
See also the description of each condition below.

Note that theState option do not return the state at the time when the condition was raised or the trap
was triggered. It returns the current state of the trap, and may change during execution. The other
information in the current trapped condition may only change when a new condition is trapped at return
from subroutines.



16 The Real Conditions

We have now described how the standard condition and condition trap wdrRESXX. Let's look at
the six conditions defined which do exist. Note that none of these behaves exactly as the standard
condition.

16.1The SYNTAXcondition

The SYNTAXcondition is of internal origin, and is raised when any syntax or runtime error is
discovered by th&REXX interpreter. It might be any of the situations that would normally lead to the
abortion of the program and the report dRBXX error message, except error message number 4
(Program interruptedl, which is handled by thEIALT condition.

There are several differences between this condition and the standard condition:

» Itis not possible to trap this condition with the meth@ALL, only methodSIGNAL. The reason
for this is partly that metho@ALL tries to continue execution until next boundary before triggering
the trap. That might not be possible with syntax or runtime errors.

* When this condition is trapped, the special varid®@s set to theREXX error number of the
syntax or runtime error that caused the condition. This is done just before the setting of the special
variableSIGL.

* The default action of this condition if the trap stat€iBF, is to abort the program with a traceback
and error message.

» There is not delay-action for conditi®&YNTAXsince it can not be trapped by meth@ALL, and
consequently never can get into stAteL AY.

The descriptive text returned IGONDITION() when called with théescription option for
conditionSYNTAX s implementation dependent, and may also be a nullstring. Consult the
Implementation-specific documentation for more information.

16.2The HALT condition

TheHALT condition of external origin, which is raised as a result of an action from the user, normally a
combination of keys which tries to abort the program. Which combination of keys will vary between
operating systems. Some systems might also simulate this event by other means than key combinations.
Consult system for more information.

The differences betwedhALT and the standard condition are:
» The default-action for thElALT condition is to abort execution, as thougRBXX runtime error

number 4 Program interruptedlhad been reported. But note ti& NTAXwill never be raised if
HALT s not trapped.

* The delay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that would $#Athiecondition,
to clause boundaries. As a result, the response time from pressing the key combination to actually



raising the condition or triggering the trap may vary, evetALTis trapped by metho8IGNAL. If a
clause for some reason has blocked execution, and never finish, you may not be able to break the
program.

The descriptive text returned ISONDITION() when called with théescription option for
conditionHALT, is implementation dependent, and may also be a nullstring. In general, it will describe
the way in which the interpreter was attempted halted, in particular if there are more than one way to do
raise aHALT condition. Consult the implementation documentation for more information.

16.3The ERRORoNdition

The ERRORs a condition of mixed origin, it is raised when a command returns a return value which
indicates error during execution. Often, commands return a numeric value, and a particular value is
considered to mean success. Then, other values might raiERER@Rondition.

Differences betweeBRRORINd the standard condition:
* The delay action dERRORs to ignore, not to queue.

* The special variablRCis always set before this condition is raised. So even if it is trapped by
methodSIGNAL, you can rely ofiRCto be set to the return value of the command.

Unfortunately, there is no universal standard on return values. As stated, they are often numeric, but
some operating system use non-numeric return values. For those which do use numeric values, there are
no standard telling which values and ranges are considered errors and which are considered success. In
fact, the interpretation of the value might differ between commands within the same operating system.

Therefore, it is up to th&EXX implementation to define which values and ranges that are considered
errors. You must expect that this information can differ between implementations as well as between
different environments within one implementation.

The descriptive text returned IGONDITION() when called with théescription option for
conditionERRORIs the command which caused the error. Note that this is the command as the
environment saw it, not as it was entered in REeXX script source code.

16.4The FAILURE condition

The FAILURE is a condition of mixed origin, it is raised when a command returns a return value which
indicates failure during execution, abnormal termination, or when it was impossible to execute a
command. Itis a subset of tiERRORondition, and if it is in stat©FF, then theERRORondition

will be raised instead. But note that an implementation is free to consider all return codes from
commands aBERROR, and none aBAILURES. In that case, the only situation wheréAlLURE

would occur, is when it is impossible to execute a command.

Differences betweeRAILURE and the standard condition:
* The delay action oFAILURE is to ignore, not to queue.

» The special variablRCis always set before this condition is raised. So even if it is trapped by
methodSIGNAL, you can rely oiRCto be set to the return value of the command, or the return



code that signalize that the command was impossible to execute.

As for ERRORthere is no standard the defines which return values are failures and which are errors.
Consult the system and implementation independent documentation for more information.

The descriptive text returned IGONDITION() when called with théescription option for
conditionFAILURE, is the command which caused the error. Note that this is the command as the
environment saw it, not as it was entered in REXX script source code.

16.5The NOVALUEondition

The NOVALUEondition is of internal origin. It is raised in some circumstances if the value of an unset
symbol (which is not a constant symbol) is requested. Normally, this would return the default value of
the symbol. It is considered bad programming practice not to initialize variables, and setting the
NOVALUEondition is one method of finding the parts of your program that uses this programming
practice.

Note however, there are only three instances where this condition may be raised: that is when the value
of an unset (non-constant) symbol is used requested: in an expression; aitaRbabkeyword in a
PARSEclause; and as an indirect reference in either a templ&BQ@For aPROCEDUR#8ause. In

particular, this condition is not raised if tVALUE() or SYMBOL() built-in functions refer to an

unset symbol.

Differences betweeNOVALUENd the standard condition are:

* It may only be trapped by meth&GNAL, never methoALL. This requirement might seem
somewhat strange, but the idea is that since an implementation is only forced to check for
conditions trapped by meth&ALL at clause boundaries, incidences that may occur at any point
within clauses (likeNOVALUEcan only be trapped by meth&IGNAL. (However, condition
NOTREADYan occur within a clause, and may be trapped by me&iifdd_ so this does not seem
to be absolute consistent.)

* There is not delay-action for conditiddMOVALUESsince it can not be trapped by meth@ALL, and
consequently never can get into stAteL AY.

The descriptive text returned by calli@@NDITION() with the Description option, is the
derived (i.e. tail has be substituted if possible) name of the variable that caused the condition to be
raised.

16.6 The NOTREAD¥ondition

The conditiolNOTREADYs a condition of mixed origin. It is raised as a result of problems with

stream 1/O. Exactly what causes it, may vary between implementations, but some of the more probable
causes are: waiting for more 1/O on transient streams; access to streams not allowed; 1/0O operation
would block if attempted; etc. See the chap&tream Input and Output for more information.

Differences betweeNOTREADYNd the standard condition are:

* It will be ignored rather than queued if condition trap is in SRELAY.



e This condition differs from the rest in that it can be raised during execution of a clause, but can still
be trapped by methaQALL.

The descriptive text returned IGONDITION() when called with théescription option for
conditionNOTREAD)s the name of the stream which caused the problem. This is probably the same
string that you used as the first parameter to the functions that operates on stream I/O. For the default
streams (default input and output stream), the string return€CBYDITION() will be nullstrings.

Note that if theNOTREADYap is in statddELAY, then all I/O for files which has tried to raise
NOTREADWithin the current clause will be simulated as if operation had succeeded.

17 Further Notes on Conditions

17.1Conditions under Language Level 3.50

The concept of conditions was very much expanded fREXX language level 3.50 to level 4.00.
Many of the central features in conditions are new in level 4.00, these include:

» TheCALL method is new, previously only tt®iGNAL method was available, which made it rather
difficult to resume execution after a problem. As a part of thisQE& AYstate has been added too.

» The conditiolNOTREADYias been added, to allow better control over problems involving stream
I/O.

e The built-in functionCONDITION() has been added, to allow extraction of information about the
current trapped condition.

17.2Pitfalls when Using Condition Traps
There are several pitfalls when using conditions:

* Remember that some information are saved across the functions. Both the current trapped condition
and the settings of the traps. Consequently, you can not set a trap in a procedure level from a lower
level. (I.e. calling a subroutine to set a trap is will not work.)

* Remember thaBIGL is set when trapped by meth@ARALL. This means that whenever a condition
might be trapped bZALL, theSIGL will be set to a new value. Consequently, never trust the
contents of th&IGL variable for more than one clause at a time. This is very frustrating, but at
least it will not happen often. When it do happen, though, you will probably have a hard time
debugging it.

» Also remember that if you use ttRROCEDUR&8ause in a condition handler called by method
CALL, remember t&EXPOSEhe special variableSIGL if you want to use it inside the condition
handler. Else it will be shadowed by tRROCEDURE

17.3The Correctness of this Description

In this description of conditions IREXX, | have gone further in the description of how conditions
work, their internal data structures, the order in which things are executed etc., than the standard does.
| have tried to interpret the set of distinct statements that is the documentation on condition, and design



a complete and consistent system describing how such conditions work. | have done this to try to
clarify an area oOREXX which at first glance is very difficult and sometimes non-intuitive.

| hope that the liberties | have taken have helped describe conditi®EXX. | do not feel that the

adding of details that | have done in any way change how conditions work, but at least | owe the reader
to list which concepts that are genuiREXX, and which have been filled in by me to make the picture
more complete. These are not a part of the stand&XX.

 REXX does not have anything called a standard condition. There just "are" a set of conditions
having different attributes and values. Sometimes there are default values to some of the attributes,
but still the are no default condition.

* The terms "event" and "incident” are not used. Instead the term "condition" is somewhat overloaded
to mean several things, depending on the situation. | have found it advantageous to use different
terms for each of these concepts.

« StandardREXX does not have condition queue, although a structure of such a kind is needed to
handled the queuing of pending conditions when the trap st&XteLis\Y.

* The values default-action and delay-action are really non-existing in the StaRExixi
documentation. | made them up to make the system more easy to explain.

* The two-step process of first raising the flag, and then (possibly at a later stage) triggering the trap,
is not really aBREXX concept. OriginallyREXX seems to allow implementations to select certain
places of the interpreter where events are sought for. All standard conditions that can be called by
methodCALL, can be implemented by checking only at clause boundaries.

« Consequently, REXX implementation can choose to trigger the trap immediately after a condition
are raised (since conditions are only raised immediately before the trap would trigger anyway). This
is also the common way used in language level 3.50, when only m8tIGMAL was implemented.

» Unfortunately, the introduction of the stdd=LAYforces the interpreter to keep a queue of pending
conditions, so there is nothing to gain on insisting that raising should happen immediately before
triggering. And the picture is even more muddied whenNRE'READ¥ondition is introduced.

Since it explicitly allows raising of condition to be done during the clause, even though the
triggering of the trap must happen (if methodi8LL) at the end of the clause.

| really hope that these changes has made the concept of conditions easier to understand, not harder.
Please feel free to flame me for any of these which you don't think is representafREXoS.

18 Conditions in Regina
Here comes documentation that are specific folRBgina implementation oREXX.

18.1How to Raise the HALT condition

The implementation connect thALT condition to an external event, which might be the pressing of
certain key combination. The common conventions of the operating system will dictate what that
combination of keystrokes is.



Below is a list, which describes how to invoke an event that will rais¢HAEeT condition under
various the operating systems whigkgina runs under.

« Under various variants of tHgnix operating system, tHeéALT event it connected to the signal
"interrupt” (SIGINT ). Often this signal is bound to special keystrokes. Depending on your version
of Unix, this might be <ctrl>-<c> (mostly BSD-variants) or the <del> key (mostly System V). ltis
also possible to send this signal from the command line, in general using the pilalfdm ; or
from program, in general using the csijnal(3) . Refer to your Unix documentation for more
information.

* UnderVAX/VMS, the key sequence <ctrl>-<c> is used to raiseHA& T condition in the
interpreter.

19 Possible Future extensions

* Hereis alist of possible future extensiond)REXX which has not been implemented irRegina.
Some of these exist in other implementation®&XX, and some of them are just suggestions or
ideas thrown around by various people.

* Another extension could have been included, but have been left out so far. It is the delay-action,
which in standardREXX can be either to ignore or to queue. There is at least one other action that
make sense: to replace. That is, when a trap is in BtateAY, and a new condition has been raised,
the pending queue is emptied, before the new condition is queued. That way, the new condition will
effectively replace any conditions already in the queue.

» If there are several new conditions raised while the condition handler is executing (and the trap state
is DELAY), only the very last of them is remembered.

» It should be possible to set the state for a traPELAY, so that any new instances of the condition
is handles by the delay-action. As a special case5¥eTAXcondition trap might not be set in
stateDELAY



Stream Input and Output

And the streams thereof shall be turned into pitch

Isaiah 33:21
For every one that asketh receivedth;
and he that seeketh findth;
and to him that knocketh it shall be opened.

Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in functions. An
overview of the other parts of the input/output (1/0O) system is also given but not discussed in detail. At
the end of the chapter there are sections containing implementation-specific information for this topic.

20 Background and Historical Remarks

Stream 1/O is a problem area for languages REEXX. They try to maintain compatibility for all

platforms (i.e. to be non-system-specific), but the basic I/O capabilities differ between systems, so the
simplest way to achieve compatibility is to include only a minimal, common subset of the functionality
of all platforms. With respect to the functionality of the interface to their surrounding environment,
non-system-specific script languages IREXX are inherently inferior to system specific script
languages which are hardwired to particular operating systems and can benefit from all their features.

AlthoughREXX formally has its own I/O constructs, it is common for some platforms that most or all
of the I/O is performed as operating system commands rather tiREXX. This is how it was

originally done under VM/CMS, which was one of the earliest implementations and which did not
supportREXX's I/0 constructs. There, tieXECIO program and the stack (among other methods) are
used to transfer data to and fronR&XX program.

Later, the built-in functions for stream 1/O gained territory, but lots of implementations still rely on
special purpose programs for doing I/0. The general recommendafRIEX® programmers is to use
the built-in functions instead of special purpose programs whenever possible; that is the only way to
make compatible programs.

21 REXX's Notion of a Stream

REXX regards a stream as a sequence of characters, conceptually equivalent to what a user might type
at the keyboard. Note thatstreams not generally equivalent tofde. [MCGH:DICT] defines a file as

"a collection of related records treated as a unit," while [OX:CDICT] defines it as "Information held on
backing store [...] in order (a) to enable it to persist beyond the time of execution of a single job and/or
(b) to overcome space limitations in main memory." A stream is defined by [OX:CDICT] as "a flow of
data characterized by relative long duration and constant rate."

Thus, a file has a flavor of persistency, while a stream has a flavor of sequence and momentarily. For a
stream, data read earlier may already have been lost, and the data not yet read may not be currently
defined; for instance the input typed at a keyboard or the output of a program. Even though much of the
REXX literature use these two terms interchangeably (and after all, there is some overlap), you should
bear in mind that there is a difference between them.



In this documentation, the term "file" means "a collection of persistent data on secondary storage, to
which random access and multiple retrieval are allowed.” The term "stream" means a sequential flow of
data from a file or from a sequential device like a terminal, tape, or the output of a program. The term
stream is also used in its strREXX meaning: a handle to/from which a flow of data can be

written/read.

22 Short Crash-Course

REXX I/O is very simple, and this short crash course is probably all you need in a first-time reading of
this chapter. But note that that, we need to jump a bit ahead in this section.

To read a line from a stream, use tH&IEIN()  built-in function, which returns the data read. To
write a stream, use tHANEOUT() built-in function, and supply the data to be written as the second
parameter. For both operations, give the name of the stream as the first parameter. Some small
examples:

contents = linein( 'myfile.txt")
call lineout 'yourfile.txt', 'Data to be written’

The first of these reads a line from the streauyfile.txt , While the second writes a line to the
streamyourfile.txt . Both these calls operate on lines and they use a system specific end-of-line
marker as a delimiter between lines. The marker is tagged on at the end of any data written out, and
stripped off any data read.

Opening a stream IREXX is generally done automatically, so you can generally ignore that in your
programs. Another useful method is repositioning to a particular line:

call linein 'myfile.txt', 12, 0
call lineout 'yourfile.txt',, 13

Where the first of these sets the current read position to the start of line 12 of the stream; the second
sets the current write position to the start of line 13. Note that the second parameter is empty, that
means no data is to be written. Also note that the current read and write positions are two independent
entities; setting one does not affect the other.

The built-in functionsCHARIN() andCHAROUT()are similar to the ones just described, except that
they are character-oriented, i.e. the end-of-line delimiter is not treated as a special character.

Examples of use are:

say charin( 'myfile.txt', 10)
call charout 'logfile’, 'some data’

Here, the first example reads 10 characters, starting at the current input position, while the second
writes the eleven characters of "some data" to the file, without an end-of-file marker afterwards.

It is possible to reposition character-wise too, some examples are:



call charin 'myfile',, 8
call charout foofile,, 10

These two clauses repositions the current read and write positions of the named files"tandel &'
characters, respectively.

23 Naming Streams

Unlike most programming languagé¥:-XX does not use file handles; the name of the stream is also in
general the handle (although some implementations add an extra level of indirection). You must supply
the name to all I/O functions operating on a stream. However, internal[REXeX interpreter is likely

to use the native file pointers of the operating system, in order to improve speed. The name specified
can generally be the name of an operating system file, a device name, or a special stream name
supported by your implementation.

The format of the stream name is very dependent upon your operating system. For portability concerns,
you should try not to specify it as a literal string in each 1/O call, but set a variable to the stream name,
and use that variable when calling I/O functions. This reduces the number of places you need to make
changes if you need to port the program to another system. Unfortunately, this approach increases the
need foPROCEDURE EXPOSEince the variable containing the files name must be available to all
routines using file 1/O for that particular file, and all their non-common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming of streams. The variable
filename is set to the name of the stream operated on in the function call.

filename = '/tmp/MyFile. Txt'

say 'first line is' linein( filename )
say 'second line is' linein( filename )
say ' third line is' linein( filename )

Suppose this script, which looks like it is written for Unix, is moved to a VMS machine. Then, the
stream name might be something IR¥ S$TEMP:MYFILE.TXT, but you only need to change the
script at one particular point: the assignment to the varitilleleame ; as opposed to three places if
the stream name is hard-coded in each of the three cdlIfN&BIN()

If the stream name is omitted from the built-in I/O functions, a default stream is used: input functions
use the default input stream, while output functions use the default output stream. These are implicit
references to the default input and output streams, but unfortunately, there is no standard way to
explicitly refer to these two streams. And consequently, there is no standard way to refer to the default
input or output stream in the built-in functi®rREAM().

However, most implementations allow you to access the default streams explicitly through a name,
maybe the nullstring or something lik&din  andstdout . However, you must refer to the
iImplementation-specific documentation for information about this.

Also note that standafdEXX does not support the concept of a default error stream. On operating
systems supporting this, it can probably be accessed through a special name; see system-specific



information. The same applies for other special streams.

Sometimes the term "default input stream"” is called "standard input stream," "default input devices,"
"standard input,” or just "stdin."

The use of stream names instead of stream descriptors or handles is deeply root&EXXhe

philosophy: Data structures are text strings carrying information, rather than opaque data blocks in
internal, binary format. This opens for some intriguing possibilities. Under some operating systems, a
file can be referred to by many names. For instance, under Unix, a file can be referréoldiozas ,

Jfoobar  and././foobar . All which name the same file, althoughREXX interpreter may be

likely to interpret them as three different streams, because the names themselves differ. On the other
hand, nothing prevents an interpreter from discovering that these are names for the same stream, and
treat them as equivalent (except concerns for processing time). Under Unix, the problem is not just
confined to the use aof in file names, hard-links and soft-links can produce similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to a file fwadledf ou read the first line
of foo , then you issue a command, in order to renémee to bar . Then, you try to read the next line
from foo . TheREXX program for doing this under Unix looks something like:

signal on notready
linel = linein( 'foo")
'mv foo bar'

line2 = linein( 'foo")

Theoretically, the fildoo does not exist during the second call, so the second read should raise the
NOTREADYondition. However, &EXX interpreter is likely to have opened the stream already, so it

is performing the reading on the file descriptor of the open file. It is probably not going to check
whether the file exists before each 1/0 operation (that would require a lot of extra checking). Under
most operating systems, renaming a file will not invalidate existing file descriptors. Consequently, the
interpreter is likely to continue to read from the origif@d file, even though its has changed.

Example: Unix temporary files

On some systems, you can delete a file, and still read from and write to the stream connected to that
file. This technique is shown in the following Unix specific code:

tmpfile = '/tmp/myfile’

call lineout tmpfile, "

call lineout tmpfile,, 1

‘rm' tmpfile

call lineout tmpfile, 'This is the first line'

Under Unix, this technique is often used to create temporary files; you are guaranteed that the file will
be deleted on closing, no matter how your program terminates. Unix deletes a file whenever there are
no more references to it. Whether the reference is from the file system or from an open descriptor in a
user process is irrelevant. After the command, the only reference to the file is from REXX

interpreter. Whenever it terminates, the file is deleted--since there are no more references to it.



Example: Files in different directories

Here is yet another example of how using the filename directly in the stream 1/O functions may give
strange effects. Suppose you are using a system that has hierarchical directories, and you have a
functionCHDIR() which sets a current directory; then consider the following code:

call chdir '../dirl’
call lineout 'foobar’, 'written to foobar while in dirl'
call chdir '../dir2'
call lineout 'foobar’, 'written to foobar while in dir2"'

Since the file is implicitly opened while you are in the directdinl , the filefoobar refers to a file
located there. However, after changing the directodi® , it may seem logical that the second call

to LINEOUT() operates on a file idir2 , but that may not be the case. Considering that these clauses
may come a great number of lines apart, REXX has no standard way of closing files, and that

REXX only have one file table (i.e. open files are not local to subroutines); this may open for a
significant astonishment in compl&EXX scripts.

Whether an implementation treatgfoo and./foo as different streams is system-dependent; that
applies to the effects of renaming or deleting the file while reading or writing, too. See your interpreter's
system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolation between the filename
of the operating system and the file handle inREEXX program. Whenever a file can be explicitly

opened and bound to a file handle, you should do that in order to decrease the possibilities for strange
side effects.

Interpreters that allow this method generally havO©&EN() function that takes the name of the files
to open as a parameter, and returns a string that uniquely identifies that open file within the current
context; e.g. an index into a table of open files. Later, this index can be used instead of the filename.

Some implementations allow only this indirect naming scheme, while others may allow a mix between
direct and indirect naming. The latter is likely to create some problems, since some strings are likely to
be both valid direct and indirect file ids.

24 Persistent and Transient Streams

REXX knows two different types of streams: persistent and transient. They differ conceptually in the
way they can be operated, which is dictated by the way they are stored. But there is no difference in the
data you can read from or write to them (i.e. both can used for character- or line-wise data), and both
are read and written using the same functions.

[Persistent streams]
(often referred to just as "files") are conceptually stored on permanent storage in the computer
(e.g. a disk), as an array of characters. Random access to and repeated retrieval of any part of the
stream are allowed for persistent streams. Typical example of persistent streams are normal



operating system files.

[Transient streams]
are typically not available for random access or repeated retrieval, either because it is not stored
permanently, but read as a sequence of data that is generated on the fly; or because they are
available from a sequential storage (e.g. magnetic tape) where random access is difficult or
impossible. Typical examples of transient streams are devices like keyboards, printers,
communication interfaces, pipelines, etc.

REXX does not allow any repositioning on transient streams; such operations are not conceptually
meaningful; a transient stream must be treated sequentially. It is possible to treat a persistent stream as a
transient stream, but not vice versa. Thus, some implementations may allow you to open a persistent
stream as transient. This may be useful for files to which you have only append access, i.e. writes can
only be performed at the end of file. Whether you can open a stream in a particular mode, or change the
mode of a stream already open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given file is persistent or transient. You
may try to reposition for the file, and you can assume that the file is persistent if the repositioning
succeeded, like in the following code:

streamtype: procedure

signal on notready

call linein arg(1), 1, 0

return 'persistent’ /* unless file is empty */
notready:

return ‘transient'

Although the idea in this code is correct, there are unfortunately a few problems. FilQTREADY
condition can be raised by other things than trying to reposition a transient stream; e.g. by any
repositioning of the current read position in an empty file, if you have write access only, etc. Second,
your implementation may not haliD TREAD)Yor it may not use it for this situation.

The best method is to useSSfREAM() function, if one is available. Unfortunately, that is not very
compatible, since no standard stream commands are defined.

25 Opening a Stream

In most programming languages, opening a file is the process of binding a file (given by a file name) to
an internal handleREXX is a bit special, since conceptually, it does not use stream handles, just stream
names. Therefore, the stream name is itself also the stream handle, and the process of opening streams
becomes apparently redundant. However, note that a number of implementations allow explicit
opening, and some even require it.

REXX may open streams "on demand" when they are used for the first time. However, this behavior is
not defined in TRL, which says the act of opening the stream is not a paEXK [TRL2]. This might

be interpreted as open-on-demand or that some system-specific program must be executed to open a
stream.



Although an open-on-demand feature is very practical, there are situations where you need to open
streams in particular modes. Thus, most systems have facilities for explicitly opening a file. Some
REXX interpreters may require you to perform some implementation-specific operation before
accessing streams, but most are likely to just open them the first time they are referred to in an 1/0O
operation.

There are two main approaches to explicit opening of streams. The first uses a non-standard built-in
function normally calledPEN(), which generally takes the name of the file to open as the first
parameter, and often the mode as the second parameter. The second approach is similar, but uses the
standard built-in functioS TREAM() with a Commandoption.

Example: Not closing files

Since there are no open or close operatidREXX interpreter never knows when to close a stream,

unless explicitly told so. It can never predict when a particular stream is to be used next, so it has to
keep the current read and write positions in case the stream is to be used again. Therefore, you should
always close the streams when you are finished using them. Failure to do so, will fill the interpreter

with data about unneeded streams, and more serious, it may fill the file table of your process or system.
As arule, any\REXX script that uses more than a couple of streams, should close every stream after
use, in order to minimize the number of simultaneously open streams. Thus, the following code might
eventually crash for sorREXX interpreters:

do i=1to 300
call lineout "file.'||i, 'this is file number" i
end

A REXX interpreter might try to defend itself against this sort of open-many-close-none programming,
using of various programming techniques; this may lead to other strange effects. However, the main
responsibility for avoiding this is with you, tHREXX script programmer.

Note that if a stream is already open for reading, and you start writing to it, your implementation may
have to reopen it in order to open for both reading and writing. There are mainly two strategies for
handling this. Either the old file is closed, and then reopened in the new mode, which may leave you
with read and write access to another file. Or a new file handle is opened for the new mode, which may
leave you with read and write access to two different files.

These are real-world problems which are not treated by the ideal description of TRL. A good
implementation should detect these situations and NGBEREADY

26 Closing a Stream

As already mentionedREXX does not have an explicit way of opening a stream. Nor does it have an
explicit way of closing a stream. There is one semi-standard method: If yduN&DOUT() , but omit

both the data to be written and the new current write position, then the implementation is defined to set
the current write position to the end-of-file. Furthermore, it is allowed by TRL to do something

"magic" in addition. It is not explicitly defined what this magic is, but TRL suggests that it may be
closing the stream, flushing the stream, or committing changes done previously to the stream.



In SAA, the definition is strengthened to state that the "magic"” is closing, provided that the
environment supports that operation.

A similar operating can be performed by call@gAROUT ()with neither data nor a new position.
However, in this case, both TRL and SAA leave it totally up to the implementation whether or not the
file is to be closed. One can wonder whether the changddXEOUT() in SAA with respect to TRL
should also have been doneGBIAROUT () but that this was forgotten.

TRL2 does not indicate thaiNEIN() or CHARIN() can be used to close a string. Thus, the closest
one gets to a standard way of closing input files is to callldiJEOUT() ; although it is conceptually
suspect to call an output routine for an input file. The historical reasons for this omission are perhaps
that flushing output files is vital , while the concept of flushing is irrelevant for input files; flushing is
an important part of closing a file, and that explains why closing is only indicated for output files.

Thus, the statement:
call lineout 'myfile.txt'

might be used to close the streamyfile.txt in some implementations. However, it is not

guaranteed to close the stream, so you cannot depend on this for scripts of maximum portability, but it's
better than nothing. However, note that if it closes the stream, then also the current read position is
affected. If it merely flushes the stream, then only the current write position is likely to be affected.

27 Character-wise and Line-wise I/O

Basically, the built-irREXX library offers two strategies of reading and writing streams: line-wise and
character-wise. When reading line-wise, the underlying storage method of the stream must contain
information which describes where each line starts and ends.

Some file systems store this information as one or more special characters; while others structure the
file in a number of records; each containing a single line. This introduces a slightly subtle point; even
though a strearfoo returns the same data when read.HlyEIN() on two different machines; the

data read fronfoo may differ between the same two machines when the stream is read by

CHARIN() , and vice versa. This is so because the end-of-line markers can vary between the two
operating systems.

Example: Character-wise handling of EOL

Suppose a text file contains the following three lines (ASCII character set is assumed):
first

second
third

and you first read it line-wise and then character-wise. Assume the following program:



file = 'DATAFILE'
foo="
do i=1 while chars(file)>0
foo = foo || c2x(charin(file))"'
end
say foo

When the file is read line-wise, the output is identical on all machines, i.e. the three lines shown above.
However, the character-wise reading will be dependent on your operating system and its file system,
thus, the output might e.g. be any of:

66 69 727374 73 65 6F 63 6E 64 746869 7264 66 69 72 73 74
0A

66 69 72 73 74 0A
73 65 6F 63 6E 64 OA
74 68 69 72 64 0A

66 69 72 73 74 0D OA
73 65 6F 63 6E 64 0D OA
74 68 69 72 64 0D OA

If the machine uses records to store the lines, the first one may be the result; here, only the data in the
lines of the file is returned. Note that the boxes in the output are put around the data generated by the
actual line contents. What is outside the boxes is generated by the end-of-line character sequences.

The second output line is typical for Unix machines. They use the newline ASCII character as line
separator, and that character is read immediately after each line. The last line is typical for MS-DOS,
where the line separator character sequence is a carriage return following by a newlinéqBCI|
and'0OA'x ).

For maximum portability, the line-wise built-in functionsINEIN() , LINEOUT() andLINES() )

should only be used for line-wise streams. And the character-wise built-in fundGéifsRIN() ,
CHAROUT()andCHARS()) should only be used for character-wise data. You should in general be
very careful when mixing character- and line-wise data in a single stream; it does work, but may easily
lead to portability problems.

The difference between character- and line-wise streams are roughly equivalent to the difference
between binary and text streams, but the two concepts are not totally equivalent. In a binary file, the
data read is the actual data stored in the file, while in a text file, the character sequences used for
denoting end-of-line and end-of-file markers may be translated to actions or other characters during
reading.

The end-of-file marker may be differently implemented on different systems. On some systems, this
marker is only implicitly present at the end-of-file--which is calculated from the file size (e.g. Unix).
Other systems may put a character signifying end-of-file at the end (or even in the middle) of the file
(e.g. <Ctrl-Zz> for MS-DOS). These concepts vary between operating systems, interpreters should
handle each concept according to the customs of the operating system. Check the implementation-
specific documentation for further information. In any case, if the interpreter treats a particular
character as end-of-file, then it only gives special treatment to this character during line-wise



operations. During character-wise operations, no characters have special meanings.

28 Reading and Writing

Four built-in functions provide line- and character-oriented stream reading and writing capabilities:
CHARIN() , CHAROUT() LINEIN() , LINEOUT() .

[CHARIN()]
is a built-in function that takes up to three parameters, which are all optional: the name of the
stream to read from, the start point, and the number of characters to read. The stream name
defaults to the default input stream, the start point defaults to the current read position, the
number of characters to read defaults to one character. Leave out the second parameter in order
to avoid all repositioning. During execution, data is read from the stream specified, and returned
as the return value.

[LINEINQ)]
is a built-in function that takes three parameters too, and they are equivalent to the parameters of
CHARIN() . However, if the second parameter is specified, it refer to a line position, rather than
a character position; it refers to the character position of the first character of that line. Further,
the third parameter can only Beor 1, and refers to the number of lines to read; i.e. you cannot
read more than one line in each call. The line read is returned by the function, or the nullstring
if no reading was requested.

[LINEOUT()]
is a built-in function that takes three parameters too, the first is the name of the stream to write
to, and defaults to the default output stream. The second parameter is the data to be written to
the file, and if not specified, no writing occurs. The third parameter is a line-oriented position in
the file; if the third parameter is specified, the current position is repositioned at before the data
(if any) is written. If data is written, an end-of-line character sequence is appended to the output
stream.

[CHAROUT()]
is a built-in function that is used to write characters to a file. Itis identical EOUT() ,
except that the third parameter refers to a character position, instead of a line position. The
second difference is that an end-of-line character sequence is not appended at the end of the data
written.

Example: Counting lines, words, and characters

The followingREXX program emulates the core functionality of the program under Unix. It counts
the number of lines, words, and characters in a file given as the first argument.

file = arg(1)
parse value 0 0 0 with lines words chars
do while lines(file)>0
line = linein(file)
lines =lines + 1
words = words + words(line)
chars = chars + length(line)
end
say 'lines='lines 'words='words 'chars='chars



There are some problems. For instance, the end-of-line characters are not counted, and a last improperly
terminated line is not counted either.



29 Determining the Current Position

StandardREXX does not have any seek call that returns the current position in a stream. Instead, it
provides two calls that returns the amount of data remaining on a stream. These two built-in functions
areLINES() andCHARS().

* TheLINES() built-in function returns the number of complete lines left on the stream given as its
first parameter. The term "complete lines" does not really matter much, since an implementation
can assume the end-of-file to implicitly mean an end-of-line.

*  TheCHARS() built-in function returns the number of character left in the stream given as its first
parameter.

This is one of the concepts wheR&EXX 1/0O does not map very well to C I/O and vice versa. While
REXX reports the amount of data from the current read position to the end of stream, C reports the
amount of data from the start of the file to the current position. FurtheREX¥X method only works

for input streams, while the C method works for both input and output files. On the other hand, C has
no basic constructs for counting remaining or reposition at lines of a file.

Example: Retrieving current position

So, how does one find the current position in a file, when only allowed to do normal repositioning? The
trick is to reposition twice, as shown in the code below.

ftell: procedure
parse arg filename
now = chars(filename)
call charin filename, 0, 1
total = chars(filename)
call charin filename, 0, total-now
return total-now

Unfortunately, there are many potential problems with this code. First, it only works for input files,
since there is no equivalent @HARS() for output files. Second, if the file is empty, none of the
repositioning work, since it is illegal to reposition at or after end-of-file for input files--and the end-of-
file is the first position of the file. Third, if the current read position of the file is at the end of file (e.g.

all characters have been read) it will not work for similar reasons as for the second case. And fourth, it
only works for persistent files, since transient files do not allow repositioning.

Example: Improved ftell  function

An improved version of the code for tifiell  routine (given above), which tries to handle these
problems is:



ftell: procedure
parse arg filename
signal on notready name not_persist
now = chars(filename)
signal on notready name is_empty
call charin filename, O, 1
total = chars()
if now>0 then
call charin filename, 0, total-now+1
else if total>0 then
call charin filename, 1, total
else
nop /* empty file, should have raised NOTREADY
*/
return total-now+1

not_presist: say filename 'is not persistent’; return 0
is_empty: say filename ‘is empty’; return O

The same method can be used for line-oriented 1/O too, in order to return the current line number of an
input file. However, a potential problem in that case is that the routine leaves the stream repositioned at
the start of the current line, even if it was initially positioned to the middle of a line. In addition, the
line-oriented version of thikell ~ routine may prove to be fairly inefficient, since the interpreter may
have to scan the whole file twice for end-of-line character sequences.

30 Positioning Within a File

REXX supports two strategies for reading and writing streams: character-wise, and line-wise, this
section describes how a program can reposition the current positions for each these strategies. Note that
positioning is only allowed for persistent streams.

For each open file, there iscairrent read positioor acurrent write positiondepending on whether the
file is opened for reading or writing. If the file is opened for reading and writing simultaneously, it has
both a current read position and a current write position, and the two are independent and in general
different. A position within a file is the sequence number of the byte or line that will be read or written
in the next such operation.

Note thatREXX starts numbering at one, not zero. Therefore, the first character and the first line of a
stream are both numbered one. This differs from several other programming languages, which starts
numbering at zero.

Just after a stream has been opened, the initial values of the current read position is the first character in
the stream, while the current write position is the end-of-file, i.e. the position just after the last character
in the stream. Then, reading will return the first character (or line) in the stream, and writing will

append a new character (or line) to the stream.

These initial values for the current read and write positions are the default values. Depending on your
REXX implementation, other mechanisms for explicitly opening streams (e.g. throu§i RieEAM()
built-in function) may be provided, and may set other initial values for these positions. See the



implementation-specific documentation for further information.

When setting the current read position, it must be set to the position of an existing character in the
stream; i.e. a positive value, not greater than the total number of characters in the stream. In particular,
it is illegal to set the current read position to the position immediately after the last character in the
stream; although this is legal in many other programming languages and operating systems, where it is
known as "seeking to the end-of-file".

When setting the current write position, it too must be set to the position of an existing character in the
stream. In addition, and unlike the current read position, the current write position may also be set to
the position immediately following the last character in the stream. This is known as "positioning at the
end-of-file", and it is the initial value for the current write position when a stream is opened. Note that
you are not allowed to reposition the current write position further out beyond the end-of-file--which
would create a "hole" in the stream--even though this is allowed in many other languages and operating
systems.

Depending on your operating system &tXX interpreter, repositioning to after the end-of-file may
be allowed as an extension, although it is illegal according to TRL2. You should avoid this technique if
you wish to write portable programs.

REXX only keeps one current read position and one current write position for each stream. So both
line-wise and character-wise reading as well as positioning of the current read position will operate on
the same current read position, and similarly for the current write position.

When repositioning line-wise, the current write position is set to the first character of the line
positioned at. However, if positioning character-wise so that the current read position is in the middle
of a line in the file, a subsequent calltéNEIN()  will read from (and including) the current position
until the next end-of-line marker. ThusINEIN() might under some circumstances return only the
last part of a line. Similarly, if the current write position has been positioned in the middle of an
existing line by character-wise positioning, ddlEOUT() is called, then the line written out

becomes the last part of the line stored in the stream.

Note that if you want to reposition the current write position using a line count, the stream may have to
be open for read, too. This is because the interpreter may have to read the contents of the stream in
order to find where the lines start and end. Depending on your operating system, this may even apply if
you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the stream, it is impossible to
reposition in or read from an empty stream. Consider the following code:

filename = '/tmp/testing’
call lineout filename,, 1 /* assuming truncation */
call linein filename, 1, 0

One might believe that this would set the current read and write positions to the start of the stream.
However, assume that théNEOUT() call truncates the file, so that it is zero bytes long. Then, the



last call can never be legal, since there is no byte in the file at which it is possible to position the current
read position. Therefore,MOTREADYXondition is probably raised.

Example: Relative repositioning

It is rather difficult to reposition a current read or write position relative to the current position. The
only way to do this within the definition of the standard is to keep a counter which tells you the current
position. That is, if you want to move the current read position five lines backwards, you must do it like
this:

filename = '/tmp/data’
linenum=0;
say linein(filename,10); linenum = 10
do while random(100)>3
say linein(filename); linenum = linenum+1
end
call linein(filename,linenum-5,0); linenum = linenum-5

Here, the variablénenum is updated for each time the current read position is altered. This may not
seem to difficult, and it is not in most cases. However, it is nearly impossible to do this in the general
case, since you must keep an account of both line numbers and character numbers. Setting one may
invalidate the other: consider the situation where you want to reposition the current read position to the
10" character before the 100ne in the stream. Except from mixing line-wise and character-wise 1/0
(which can have strange effects), this is nearly impossible. When repositioning character-wise, the line
number count is invalidated, and vice versa.

The "only" proper way of handling this is to allow one or more (hon-stan@&F&EAM() built-in
function operations that returns the current character and line count of the stream in the interpreter.

Example: Destroying linecount

This example shows how overwriting text to the middle of a file can destroy the line count. In the
following code, we assume that the fitobar exists, and contains ten lines which afiest
line ", secondline , etc.uptotenthline ". Then consider the following code:

filename = ‘foobar’

say linein(filename, 5) /* says 'fifth line' */

say linein(filename)  /* says 'sixth line' */

say linein(filename)  /* says 'seventh line' */

call lineout filename, 'This is a very long line', 5

say linein(filename, 5) /* says 'This is a very long line' */
say linein(filename)  /* says 'venth line' */

say linein(filename)  /* says 'eight line' */

As you can see from the output of this example, the cdllIKEOUT() inserts a long line and
overwrites the fifth and sixth lines completely, and the seventh line partially. Afterwards, the sixth line
Is the remaining part of the old seventh line, and the new seventh line is the old eighth line, etc.



31 Errors: Discovery, Handling, and Recovery

TRL2 contains two important improvements over TRL1 in the area of handling errors in stream 1/O: the
NOTREAD¥ondition and th&TREAM() built-in function. TheNOTREAD¥ondition is raised

whenever a stream 1/0O operation did not succeed SIREAM() function is used to retrieve status
information about a particular stream or to execute a particular operation for a stream.

You can discover that an error occurred during an I/O operation in one of the following ways: a) it may
trigger aSYNTAXcondition; b) it may trigger OTREAD¥ondition; or c) it may just not return that

data it was supposed to. There is no clear border between which situations should¥igijexxand

which should triggeNOTREADXErrors in parameters to the I/O functions, like a negative start

position, is clearly &YNTAXcondition, while reading off the end-of-file is equally clearly a
NOTREADYondition. In between lay more uncertain situations like trying to position the current write
position after the end-of-file, or trying to read a non-existent file, or using an illegal file name.

Some situations are likely to be differently handled in various implementations, but you can assume
that they are handled as eitt&YNTAXor NOTREADNXDefensive, portable programming requires you

to check for both. UnfortunatelWNOTREADYs not allowed in TRL1, so you have to avoid that

condition if you want maximum compatibility. And due to the very lax restrictions on implementations,
you should always perform very strict verification on all data returned from any file 1/0 built-in
function.

If neither are trapped&YNTAXwill terminate the program whilBlOTREADWill be ignored, so the
implementor's decision about which of these to use may even depend on the severity of the problem
(i.e. if the problem is small, raisin@YNTAXmay be a little too strict). Personally, | thiRYNTAX

should be raised in this context only if the value of a parameter is outside its valid range for all contexts
in which the function might be called.

Example: General NOTREAD¥ondition handler

Under TRL2 the "correct” way to handOTREADYXonditions and errors from 1/O operations is
unfortunately very complex. It is shown in this example, in order to demonstrate the procedure:



myfile ='MYFILE.DAT'
signal on syntax name syn_handler
call on notready name 10_handler
do i=1 to 10 until res=0
res = lineout(myfile, 'line #')
if (res=0) then
say 'Call to LINEOUT() didn"t manage to write

out data'
end
exit
IO_handler:
syn_handler:
file = condition('D")
say condition('C") 'raised for file' file 'at line'
sigl'’

say ' 'sourceline(sigl)
say ' State='stream(file,'S’) 'reason:’
stream(file,'D")
call lineout( condition('D")) /*try to close */
if condition('C")=="SYNTAX' then
exit 1
else
return

Note the double checking in this example: first the condition handler is set up to tré&INREADY
conditions, and then the return code frafNEOUT() is checked for each call.

As you can see, there is not really that much information that you can retrieve about what went wrong.
Some systems may have additional sources from which you can get information, e.g. special commands
for the STREAMY() built-in function, but these are non-standard and should be avoided when writing
compatible programs.

32 Common Differences and Problems with Stream /O

This section describes some of the common traps and pitfalR&EsiX 1/0.

32.1Where Implementations are Allowed to Differ

TRL is rather relaxed in its specifications of what an interpreter must implement of the 1/0 system. It
recognizes that operating systems differ, and that some details must be left to the implementor to
decide, ifREXX is to be effectively implemented. The parts of the 1/0O subsysteREXX where
implementations are allowed to differ, are:

* The functiond INES() andCHARS() are not required to return the number of lines or characters
left in a stream. TRL says that if it is impossible or difficult to calculate the numbers, these
functions may returd unless it is absolutely certain that there are no more data left. This leads to
some rather kludgy programming techniques.

* Implementations are allowed to ignore closing streams, since TRL does not specify a way to do this.
Often, the closing of streams is implemented as a command, which only makes it more



incompatible.

» Check the implementation-specific documentation before using the fundtd&#OUT (file)  for
closing files.

« The difference in the action of closing and flushing a file, can maR&X¥X script that works
under one implementation crash under another, so this feature is of very limited value if you are
trying to write portable programs.

TRL says that because the operating system environments will differ a lot, and an efficient and useful
interpreter is the most important goal, implementations are allowed to deviate from the standard in any
respect necessary in the domain of 1/0 [TRL2]. Thus, you should never assume anything about the I/0O
system, as the "rules" listed in TRL are only advisory.

32.2Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations to differ are listed. In an
ideal world, that ought to be the only traps that you should need to look out for, but unfortunately, the
world is not ideal. There are several areas where the requirements set up by the standard is quite high,
and where implementations are likely to differ from the standard.

These areas are:

» Repositioning at (for the current write position) or beyond the end-of-file may be allowed. On some
systems, to prohibit that would require a lot of checking, so some systems will probably skip that
check. At least for some operating systems, the act of repositioning after end-of-file is a useful
feature.

* Under Unix, it can be used for creating a dynamically sized random access file; do not bother about
how much space is allocated for the file, just position to the correct "sloth" and write the data there.
If the data file is sparse, holes might occur in the file; that is parts of the file which has not been
written, and which is all zeros (and which are therefore not stored on disk.

* Some implementations will use the same position for both the current read position and the current
write position to overcome these implementations. Whenever you are doing a read, and the
previous operation was a write (or vice versa), it is may prove useful to reposition the current read
(or write) position.

* There might be a maximum linesize for ydREXX interpreter. At least the 50Kb limit on string
length may apply.

* Handling the situation where another program writes data to a file which is used RX¢
interpreter for reading.

32.3LINES() and CHARS() are Inaccurate

Because of the large differences between various operating syREXX,allows some fuzz in the
implementation of th&INES() andCHARS() built-in functions. Sometimes, it is difficult to

calculate the number of lines or characters in a stream; generally because the storage format of the file
often requires a linear search through the whole stream to determine that numbeRBEXXsallows



an implementation to return the vallidor any situation where the real number is difficult or
impossible to determine. Effectively, an implementation can restrict the domain of return values for
these two functions only andO from these two functions.

Many operating systems store lines using a special end-of-line character sequence. For these systems, it
IS very time-consuming to count the number of lines in a file, as the file must be scanned for such
character sequences. Thus, it is very tempting for an implementor to return thd yahumny situation

where there are more than zero lines left.

A similar situation arises for the number of characters left, although it is more common to know this
number, thus it is generally a better chanc€BIARS() returning the true number of characters left
thanLINES() returning the true number of lines left.

However, you can be fairly sure that if an implementation returns a number greatér than that

number is the real number of lines (or characters) left in the stream. And simultaneously, if the number
returned i, then there is no lines (or characters) left to be read in the stream. But if the nuriber is
then you will never know until you have tried.

Example: File reading idiom

This example shows a common idiom for reading all contents of a fileREXX variables using the
LINES() andLINEIN() built-in functions.

i=1
signal on notready
lleft = lines(file)
do while lleft>0
do i=i to i+lleft
line.i = linein(file)

end

lleft = lines(file)
end
notready:
lines.0 =i-1

Here, the two nested loops iterates over all the data to be read. The innermost loop reads all data
currently available, while the outermost loop checks for more available data. Implementations having a
LINES() that return only0 and1 will generally iterate the outermost loop many times; while
implementations that returns the "true” number flofNES() generally only iterates the outermost

loop once.

There is only one place in this code th&iNEIN() is called. Thd variable is incremented at only
one place, and the variadléNES.O is set in one clause, too. Some redundancy can be removed by
setting theVHILE expression to:

do while word(value(lleft',lines(file)) lleft,2)>0

The two assignments to thé EFT variable must be removed. This may look more complicated, but it
decreases the number of clauses having a calIN&S() from two till one. However, it is less certain



that this second solution is more efficient, since udfdd. UE() built-in function can be inefficient
over "normal” variable references.

32.4The Last Line of a Stream

How to handle the last line in a stream is sometimes a problem. If you use a system that stores end-of-
lines as special character sequences, and the last part of the data of a stream is an unterminated line,
then what is returned when you try to read that part of data?

There are three possible solutions: First, it may interpret the end-of-file itself as an implicit end-of-line,
in this case, the partial part of the line is returned, as if it was properly terminated. Second, it may raise
the NOTREAD¥ondition, since the end-of-file was encountered during reading. Third, if there is any
chance of additional data being appended, it may wait until such data are available. The second and
third approaches are suitable for persistent and transient files, respectively.

The first approach is sometimes encountered. It has some problems though. If the end of a stream
contains the datABC<NL>XYZthen it might return the stringYZas the last line of the stream.
However, suppose the last line was an empty line, then the last part of the stream wABLCkdNL>

Few would argue that there is any line in this stream after theAlB@ Thus, the decision whether the
end-of-file is an implicit end-of-line depends on whether the would-be last line has zero length or not.

An pragmatic solution is to let the end-of-file only be an implicit end-of-file if the characters
immediately in front of it are not an explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit end-of-line. It says that
LINES() returns the number of complete lines left, and tHAtEIN() returns a complete line. On

the other hand, the end-of-line sequence is not rigidly defined by TRL, so an implementor is almost free
to define end-of-line in just about any terms that are comfortable. Thus, the last line of a stream may be
a source of problem if it is not explicitly terminated by an end-of-line.

32.50ther Parts of the 1/0 System

This section lists some of the other partd/REEXX and the environments arouREXX that may be
considered a part of the 1/0 system.

[Stack.]
The stack be used to communicate with external environments. REXX side, the interface
to the stack is the instructio®JSH PULL, PARSE PULL, andQUEUEand the built-in
functionQUEUED(). These can be used to communicate with external programs by storing
data to be transferred on the stack.

[The STREAM() built-in function.]
This function is used to control various aspects about the files manipulated with the other
standard I/O functions. The standard says very little about this function, and leaves it up to the
implementor to specify the rest. Operations like opening, closing, truncating, and changing
modes

[The SAYinstruction.]
The SAYinstruction can be used to write data to the default output stream. If you use
redirection, you can indirectly use it to write data to a file.

[The ADDRESSnstruction.]
The ADDRESS$nstruction and commands can be used to operate on files, depending on the



power of your host environments and operating system.

[The VALUE() built-in function.]
The functionVALUE() , when used with three parameters, can be used to communicate with
external host environments and the operating system. However, this depends on the
implementation of your interpreter.

[SAA APL.]
The SAA API provides several operations that can be used to communicate between processes.
In general, SAA API allows you to perform the operations listed above from a binary program
written in a language other th&EXX.

And of course, 1/0O is performed wheneveRBXX program or external function is started.

32.6Implementation-Specific Information

This section describes some implementations of stream IREXX. Unfortunately, this has become a
very large section, reflecting the fact that stream 1/O is an area of many system-specific solutions.

In addition, the variations within this topic are rather larggegina implements a set of functions that
are very close to that of TRL2. The other extremeARexx andBRexx, which contain a set of
functions which is very close to the standard I/O library of the C programming language.

32.7Stream 1/O in Regina 0.07a

Regina implements stream I/O in a fashion that closely resembles how it is described in TRL2. The
following list gives the relevant system-specific information.

[Names for standard streams.]
Regina uses<stdout> and<stdin> as names for the standard output and input streams.
Note that the angle brackets are part of the names. You may also access the standard error

stream (on systems supporting this stream) under the gatderr> . In addition, the
nullstring is taken to be equivalent to an empty first parameter in the 1/O-related built-in
functions.

[Implicit opening.]
Regina implicitly opens any file whenever it is first used.

If the first operation is a read, it will be opened in read-only mode. If the first operation is a
write, it is opened in read-write mode. In this case if the read-write opening does not succeed,
the file is opened in write-only mode. If the file exists, the opening is non-destructive, i.e. that
the file is not truncated or overwritten when opened, else it is created if opened in read-write
mode.

If you name a file currently open in read-only mode in a write operaegjna closes the file,

and reopens it in read-write mode. The only exception is when youl®dOUT() with both
second and third arguments unspecified, which always closes a file, both for reading and
writing. Similarly, if the file was opened in write-only mode, and you use it in a read operation,
Regina closes and reopens in read-write mode.

This implicit reopening is enabled by default. You can turn it off by unsetting the extension
ExplicitOpen

[Separate current positions.]
The environment in whicRegina operates (ANSI C and POSIX) does not allow separate read



and write positions, but only supplies one position for both operati®egina handles this by
maintaining the two positions internally, and move the "real" current position back and forth
depending on whether a read or write operation is next.

[Swapping out file descriptors.]
In order to defend itself against "open-many-close-none" programfReyina tries to "swap
out" files that have been unused for some time. Assume that your operating system limits
Regina to 100 simultaneously open files; when your try to open youf' {ies, Regina closes
the least recently used stream, and recycles its descriptor for the new file. You can enable or
disable this recycling with th8wapFilePtr  extension.

During this recyclingRegina only closes the file in the operating system, but retains all vital
information about the file itself. If you re-access the file laR#gina reopens it, and positions

the current read and write positions at the correct (i.e. previous) positions. This introduces some
uncertainties into stream processing. Renaming a file affects it only if it gets swapped out. Since
the swap operation is something the users do not see, it can cause some strange effects.

Regina will not allow a transient stream to be swapped out, since they often are connected to
some sort of active partner in the other end, and closing the file might kill the partner or make it
impossible to reestablish the stream. So only persistent files are swapped out. Thus, you can
still fill the file table in Regina.
[Explicit opening and closing.]
Regina allows streams to be explicitly opened or closed through the use of the built-in function
STREAM(). The exact syntax of this function is described in secsiveam. Old versions of
Regina supported two non-standard built-in functicdPEN() andCLOSE() for these
operations. These functions are still supported for compatibility reasons, but might be removed
in future releases. Their availability is controlled by MeenBif andCloseBif extensions.
[Truncation after writing lines.]
If you reposition line-wise the current write position to the middle of a Rlegina truncates
the file at the new position. This happens whether data is written during HeOUT() or
not. If not, the file might contain half a line, some lines might disappear, and the linecount
would in general be disrupted. The availability of this behavior is controlled by
LineOutTrunc , which is turned on by default.

Unfortunately, the operation of truncating a file is not part of POSIX, and it might not exist on
all systems, so on some rare systems, this truncating will not occur. In order to be able to
truncate a file, your machine must have ttnencate() system call irC. If you don't have
this, the truncating functionality is not available.

[Caching info on lines left.]
WhenRegina executes the built-in functionINES() for a persistent stream, it caches the
number of lines left as an attribute to the stream. In subsequent calNEIN() , this number
is updated, so that subsequent callsHR§ES() can retrieve the cached number instead of
having to re-scan the rest of the stream, provided that the number is still valid. Some operations
will invalidate the count: repositioning the current read position; reading using the character
oriented I/O, i.eCHARIN() ; and any write operation by the same interpreter on the stream.
Ideally, any write operation should invalidate the count, but that might require a large overhead
before any operation, in order to check whether the file has been written to by other programs.

This functionality can be controlled by the extension caledheLineNo , which is turned on
by default. Note that if you turn that off, you can experience a serious decrease in performance.



The following extra built-in functions relating to stream I/O are defineRégina. They are provided
for extra support and compatibility with other systems. Their support may be discontinued in later
versions, and they are likely to be moved to a library of extra support.

CLOSE(streamid)

Closes the stream named $tyeamid This stream must have been opened by implicit open or by the
OPENunction call earlier. The function returdsif there was any file to close, artdif the file was

not opened. Note that the return value does not indicate whether the closing was successful. You can
use the extension namé&loseBif  with the OPTIONSInstruction to select or remove this function.

This function is now obsolete, instead you should use:

STREAM( streamid, 'Command’, 'CLOSE")

CLOSE(fmyfile) 1 if stream was open
CLOSE('NOSUCHFILE" 0 if stream didn't exist

OPEN(streamid,access)

Opens the stream namstteamidwith the accesaccesslf accesss not specified, the acceBawill be
used.accesgnay be the following characters. Only the first character ohttoesss needed.

[R
(Read) Open for read access. The file pointer will be positioned at the start of the file, and only
read operations are allowed.

[W
(Write) Open for write access and position the current write position at the end of the file. An
error is returned if it was not possible to get appropriate access.

The return value from this function is eithkror 0, depending on whether the named stream is in
opened state after the operation has been performed.

Note that if you open the fileddobar " and "/foobar " they will point to the same physical file,
but Regina interprets them as two different streams, and will open a internal file descriptor for each
one. If you try to open an already open stream, using the same name, it will have no effect.

You can use the extensi@penBif with the OPTIONSInstruction to control the availability of this
function. This function is now obsolete, but is still kept for compatibility with other interpreters and
older versions oRegina. Instead, witrRegina you should use:



STREAM( streamid, 'C', 'READ'|'WRITE'|'APPEND'|'UPDATE")

OPEN(myfile, 'write") 1 maybe, if successful
OPEN(passwd, "Write") 0 maybe, if no write access
OPEN('DATA', 'READ) 0 maybe, if successful

The return value from this function is eithkror 0, depending on whether the named stream is in
opened state after the operation has been performed.

32.8Functionality to be Implemented Later

This section lists the functionality not yetRegina, but which is intended to be added later. Most of
these are fixes to problems, compatibility modes, etc.

[Indirect naming of streams.]
Currently, streams are named directly, which is a convenient. However, there are a few
problems: for instance, it is difficult to write to a file which name<stdout> , simply
because that is a reserved name. To fix this, an indirect naming scheme will be provided
through theSTREAM()< built-in function. The functionality will resemble th@PEN() built-in
function of ARexx.

[Consistence in filehandle swapping.]
When a file handle is currently swapped out in order to avoid filling the system file table, very
little checking of consistency is currently performed. At least, vital information about the file
should be retained, such as the inode and file system for Unix machines retrieval by the
fstat() call. When the file is swapped in again, this information must be checked against the
file which is reopened. If there is a mismattNQ TREAD¥hould be raised. Similarly, when
reopening a file because of a new access mode is requested, the same checking should be
performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system where this is relevant.
Although standardREXX does not allow this, it is a very common programming idiom for
certain systems, and should be allowed. It will, however, be controllable through a extension
calledSparseFiles

32.9Stream I/O in ARexx 1.15

ARexx differs considerably from standaREXX with respect to stream I/O. In fact, none of the
standard stream functionality BEXX is available inARexx. Instead, a completely distinct set of
functions are used. The differences are so big, that it is useless to deseaker stream I/O in terms
of standardREXX stream I/O, and everything said so far in this chapter is irrelevaitRaxx.
Therefore, we explain th&Rexx functionality from scratch.

All'in all, the ARexx file 1/O interface resembles the functions of the Standard C I/O library, probably
becaus@Rexx is written in C, and théRexx 1/0O functions are "just” interfaces to the underlying C
functions. You may want to check up the documentation for the ANSI C I/O library as described in
[ANSIC], [KR], and [PJPlauger].

ARexx uses a two level naming scheme for streams. The file names are bound to a stream name using
the OPEN() built-in function. In all other 1/O functions, only the stream name is used.



OPEN(ane, fi | enane[, node])

You use theODPEN() built-in function to open a stream connected to a file caliethamein
AmigaDOS. In subsequent I/O calls, you refer to the streanaaee These two names can be different.

Thenameparameter cannot already be in use by another stream. If SOPEBI() function fails. Note
that thenameparameter is case-sensitive. Thenameparameter is not strictly case-sensitive: the case
used when creating a new file is preserved, but when referring to an existing file, the name is case-
insensitive. This is the usual behavior of AmigaDOS.

If any of the other I/O operations uses a stream name that has not been properly open@@Esi()g
that operation fails, becaugdrexx has no auto-open-on-demand feature.

The optional parametenodecan be any oRead, Write , or Append. The modeRead opens an

existing file and sets the current position to the start of the file. The Mpgend is identical to

Read, but sets the current positions to the end-of-file. The midlite creates a new file, i.e. if a file

with that name already exists, it is deleted and a new file is created. ThudMwith you always start

with an empty file. Note that the terms "read,” "write," and "append" are only remotely connected to
the mode in which the file is opened. Both reading and writing are allowed for all of these three modes;
the mode names only reflect the typical operations of these modes.

The result fromOPEN() is a boolean value, which Eif a file by the specifiecdhamewas successfully
opened during thOPEN() call, and0 otherwise.

The number of simultaneously open files is no problem because AmigaDOS allocates files handles
dynamically, and thus only limited by the available memory. One system managed 2000 simultaneously
open files during a test.

OPEN(infile', 'work:DataFile") 1 if successful

OPEN('work’, 'RAM:FooBar', 'Read’) 0 if didn't exist

OPEN(output’, 'TmpFile', 'W") 1 (re)creates file
CLOSE(hane)

You use theCLOSE() built-in function to close a stream. The parametamemust match the first
parameter in a call tOPEN() earlier in the same program, and must refer to an open stream. The
return value is a boolean value that reflects whether there was a file to close (but not whether it was
successfully closed).

CLOSE(infile" 1 if stream was previously open
CLOSE((‘outfile") 0 if stream wasn't previously open



WRITELN(nan®e, stri ng)

TheWRITELN() function writes the contents string as a line to the streamame Thename
parameter must match the value of the first parameter in an earlier €HEN(), and must refer to an
open stream. The data written is all the charactestringimmediately followed by the newline
character (ASCII <Ctrl-J> for AmigaDOS).

The return value is the number of characters written, including the terminating newline. Thus, a return
value of0 indicates that nothing was written, while a value which is one more than the number of
characters istring indicates that all data was successfully written to the stream.

When writing a line to the middle of a stream, the old contents is written over, but the stream is not
truncated; there is no way to truncate a stream withAflRexx built-in functions. This overwriting can
leave partial lines in the stream.

WRITELN('tmp', 'Hello, world!") 14  if successful
WRITELN('work’, 'Hi there") 0 nothing was written
WRITELN('tmp’, 'Hi there") 5 partially successful

WRITECHfane, stri ng)

The WRITECH() function is identical toVRITELN() , except that the terminating newline character is
not added to the data written out. ThMERITELN() is suitable for line-wise output, while
WRITECH() is useful for character-wise output.

WRITECH('tmp', 'Hello, world!") 13 if successful

WRITECH('work', 'Hi there") 0 nothing was written

WRITECH('tmp', 'Hi there') 5  partially successful
READLNfane)

TheREADLN() function reads a line of data from the stream referred todsge The parametarame
must match the first parameter of an earlier calDBEN(), i.e. it must be an open stream.

The return value is a string of characters which corresponds to the characters in the stream from and
including the current position forward to the first subsequent newline character found. If no newline
character is found, the end-of-file is implicitly interpreted as a newline and the end-of-file state is set.
However, the data returned to the user never contains the terminating end-of-line.

To differ between the situation where the last line of the stream was implicitly terminated by the end-



of-file and where it was explicitly terminated by an end-of-line character sequence, E@Ffe
built-in function. TheEOF() returnsl in the former case an@lin the latter case.

There is a limit inARexx on the length of lines that you can read in one caREADLN(). If the

length of the line in the stream is more than 1000 characters, then only the first 1000 characters are
returned. The rest of the line can be read by additiB®&ADLN() andREADCH() calls. Note that
whenevelREADLN() returns a string of exactly 1000 characters, then no terminating end-of-line was
found, and a new call tREADLN() must be executed in order to read the rest of the line.

READLN('tmp") Hello maybe
world!

READLN('work") maybe, if unsuccessful

READCH(Gane[, | engt h])

The READCH() built-in function reads characters from the stream named by the pararaeter
which must correspond to the first parameter in a previous c@RBN(). The number of characters
read is given byength which must be a non-negative integer. The default valuergjthis 1.

The value returned is the data read, which has the length correspondingdetogtigparameter if no
errors occurred.

There is a limit inARexx for the length of strings that can be read in one caREBADCH(). The limit
is 65535 bytes, and is a limitation in the maximum size oA&exx string.

READCH('tmp',3) Hel “maybe
READCH('tmp’) I - maybe
READCH('tmp',6) o worl maybe
EOF(nane)

TheEOF() built-in function tests to see whether the end-of-file has been seen on the stream specified
by name which must be an open stream, i.e. the first parameter in a previous C#EdI() .

The return value i4 if the stream is in end-of-file mode, i.e. if a read operation (eiRiEEADLN() or
READCH()) has seen the end-of-file during its operation. However, reading the last character of the
stream does not put the stream in end-of-file mode; you must try to read at least one character past the
last character. If the stream is not in end-of-file mode, the return value is

Whenever the stream is in end-of-file mode, it stays there until a c8EE#K() is made. No read or
write operation can remove the end-of-file mode, dBEK() (and closing followed by reopening).



EOF('tmp") 0 maybe
EOF(‘work") 1 maybe

SEEK(nane, of f set [, node])

TheSEEK() built-in function repositions the current position of the file specified by the parameter
name which must correspond to an open file, i.e. to the first parameter of a previous C&IEDN ().
The current position in the file is set to the byte referred to by the paraofétet Note thatoffsetis
zero-based, so the first byte in the file is numbededhe value returned is the current position in the
file after the seek operation has been carried through, B&ggning mode.

If the current position is attempted set past the end-of-file or before the beginning of the file, then the
current position is not moved, and the old current position is returned. Note that it is legal to position at
the end-of-file, i.e. the position immediately after the last character of the file. If a file contains 12
characters, the valid range for the resulting new current position is 0-12.

The last parametemode can take any of the following values:

Beginning , Current , or End. It specify the base of the seeking, i.e. whether it is relative to the first
byte, the end-of-file position, or the old current position. For instance: for a 20 byte file with current
position 3, then offset 7 for bagkeginning is equivalent to offset -13 for baged and offset 4 for
Current . Note that only the first character of theodeparameter is required, the rest of that
parameter is ignored.

SEEK(tmp', 12, 'B") 12 if successful

SEEK('tmp', -4, 'Begin’) 12 if previously at 12

SEEK(tmp', -10, 'E") 20 iflengthis 30

SEEK('tmp', 5) 17 if previously at 12

SEEK('tmp', 5, 'Celcius’) 17 only first character in mode matters
SEEK(tmp', 0, 'B") 0 always to start of file

32.10Main Differences from Standard REXX

Now, as the functionality has been explained, let me point out the main conceptual differences from
standardREXX; they are:

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current
position for both reading and writing. Further, this current position (which it is called in this
documentation) can be set to any byte within the file, and to the end-of-file position. Note that
the current position is zero-based.

[Indirect naming.]
The stream 1/O operations ARexx do not get a parameter which is the name of the file.



Instead ARexx uses an indirect naming scheme. TREN() built-in function binds &REXX
stream name for a file to a named file in the AmigaDOS operating system; and later, only the
REXX stream name is used in other stream I/O functions operating on that file.

[Special stream names.]
There are two special file namesARRexx: STDOUTandSTDIN, which refer to the standard
input file and standard output file. With respect to the indirect naming scheme, these are not file
names, but names for open streams; i.e. they can be used in stream 1/O operations other than
OPEN(). For some reason, is it possible to cl&EDIN but notSTDOUT

[ NOTREADYiot supported.]
ARexx has noONOTREAD¥ondition. Instead, you must detect errors by callb@f~() and
checking the return codes from each I/O operations.

[Other things missing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise, except
for reading lines and keeping a count yourself.

Of course ARexx also has a lot of functionality which is not part of standBEIXX, like relative
repositioning, explicit opening, an end-of-file indicator, etc. But this functionality is descriptive above
in the descriptions of extended built-in functions, and it is of less interest here.

When anARexx script has opened a file Write  mode, otheARexx scripts are not allowed to
access that file. However, if the file is openediaad or Append mode, then otheARexx scripts can
open the file too, and the same state of the contents of the file is seen by all scripts.

Note that it is difficult to translate between using stand@EXX stream 1/0 and\Rexx stream 1/O. In
particular, the main problem (other than missing functionality in one of the systems) is the processing
of end-of-lines. In standafdEXX, the end-of-file is detected by checking whether there is more data
left, while in ARexx one checks whether the end-of-file has been read. The following is a common
standardREXX idiom:

while lines(‘file’)>0 /* for each line available */
say linein(‘file’) /* process it */
end

In ARexx this becomes:

tmp =readIn(‘file’) /* attempt to read first line */
do until eof(‘file’) /* if EOF was not seen */

say tmp [* process line */

tmp = readIn(‘file’) /* attempt to read next line */
end

It is hard to mechanically translate between them,

because of the lack of &OF() built-in function in standardREXX, and the lack of &INES() built-
in function in ARexx.

Note that in theARexx example, an improperly terminated last line is not read as an independent line,
sinceREADLN() searches for an end-of-line character sequence. Thus, in the last invacgiianset
to the last unterminated line, bEOF() returns true too. To make this different, make theéTIL



subterm of théOloop check for the expressi&OF(‘file") && TMP<>"

The limit of 1000 characters f(@EADLN() means that a generic line reading routindRexx must
be similar to this:

readline: procedure

parse arg filename

line="

do until length(tmpline)<1000
tmpline = readIn(filename)
line =line || tmpline

end

return line

This routine callREADLN() until it returns a line that is shorter than 1000 characters. Note that end-
of-file checking is ignored, sind@EADLNY() returns an empty string a the end-of-stream.

32.11Stream I/O in BRexx 1.0b

BRexx contains a set of I/O which shows very close relations with the C programming language 1/0
library. In fact, you should consider consulting the C library documentation for in-depth documentation
on this functionality.

BRexx contains a two-level naming schemeRE&XX, streams are referred to by a stream handle,

which is an integer; in the operating system files are referred to by a file name, which is a normal string.
The functionOPEN() is used to bind a file name to a stream handle. Howa®exx I/O functions

generally have the ability to get a reference either as a file name and a stream handle, and open the file
if appropriate. However, if the name of a file is an integer which can be interpreted as a file descriptor
number, it is interpreted as a descriptor rather than a name. Whenever ydRereand want to

program robust code, always UQPEN() and the descriptor.

If a file is opened by specifying the name in a I/0O operation other@RIEN(), and the name is an
integer and only one or two higher than the highest current file descriptor, strange things may happen.

Five special streams are defined, having the pseudo file na8&®IN>, <STDOUT><STDERR>
<STDAUX>and<STDPRN>and are assigned pre-defined stream handles@to, respectively.
These refer to the default input, default output, and default error output, default auxiliary output, and
printer output. The two last generally refer to @®M1:andLPT1: devices under MS-DOS. Either
upper or lower case letter can be used when referring to these four special names.

However, note that if any of these five special files are closed, they can not be reopened again. The
reopened file will be just a normal file, having the name e $TDOUT>

There is a few things you should watch out for with the special files. 1/O involving8IEDAUX>and
<STDPRN>can cause thAbort, Retry, Ignore message to be shown once for each character
that was attempted read or written. It can be boring and tedious to aRsweérif the text string is

long. If Ais answeredBRexx terminates.

You should never write data to file descriptor<&T DIN>), apparently, it will only disappear.
Likewise, never read data to file descriptors 1 andZTDOUT>and<STDERRY, the former seems to



terminate the program while the latter apparently just returns the nullstring. Also be careful with
reading from file descriptors 3 and 4, since your program may hang if no data is available.

OPEN( i | e, node)

The OPEN() built-in function opens a file named Wye, in modemode and returns an integer which

is the number of the stream handle assigned to the file. In general, the stream handle is a non-negative
integer, wher@® to 4 are pre-defined for the default streams. If an error occurred during the open
operation, the valuel is returned.

Themodeparameter specifies the mode in which the file is opened. It consists of two parts: the access
mode, and the file mode. The access mode part consists of one single character, which fan be
read,wfor write, anda for append. In addition, the character can be appended to open a file in both
read and write mode. The file mode part can also have of one additional character which dan be

text files andb for binary files. The mode is default.

The following combinations of and access mode are possible:

r is non-destructive open for readingjs destructive open for write-only mode;is non-destructive

open for in append-only mode, i.e. only write operations are allowed, and all write operations must be
performed at the end-of-file+ is non-destructive open for reading and writimgt is destructive open

for reading and writing; and+ is non-destructive open in append update, i.e. reading is allowed
anywhere, but writing is allowed only at end-of-file. Destructive mode means that the file is truncated
to zero length when opened.

In addition, theb andt characters can be appended in order to open the file in binary or text mode.

These modes are the same as under C, althoughrtinede character is strictly not in ANSI C. Also
note that , w, anda are mutually exclusive, but one of them must always be present. The+riede
optional, but if present, it must always come immediately aftav, ora. Thet andb modes are
optional and mutually exclusive; the defaultislf presentt or b must be the last character in the
mode string.

open(‘'myfile','w") 7 perhaps
open('no.such.file','r") -1 if non-existent
open(‘c:tmp’,'r+b") 6 perhaps

If two file descriptors are opened to the same file, only the most recently of them works. However, if
the most recently descriptor is closed, the least recently starts working again. There may be other
strange effects too, so try avoid reopening a file that is already open.



CLOSE( i | e)

The CLOSE() built-in function closes a file that is already open. The paraniégeran be either a
stream handle returned fro@PEN() or a file name which has been opened (but for which you do not
known the correct stream handle).

The return value of this function seems to be the nullstring in all cases.

close(6) if open

close(7) if not open

close('foobar’) perhaps
EOF(fil e)

TheEOF() built-in function checks the end-of-file state for the stream givefileywhich can be

either a stream descriptor or a file name. The value returnkd the end-of-file status is set for the
stream, and if it is cleared. In addition, the valud is returned if an error occurred, for instance if the
file is not open.

The end-of-file indicator is set whenever an attempt was made to read at least one character past the last
character of the file. Note that reading the last character itself will not set the end-of-file condition.

eof(foo) 0 if not at eof
eof('8") 1 if at eof
eof('no.such.file") -1 if file isn't open

READ([fil e][, |ength])

TheREAD() built-in function reads data from the file referred to by tite parameter, which can be
either a file name or a stream descriptor. If it is a file name, and that file is not currently open, then
BRexx opens the file in modd . The default value of the first parameter is the default input stream.
The data is read from and including the current position.

If the lengthparameter is not specified, a whole line is read, i.e. reading forwards to and including the
first end-of-line sequence. However, the end-of-line sequence itself is not returnedletidgtie
parameter is specified, it must be a non-negative integer, and specified the number of characters to read.

The data returned is the data read, except tHahgthis not specified, the terminating end-of-line
sequence is stripped off. If the last line of a file contains a string unterminated by the end-of-string
character sequence, then the end-of-file is implicitly interpreted as an end-of-line. However, in this case



the end-of-file state is entered, since the end-of-stream was found while looking for an end-of-line.

read('foo’) one line | reads a complete line

read('foo’,5) anoth reads parts of a line

read(6) er line using a file descriptor

read() hello perhaps, reads line from default input
there stream

WRITE([file][,[ string][, dumy]])

TheWRITE() built-in function writes a string of data to the stream specified byfitagparameter, or
by default the default output stream. If specifiBlé, can be either a file name or a stream descriptor. If
itis a file name, and that file is not already open, it is opened ustngnode.

The data written is specified by tisé&ring parameter.

The return value is an integer, which is the number of bytes written during the operation. If the file is
opened in text mode, all ASCII newline characters are translated into ARLIFcharacter sequences.
However, the number returned is not affected by this translation; it remains independent of any text of
binary mode. Unfortunately, errors while writing is seldom trapped, so the number returned is
generally the number of character that was supposed to be written, independent of whether they was
actually written or not.

If a third parameter is specified, the data is written as a line, i.e. including the end-of-line sequence.
Else, the data is written as-is, without any end-of-line sequence. Note thaRetkx, the third

parameter is considered present if at least the comma in front of it--the second comma--is present. This
is a bit inconsistent with the standard operations ofAR&() built-in function. The value of the third
parameter is always ignored, only its presence is considered.

If the second parameter is omitted, only an end-of-line action is written, independent of whether the
third parameter is present or not.

write(‘bar','data’) 4 writes four bytes
write(‘bar’,'data’,'nl") 4+2?7? write a line
write(‘bar’,'data’,) 4+2?7? same as previous

SEEK(fil e[,[] offset][, origin]])

The SEEK() built-in function moves the current position to a location in the file referred tildayThe
parametefile can be either a file name (which must already be open) or a stream descriptor. This
function does not implicitly open files that is not currently open.



The parameteoffsetdetermines the location of the stream and must be an integer. It defaults to zero.
Note that the addressing of bytes within the stream is zero-based.

The third parameter can be anyTd®F, CUR or EOF, in order to set the reference point in which to
recon theoffsetlocation. The three strings refer to top-of-file, current position, and end-of-file, and
either upper or lower case can be used. The default value is ???.

The return value of this function is the absolute position of the position in the file after the seek
operation has been performed.

The SEEK() function provides a very important additional feature. Whenever a file opened for both
reading and writing has been used in a read operation and is to be used in a write operation next (or vice
versa), then a call tSsEEK() must be performed between the two 1/O calls. In other words, after a read
only a seeking and reading may occur; after a write, only seeking and writing may occur; and after a
seek, reading, writing, and seeking may occur.

32.12Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character sequer@e3sLF>, while in C, the
end-of-line sequence is oy F>. This opens for some very strange effects.

When an MS-DOS file is opened for read in text modeBiRexx, all <CR><LF>character sequences

in file data are translated td_F> when transferred into the C program. Furtii&Rexx, which isa C
program, interpretsLF> as an end-of-line character sequence. However, if the file is opened in binary
mode, then the first translation frof€CR><LF>in the file to<LF> into the C program is not

performed. Consequently, if a file that really is a text file is opened as a binary file and read line-wise,
all lines would appear to have a trailisgcR>character.

Similarly, <LF> written by the C program is translated4@R><LF>in the file. This is always done
when the file is opened in text mode. When the file is opened in binary mode, all data is transferred
without any alterations. Thus, when writing lines to a file which is opened for write in binary mode, the
lines appear to have onkL.F>, not<CR><LF>, If later opened as a text file, this is not recognized as
an end-of-line sequence.

Example: Differing end-of-lines

Here is an example of how an incorrect choice of file type can corrupt data. A&Ree running
under MS-DOS, usingCR><LF>as a end-of-line sequence in text files, but the system calls
translating this t&<LF> in the file I/O interface. Consider the following code.



file = open('testfile.dat’, 'wt')  /* text mode */
call write file, '45464748'x, 'dummy' /*i.e. ‘abcd"' */
call write file, '65666768'x, 'dummy’ /*i.e. 'ABCD' */

call close file

file = open(‘testfile.dat’, 'rb")  /* binary mode */

say c2x(read(file)) [* says '454647480D' */
say c2x(read(file)) [* says '656667680D' */
call close file

Here, two lines of four characters each are written to the file, while when reading, two lines of five
characters are read. The reason is simply that the writing was in text mode, so the end-of-line character
sequence wasCR><LF>; while the reading was in binary mode, so the end-of-line character sequence
was just<LF>. Thus, the<CR>preceding th&LF> is taken to be part of the line during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to do so will
almost certainly give strange effects.



Extensions

This chapter describes how extension&agina are implemented. The whole contents of this chapter
is specific forRegina.

33 Why Have Extensions

Why do we need extensions? Well, there are a number of reasons, although not all of these are very
good reasons:

Adaptations to new environments may require new functionality in order to easily interface to the
operating system.

« Extending the language with more power, to facilitate programming.

* Sometimes, a lot of time can be saved if certain assumptions are met, so an extension might be
implemented to allow programmers to take shortcuts.

* When a program is ported from one platform to another, parts of the code may depend of non-
standard features not available on the platform being ported to. In this situation, the availability of
extensions that implement the feature may be of great help to the programmer.

* The implementor had some good idea during development.

Backwards compatibility.

Extensions arise from holes in the functionality. Whether they will survive or not depends on how they
are perceived by programmers; if perceived as useful, they will probably be used and thus supported in
more interpreters.

34 Extensions and Standard REXX

In standardREXX, the OPTIONSiInstruction provides a "hook" for extensions. It takes any type of
parameters, and interprets them in a system-dependent manner.

The format and legal values of the parameters foR& IONSinstruction is clearly implementation
dependent [TRL2, p62].

35 Specifying Extensions in Regina

In Regina there are three level of extensions. Each independent extension has its own name. Exactly
what an independent extension is, will depend on the viewer, but a classification has been done, and is
listed at the end of this chapter.

At the lowest level are these "atomic" extensions. Then there are some "meta-extensions”. These are
collections of other extensions which belongs together in some manner. If you need the extension for
creating "buffers" on the stack, it would be logical to use the extension to remove buffers from the stack
too. Therefore, all the individual extensions for operations that handle buffers in the stack can be named



by such a "meta-extensions". At the end of this chapter, there is a list of all the meta-extensions, and
which extensions they include.

At the top is "standards”. These are sets of extensions that makes the interpreter behave in a fashion
compatible with some standard. Note that "standard" is used very liberally, since it may refer to other
implementations oOREXX. However, this description of how the extensions are structured is only
followed to some extent. Where practical, the structure has been deviated.

36 The Trouble Begins

There is one very big problem with extensions. If you want to be able to turn them on and off during
execution, then your program has to be a bit careful.

More and mordREXX interpreters (includindRegina seem to do a parsing when the interpreter is
started. The "old" way was to postpone the parsing of each clause until it was actually executed. This
leads to the problem mentioned.

Suppose you want to use an extension that allows a slightly different syntax, for the sake of the
argument, let us assume that you allow an expression aft&EhECTkeyword. Also assume that this
extension is only allowed in extended more, not in "standard mode". However Reagoea parses

the source code only once (typically at the starts of the program), the problem is a catch-22: the
extension can only be turned on after parsing the program, but it is needed before parsing. This also
applies to a lot of otheREXX interpreters, and aREXX compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, but the parsing is all
done before the first clause is executed. Consequently, this extension can not be turned on during
execution, it has to be set before the parsing starts.

Therefore, there are two alternative ways to invoke a set of extensions; neither of which is implemented
in Regina.

* It can be invoked by using the option to the interpreter. The word following the option is the
extension or standard to invoke. Multiple options can be specified.

* It can be invoked by setting the environment varidEXXEXTSwhich must be a string of the
same format as the parameters to@TIONSclause.

37 The Format of the OPTIONSclause

The format of the@ODPTIONSclause is very simple, it is followed by aREXX string expression,
which is interpreted as a set of space separated words. The words are treated strictly in order from left
to right, and each word can change zero or more extension settings.

Each extension has a name. If the word being treated matches that name, that extension will be turned
on. However, if the word being treated matches the name of an extension but has thE@réfen

that extension is turned off. If the word does not match any extensions, then it is simply ignored,
without creating any errors or raising any conditions.



Example: Extensions changing parsing

An example of the same is théPPERNstruction. In the following piece of code the same clause is
interpreted in two completely different ways:

options 'NOUPPER'

doi=1to 2
if i=2 then options 'UPPER'
upper foo bar

end

In the first iteration of the loop, the clause starting with the tod@PERwill be a command, issuing

the string resulting from evaluating the expressipper foo bar . However, in the second

iteration of the loop, the same clause is interpreted d$RIPERNstruction. Since these two statements

has very different syntax, it seems impossible to handle both in the same prdgesina tries to

handle this by "allowing" both syntaxes when parsing the source code, and selecting the right one when
interpreting the statement in question.

Regina’s frequent usage of extensions may slow down execution. To illustrate how this can happen,
consider theOPEN() extra built-in function. As this is an extension, it might be dynamically included
and excluded from the scope of currently defined function. Thus, if the function is used in a loop, it
might be in the scope during the first iteration, but not the second. Ragina can not cache

anything relating to this function, since the cached information may be outdated later. As a
consequencdlegina must look up the function in the table of functions for each invocation. To avoid
this, you can set the extensi@ACHEEXTwhich tellsRegina to cache info whenever possible,

without regards to whether this may render useless later executi@BTOONS

38 The Fundamental Extensions

Here is a description of all "atomic" extensionsRegina:

[BUFTYPE_BIF]
Allows calling the built-in functiorBUFTYPE(), which will write out all the contents of the
stack, indicating the buffers, if there are any. The idea is taken from VM/CMS, and its
command nameBUFTYPE
[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will render
future execution of th®PTIONSInstruction useless. Thus, if you use e.g. @fEN() extra
built-in function, and you seEACHEEX Tthen you may experience that tB® EN() function
does not disappear from the current scope when you sBIGI@PEN_BIFextension.

Whether or not a removal of an extension really do happen is unspecified@&ECHEEXhas
been called at least once. Effectively, info cached during the period @AGHEEXTvas in
effect might not be "uncached". The advantagEACHEEXTs efficiency when you do not
need to do a lot of toggling of some extension.

[CLOSE protect_BIF]
Allows the CLOSE() extra built-in function, which allows the program to explicitly close a
stream.



[DESBUFprotect_BIF]
Allows calling the built-in functiorDESBUF(), to remove all contents and all buffers from the
stack. This function is an idea taken from the program by the same name under VM/CMS.
[DROPBUFprotect_BIF]
Allows calling the built-in functiorDROPBUF(), to removed one of more buffers from the
stack. This function is an idea take from the program by the same name under VM/CMS.
[FIND_BIF]
Allows calling theFIND() extra built-in function, which is a compatibility function with
VM/CMS. This function is really equivalent 8OS() , but the parameters are somewhat
reversed, and some fildND() more intuitive. Besides, this extension helps porting.
[FLUSHSTACK]
Tells the interpreter that whenever a command clause instructs the interpreter to flush the
commands output on the stack, and simultaneously take the input from the stack, then the
interpreter will not buffer the output but flush it to the real stack before the command has
terminated. That way, the command may read its own output. The default settRedioR is
not to flush, i.,e NOFLUSHSTACHKvhich tells interpreter to temporary buffer all output lines,
and flush them to the stack when the command has finished.
[LINEOUTTRUNC]
This options tells the interpreter that wheneverthR¢éEOUT() built-in function is executed
for a persistent file, the file will be truncated after the newly written line, if necessary. This is
the default setting dRegina, unless your system does not havefthencate() system
call. The complement option SOLINEOUTTRUNC
[MAKEBUF_BIF]
Allows calling the built-in functiorlMAKEBUF(), to create a buffer on the stack. This function
is an idea taken from a program by the same name under VM/CMS.
[OPEN_BIF]
Adds the extra built-in functio®PEN() , which is used for explicitly opening streams.
[PRUNE_TRACE]
Makes deeply nested routines be displayed at one line. Instead of indenting the trace output at a
very long line (possibly wrapping over several lines on the screen). It didpldys at the
start of the line, indicating that parts of the white space of the line has been removed.
[EXT_COMMANDS_AS_FUNCS]
WhenRegina resolves an expression to a function, and that function is not a built-in or a
registered external
function,Regina attempts to execute the function as an operating system command. With
NOEXT_COMMANDS_AS_FUNCS seRegina will return error 43; "Routine not found".
EXT_COMMANDS_AS_FUNCS is the default.
[STDOUT_FOR_STDERR]
All output thatRegina would normally write to stderr, such as TRACE output and errors, are
written to
stdout instead. This is useful if you need to capture TRACE output and normal output from
SAY to afilein
the order in which the lines were generated. The defaultis NOSTDOUT_FOR_STDERR.
[INTERNAL_QUEUES]
Regina implements multiple named queues both as part of the interpreter, and as an external
resource. The
use of the RXQUEUE BIF, will makRegina use the external queueing mechanism. This
OPTION allows the exclusive use Begina's internal queueing mechanism.
NOINTERNAL_QUEUES is the default.



[TRACE_HTML]
This OPTION generates HTML <PRE> and </PRE> tags around TRACE output, to enable
tracing from
within CGI scripts. The default is NOTRACE_HTML.

[FAST_LINES_BIF_DEFAULT]
The LINES BIF in versions dRegina prior to 0.08g returned the actual number of lines
available in a
stream. Since then, the LINES BIF has been changed to only return 0 or 1. This was done for
two reasons. 1.
it is faster, and 2. the ANSI standard allows for an option to return the actual number of lines.
This OPTION
is for backwards compatibility with programs written assuming the prior behaviour of the
LINES BIF.
FAST_LINES_BIF_DEFAULT is the default.

[STRICT_ANSI]
This OPTION results in interpretation of a program to strict ANSI standards, and will reject any
Regina extensions. NOSTRICT_ANSI is the defsult

39 Meta-extensions

[BUFFERS]
Combination oBUFTYPE_BIF, DESBUF_BIF, DROPBUF_BIFandMAKEBUF_BIFE
[FILEIO]
Introduces some commonly used extra features for handling files. This is a combination of
OPEN_BIF() andCLOSE_BIF() , which allow the programmer to explicitly open and close
files.

40 Semi-standards

[CMS]
A set of extensions that stems from the VM/CMS operating system. Basically, this includes the
most common extensions in the VM/CMS versiorREXX, in addition of some functions that
perform task normally done with commands under VM/CMS.

[VMS]
A set of interface functions to the VMS operating system. Basically, this mak&EK
programming under VMS as powerful as programming directly in DCL.

[UNIX]
A set of interface functionality to the Unix operating system. Basically, this includes some
functions that are normally called as commands when programming Unix shell scripts.
Although it is possible to call these as commandRé&gina, there are considerable speed
improvements in implementing them as built-in functions.

41 Standards

[ALL]
[ANSI]
REXX Language level 5.0, as described in [ANSI].



[DEFAULT]
[NONE]
[SAA]
[TRL1]
REXX Language level 3.50, as described in [TRL1].
[TRL2]
REXX Language level 4.00, as described in [TRL2].

Also, for those of these standards that have a acc&HEeX language level number, that number can

be used, provided that it matches character by character (i.e. not by numeric value). Thus, you can use
3.50 as asynonym fofFRL1, 4.00 as a synonym fofFRL2, and 5.00 as a synonym for

ANSI.

Option ALL ANSI DEF NONE | SAA TRL1 TRL2
BUFTYPE_BIF  yes ?? yes no ?2? no no
CLOSE_BIF yes ?? yes no ?? no no
CACHEEXT no no no no no no no
DESBUF_BIF yes ?? yes no ?? no no
DROPBUF_BIF  yes ?? yes no ?2? no no
FIND_BIF yes ?? yes no ?? no no
FLUSHSTACK  yes ?? no no ?? no no
LINEOUTTRUNC yes ?? yes no ?2? no no
MAKEBUF_BIF  yes ?? yes no ?2? no no
OPEN_BIF yes ?2? yes no ?? no no
PRUNE_TRACE vyes no yes no no no no
UPPER_CLAUSE yes ?? yes no ?2? no no

Note that the standard and default interpreterREXX language level 4.00 interpreter. All other
functionality is extensions. In fact, the features in 4.00 that does not exist in 3.50 are "inverse"
extensions, i.e. the extension is to remove the functionality only in 4.00.



The Stack

In this chapter, the stack and operations manipulating the stack are discussed. Since the stack is
external to the(REXX language, there are large differences between implementations with respect to
the stack. These differences are attempted described in the latter part of this chapter.

Another goal of this chapter is to try to describe both the "real" standards and some of the most
commonly used de facto standards related to stack operation. Where something is not a part of any
defined standard, this is clearly labeled. Also, some liberties have been taken in order to create a
coherent vocabulary on a field where very little standardization has taken place.

42 Background and history

In the various definitions dREXX, there are numerous references to the "stack" (often called the
"external data queue”, or just the "queue"). It is a structure capable of storing information, but it is not a
part of theREXX language itself. Rather, it is a part of the external environment supporREg<x
implementation.

Originally, the references to the stack was introducedREXX because of the strong binding
betweerREXX and IBM mainframes in the early historyREXX [BMARKS]. Most (all?) of the
operating systems for these machines support a stack, and many of their script programming idioms
involve the stack. Therefore, it was quite natural to introduce an interface to the staBEXX, and
consequently today many of the programming paradigrREXX involve a stack.

Unfortunately, this introduced an element of incompatibility iRE&XX, as the stack is not in general
supported for other operating systems. ConsequdRE)XX implementors often must implement a

stack as well of the colREXX interpreter. Since no authoritative definition of the stack exists,
considerable differences between various implementations. Ironically, although the stack was
introduced to help communication between separate programs, the interpreter-specific implementations
of stacks may actually be a hindrance against compatibility between different interpreters.

The stack may have "seemed like a good idea at the time", but in hindsight, it was probably a bad move,
since it maddREXX more dependent on the host operating system and its interfaces.

43 General functionality of the stack

This section describes the functionality generally available in implementations of stacks. The basic
functionality described here will be complemented with information on specific implementations later.
Unless explicitly labeled otherwise, this functionality is available in all standards treated in this
documentation.

43.1Basic functionality

Below is listed the general functionality of the stack, in order of decreasing compatibility. l.e. the
functionality listed first is more likely to be a part of all implementations than the ones listed at the end
of the list.

» The stack is a data structure, which strings can either be inserted into or extracted from. The strings
in the stack are stored in a linear order. Extraction and insertion works at a granularity of a complete



string, i.e. it is not possible to insert or extract parts of string.

* The stack has two ends: a top and a bottom. New strings can be inserted into the stack in both ends,
but strings can only be extracted from the top of the stack.

* There exists a way of counting the number of strings currently stored in the stack.

A stack is often compared with the pile of plates you often find in cantinas. It allows you to either add
new plates at the top of the pile or take old plates from the top. When a plate is taken from the pile, it
will be the most recently plate (that is still present) added to the pile. Stack operaBR&XiK work

the same way, although there also allow "plates"” to be added to the bottom of the pile.

* There might be an implementation-specific limit on the length and number of strings stored in the
stack. Ideally, the maximum length will be fairly large, at least 2**16, although some
implementations are likely to enforce shorter limits. Similarly, there might be a limit on the number
of strings that can be simultaneously stored in the stack. Ideally, there should be no such limit.

* ltis natural that there are limits imposed on the amount of memory occupied by the strings in the
stack. Some implementations are likely to reserve a fixed (but perhaps configurable) amount of
memory for this purpose while others can dynamically re-size the stack as long as enough memory
is available.

* Some implementations might restrict the set of characters allowed in strings in the stack, although
ideally, all characters should be allowed, even characters normally used for end-of-line or end-of-
string.

This documentation use the term "string”, while "line" is in common use elsewhere. The term is used
because the strings in the stack are not inherently interpreted as lines (having an implied end-of-line),
only as a string.

Note that the stack itself is not a partREXX, only the parts which interface to the stack.
Example: Using the stack to transfer parameters

This is a commorREXX idiom used in several situations for special parameter passing. The following
code illustrates its use:



doi=1to 10 [* for each parameter string */

gueue string.1 /[* put the string on the stack
*/
end
call subrout 10 /* call the subroutine */
exit

subrout: procedure * the definition of the subroutine */
doj=1toarg(l) /*for each parameter passed */
parse pull line.j /* retrieve the parameter

*/

end

/*do something with the
parameters*/

return

In this example, ten parameter strings are transferred to the subr8WBIROUTThe parameters are
stored in the stack, and only the number of parameters are transferred as a "real" argument.

There are several advantages: first, one avoids problems related to exposing variable names. Since the
data is stored on the stack, there is no need to refer to the variable names and bind the variables in the
subroutine to variables in the caller routine. In [TRL1], indirect references to variadROCEDURE
EXPOSEs illegal, and this method circumvent the problem.

Two other ways around this problem is to US§ ERPRETfor the PROCEDURE EXPOSAstruction

in order to dynamically determine which variables to expose; or to uséAh&JE() built-in function

(with its two first parameters). The former is incompatible with TRL2, while the latter is incompatible
with TRL1. Using the stack can solve the problem in a fashion compatible with both standards.
Anyway, if the called routine is an external routine, then exposing does not work, so using the stack to
transfer values may be the only solution.

Another advantage of this idiom; TRL only requires implementations to support 10 parameters for
subroutines. Although there are no reasons why an implementation should set a limit for the number of
parameters a routine can get, you should use another mechanism than arguments when the number of
strings is greater than 10. Using the stack fixes this.

43.2LIFO and FIFO stack operations

As already mentioned, the stack is a linear list of strings. Obviously, this list has two ends. Strings can
only be extracted from one end, while strings can be added to both ends.

If a set of new strings are added to the same end as they are later extracted from, the strings will be
extracted in the reversed order with respect to the order in which they were added. This is called
stacking "LIFO", which means "last-in-first-out", meaning that the last string stacked, will be the first
string extracted, i.e. reversal of the order.

Similarly, when a set of strings are stacked in the end opposite to the end which they are later extracted
from, they will be extracted in the same order in which they were stacked. This is referred to as "FIFO"
stacking, meaning "first-in-first-out".

The FIFO method of stacking is also sometimes referred to as "queueing"”, while the LIFO method is



sometimes referred to as "stacking" or "pushing".

43.3Using multiple buffers in the stack

The concept of buffers and everything directly related to buffers lay without the domain of standard
REXX. Thus, this section describes a de facto standard.

Note that Regina supports multiple buffers only in internalstacks.

Some implementations support "buffers”, which are a means of focusing on a part of the stack. When
creating a new buffer, the old contents of the stack is somewhat insulated from the effects of stack
operations. When the buffer is removed, the state of the old buffer i restored, to some extent: Whenever
a string is read from the stack, and the topmost buffer on the stack is empty, then that buffer will be
destroyed. Consequently, if this situation has arisen, dropping buffers will not restore the state of the
stack before the buffer was created.

The functionality of buffers, and their effect on other stack operations may differ considerably between
implementations.

Whenever a queuing operations is performed (e.g. b@thEUENstruction), then the new string is
inserted into the bottom of the topmost buffer, not the bottom of the stack. This is the same if the stack
has no buffers, but else, the outcome of the queuing operation can be very different.

With IBM mainframe operating systems like CMS, buffers can be inserted on the top of the stack. To
perform buffer operations, operating system commands are used. It may be instructional to list the
buffer operations of CMS:

[DESBUF]
Removes all strings and buffers from the stack, and leaves the stack clean and empty. It is often
used instead of repeated callGdBROPBURLt always returns the value zero.

[DROPBUF]
Removes zero or more buffers from the stack. It takes one parameter which can be omitted, and
which must be an integer position if specified, and is the assigned number of the bottom-most
buffer to be removed, i.e. that buffer and all buffers above it (and of course, all the strings in
these buffers) are to be removed. If the parameter is not specified, only the topmost buffer is
removed. The return valued is always zero, unless an error occurred.

[MAKEBUF]
Makes a new buffer on the stack, starting at the current top of the stack. The return code (as
stored in the special variablRQ is the number of buffers currently on the stack after the new
buffer has been added. Obviously, this will be a positive integer. This program takes no
parameters.

One might regard a buffer as a sort of bookmark, which is inserted into the stack, so that a subsequent
DROPBUEommand can remove the stack down to a particular such bookmark.

When such a mark is located on the top of the stack, @dlal instruction is executed, the buffer
mark is implicitly destroyed when tHeULL instruction reads the string below the buffer mark. This is
to say that a buffer can be destroyed by eitheE&SBUFcommand, & ROPBUEommand, or a read
from the stack (by either tHeULL or PARSE PULL instructions).



43.4The zeroth buffer

Normally, data pushed on the stack is added to the top of the stack. When a stack contains only one
buffer, the strings in that buffer are the strings stored above that buffer-mark. The strings below it are
not part of the first buffer; instead, they are said to belong to the zeroth buffer.

Thus, all strings from the bottom of the stack, up till the first buffer mark (or the top of the stack if no
buffers exist) is said to be the strings in the zeroth buffer. However, note that the zeroth buffer is only
defined implicitly. Thus, it can not really be removed by callPi§OPonly the strings in the zeroth

buffer are removed. Afterwards, the zeroth buffer will still contain all strings at the bottom of the stack,
up till the first buffer mark (if existing).

Example: Process all strings in the stack

This is a commormREXX idiom, where a loop iterates over all the strings currently in the stack, but
otherwise leave the stack untouched. Supposing the rcRR@CESS() exists, and do to processing
with its parameter and return the processed string:

doi=1to5 [* just to fill the stack  */
push 'line #'i
end
do queued() [* foreach line in the stack */
parse pull line [* fetch the line
*/
queue process(line) /* put back the processed line
*/
end

Here, it is important to us@ UEUHEO put the strings back into the stack, iR SH else the loop will

iterate the correct number of times, but only operate on the same data string. It is also important that the
stack does not contain any buffers. SiIQUdEUEwill insert into the bottom of the topmost buffer, the

loop would iterate the correct number of times, but only on a part of the stack. Thus, the topmost part of
the strings in the stack would be processed multiple times.

Example: How to empty the stack

The following short example shows how you can most easily empty the stack:

doi=1to 5 * Just to fill the stack */
push 'line #'i
end
do queued() [* For each line in the stack */
pull /* Remove the line from the
stack */
end

This is trivially simple, but there are several interesting and subtle notes to make about this example.



First, if the number of strings in the stack is likely to change, due to some external process, hén the
clause should perhaps better be written as:

doi=1to5 /* Just to file the stack */
push 'line #'i
end

do while queued()>0  /* While the stack is not empty */
pull [* Remove a line from the stack

*/

end

This will in general mean more work for the interpreter, as it is now required to check the number of
strings in the stack for each iteration, while for the previous code fragment, the number of strings is
only checked once. Another point is that this might not remove all buffers from the stack. Suppose the
zeroth buffer is empty, i.e. there exists an buffer which was put on the stack when the stack was empty.
This buffer is removed in any of the following situations: callDESBUF:-callingDROPBUF

(sometimes), or reading a string below the buffer mark. Since there are no strings below the buffer
mark, pulling a string from the stack would make the interpreter read from the keyboard, and hang the
interpreter.

Thus, the only "safe" way to remove the string and buffers from the stack, without side effects, is to call
DESBUFor DROPBUFOn the other hand, if you only want to make sure that there are no strings in the
buffer, the method described here is more suitable, since it is far more compatible (although possibly
not so efficient). But anyway, buffers are not a compatible construct, so it does not matter so much.

43.5Creating new stacks

The description of multiple stack operations in this section, is not part of standard REeX)$ it
implemented in Regina. Thus, this section describes a de facto standard and you may find that few
implementations support these operations.

Just as the operations described above leREBEX programmer use multiple buffers within one stack,
there exists another set of operations which let the programmer create multiple stacks. There is really
nothing fancy about this, except that a command will swap the stack the interpreter correctly uses with
another stack.

To the interpreter this is really equivalent to a situation where a command empties the current stack,
and sets up a new stack. When one stack is empty, ariREX& program tries to read from the stack,

the request will not "overflow" to the previous stack (as requests to an empty buffer "overflows" to the
previous buffer). Thus, the use of multiple stacks has even less direct impR&>OK interpreters than
multiple buffers.

Here, it is instructive to list the commands operating multiple stacks that exists. This list has been taken
from the MVS environment, according to [REXXSAA.

[DELSTACK]
Is used to remove the most currently stack, and make the most recent of the saved stacks the
current stack. When there are no saved stacks, the current stack is emptied.



[NEWSTACK]
Creates a new stack, which becomes the current stack. The old current stack is put on the top of
the list of saved stacks, and can be retrieved as the current stack by a subBEjIFERACK

[QBUF]
Counts the number of buffers in the current stack, and returns that number as the return value. A
REXX program starting this command can retrieve this value as the special v&f@ble

[QELEM]
Counts the number of strings (i.e. elements) in the current stack, and returns that value as the
return value of the command. This value can be retrievdREXX as the special variabRC
This operation is equivalent to tliUEUED() built-in function inREXX; it has been probably
included for the benefit of other script languages that have less functionalitiREv&N.

[QSTACK]
Counts the number of stacks (including the current stack) and returns the value as the return
value from the command. This number can be retrievédREXX as the special variabRC

One can regard multiple buffers and stacks as two ways of insulating the stack; where multiple stacks
are a deeper and more insulating method than buffers. Note that each stack can contain multiple
buffers, while a buffer can not contain any stacks. The term "hard buffers" has been used about multiple
stacks, as opposed to normal buffers, which are sometimes called "soft buffers".

Also note that neither multiple stacks nor buffers are part of stariRIBXX, so you might come across
implementations that support only multiple stacks, only buffers, or even none of them.

Example: Counting the number of buffers

In order to count the number of buffers on the stack, the following method can beResgidd syntax
has been used for buffer handling). This method is equivalent tQBi¢Fcommand described above.

buffers = makebuf() - 1
call dropbuf

This will store the number of buffers in the stack in the varidhléfers . However, just as for the
other examples using buffers, this example also suffers from the fact that buffer handling is fairly non-
standard. Thus, you will have to adapt the code to whatever system you want to use.

44 The interface between REXX and the stack
As defined in TRL, the interface to the stack consists oRAKRSE PULL, PULL, PUSH andQUEUE
instructions; and th@ UEUED() built-in function.

There exists a binary interface to the stack in SAA, see the chapter on the SAA API interface. This
interface consists of tieRXMS@xit handler and th@UENAMEalue of theRXSHV_PRIVrequest of
theRexxVariablePool() function of the variable pool interface.

45 Strategies for implementing stacks

As mentioned, stacks are rarely a part of the operating system. Therefore, under most operating
systemsREXX interpreters have to implement their own stacks. There are several strategies for doing



this, some which are listed below.

[In the operating system.]
This is of course "the right way" to do it. However, it requires that the definition of the
operating system is such that stacks are supported. Currently, only IBM mainframe-based
systems support stack, together with a few other systems that have included stacks as a
consequence of makirigEXX a main scripting language (Amiga and OS/2 come to mind).

[As a device driver.]
This is really just a variation of making the stack a part of the operating system. However, in
some systems, drivers can be added very easily to the system. Drivers are often filesystem-
based, in which case driver-based stack operations must operate on a file or pseudo-file. But for
some systems, adding a driver requires much more profound changes, reconfiguration, and often
system privileges. In all cases, drivers are likely to be very system specific.

[As a daemon.]
A "daemon" is background process that does some housekeeping service, e.g. handling mail
from remote systems. Implementing a stack as a daemon is only slightly simpler than using a
driver, but the main idea is the same for both approaches.

[In the interpreter.]
Using this approach, the stack is built into the interpreter as a sort of extension. This is often the
simplest way, since it require very little coordination with other programs during run-time. The
main problem is that the stack becomes private to the interpreter, so two interpreters can not use
the same stack; not even if they are two invocations of the same interpreter.

These items are listed in the order of how closely they are coupled to the operating system: the first
items are very closely, while the last items are loosely coupled. The more closely coupled the
implementation of a stack is coupled to the operating system, the better is the chance that several
interpreters on the same system can communicate in a compatible way, using the stack.

There is room for several hybrid solutions, based on the four fundamental approaches. For instance, a
built-in stack can also act as a daemon.

Regina supports the stack as both a daemon and internal to the interpreter.
Example: Commands takes input from the stack

In the example above, the routine that is called takes its arguments from the stack. Similarly,
commands to an external environment can get their arguments in the same way. Here is an example of
how to do it:

queue '‘anonymous' [* the username */
queue 'user@node’ /* the password */
queue 'dir' [* first command */
queue 'exit’ /* second command */

address command 'FTP flipper.pvv.unit.no’

Although this is very convenient in some situations, there is also considerable disadvantages with this
method: There is no real interactive communication between the interpreter and the command; i.e. all
input meant for the command must be set up before the command itself is invoked. Consequently, if
one of the input lines to the command provokes an error, there is very little error handling facility.



Commonly, such an error might start a cascade of errors, as the remaining input lines are likely to be
invalid, or even be interpreted in a context different from what they were intended.

As with all commands involving the stack, it is important to push or queue the correct order.

Using this technique, a program can "fool" a command to do almost anything, by storing the correct
input on the stack. However, there is a big disadvantage: Since the stack is implementation-dependent,
it is not certain that a command will take its input from the stack. For some systems, this is the default,
while for other systems, this is only possible through some explicit action. Some systems might not
even allow commands to take their input from the stack at all.

Example: "Execing" commands

Many script programming languages can only execute commands while still running, or at most start a
new command immediately after the termination (likealkec() system call in Unix). However, the
stack can be used on some systems to set up the system to execute one or more commands after the
current script terminates. Here is an example:

push'ls' [* finally execute 'ls' */
push 'who' /* then execute ‘who' */
push 'pwd' [* first execute 'pwd' */
exit 0

Supposing that the system reads its commands from the stack if the stack is not empty, then this script
will terminate after having set up the stack so that the three comnpavdisvho andls will be runin

that sequence. Note the orderQUEUEhad been used, the order would be the opposite, which is
perhaps more intuitive (assuming the topmost buffer is empty).

As with the example above, this too is only relevant for some systems, thus is not very compatible, and
you should be careful when using it. It also suffers from the lack of interactivity, error handling, and the
importance of the order in which the strings are pushed or queued. For all practical reasons, this is just a
special case.

Using the stack to "leave behind" command names and input only works for systems where command
interpreters and commands reads their input from the stack. This is in general true for IBM mainframe
systems, but very few other systems.

46 Implementations of the stack in Regina

In Regina, the stack is implemented as both an integral, private part of the interpreter and as a cross-
platform external stack able to be used by multiple clients on multiple machines. Internal stacks provide
the obviousadvantage of speed at the expense of data sharing. External stacks are considerably slower,
but do enable data sharing between instances of Regina and/or other programs.

Regina supports the standard TRL (and ANRIEXX stack interface functionality, likBARSE

PULL, PULL, QUEUEPUSH the QUEUED() built-in function, and in future versions, support the
SAA API stack interface. These commands and functions operate on both the internal and external
stacks.



46.1Implementation of the internal stack in Regina 2.2

Whenever th&REXX programmer wants to execute a command and let that command either flush the
output to the internal stack, or read its input from the internal stack, this has to be arranged by the
interpreter itself. IrRegina this is normally done by prepending or appending certain terms to the
command to be executed.

Consider the following command clauses Regina:

'Is >LIFO'

'‘who >FIFQ'
'LIFO> wc'

'LIFO> sort >FIFO'

For all these commands, the "piping" terms are stripped off the command string before the command is
sent to the command interpreter of the operating system. Thus, the command interpreter only sees the
commandss , who, wc, andsort . The terms stripped off, are used as indicators of how the input and
output is to be coupled with the stack. The use of input/output redirection as above is only available
with the internal stack.

Note that it is important not to confuse the redirection of output to the stack and input from the stack in
Regina with the redirection of the Unix shells. The two can be mixed in command lines, but are still
two different concepts.

The first command will execute thHe command, and redirect the output from it to the stack in a LIFO
fashion. The second executes the commahd and redirects the output to the stack to, but in a FIFO
fashion. The third command executes W but lets the standard input of that command come from
the stack. Actually, it is irrelevant whethEd-O> or LIFO> is used for input; the strings are read
from the top of the stack in both cases. The fourth command is apgagommand without any
redirection to or from the stack. The last command executesatie program and lets it read its input
from the stack, and redirect the output to the stack.

Regina allows a command to take both an input and an output "redirection” to a stack, as showed in

the last example above. However, it also guarantees that the output is not available in the stack before
the command has terminated. The output from the command is stored in a temporary stack, and flushed
to the ordinary stack after the command is terminated. Thus, the command will not start to read its own
output.

Note that this temporary buffering of command output is the default behavior, which might be set up to
something different at your site.

In addition, you can change it through @@ TIONSinstruction, by using eithdfLUSHSTACKr
BUFFERSTACIas "parameters".

Note the difference betwedtegina's redirection and Unix redirection. Regina, only the term

LIFO> (when first in the command string), and the terhdFO and>FIFO (when last in the
command string), will be interpreted as redirection directives. These terms will be stripped off the
command string. All other redirection directives will be left untouched. If you should happen to need
to redirect output from a Unix command to the fil~O or LIFO, then you can append a space at the



end or specify the file as ./FIFO of ./LIFO. That will maRegina ignore the redirection term.

Note that this particular form of redirection of command input and output will most probably disappear
in future versions oRegina, where it will probably be replaced by an extendddDRES$nstruction.

In addition to the ANSI standard, there are a few extra built-in functions, which are supposed to provide
compatibility with othelREXX implementations, principally CMS REXX. These are BUFTYPE,
DESBUF, DROPBUF and MAKEBUF. See the descriptions of these function in the built-in functions
section above.

46.2Implementation of the external stack in Regina 2.2

The implementation of the external stack follows the model used by REXX, but is implemented
as an operating system daemon. This daemoxstack.
rxstack

Under most operating systennsstack is started from the operating system's startup process and
terminates when the machine is shutdown. Under Windows NT/2000, it runs as a Service.

Communication betweenxstack andRegina is done via TCP/IP sockets. Using sockets as the IPC
mechanism on a local machine is somewhat slow compared to other mechanisms such as shared
memory or named pipes. It does however enable operation between machines on different operating
systems to function seamlessly.

The full syntax of the rxstack command is:

rxstack [switch]

switch is one of the following switches
-install installs the NT Service; Rexx Stack - Windows NT/2000 only
-remove removes the NT Service; Rexx -Stack - Windows NT/2000 only
-run runsrxstack in a command prompt - Windows NT/2000 only
-d runrxstack as a daemon - Unix only
-k kills (stops) rxstack - subject to being a valid killer - s@ecurity of

External Queues

To stoprxstack, the process can be killed with a SIGINT or SIGTERM or by runmkggack with the
-k switch.

rxqueue

To allow nonREXX program to interface to thexstack daemon, a companion programgueue, is
provided.rxqueue communicates with noREXX programs via its stdin and stdout.

Consider the following equivalents f&egina's internal and external stack

'Is >LIFO' 'Is | rxqueue /lifo’
'who >FIFQO' ‘who | rxqueue /fifo'
'LIFO> wc' rxqueue /pull | wc'
'LIFO> sort >FIFO' rxqueue /pull | sort | rxqueue ffifo'

The full syntax of thexqueue command is:



rxqueue [queue] [switch]

queue is aRegina external queue name — see the next section for structure. If no queue is
specifiedrxqueue uses the queue name; SESSION

switch is one of the following switches — as per OREXX

[fifo gueue lines from stdin LIFO onto the
queue

/lifo gueue lines from stdin FIFO onto the
queue

Iclear remove all lines from the queue

the following switches arRegina extensions
/queued  return the number of lines on the queue
/pull pull all lines from the queue and
display on stdout

rxqueue Built-in Function

REXX programs communicate wittkstack via the normal queueing mechanisms of QUEUE, PUSH,
PULL andQUEUEL). These commands operate on the current queue and have no mechanism for
changing the queue to use. This is WRXQUEUE() is used. Its primary purpose is to control the
queue that the remainder of tREXX program operates on.

Queue Names

To enable the use of tHREXX stack as a cross-platform, multi-machine IPC, the naming conventions
adopted by OS/REXX has been modified. As OSREXX queues are local to a single machine,
gueue names have no structure. To enable identification of queues on different machines, some
structure must be built into external queue nameRegina. An external queue name étegina has

the following format:

[queue][@machine[:port]]

The components of the queue name are:

queue the name of the queue. The only criteria for the name is that it contains none of the
following characters: @, . or ;. The queue component can be blank, when specifying the
default queue on a specified machine.

machine the machine that hosts the specified queue. This can either be a standard IPv4 IP address
or a machine name that can be resolved to a standard IPv4 IP address. The machine
name is optional, and defaults to 127.0.0.1

port The port number thakstack on machine is listening to. The default port number for
rxstack is 5757.

When referring to queues on the local machine, the machine and port components need not be

specified. The behaviour of the external stack is then the same as foREIIR, with the exception

that the queues on the local machine can still be manipulat&kgiyna on another machine.

Some examples may make this clearer. TBD



Security of External Queues

(Not implemented yet)

A daemon process likexstack, waiting on a TCP/IP socket for anyone to connect to and use is open to
abuse. To reduce the opennesgxstack, it uses a security mechanism much like the Unix

hosts.allow and hosts.deny files is used to control accesstiack.

Environment Variables

RXQUEUE
RXSTACK



Interfacing Rexx to other programs

This chapter describes an interface betwedREXX interpreter and another program, typically

written in C or another high level, compiled language. It is intended for application programmers who
are implementindREXX support in their programs. It describes the interface known asE¥ X SAA

API.

47 Overview of functions in SAA
The functionality of the interface is divided into some main areas:

Subcommand handlers
which trap and handle a command to an external environment.
» External function handlers
extend theREXX language with external functions
* Interpreting
REXX scripts, either from a disk file, or from memory.
* Variable interface
which makes it possible to access the variables in the interpreter, and allows operations like
setting, fetching and dropping variables.
* System exits
which are used to hook into certain key points in the interpreter while it executes a script.
» External Queue interface
which allows access tBegina's external queuing mechanism.
Macrospace functions
which are used to load and save external macrosRegina's macrospace for faster execution.
Memory Allocation functions
which provide for platform-independent memroy allocating/deallocation functions.

In the following sections each of these areas are described in detail, and a number of brief but complete
examples are given at the end of the chapter.

The description is of a highly technical nature, since it is assumed that the reader will be an application
programmer seeking information about the interface. Therefore, much of the content is given as
prototypes and C style datatype definitions. Although this format is cryptic for non-C programmers, it
will convey exact, compact, and complete information to the intended readers. Also, the problems with
ambiguity and incompleteness that often accompany a descriptive prose text are avoided.

47 .1Include Files and Libraries

All the C code that uses tHREXX application interface, must include a special header file that contains
the necessary definitions. This file is calletkxsaa.h. Where you will find this file,
will depend on you system and which compiler you use.

Also, the interface part between the application andRBXX interpreter may be implemented as a
library, which you link with the application using the functions described in this chapter. The name of
this library, and its location might differ from system to system. Under Unix, this library can be
implemented as a statflibregina.a) or dynamic library(libregina.[so|sl]). Under other platforms

Regina is also be implemented as a static or dynamic library.



47.2Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so. Each of the domains of
functionality listed above are defined in sepaetionsin therexxsaa.h header file. In order for
these to be made available, certain preprocessor symbols have to be set. For instance, you have to
include the following definition:

#define INCL_RXSHV
in order to make available the definitions and datatypes concerning the variable pool interface. The
various definitions that can be set are:

INCL_RXSUBCOM
Must be defined in order to get the prototypes, datatypes and symbols needed for the
subcommand interface of the API.
* INCL_RXFUNC
Must be defined in order to get the prototypes, datatypes and symbols needed for the external
function interface of the API.
e INCL_RXSYSEXIT
Must be defined in order to get the prototypes, datatypes, and symbols needed for the system
exit functions
e INCL_RXSHV
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use the
REXX variable pool.
* INCL_RXQUEUE
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use the
REXX external queues.
* INCL_RXMACRO
Must be set in order to get the prototypes, symbols and datatype definitions necessary to use the
REXX macrospace interface of the API.

47.3Data structures and data types

In this section, some data structures and datatypes relevant to the application inteRfa¥etare
defined and described. The datatypes defined are:

* RXSTRING
Holds aREXX string.

e RXSYSEXIT
Holds a definition of a system exit handler. Used when startifE2XX script with
RexxStart(), and when defining the system exit handlers.

The datatypes used in t&&AA API are defined imexxsaa.h. They are:

typedef char CHAR ;

typedef short SHORT ;

typedef long LONG ;

typedef char *PSZ ;

typedef CHAR *PCHAR ;
typedef SHORT *PSHORT ;
typedef LONG *PLONG ;
typedef unsigned char UCHAR ;



typedef unsigned short USHORT ;
typedef unsigned long ULONG ;
typedef USHORT *PUSHORT ;
typedef char *PCH ;

typedef unsigned char *PUCHAR ;
typedef void VOID;

typedef void *PVOID;

typedef ULONG APIRET;

typedef APIRET (APIENTRY *PFN)();

One other item needs mentionirPIENTRY. This value is used to specify the linkage type on OS/2
and Win32 platforms. Itis assumed that this va#defined by inclusion of compiler-specific header
files in rexxsaa.h. Under Unix, this igtdefined to nothing.

47.3.1The RXSTRING structure

The SAA API interface useRexx stringvhich are stored in the structuRXSTRING. There is also a
datatypePRXSTRING, which is a pointer tcRXSTRING. Their definitions are:

typedef struct {
unsigned char *strptr ; /* Pointer to string contents */
unsigned long strlength ; /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

Thestrptr field is a pointer to an array of characters making up the contents &eke stringg while
strlength holds the number of characters in that array.

Unfortunately, there are some inconsistencies in naming of various special kinds of striREXXn
(TRL), a™ null string" is a string that has zero length. On the other hand, the SAA API operates with
two kinds of special stringsull stringsandzero length stringsThe latter is a string with zero length
(equals null strings IREXX), while the former is a sort otindefinedor emptystring, which denotes a
string without a value. Theull stringsof SAA API are used to denote unspecified values (e.g. a
parameter left out in a subroutine call). In this chapter, when the tenfhstringsandzero length
stringsare italicized, they refer to the SAA API style meaning.

A number of macros are defined, which simplifies operationRESTRINGS for the programmer. In
the list below, all parameters calledre of typeRXSTRING.

« MAKERXSTRING(x,content,length)]
The parameterontent must be a pointer tohar, while length is integer. Thex parameter will
be set to the contents and length supplied. The only operations are assignments; no new space
is allocated and the contents of the string is not copied.
*  RXNULLSTRING(X)]
Returns true only ik is anull string.
l.e. x.strptr is NULL.
« RXSTRLEN(X)]
Returns the length of the stringas an unsigned long. Zero is returned both whenanull
stringor azero length string



* RXSTRPTR(X)]
Returns a pointer to the first character in the ststngr NULL if x is anull string. If x is azero
length string and nonNULL pointer is returned.
* RXVALIDSTRING(X)]
Returns true only ik is neither anull string nor a zero length string
i.e. X must have non-empty contents.
* RXZEROLENSTRING(X)]
Returns true only ik is azero length string
i.e. x.strptris nonNULL, and x.strlength is zero.

These definitions are most likely to be defined as preprocessor macros, so you shoutithebhem
with parametershaving any side effects. Also note that at A KERXSTRING() is likely to be
implemented as two statements, and might not work properly if following

e.g. anf statement. Check the actual definitions in tegxsaa.h header file before using them in a
fancy context.

One definition of these might be (don't rely on this to be the case with your implementation):

#define MAKERXSTRING(x,c,l) ((x).strptr=(c),(x).strlength=(1))
#define RXNULLSTRING(x)  (!(x).strptr)

#define RXSTRLEN(X) ((x).strptr ? (x).strlength : OUL)
#define RXSTRPTR(X) ((x).strptr)

#define RXVALIDSTRING(X) ((x).strptr && (x).strlength)
#define RXZEROLENSTRING(X) ((x).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition in C programs; where a string is
an array of characters, and its length is implicitly given by a terminating ASCII NUL character. In the
RXSTRING definition, a string can contain any character, including an ASCII NUL, and the length is
explicitly given.

47.3.2The RXSYSEXIT structure

This structure is used for defining which system exit handlers are to handle which system exits. The
two relevant datatypes are defined as:

typedef struct {
unsigned char *sysexit_name ;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSYSEXIT *PRXSYSEXIT ;

In this structuresysexit_name is a pointer to the ASCIlI NUL terminated string containing the name
of a previously registered (and currently active) system exit handlersy$exit_code field is main
function code of a system exit.

The system exits are divided into main functions and sub-functions. An exit is defined to handle a main
function, and must thus handle all the sub-functions for that main function. All the functions and sub-
functions are listed in the description of tBXIT structure.



48 The Subcommand Handler Interface

This sections describes the subcommand handler interface, which enables the application to trap
commands in &REXX script being executed and handle this commands itself.

48.1What is a Subcommand Handler

A subcommand handler is a piece of code, that is called to handle a command to an external
environment irREXX. It must be either a subroutine in the application that started the interpreter, or a
subroutine in a dynamic link library. In any case, when the interpreter needs to execute a command to
an external environment, it will call the subcommand handler, passing the command as a parameter.
Typically, an application will set up a subcommand handler before star\RiE)XX script. That way, it

can trap and handle any command being executed during the course of the script.

Each subcommand handler handles one environment, which is referred to by a name. It seems to be
undefined whether upper and lower case letters differ in the environment name, so you should assume
they differ. Also, there might be an upper limit for the length of an environment name, and some letters
may be illegal as part of an environment name.

Regina allows any letter in the environment name, except ASCII NUL; and sets no upper limit for the
length of an environment name. However, for compatibility reasons, you shouldunemdimon
letters and keep the length of the name fairly short.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PRXSTRING command,
USHORT flags,
PRXSTRING returnstring

);

After registration, this function is called whenever the application is to handle a subcommand for a
given environment. The value of the parameters are:

[command]
Thecommand string that is to be executed. This is the resulting string after the
command expression has been evaluated iREXX interpreter. It can not be empty,
although it can be aero-length-string

[flags]
Points to arunsigned short which is to receive the status of the completion of the
handler. This can be one of the following: RXSUBCOM_OK, RXSUBCOM_ERROR,
or RXSUBCOM_FAILURE. The contents will be used to determine whether to raise
any condition at return of the subcommand. Do not confuse it with the return value.

[returnstring]
Points to aRXSTRING which is to receive the return value from the subcommand.
Passing the return value as a string makes it possible to return non-numeric return
codes. As a special case, you mightreétirnstring.strptr to NULL, instead of
specifying a return string of the ASCII representation of zero.

Note that it is not possible to retunothingin a subcommand, since this is interpreted as zero. Nor is it



possible to return a numeric return code as such; you must convert it to ASCII representation before
you return.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return data
is not longer that that. If that space is not sufficient, the handler can provide another area itself. In that
case, the handler should not de-allocate the default area, and the new area should be allocated in a
standard fashion.

48.2 The RexxRegisterSubcomExe() function

This function is used to register a subcommand handler with the interface. The subcommand handler
must be a procedure located within the code of the application. After registratidRENXE

interpreter can execute subcommands by calling the subcommand handler with parameters describing
the subcommand.

The prototype foRexxRegisterSubcomExe() is:

APIRET APIENTRY RexxRegisterSubcomExe(
PSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea

);

All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the
environment to be registered. This is the same name @&8ENX interpreter uses with
the ADDRESS clause in order to select an external environment.

[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to be
registered. See the section on Subcommand Handlers for more information. There is an
upper limit for the length of this name.

[UserArea]
Pointer to an 8 byte area of information that is to be associated with this environment.
This pointer can b&ULL if no such area is necessary.

The areas pointed to bignvName and UserArea are copied to a private area in the interface, so the
programmer may de-allocate or reuse the area used for these parameters after the call has returned.

The RexxRegisterSubcom() returns arunsigned long, which carries status information describing
the outcome of the operation. The status will be one oRKEUBCOM values:

[ RXSUBCOM_OK]
The subcommand handler was successfully registered.
[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already existed another
subcommand handler which was registered Wig#xxRegisterSubcomDII(), but this
will be shadowed by the newly registered handler.
[RXSUBCOM_NOTREG]



Due to some error, the handler was not registered. Probably because a handler for
EnvName was already defined at a previous calRexxRegisterSubcomExe().
[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory.
[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters
having invalid values.

48.3The RexxRegisterSubcomDII() function

This function is used to set up a routine that is located in a module in a dynamic link library, as a
subcommand handler. Some operating systems don't have dynamic linking, and thus cannot make use
of this facility. The prototype of this function is:

APIRET APIENTRY RexxRegisterSubcomDII(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

)
This function is not yet supported IRegina.

48.4The RexxDeregisterSubcom() function

This function is used to remove a particular environment from the list of registered environments. The
prototype of the function is:

APIRET APIENTRY RexxDeregisterSubcom(
PSZ EnvName,
PSZ ModuleName

);

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the environment
to be removed.

[ModuleName]
Also an ASCII NUL terminated string, which points to the name of the module
containing the subcommand handler of the environment to be deleted.

The list of defined environments is searched, and if an environment matching the one named by the
first parameter are found, it is deleted.

The returned value frorRexxDeregisterSubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was successfully deleted.



[RXSUBCOM_NOTREG]
The subcommand handler was not found.

[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried
through.

Most systems that do have dynamic linking have no method for reclaiming the space used by
dynamically linked routines. So, even if you were able to lodl,dhere are no guarantees that you
will be able to unload it.

48.5The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand handler. The prototype
of the function is:

APIRET APIENTRY RexxQuerySubcom(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserWord

)
The significance of the parameters are:

[EnvName]
Pointer to an ASCII NUL terminated character string, which names the subcommand
handler about which information is to be returned.
[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynamic link
library. Only the named library will be searched for the subcommand handler named by
EnvName. This parameter must BULL if all subcommand handlers are to be
searched.
[Flag]
Pointer to a short which is to receive the varRlESUBCOM_OK or
RXSUBCOM_NOTREG. In fact, this is the same as the return value from the function.
[UserWord]
Pointer to an area of 8 bytes. Thserareaof the subcommand handler is copied to the
area pointed to biyserWord. This parameter might B8ULL if the data of the
userareas not needed.

The returned value frolRexxQuerySubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was found, and the required information has been returned in
theFlag and UserWord variables.
[RXSUBCOM_NOTREG]
The subcommand handler was not found. Flag variable will also be set to this
value, and th&JserWord variable is not changed.
[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried



through.



49 The External Function Handler Interface

This sections describes the external function handler interface, which extends the language by enabling
external functions to be written in a language other tR&XX.

49.1What is an External Function Handler

An external function handler is a piece of code, that is called to handle external functions and
subroutine calls IREXX. It must be either a subroutine in the application that started the interpreter, or
a subroutine in a dynamic link library. In any case, when the interpreter needs to execute a function
registered as an external function, it will call the external function handler, passing the function name
as a parameter.

All external functions written in a language other than REXX must be registered with the interpreter
before starting &EXX script.

An external function handler can handle one or more functions. The handler can determine the function
actually called by examiining one of the parameters passed to the handler and act accordingly.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING returnstring

),

After a function is registered with this function defined as the handler, this function is called whenever
the application calls the function. The value of the parameters are:

[name]
The function called.
[argc]
The number of parameters passed to the funchogv will containargc RXSTRINGs.
[queuename]
The name of the currently define data queue.
[returnstring]
Points to aRXSTRING which is to receive the return value from the function. Passing
the return value as a string makes it possible to return non-numeric return codes. As a
special case, you might setturnstring.strptr to NULL, instead of specifying a return
string of the ASCII representation of zero.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return data
is not longer that that. If that space is not sufficient, the handler can provide another area itself. In that
case, the handler should not de-allocate the default area, and the new area should be allocated in a
standard fashion. if the external function does not return a value, it shouletgetstring to an empty
RXSTRING. This will enable the interpreter to raise error &inction did not return dataf the

external function is called as a function. If the external function is invoked @AlaL command, the
interpreter drops the special variaR&SULT.



The handler returns zero if the function completed successfully. When the handler returns a non-zero
value, the interpreter will raise error 4@yalid call to routine

49.2 The RexxRegisterFunctionExe() function

This function is used to register an external function handler with the interface. The external function
handler must be a procedure located within the code of the application. After registratiBii Xixe
interpreter can execute external functions as if they were built-ins.

The prototype foRexxRegisterFunctionExe() is:

APIRET APIENTRY RexxRegisterFunctionExe(
PSZ FuncName,
PFN EntryPoint

);
All the parameters are input, and their significance are:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name &HNX interpreter uses
with a function call or via th€€ ALL command.

[EntryPoint]
Points to the entrypoint of the external function handler routine for the function to be
registered. See the section on External Function Handlers for more information.

The area pointed to bf¥uncName is copied to a private area in the interface, so the programmer may
de-allocate or reuse the area used for this parameter after the call has returned.

The RexxRegisterFunctionExe() returns arunsigned long, which carries status information
describing the outcome of the operation. The status will be one GIXtdJNC values:

[ RXFUNC_OK]
The handler was successfully registered.
[RXFUNC_DUP]
The handler was successfully registered. There already existed another external function
handler which was registered witexxRegisterFunctionExe(), but this will be
shadowed by the newly registered handler.
[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

49.3The RexxRegisterFunctionDII() function

This function is used to set up an external function handler that is located in a module in a dynamic link
library. Some operating systems don't have dynamic linking, and thus cannot make use of this facility.
The prototype of this function is:

APIRET APIENTRY RexxRegisterFunctionDII(
PSZ ExternalName,
PSZ LibraryName,



PSZ InternalName

);
All the parameters are input, and their significance are:

[ExternalName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name &HNX interpreter uses
with a function call or via th€€ ALL command.

[LibraryName]
Points to an ASCII NUL terminated character string which defines the name of the
dynamic library. This string may require a directory specification.

[InternalName]
Points to an ASCII NUL terminated character string which defines the name of the
entrypoint within the dynamic library. On systems where the case of function names in
dynamic libraries is relevant, this nammust be specified in the same case as the
function name within the dynamic library.

The areas pointed to by all parameters are copied to a private area in the interface, so the programmer
may de-allocate or reuse the area used for these parameters after the call has returned.

The RexxRegisterFunctionDII() returns arunsigned long, which carries status information
describing the outcome of the operation. The status will be one &tXtdJNC values:

[ RXFUNC_OK]
The handler was successfully registered.
[RXFUNC_DUP]
The handler was successfully registered. There already existed another external function
handler which was registered witexxRegisterFunctionDII(), but this will be
shadowed by the newly registered handler.
[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

49.4The RexxDeregisterFunction() function

This function is used to remove a particular external function handler from the list of registered external
function handlers. The prototype of the function is:

APIRET APIENTRY RexxDeregisterFunction(
PSZ FuncName

);

The parameter is an input value:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name &EKX interpreter uses
with a function call or via th€ALL command.

The list of defined function handlers is searched, and if an environment matching the one named by the



parameter are found, it is deleted. This call is used to de-register function handlers registered with
eitherRexxRegisterFunctionExe() or RexxRegisterFunctionDII().

The returned value frolRexxDeregisterFunction() can be one of:

[RXFUNC_OK]

The handler was successfully deleted.
[RXFUNC_NOTREG]

The handler was not found.

Most systems that do have dynamic linking have no method for reclaiming the space used by
dynamically linked routines. So, even if you were able to lodl,dhere are no guarantees that you
will be able to unload it.

49.5The RexxQueryFunction() function
This function retrieves the status of an external function handler. The prototype of the function is:

APIRET APIENTRY RexxQueryFunction(
PSZ FuncName

);

The significance of the parameters is:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the
external function to be registered. This is the same name &EKX interpreter uses
with a function call or via th&€ALL command.

The returned value frorRexxQueryFunction() can be one of:

[RXFUNC_OK]

The external function handler was found.
[RXFUNC_NOTREG]

The handler was not found.



50 Executing REXX Code

This sections describes tRexxStart() function, which allows the application to startup the interpreter
and make it interpret pieces BEXX code.

50.1The RexxStart() function

This function is used to invoke tHREXX interpreter in order to execute a pieceREXX code, which
may be located on disk, as a pre-tokenized macro, or as ASCII source code in memory.

APIRET APIENTRY RexxStart(
LONG ArgCount,
PRXSTRING ArgList,

PSZ ProgramName,
PRXSTRING Instore,
PSZ EnvName,

LONG CallType,
PRXSYSEXIT EXxits,
PUSHORT ReturnCode,
PRXSTRING Result

)E

Of these parameterReturnCode andResult are output-only, whilénstore is both input and output.
The rest of the parameters are input-only. The significance of the parameters are:

[ArgCount]
The number of parameter strings given to the procedure. This is the number of defined
REXX-strings pointed to by thArgList parameter.
[ArgList]
Pointer to an array dREXX-strings, constituting the parameters to this caREXX.
The size of this array is given by the paramétegCount. If ArgCount is greater than
one, the first and last parameters ArgList[0] andArgList[ArgCount-1]. If ArgCount
Is 0, the value ofArgList is irrelevant.

If the strptr of one of the elements in the array pointed toAvgList is NULL, that
means that this parameter is empty (i.e. unspecified, as opposed to a string of zero size).
[ProgName]
An ASCII NUL terminated string, specifying the name of REXX script to be
executed. The value dfstore will determine whether this value is interpreted as the
name of a (on-disk) script, or a pre-tokenized macro. If it refers to a filename, the syntax
of the contents of this parameter depends on the operating system.
[Instore]
Parameter used for storing tokeniZREXX scripts. This parameter might either be
NULL, else it will be a pointer to tw&& XSTRING structures, the first holding the
ASCII version of &REXX program, the other holding the tokenized version of that
program. See below for more information about how tolaséore.
[EnvName]
Pointer to ASCII NUL terminated string naming the environment which is to be the
initial current environment when the script is started. If this parameter is didflid
the filetype is used as the initial environment name. What the filetype is, may depend on



your operating system, but in general it is everything after the last period '." in the
filename.

[CallType]
A value describing whether tHREXX interpreter is to be invoked in command,
function or subroutine mode. Actually, this has little significance. The main difference is
that in command mode, only one parameter string can be passed, and in function mode,
a value must be returned. In addition, the mode chosen will affect the output of the
PARSE SOURCE instruction inREXX.

Three symbolic values of integral type are defined, which can be used for this parameter:
RXCOMMAND, RXFUNCTION andRXSUBROUTINE.
A value of RXRESTRICTED can be OR'ed with one of the above types to specify that
Regina will run in restrictedmode. This is particularly useful whd&tegina is used as
an embedded intepreter in applications such as a database procedural language.

[SysExists]
A pointer to an array of exit handlers to be used. If no exit handlers are to be defined,
NULL may be specified. Each element in the array defines one exit handler, and the
element immediately following the last definition must haweysexit_code set to
RXENDLST.

[ReturnCode]
Pointer to &SSHORT integer where the return code is stored, provided that the returned
value is numeric, and within the range -(2**15) to 2**15-1. | don't know what happens
to ReturnCode if either of these conditions is not satisfied. It probably becomes
undefined, which means that it is totally useless since the program has to inspect the
return string in order to determine whethgturnCode is valid.

[Result]
Points to eREXX string into which the result string is written. The caller may or may
not let thestrptr field be supplied. If supplied (i.e. it is non-NULL), that area will be
used, else a new area will be allocated. If the supplied area is used, its size is supposed
to be given by thatrlength field. If the size if not sufficient, a new area will be
allocated, by some system dependent channehfa#toc()), and the caller must see to
that it is properly de-allocated (usirfgee()).

Note that theArgCount parameter need not be the same as\iR&() built-in function would return.
Differences will occur if the last entries ArgList arenull strings

Thelnstore parameter needs some special attention. It is used to directly or indirectly specify where to
fetch the code to execute. The followiafgorithmis used to determine what to execute:

If Instore is NULL, thenProgName names the filename of an on-diREEXX script which it
to be read and executed.

Else, ifInstore is notNULL, the script is somewhere in memory, and no reading from disk is
performed. If bothrstore[0].strptr andinstore[1].strptr areNULL, then the script to execute
is a pre-loaded macro which must have been loaded with a call to BigxetAddMacro() or
RexxLoadMacroSpace(); andProgName is the name of the macro to execute.

Else, ifiInstore[1].strptr is nonNULL, thenlnstore[1] contains the pre-tokenized image of a
REXX script, and it is used for the execution.



Else, if Instore[0].strptr is nonNULL, thenInstore[0]} contains the ASCIl image of REXX

script, just as if the script had been read directly from the disk (i.e. including linefeeds and
such). This image is passed to the interpreter, which tokenizes it, and stores the tokenized script
in the Instore[1] string, and then proceeds to execute that script. Upon returingtwre[1]

will be set, and can later be used to re-execute the script within the same process, without the
overhead of tokenizing.

The user is responsible for de-allocating any storage usatstyre[1]. Note that after
tokenizing, the source code linstore[0] is strictly speaking not needed anymore. It will only be
consulted if the user calls tfROURCELINE() built-in function. It is not an error to use
SOURCELINE() if the source is not present, but nullstrings and zero will be returned.

Regina does not currently return any tokenized data in Instore[1] that can be used in a later call

to RexxStart, outside of the current process. What Regina returns in Instore[1], is an index into

an in-memory tokenized version of the source code. Once the process that parsed the source has
stopped, the tokenized code is lost.

The valid return values froRexxStart() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can expect
the error value to have the same absolute value aRE¥X syntax error (but opposite
signs, of course).

[Zero]
indicates that the interpreter finished executing the script without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute the
script, e.g. a bad parameter value. However, | can't find any references in the
documentation which states which values it is supposed to return.

During the course of an execution &exxStart(), subcommand handlers and exit handlers might be
called. These may call any function in the application interface, including another invocation of
RexxStart().

Often, the application programmer is interested in providing support simplifying the specification of
filenames, like an environment variable search path or a default file typdREKX interface does

support a default file type:CMD, but the user may not set this to anything else. Therefore, it is
generally up to the application programmer to handle search paths, and also default file types (unless
.CMD is OK).

If the initial environment namedvnName) is NULL, then the initial environment during interpretation
will be set equal to the file type of the script to execute. If the script does not have a file
type, it is probably set to some interpreter specific value.



51 Variable Pool Interface

This section describes the variable pool part of the application interface, which allows the application
programmer to set, retrieve and drop variables irREXX interpreter from the application program. It
also allows access to other information.

The C preprocessor symbdICL_RXSHV must be defined if the definitions for the variable pool
interface are to be made available whexixsaa.h is included.

51.1Symbolic or Direct

First, let us define two termsymbolicvariable name andirectvariable name, which are used in
connection with the variable pool.

A symbolic variable name is the name of a variable, but it needs normalization and tail substitution
before it names the real variable. The ndowbar is a symbolic variable name, and it is transformed
by normalization, t&-OO.BAR, and then by tail substitution 00.42 (assuming that the current
value of BAR is 42).

Normalization is the process of uppercasing all characters in the symbolic name; and tail substitution is
the process of substituting each distinct simple symbol in the tail for its value.

On the other hand, a direct variable refers directly to the name of the variable. In a sense, itis a
symbolic variable that has already been normalized and tail substituted. For ingtarizay, is not a

valid direct variable name, since lower case letters are not allowed in the variable stem. The direct
variableFOO.42 is the same as the variable above. For simple variables, the only difference between
direct and symbolic variable names is that lower case letters are allowed in symbolic names

Note that the two direct variable namie®0.bar andFOO.BAR refer to different variables, since

upper and lower case letters differ in the tail. In fact, the tail of a compound direct variable may contain
any character, including ASCII NUL. The stem part of a variable, and all simple variables can not
contain any lower case letters.

As a remark, what would the direct varialll®O. refer to: the stenkOO. or the compound variable
having stenOO. and a nullstring as tail? Well, | suppose the former, since it is the more useful. Thus,
the latter is inaccessible as a direct variable.

51.2The SHVBLOCK structure

All requests to manipulate tHREXX variable pool are controlled by a structure which is called
SHVBLOCK, having the definition:

typedef struct shvnode {
struct shvnode *shvnext; /* ptr to nextin blk in chain */
RXSTRING shvname ; [* name of variable */
RXSTRING shvvalue ; [* value of variable */
ULONG shvnamelen ; /*length of shvname.strptr */
ULONG shvvaluelen ; /* length of shvvalue.strptr */
UCHAR shvcode ;  /* operation code */
UCHAR shvret;  /*return code */

} SHVBLOCK ;



typedef SHVBLOCK *PSHVBLOCK ;

The fieldsshvnext andshvcode are purely input, whilshvret is purely output. The rest of the fields
might be input or output, depending on the requested operation, and the value of the fields. The
significance of each field is:

[shvnext]
One call toRexxVariablePool() may sequentially process many requests.shvmext
field links one request to the next in line. The last request must hawhgeext to
NULL. The requests are handled individually and thus, calegxVariablePool()
with several requests is equivalent to making one cdRdrxVariablePool() for each
request.

[shvname]
Contains the name of the variable to operate on, RX&TRING. This field is only
relevant for some requests, and its use may differ.

[shvvalue]
Contains the value of the variable to operate on BX&TRING. Like shvname, this
might not be relevant for all types of requests.

[shvhamelen]
The length of the array thahvname.strptr points to. This field holds the maximum
possible number of characters #gmvname.strptr. While shvname.strlength holds the
number of characters that are actually in use (i.e. defined).

[shvvaluelen]
The length of the array thahvvalue.strptr points to. Relates tehvvalue, like
shvnamelen relates tashvnhame.

[shvcode]
The code of operation; decides what type of request to perform. A list of all the available
requests is given below.

[shvret]
A return code describing the outcome of the request. This code is a bit special. The
lower seven bits are flags which are set depending on whether some condition is met or
not. Values above 127 are not used in this field.

There is a difference betweshvnamelen and shvname.strlength. The former is the total length of
the array of characters pointed todgiywname.strptr (if set). While the latter is the number of these
characters that are actually in use. Whe&H/BLOCK is used to return data from
RexxVariablePool(), and a pre-allocated string space has been supplied, both these will be used;
shvname.strlength will be set to the length of the data returned, wisilwnamelen is never changed,
only read to find the maximum number of characters shahame can hold.

Even thouglshvnamelen is not really needed wheshvname is used for input, it is wise to set it to

its proper value (or at least set it to the samslasiame.strlength). The same applies fahvvalue
andshvvaluelen.

The fieldshvcode can take one of the following symbolic values:

[RXSHV_DROPV]
The variable named by the direct variable nahename is dropped (i.e. becomes



undefined). The fieldshvvalue andshvvaluelen do not matter.
[RXSHV_EXIT]
This is used to set the return value for an external function or exit handler.
[RXSHV_FETCH]
The value of the variable named by the direct variable netmaame is retrieved and
stored inshvvalue. If shvvalue.strptr is NULL, the interpreter will allocate sufficient
space to store the value (but it is the responsibility of the application programmer to
release that space). Else, the value will be stored in the area allocastn¥atue, and
shvvaluelen is taken to be the maximum size of that area.
[RXSHV_NEXTV]
This code is used to retrieve the names and values of all variables at the current
procedure level; i.e. excluding variables shadowe®@R{OCEDURE. The name and
value of each variable are retrieved
simultaneously intehvname and shvvalue, respectively.
Successive requests flRXSHV_NEXTV will traverse the interpreter's internal data
structure for storing variables, and return a new pair of variable name and value for each
request. Each variable that is visible in the current scope, is returned once and only once,
but the order is non-deterministic.
When all available variables in tHREXX interpreter have already been retrieved,
subseque®RXSHV_NEXTV requests will set the flaBXSHV_LVAR in theshvret
field. There are a few restrictions. The traversal will be reset whenever the interpreter
resumes execution, so an incomplete traversal can not be continued in a later external
function, exit handler, or subcommand handler. Also, any set, fetch or drop operation
will reset the traversal. These restrictions have been added to ensure that the variable
pool is static throughout one traversal.
[RXSHV_PRIV]
Retrieves some piece of information from the interpreter, other than a variable value,
based on the value of tteavname field. The value is stored ishvvalue as for a
normalfetch. A list of possible names is shown below.
[RXSHV_SET]
The variable named by the direct variable nahename is set to the value given by
shvvalue.
[RXSHV_SYFET]
Like RXSHV_FETCH, except thashvname is a symbolic variable name.
[RXSHV_SYDRO]
Like RXSHV_DROPV, except thashvname is a symbolic variable name.
[RXSHV_SYSET]
Like RXSHV_SET, except thatshvname is a symbolic variable name.

One type of request that needs some special attention RXB&V_PRIV, which retrieves a kind of
meta-variable Depending on the value cfhvhame, it returns a value ishvvalue describing some
aspect of the interpreter. FRXSHV_PRIV the possible values foshvname are:

[PARM]
Returns the ASCII representation of the number of parameters to the currently active
REXX procedure. This may not be the same value as the built-in fun&RG ()
returns, but is the numbeirgCount in RexxStart(). The two might differ if a routine
was called with trailing omitted parameters.

[PARM.N]



The n must be a positive integer; and the value returned will bentteparameter at the
current procedure level. This is not completely equivalent to the information that the
built-in functionARG() returns. For parameters whefdRG() would return the state
omitted, the returned value isnall string, while for parameters whe®RG() would
return the statexisting the return value will be the parameter string (which may be a
zero length string

[QUENAME]
The name of the currently active external data queue. This feature has not yet been
implemented irRegina, which always returdefault

[SOURCE]
Returns the same string that is used inPWRSE SOURCE clause inREXX, at the
current procedure level of interpretation.

[VERSION]
Returns the same string that is used iInRWRSE VERSION clause inRREXX.

The value returned by a variable pool request is a bit uncommon. A return value is computed for each
request, and stored in tis@vret field. This is a one-byte field, of which the most significant bit is

never set. A symbolic valulBXSHV_OK is defined as the value zero, and #gterret field will be

equal to this name if none if the flags listed below is set. The symbolic value for these flags are:

[RXSHV_BADF]
Theshvcode of this request contained a bad function code.

[RXSHV_BADN]
Theshvname field contained a string that is not valid in this context. What exactly is a
valid value depends on whether the operation is a private, a symbolic variable, or direct
variable operation.

[RXSHV_LVAR]
Set if and only if the request w&XSHV_NETXV, and all available variables have
already been retrieved by earlier requests.

[RXSHV_MEMFL]
There was not enough memory to complete this request.

[RXSHV_NEWV]
Set if and only if the referenced variable did not previously have a value. It can be
returned for any set, fetch or drop operation.

[RXSHV_TRUNC]
Set if the retrieved value was truncated when it was copied into eithehthiame or
shvvalue fields. See below.

These flags are directly suitable for logical OR, without shifting, e.g. to check for truncation and no
variables left, you can do something like:

if (reg->shvret & (RXSHV_TRUNC | RXSHV_LVAR))
printf("Truncation or no vars left\n") ;

RXSHV_TRUNC can only occur when the interface is storing a retrieved value&SiH\ABLOCK, and
the pre-allocated space is present, but not sufficiently large. As describRd &MV _FETCH, the
interpreter will allocate enough spaceskfvvalue.strptr is NULL, and therRXSHV_TRUNC will
never be set. Else the space suppliedshyvalue.strptr is used, andshvvaluelen is taken as the
maximum length oshvvalue, and truncation will occur if the supplied space is too small.



Some implementations will consid8HV_MEMFL to be so severe as to skip the rest of the operations
in a chain of requests. In order to write compatible software, you should never assume that requests
following in a chain after a request that returr&ddV_MEMFL have been performed.

RXSHV_BADN is returned if the supplieshvname contains a value that is not legal in this context.

For the symbolic set, fetch and drop operations, that means a symbol that is a legal variable name; both
upper and lower case letters are allowed. For the direct set, fetch and drop operations, that means a
variable name after normalization and tail substitution is not a legal variable nameXB6f\R PRIV,

it must be one of the values listed above.

There is a small subtlety in the above description. TRL states that WR&XX assignment assigns a

value to a stem variable, all possible variables having that stem are assigned a new value (independent
of whether they had an explicit value before). So, strictly speaking, if a stem is set, then a
RXSHV_NETV sequence should return an (almost) infinite sequence of compound variables for that
stem. Of course, that is completely useless, so you can assume that only compound variables of that
stem given an explicit value after the stem was assigned a value will be returR¢ShW _NEXTV.
However, because of that subtlety, the variables return&XS8HV_NEXTV for compound variables

might not be representative for the state of the variables.

e.g. what would a sequenceRKSHV_NEXT requests return after the followirREXX code ?:
foo. ='bar’
drop foo.bar

The second statement here, might not change the returned values! After the first statement, only the
stem foo. would probably have been returned, and so also if all variables were fetched after the second
statement.

51.3Regina Notes for the Variable Pool

Due to the subtleties described at the end of the previous subsection, some notesReyihav
handleRXSHV_NEXTYV requests for compound variables are in order. The following rules applies:

* Both the stem variablEOO. and the compound variable havifgDO. as stem and a nullstring as
tail, are returned with the name &fOO.. In this situation, a sequence 8&XSHV_NEXTV
requests may seem to return values for the same variable twice. This is unfortunate, but it seems to
be the only way. In any case, you'll have to performRN¥SHYV_SYFET in order to determine
which is which.

» If a stem variable has not been assigned a value, its compound variables are only returned if they
have been assigned an explicit value. i.e. compound variables for that stem that have either never
been assigned a value, or have been dropped, will not be reported by RXSHV_NEXTV. There is
nothing strange about this.

» If a stem variable has been assigned a value, then its compound variables will be reported in two
cases: Firstly, the compound variables having explicitly been assigned a value afterwards.
Secondly, the compound variables which have been dropped afterwards, which are reported to have
their initial value, and the flaB@XSHV_NEWV is set inshvret.

It may sound a bit stupid that unset variables are listed when the request is to list all variables which
have been set, but that is about the best | can do, if | am to stay within the standard definition and return
a complete and exact status of the variable pool.



If the return code fronRexxVariablePool() is less than 128egina is guaranteed to have tried to
process all requests in the chain. If the return code is above 127, some requests may not have been
processed. Actually, the number 127 (or 128) is a bit inconvenient, since it will be an problem for later
expansion of the standard. A much better approach would be to have a preprocessor symbol (say,
RXSHV_FATAL, and if the return code from tHeexxVariablePool() function was larger than that, it
would be adirecterror code, and not@ompositeerror code built from thehvret fields of the

requests. Th&XSHV_FATAL would then have to be the addition of all the atomic composite error
codes.

(Warning: author mounting the soapbox.)
Theright way to fix this, is to let the function RexxVariablePool() setanotherflag in shvret
(e.g. namedRXSHV_STEM) during RXSHV_NEXTV if andonly if the valuereturnedis a
stemvariable. That way, the applicationprogrammerwould be able to differ betweenstem
variables and compound variable with a null string tail.

To handlethe other problemwith compoundvariablesand RXSHV_NEXTV, | would have

liked to returna null string in shvvalue if andonly if the variableis a compoundvariable

having its initial value, and the stem of that compound variable has been assigned a value. Then,
the value of the compound variable is equal to its name, and is availableshithame field.

I'd alsolike to seethatthe shvret value containedotherinformationconcerninghe variables,
e.g.whetherthe variablewas exposedat the currentprocedurdevel. Of course,Regina does
not contain any of these extra, non-standard features.

(Author is dismounting the soapbox.)

WhenRegina is returning variables witRXSHV_NEXTV, the variables are returned in the order in
which they occur in the open hashtable in the interpreter. i.e. the order in which variables belonging to
different bins are returned is consistent, but the order in which variables hashed to the same bin are
returned, is non-deterministic. Note that all compound variables belonging to the same stem are
returned in one sequence.

51.4The RexxVariablePool() function

This function is used to process a sequence of variable requests, and process them sequentially. The
prototype of this function is:

APIRET APIENTRY ULONG RexxVariablePool(
SHVBLOCK *Request

);

Its only parameter is a pointer t&&d&dVBLOCK structure, which may be the first of the linked list. The
function performs the operation specified in each block. If an error should occur, the current request is
terminated, and the function moves on to the next request in the chain.

The result value is a bit peculiar. If the returned value is less than 128, it is calculated by logically

OR'ing the returnedhvret field of all the requests in the chain. That way, you can easily check whether
any of the requests was e.g. skipped because of lack of memory. To determine which request, you have
to iterate through the list.



If the result value is higher than 127, it signifies an error. If any of these values are set, you can not
assume that any of the requests have been processed. The following symbolic name gives its meaning.

[RXSHV_NOAVL]
Means that the interface is not available for this request. This might occur if the

interface was not able to start the interpreter, or if an operation requested a variable
when the interpreter is not currently executing any script (i.e. idle and waiting for a

script to execute).



52 The System Exit Handler Interface

The exit handlers provide a mechanism for governing important aspectsREXX¥ interpreter from
the application: It can trap situations like the interpreter writing out text, and then handle them itself,
e.g. by displaying the text in a special window. You can regard system exits as a bodhaf

52.1The System Exit Handler

Just like the subcommand handler, the system exit handler is a routine supplied by the application, and
is called by the interpreter when certain situations occur. These situations are described in detail later.
For the examples below, we will use the output frBAY as an example.

If a system exit handler is enabled for tBAY instruction, it will be called with a parameter describing
the text that is to be written out. The system exit handler can choose to handle the situation (e.g. by
writing the text itself), or it can ignore it and let the interpreter perform the output. The return code
from the system exit tells the interpreter whether a system exit handled the situation or not.

A system exit handler must be a routine defined according to the prototype:

LONG APIENTRY my_exit_handler(
LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBlock

);

In this prototype, the typBEXIT is a pointer to a parameter block containing all the parameters
necessary to handle the situation. The actual definition of this parameter block will vary, and is
described in detail in the list of each system exit.

The exits are defined in a two-level hierarchy. EhetNumber defines the main function for a system
exit, while theSubfunction defines the subfunction within that main function. e.g.3dtY, the main
function will beRXSIO (the system exit for standard 1/0) and the subfunction wilRBESIOSAY.

The RXSIO main function has other sub-functions for handling trace output, interactive trace input,
andPULL input from standard input.

The value returned from the system exit handler must be one of the following symbolic values:

[RXEXIT_HANDLED]
Signals that the system exit handler took care of the situation, and that the interpreter
should not proceed to do the default action. For 8&Y instruction, this means that
the interpreter will not print out anything.

[RXEXIT_NOT_HANDLED]
Signals that the system exit handler did not take care of the situation, and the interpreter
will proceed to perform the default action. For tBAY instruction, this means that it
must print out the argument ®AY.

[RXEXIT_RAISE_ERROR]
Signals that the interpreter's default action for this situation should not be performed, but
instead &8YNTAX condition should be raised. Don't get confused by the name, it is not
theERROR condition, but thesYNTAX condition is raised, using the syntax error
Failure in system servicgnormally numbered 48).



In addition to returning information as the numeric return value, information may also be returned by
setting variables in the parameter block. For instance, if the system exit is to handle interactive trace
input, that is how it will supply the interpreter with the input string.

It is a good and disciplined practice to let your exit handlers start by verifyingxitumber and
Subfunction codes, and immediately retuRXEXIT_NOT_HANDLED if it does not recognize both

of them. That way, your application will be upwards compatible with future interpreters which might
have more sub-functions for any given main function.

52.2List of System Exit Handlers

52.2.1RXFNC - The External Function Exit Handler

The RXFNC system exit handler provides hooks for external functions. It has only one subfunction;
RXFNCCAL, which allows an application program to intervene and handle any external function or
subroutine.

Do not confuse this exit handler with the external function routines which allow you to define new
REXX, semi-built-in functions. The exit handler is called for all invocations of external routines, and
can be called for function names which you were unaware of.

The parametdParmBlock for RXFNCCAL is defined as:

typedef struct {
typedef struct {
unsigned int rxfferr:1 ;
unsigned int rxffnfndl ;
unsigned int rxffsub: 1;
} rxfnc_flags ;
unsigned char *rxfnc_address ;
unsigned short rxfnc_addressl ;
unsigned char *rxfnc_que ;
unsigned short rxfnc_quel ;
unsigned short rxfnc_argc;
RXSTRING *rxfnc_argv ;
RXSTRING rxfnc_retc;
} RXENCCAL_PARM ;

The significance of each variable is:

[rxfnc_flags.rxfferr]
Is an output parameter that is set on return in order to inform the interpreter that the
function or subroutine was incorrectly called, and thusSM& TAX condition should
be raised.

[rxfnc_flags.rxffnfnd]
Is an output parameter that tells the interpreter that the function was not found. Note the
inconsistency: it is only effective if tthe exit handler retuRSEXIT_HANDLED,
which looks like a logic contradiction to setting the not-found flag.

[rxfnc_flags.rxffsub]
Is an input parameter that tells the exit handler whether it was called for a function or
subroutine call. If set, the call being handled is a subroutine call and returning a value is
optional; else it was called for a function, and must return a valuefint_retc if



RXEXIT_HANDLED is to be returned.
[rxfnc_name]
Is a pointer to the name of the function or subroutine to be handled, stored as a character
array. This is an input parameter, and its length is given byxtine_namel parameter.
[rxfnc_namel]
Holds the length ofxfnc_name. Note that the last character is the le##y not the
number one.
[rxfnc_que]
Points to a character array holding the name of the currently active queue. This is an
input parameter. The length of this name is given byrkfiec_quel field.
[rxfnc_quel]
Holds the length ofxfnc_que. Note that the last character is the letdy not the
number one.
[rxfnc_argc]
Is the number of arguments passed to the function or subroutine. It defines the size of
the array pointed to by thefnc_argv field.
[rxfnc_argv]
Points to an array holding the parameters for the routines. The size of this array is given
by therxfnc_argc field. If rxfnc_argc is zero, the value afxfnc_argv is undefined.
[rxfnc_retc]
Holds anRXSTRING structure suitable for storing the return value of the handler. It is
the responsibility of ht ehandler to allocate space for the contents of this string (i.e. the
array pointed to by thxfnc_retc.strptr).

52.2.2RXCMD - The Subcommand Exit Handler

The main function code for this exit handler is given by the symbolic rRX@MD. It is called
whenever the interpreter is about to call a subcommand, i.e. a command to an external environment. It
has only one subfunctioRXCMDHST.

TheParmBlock parameter for this subfunction has the following definition:

typedef struct {
typedef struct {
unsigned int rxfcfail:1 ;
unsigned int rxfcerr:1 ;
} rxemd_flags ;
unsigned char *rxemd_address ;
unsigned short rxcemd_addressl ;
unsigned char *rxcmd_dll ;
unsigned short rxcemd_dll_len ;
RXSTRING rxcmd_command ;
RXSTRING rxcmd_retc ;
} RXCMDHST_PARM ;

The significance of each variable is:
[rxemd_flags.rxfcfail]
If this flag is set, the interpreter will raiseFRAILURE condition at the return of the exit
handler.
[rxemd_flags.rxfcerr]



Like the previous, but the ERROR condition is raised instead.
[rxemd_address]
Points to a character array containing the name of the environment to which the
command normally would be sent.
[rxemd_addressl]
Holds the length ofxcmd_address. Note that the last character is the le##y not the
number one.
[rxemd_dll]
Defines the name for the DLL which is to handle the command. I'm not sure what this
entry is used for. It is not currently in use Regina.
[rxemd_dll_len]
Holds the length ofxcmd_dll. If this length is set to zero, the subcommand handler for
this environment is not a DLL, but an EXE handler.
[rxemd_command]
Holds the command string to be executed, including command name and parameters.
[rxcmd_retc]
Set by the exit handler to the string which is to be considered the return code from the
command. It is assigned to the special vari&®at return from the exit handler. The
user is responsible for allocating space for this variable. | have no clear idea what
happens itxcmd_retc.strptr is setto  NULL; it might seRC to zero, to the null
string, or even drop it.

It seems that this exit handler is capable of raising botiERROR and the FAILURE conditions
simultaneously. | don't know whether that is legal, or whether onlf¥&leURE condition is raised,
since theERROR condition is a sort ofsubsetof FAILURE.

Note that the return fields of the parameter block are only relevant if the R{&XIT_HANDLED
was returned. This applies to themd_flags and rxcmd_retc fields of the structure.

52.2.3RXMSQ - The External Data Queue Exit Handler

The external data queue exit handler is used as a hook for operations manipulating the external data
queue (or the stack). Unfortunately, the stack is a borderline case of what is relevarREXKESAA

API. Operations like putting something on, retrieving a string from, obtaining the size, etc. of the stack
is not part of theSAA API.

However, some of this functionality is seemingly here; but not all. For instance f&XMSQPLL
subfunction SAA API is called by the interpreter before the interpreter calls whatever system-specific
call is available for retrieving a string from the stack.

Thus theSAA API can be used by an application to provide the interpreter with a fake stack, but it is
not a suitable means for the application itself to manipulateghkstack.

TheRXMSG exit has four subfunctions:

[RXMSQPLL]
This is called before a line is retrieved from the stack and the application may itself
provide the interpreter with an alternative line. On entry, the third parameter points to a
structure having the following definition:

typedef struct {
RXSTRING rxmsq_retc;
} RXMSQPLL_PARM,;



Therxmsq_retc field holds the string to be retrieved from the stack. Note that it is an
output parameter, so its value on entry is undefined.

[RXMSQPSH]
This is called before the interpreter puts a line on the stack, and it may grab the line
itself, and thus prevent the interpreter from putting the line on the stack. Note that this
exit handles both pushing and queuing. The third parameter is:

typedef struct {
struct {
unsigned rxfmlifo: 1;
} rxmsq_flags;
RXSTRING rxmsq_value;
} RXMSQPSH_PARM:;

Here the field’xmsq_value holds the string to be put on the stack. Whether the string
is to be pushed or queued is determined by the boolean rwahsy_flags.rxmilfifo,
which isTRUE if the string is to be pushed.
All values are input values. What happens if you change them is not definedS$A\the
API. Some implementations may let you modify the contentsmisqg_value and
returnRXEXIT_NOT_HANDLED and the string push by the interpreter contains the
modified string. However, you should not rely on this since it is highly incompatible.
You may not de-allocatexmsq_value.

[RXMSQSIZ]
this is called before the interpreter tries to determine the size of the stack, and it may
present an alternative size to the interpreter. The third parameter is:

typedef struct {
ULONG rxmsq_size;
} RXMSQSIZ_PARM;

The fieldrxmsqg_size can be set to the number the application wantsgh&UED()
function to return. Note that this parameter is undefined on entry, so it cannot be used to
retrieve the number of lines on the stack.

[RXSQNAM]
This is called before the interpreter tries to retrieve the name of the current stack, and it
may present the interpreter with an alternative name. Note that this functionality is part
of SAA but notTRL; it supports theset option of theRXQUEUE() built-in function.
Note that there are no other exits supporting the other optioRXQFUEUE(). The
third parameter for this exit is:

typedef struct {
RXSTRING rxmsq_name,
} RXMSQNAM_PARM;

As with RXSQMSIZ, the fieldrxmsg_name can be set to the name which the

application wants to return to the interpreter as the name of the current stack. Note that
this is an output-only parameter; its value on input is undefined, and in particular is not
the name of the real stack.



Note that this area is troublesome. TIRL, external data queues are not defined as part of the language,
while in SAA itis. Thus, TRL-compliant interpreters are likely to implement stacks in various ways
that may not be compatible with ti8AA.

52.2.4RXSIO - The Standard I/O Exit Handler

The main code for this exit handler has the symbolic v&IX&IO. There are four sub-functions:

[RXSIODTR]
Called whenever the interpreter needs to read a line from the user during interactive
tracing. Note the difference between this subfunction RXEIOTRD.

[RXSIOSAY]
Called whenever the interpreter tries to write something to standard outpuAya
instruction, even &AY instruction without a parameter.

[RXSIOTRC]
Called whenever the interpreter tries to write out debugging information, e.g. during
tracing, as a trace back, or as a syntax error message.

[RXSIOTRD]
Called whenever the interpreter need to read from the standard input stream during a
PULL or PARSE PULL instruction. Note that it will not be called if there is sufficient
data on the stack to satisfy the operation.

Note that these function are only called for the exact situations that are listed above. e.g. the
RXSIOSAY is not called during a call to theEXX built-in functionLINEOUT () that writes to the
default output streanT.RL says thaBAY is identical to calling.INEOUT() for the standard output
stream, but SAA API still manages to see the difference between stem variables and compound
variables with a Zero-length-strinftail. Please bear with this inconsistency.

Depending on the subfunction, tRarmBlock parameter will have four only slightly different
definitions. It is kind of frustrating that thearmBlock takes so many different datatypes, but it can
be handled easily usingnions, see a later section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc ; /* the interactive trace input */
} RXSIODTR_PARM;

typedef struct {
RXSTRING rxsio_string ; /* the SAY line to write out */
} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the debug line to write out */
} RXSIOTRC_PARM ;

typedef struct {
RXSTRING rxsiotrd_retc ; /* the line to read in */
} RXSIOTRD_PARM;

In all of these, th&XSTRING structure either holds the value to be written out @XSIOSAY and
RXSIOTRC), or the value to be used instead of reading standard input streaRX®IOTRD and



RXSIODTR). Note that the values set IRXSIOTRD andRXSIODTR are ignored if the exit handler
does not return the vallRXEXIT_HANDLED.

Any end-of-line marker are stripped off the strings in this context. If the exit handler writes out the
string duringRXSIOSAY or RXSIOTRC, it must supply any end-of-line action itself. Similarly, the
interpreter does not expect a end-of-line marker in the data returnedXStODTR and

RXSIOTRD.

The space used to store the return data foRKSIODTR andRXSIOTRD sub-functions, must be

provided by the exit handler itself, and the space is not de-allocated by the interpreter. The space can be
reused by the application at any later time. The space allocated to hold the data given by the
RXSIOSAY andRXSIOTRC sub-functions, will be allocated by the interpreter, and must neither be
de-allocated by the exit handler, nor used after the exit handler has terminated.

52.2.5RXHLT - The Halt Condition Exit Handler

Note: Because thRXHLT exit handler is called after eveBEXX instruction, enabling this exit slows
REXX program execution.

The main code for this exit handler has the symbolic v&X&ILT. There are two sub-functions:
[RXHLTTST]
Called whenever the interpreter polls externally raiddd. T conditions; ie after every
REXX instruction.

The definition of theParmBlock is:

typedef struct {
unsigned rxfhhlt: 1 ;
} RXHLTTST_PARM;

Therxfhhlt parameter is set to the state of tHALT condition in the interpreter; either
TRUE or FALSE.

[RXHLTCLR]

Called to acknowledge processing of the HALT condition when the interpreter has
recognized and raised a HALT condition.

52.2.6RXTRC - The Trace Status Exit Handler
52.2.6.1.1RXINI - The Initialization Exit Handler

RXTER and this exit handler are a bit different from the oth&XINI provides the application

programmer with a method of getting control before the execution of the script starts. Its main purpose
is to enable manipulation of the variable pool in order to set up certain variables before the script starts,
or set the trace mode.

It has only one subfunctioRXINIEXT, called once during each call RexxStart(): just before the
first REXX statement is interpreted. Variable manipulations performed during this exit will have effect
when the script starts.

As there is no information to be communicated during this exit, the valu@asiBlock is undefined.
It makes no difference whether you ret®RKEXIT_HANDLED or RXEXIT_NOT_HANDLED, since
there is no situation to handle.



52.2.7RXTER - The Termination Exit Handler

This exit resembleRXINI. Its sole subfunction IRXTEREXT, which is called once, just after the last
statement of th®EXX script has been interpreted. The state of all variables are intact during this call;
so it can be used to retrieve the values of the variables at the exit of a script. (In fact, that is the whole
purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exiPa@mBlock is undefined
in this call. And also likeRXINI, it is more of a hook than an exit handler, so it does not matter whether
you returnRXEXIT_HANDLED or RXEXIT_NOT_HANDLED.

52.2.8RXENYV - The External Environment Exit Handler

The main code for this exit handler has the symbolic vRIX&NV. There are two sub-functions:

[RXGETENV]
Called whenever the BIF; Value() is called to obtain a value from the external
environment. i.e. the call to Value() is of the form: Value( "VARNAME", ,
'ENVIRONMENT").

[RXSETENV]
Called whenever the BIF; Value() is called to set a value in the external environment.
I.e the call to Value() is of the form: Value( "VARNAME", newvalue,
'ENVIRONMENT").

TheParmBlock parameter has the following definitions for each sub-function type:

typedef struct {
RXSTRING rxenv_name ; /* the name of the external environment variable */
RXSTRING rxenv_value ; /* the returned value of the external environment
variable */
} RXGETENV_PARM;

typedef struct {
RXSTRING rxenv_name ; /* the name of the external environment variable */
RXSTRING rxenv_value ; /* the value of the external environment variable */
} RXSETENV_PARM ;

In both of these, th&RXSTRING; rxenv_name structure holds the name of the environment variable as
known by the external environment. Note that the values sSBAIOTRD andRXSIODTR are
ignored if the exit handler does not return the vaR¥EXIT _HANDLED.

The space used to store the return data foRK8IODTR andRXSIOTRD sub-functions, must be

provided by the exit handler itself, and the space is not de-allocated by the interpreter. The space can be
reused by the application at any later time. The space allocated to hold the data given by the
RXSIOSAY andRXSIOTRC sub-functions, will be allocated by the interpreter, and must neither be
de-allocated by the exit handler, nor used after the exit handler has terminated.



53 The External Queue Interface

The external queue interface provide a mechanism for interacting with the interpreter's external queues.
This interface is nalogous toRexx program's use of PUSH, QUEUE, PULL, and RXQUEUE(). Note

that this interface only works with the external queues, it cannot interface to the internal named queues
that exists within the interpreter.

53.1The RexxCreateQueue() function
This function is used to create a new, named, external queue.

The prototype foRexxCreateQueue() is:

APIRET APIENTRY RexxCreateQueue(
PSZ Buffer,
ULONG BuffLen,
PSZ RequestedName,
ULONG *DupFlag

);

The following parameters are input, and their significance are:

[RequestedName]
Points to an ASCII NUL terminated character string which specifies the name of the
queue to be created. S@eeue Namebor the structure of a queue name. If the user
wishes to have the interpreter create a unique queue name on the local queue server at
the default port number, then this value should be set to NULL. To request an
interpreter-generated queue name, on the madtadédistening on por6858 then
specify@fred:5858 le leave the queue name portion blank.

The following parameters are output, and their significance are:

[Buffer]
Points to an ASCII NUL terminated character string allocated by the user. The name of
the queue that is created will be copied into this area.

[BuffLen]
Specifies the size of the memory area pointed t&bifer.

[DupFlag]
Indicates if the queue name that was requested, already existed. If a queue name was
specifed, and the queue already existsed, DupFlag is set to RXQUEUE_DUP, otherwise
itis setto O.

The RexxCreateQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRX&QUEUE values:

[RXQUEUE_OK]

The queue was successfully created.
[RXQUEUE_NOEMEM]

The queue was not created, due to lack of memory.



53.2The RexxDeleteQueue() function
This function is used to delete a named, external queue.

The prototype foRexxDeleteQueue() is:

APIRET APIENTRY RexxDeleteQueue(
PSZ QueueName

);

The only parameters is an input, and its significance is:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the
queue to be deleted. S@erieue Namefor the structure of a queue name.

The RexxDeleteQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRX&QUEUE values:

[RXQUEUE_OK]

The queue was successfully deleted.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified.

53.3The RexxQueryQueue() function
This function is used to determine the number of items that are available on the named, external queue.

The prototype foRexxQueueQueue() is:

APIRET APIENTRY RexxQueryQueue(
PSZ QueueName,
ULONG *Count

);

One parameters is an input, and its significance is:
[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the
queue to be queried. S@rieue Namefor the structure of a queue name.

The following parameter is output, and its significance is:

[Count]
Points to an unsigned long which indicates the number of items on the specified queue.

The RexxQueryQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRX&QUEUE values:



[RXQUEUE_OK]
The queue was successfully queried, @adintcontains the number of items on the
queue.
[RXQUEUE_NOTREG]
The queue name specified does not exist.
[RXQUEUE_BADQNAME]
The queue name was not specified

53.4The RexxAddQueue() function
This function is used to determine add an item to a named, external queue.

The prototype foRexxAddQueue() is:

APIRET APIENTRY RexxAddQueue(
PSZ QueueName,
PRXSTRING EntryData,
ULONG AddFlag

);

All parameters are input, and their significance are:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the
gueue on which the data is to be added. Qaeue Name#or the structure of a queue
name.

[EntryData]
Points to a RXSTRING structure containing the data to be added to the queue.

[AddFlag]
Indicates how the data is to be added. Can be one of:
RXQUEUE_FIFO, to indicate that the data is to be added in a first-in-first-out order.
This is equivalent to the QUEUE keyword.
RXQUEUE_LIFO, to indicate that the data is to be added in a last-in-first-out order.
This is equivalent to the PUSH keyword.

The RexxAddQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRX&QUEUE values:

[RXQUEUE_OK]

The data was successfully added to the specified queue.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified

53.5The RexxPullQueue() function

This function is used to extract an item from the specified named, external queue. When successful, the
item from the queue is returned, and that item deleted from the queue.

The prototype foRexxPullQueue() is:



APIRET APIENTRY RexxPullQueue(
PSZ QueueName,
PRXSTRING DataBuf,
PDATETIME TimeStamp,
ULONG WaitFlag

);
The following parameters are input, and their significance are:

[QueueName]
Points to an ASCII NUL terminated character string which specifies the name of the
gueue from which the data is to be extracted. Qaeue Namefor the structure of a
queue name.

[WaitFlag]
Indicates if the process should wait until there is data in the specified queue before
returning. This could cause the process to block forever, if no data is due in the queue.
Regina does not support this option at this stage; RXQUEUE_NOWAIT is assumed
Value can be one of:
RXQUEUE_WAIT, the process is to block and wait for data if the queue is currently
empty.
RXQUEUE_NOWAIT, the process does not wait for data in the queue if it is currently
empty. RexxPullQueue() will return RXQUEUE_EMPTY if there is no data in the
queue.

The following parameters are output, and their significance are:

[DataBuf]
Points to a RXSTRING structure into which the contents of the extracted item are
placed. The memory associated with the RXSTRING strptr, should be deallocated using
RexxFreememory().

[TimeStamp]
Points to a PDATETIME structure, which on return, contains the time details of when
the item was added to the external queRegina does not support this option at this
stage.

The RexxPullQueue() returns arunsigned long, which carries status information describing the
outcome of the operation. The status will be one oRX&QUEUE values:

[RXQUEUE_OK]

The data was successfully added to the specified queue.
[RXQUEUE_NOTREG]

The queue name specified does not exist.
[RXQUEUE_BADQNAME]

The queue name was not specified
[RXQUEUE_EMPTY]

The queue was empty and RXQUEUE_NOWAIT was specified.
[RXQUEUE_BADWAITFLAG]

The value of th&VaitFlagparameter was not RXQUEUE_WAIT or



RXQUEUE_NOWAIT.



54 The Macro Space Interface

The macro space interface provide a mechanism for pre-loading extaxaprograms into the
current interpreter's macro space, so that the macros can be executed faster than reading them from disk
each time they are called. This interface is not availabRegina at this stage.

54.1The RexxAddMacro() function
54.2The RexxDropMacro() function
54.3The RexxSaveMacroSpace() function
54.4The RexxLoadMacroSpace() function
54.5The RexxQueryMacro() function

54.6 The RexxReorderMacro() function
54.7The RexxClearMacroSpace() function



55 Allocating and De-allocating Space

For several of the functions described in this chapter, the application calling them must allocate or de-
allocate dynamic memory. Depending on the operating system, compil®Ea0d interpreter, the

method for these allocations and de-allocations vary. Because dR#dgs)a supplies the API function

calls RexxAllocateMemory() and RexxFreeMemory(). These functions are wrappers for the appropriate
compiler or operating system memory functions.

55.1The RexxAllocateMemory() function

The prototype foRexxAllocateMemory() is:

PVOID APIENTRY RexxAllocateMemory(
ULONG size

);

The parameter is an input, and its significance is:

[size]
The number of bytes of dynamic memory requested.

RexxAllocateMemory() returns a pointer to the newly allocated block of memory, or NULL if no
memory could be allocated.

55.2The RexxFreeMemory() function
The prototype foRexxFreeMemory() is:

APIRET APIENTRY RexxFreeMemory(
PVOID MemoryBlock

);

The parameter is an input, and its significance is:
[MemoryBlock]
A void pointer to the block of memory allocated by the interpreter, or allocated by a
previous call taRexxAllocateMemory().

RexxFreeMemory() always return O.



Implementation Limits

This chapter lists the implementation limits required by #eXX standard. All implementations are
supposed to support at least these limits.

56 Why Use Limits?

Why use implementation limits at all? Often, a program (ab)uses a feature in a language to an extent
that the implementor did not foresee. Suppose an implementor decides that variable names can not be
longer than 64 bytes. Sooner or later, a programmer gets the idea of using very long variable names to
encode special information in the name; maybe as the output of a machine generated program. The
result will be a program that works only for some interpreters or only for some problems.

By introducing implementation limits EXX tells the implementors to what extent a implementation is
required to support certain features, and simultaneously it tells the programmers how much
functionality they can assume is present.

Note that these limited are required minimums for what an implementation must allow. An interpreter
is not supposed to enforce these limits unless there is a good reason to.

57 What Limits to Choose?

A limit must not be perceived as an absolute limit, the implementor is free to increase the limit. To
some extent, the implementor may also decrease the limit, in which case this must be properly
documented as a non-standard feature. Also, the reason for this should be noted in the documentation.

Many interpreters are likely to have "memory" as an implementation limit, meaning that they will allow
any size as long as there is enough memory left. Actually, this is equivalent to no limit, since running
out of memory is an error with limit enforcing interpreters as well. Some interpreters let the user set the
limits, often controlled through th@ PTIONSInstruction.

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. However, the
REXX language takes the side of the user, and defines the limits in units which looks as more
"sensible" to computer non-experts: most of the limitREXX are numbers like 250, 500, 1000, etc.

58 Required Limits

These are the implementation minimums definedREXX:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked size
might be at least 400 characters, plus embedded white space.

[Elapse time clock]
Must be able to run for at least 10**10-1 seconds, which is approximately 31.6 years. In
general, this is really a big overkill, since virtually no program will run for a such a period.
Actually, few computers will be operational for such a period.

[Hexadecimal strings]
Must be able to hold at least 50 characters after packing. This means that the unpacked size
might be at least 100 characters, plus embedded white space.



[Literal strings]
Must be able to hold at least 100 characters. Note that a double occurrence of the quote
character (the same character used to delimit the string) in a literal string counts as a single
character. In particular, it does not count as two, nor does it start a new string.

[Nesting of comments]
Must be possible to in at least 10 levels. What happens then is not really defined. Maybe one of
the syntax errors is issued, but none is obvious for this use. Another, more dangerous way of
handling this situation would be to ignore new start-of-comments designators when on level 10.
This could, under certain circumstances, lead to running of code that is actually commented out.
However, most interpreter are likely to support nesting of comments to an arbitrary level.

[The Number of Parameters]
In calls must be supported up to at least 10 parameters. Most implementations support
somewhat more than that, but quite a few enforce some sort of upper limit. For the built-in
function, this may be a problem only fdtiN() andMAX().

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supports floating
point numbers, it should allow exponents up to 9 decimal digits. An implementation is allowed
to operate with different limits for the number of significant digits and the numbers of digits in
exponents.

[Subroutine levels]
May be nested to a total of 100 levels, which counts both internal and external functions, but
probably not built-in functions. You may actually trip in this limit if you are using recursive
solution for large problems. Also, some tail-recursive approaches may crash in this limit.

[Symbol (name) length]
Can be at least 50 characters. This is the name of the symbol, not the length of the value if it
names a variable. Nor is it the name of the variable after tail substitution. In other words, it is
the symbol as it occurs in the source code. Note that this applies not only to simple symbols, but
also compound symbols and constant symbols. Consequently, you can not write numbers of
more than 50 digits in the source code, eveRUWMERIC DIGITS is set high.

[Variable name length]
Of at least 50 characters. This is the name of a variable (which may or may not be set) after tail
substitution.

59 Older (Obsolete) Limits

First edition of TRL1 contained some additional limits, which have been relaxed in the second edition
in order to make implementation possible for a large set of computers. These limits are:

[Clock granularity]
Was defined to be at least of a millisecond.

Far from all computers provide this granularity, so the requirement have been relaxed. The
current requirement is a granularity of at least one second, although a millisecond granularity is
advised.

60 What the Standard does not Say

An implementation might enforce a certain limit even though one is not specified in the standard. This
section tries to list most of the places where this might be the case:



[The stack]
(Also called: the external data queue) is not formally defined as a concept of the language itself,
but a concept to which thREXX language has an interface. Several limits might apply to the
stack, in particular the maximum length of a line in the stack and the maximum number of lines
the stack can hold at once.

There might also be also be other limits related to the stack, like a maximum number of buffers
or a maximum number of different stack. These concepts are not referredR&Xyy, but the
programmer ought to be aware of them.

[Files]
May have several limits not specified by the definitiorREXX, e.g. the number of files
simultaneously open, the maximum size of a file, and the length and syntax of file names. Some
of these limits are enforced by the operating system rather than an implementation. The
programmer should be particularly aware of the maximum number of simultaneously open files,
sinceREXX does not have a standard construct for closing files.

[Expression nesting]
Can in some interpreters only be performed to a certain level. No explicit minimum limit has
been put forth, so take care in complex expressions, in particular machine generated
expressions.

[Environment name length]
May have some restrictions, depending on your operating system. There is not defined any
limit, but there exists an error message for use with too long environment names.

[Clause length]
May have an upper limit. There is defined an error message "Clause too long" which is
supposed to be issued if a clause exceeds a particular implementation dependent size. Note that
a "clause" does not mean a "line" in this context; a line can contain multiple clauses.

[Source line length]
Might have an upper limit. This is not the same as a "clause” (see above). Typically, the source
line limit will be much larger than the clause limit. The source line limit ought to be as large as
the string limit.

[Stack operations]
Might be limited by several limits; first there is the number of strings in the stack, then there is
the maximum length of each string, and at last there might be restrictions on the character set
allowed in strings in the stack. Typically, the stack will be able to hold any character. It will
either have "memory" as the limit for the number of string and the length of each string, or it
might have a fixed amount of memory set aside for stack strings. Some implementations also
set a maximum length of stack strings, often 2*8 or 2*16.

61 What an Implementation is Allowed to "Ignore"

In order to make th& EXX language implementable on as many machines as possibREX
standard allow implementation to ignore certain features. The existence of these features are
recommended, but not required. These features are:

[Floating point numbers]
Are not required; integers will suffice. If floating points are not supported, numbers can have
not fractional or exponential part. And the normal division will not be available, i.e. the operator
"/ " will not be present. Use integer division instead.



[File operations]
Are defined inREXX, but an implementation seems to be allowed to differ in just about any file
operation feature.

62 Limits in Regina

Regina tries not to enforce any limits. Wherever possible, "memory" is the limit, at the cost of some
CPU whenever internal data structures must be expanded if their initial size were too small. Note that
Regina will only increase the internal areas, not decrease them afterwards. The rationale is that if you
happen to need a large internal area once, you may need it later in the same program too.

In particular,Regina has the following limits:

Binary strings source line size
Clock granularity 0.001-1 second (note 3)
Elapse time clock until ca. 2038 (note 1)
Named Queues 100

Hexadecimal strings  source line size
Interpretable string source line size
Literal string length source line size
Nesting of comments memory

Parameters memory
Significant digits memory (note 2)
Subroutine levels memory

Symbol length source line size

Variable name length memory (note 2)

Notes:

1) Regina uses the Unix-derived cdiime() for the elapse time (and time in general). Thisis a
function which returns the number of seconds since Jandak970. According to the ANSI C
standard, in whicliRegina is written, this is a number which will at least hold the number 2**31-1.
Therefore, these machines will be able to work until about 2038Raha will satisfy the
requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, theime()  C function call only returns whole seconds,Regina is forced to use
other (less standardized) calls to get a finer granularity. However, most of what is saidimiegut
applies for these too.

2) The actual upper limit for these are the maximum length of a string, which is at least 2**32. So for
all practical purposes, the limit is "memory".

3) The clock granularity is a bit of a problem to define. All systems can be trusted to have a granularity
of about 1 second. Except from that, it's very difficult to say anything more specific for certain. Most
systems allows alternative ways to retrieve the time, giving a more accurate result. Wherever these
alternatives are availablRegina will try to use them. If everything else failRegina will use 1

second granularity.



For most machines, the granularity are in the range of a few milliseconds. Some typical examples are:
20 ms for Sun3, 4 ms for Decstations 3100, and 10 ms for SGI Indigo. Since this is a hardware
restriction, this is the best measure anyone can get for these machines.



Appendixes
63 Definitions

In order to make the definitions more readable, but still have a rigid definition of the terms, some extra
comments have been added to some of the definitions. These comments are enclosed in square
brackets.

Argument is anexpressiorsupplied to dgunctionor subroutine and it provides data on which the call
can work on.

Assignmentis aclausein which secondokenis the equal sign. [Note that the statememts=b" and
"3=4" are an (invalid) assignment, not an expression. The type of the first token is irrelevant; if the
second token is the equal sign, then the clause is assumed to be an assignment.]

Blanks are characters whiailyphsare empty space, either vertically or horizontally. A blank is not a
token(but may sometimes be embedded in tokens), but adtkan separatordExactly which

characters are considered blanks will differ between operating systems and implementations, but the
<space> character is always a blank. The <tab> character is also often considered a blank. Other
characters considered blank might be the end-of-line <eol>), vertical tab (<vt>), and formfeed (<ff>).
See specific documentation for each interpreter for more information.]

Buffer
Caller routine

Character is a piece of information about a mapping from a storage unit (normally a byte)gypoha
Often used as "the meaning of the glyph mapped to a particular storage unit". [The glyph "A" is the
same in EBCDIC and ASCII, but the character "A" (i.e. the mapping from glyph to storage unit)
differs.]

Character string is an finite, ordered, and possibly empty setlofracters

Clauseis a non-empty collection abkensn aREXX script. The tokens making up a clause are all the
consecutive tokens delimited by two consecutlaise delimitersClauses are further divided into
null clausesinstructions assignmentsandcommand$

Clause delimiteris a non-empty sequence of elements of a subgekehs normally the linefeed and
the semicolon. Also the start and end dRBXX scriptare considered clause delimiters. Also colon is a
clause separator, but it is only valid after a label.

Command

Compound variableis avariablewhich name has at least one™character that isn't positioned at the
end of the name.

Current environment is a particulaenvironmento whichcommandss routed if no explicit
environment is specified for their routing.



Current procedure levelis theprocedure levein effect at a certain point during execution.
Daemon

Decimal digit

Device driver

Digit is a singlecharactehaving a numeric value associate with its glyph.

Empty string

Environment is a interface to whiclREXX can routecommandsnd afterwards retrieve status
information likereturn values

Evaluation is the process applied to @xpressionn order to derive @haracter string

Exposingis the binding of avariablein thecurrent procedure leveb the variable having the same
name in thecaller routine This binding will be in effect for as long as the current procedure level is
active.

Exponential form is a way of writing particularly large or smadlmberdn a fashion that makes them
more readable. The number is divided into a mantissa and an exponent of base 10.

Expressionis a non-empty sequencetokens for which there exists syntactic restrictions on which
tokens can be members, and the order in which the tokens can occur. [Typically, an expression may
consist of literal strings or symbols, connected by concatenation and operators.]

External data queuesee "stack".

External subroutine is ascriptof REXX code, which is executed as a responsegaolaoutineor
functioncall that is neither internal nor built-in.

FIFO

Glyph is an atomic element of text, having a meaning and an appearance; like a letter, a digit, a
punctuation mark, etc.

Hex is used as a general abbreviation for térexadecimaivhen used in compound words like hex
digit and hex string.

Hexadecimal digitis adigit in the number system having a base of 16. The first ten digits are identical
with thedecimal digit5(0-9), while for the last six digits, the first six letters of the Latin alphabet (A-F)
are used.

Hexadecimal stringis acharacter stringthat consists only of thieexadecimal digitsand with
optionalwhitespaceo divide the hexadecimal digits into groups. Leading or trailing whitespace is
illegal. All groups except the first must consist of an even number of digits. If the first group have an



odd number of digits, an extra leading zero is implied under some circumstances.

Instruction is aclausethat is recognized by the fact that the fitskenis a speciakeyword and that
the clause is not amassignmenor label. Instructions typically are well-defin®EXX language
components, such as loops and function calls.

Interactive trace is atracemode, where theaterpreterhalts execution between eaclause and offer
the user the possibility to specify arbitrdREXX statement$o be executed before the execution
continues.

Label

LIFO

Literal name is a name which will always be interpreted as a constant, i.e. that no variable substitution
will take place.

Literal string is atokenin a REXX script, that basically is surrounded by quotation marks, in order to
make acharacter stringcontaining the sameharactersas the literal string.

Keyword is a element from finite set of symbols.
Main level
Main program

Name spacas a collection of namedariables In general, the expression is used when referring to the
set of variables available to tipeogramat some point during interpretation.

Nullstring is acharacter stringhaving the length zero, i.e. an empty character string. [Note the
difference from the undefined string.]

Operating system
Parameters
Parsing
Procedure level

Program is a collection oREXX code, which may be zero or maseripts or other repositories of
REXX code. However, a program must contain a all the code to be executed.

Queuesee "external data queue" or "stack".

Routine is a unit during run-time, which is a procedural level. Certain settings are saved across
routines Oneroutine (the callerroutine) can be temporarily suspended while anotiogitine is

executed (the callesbutine). With such nesting, the calledutine must be terminated before execution
of the callerroutine can be resumed. Normally, tRBALL instruction or a function call is used to do



this. Note that the main level of REXX script is also aoutine
Script is a single file containingREXX code.

Space separated

Stack

Statementis aclausehaving in general some action, i.e. a clause other tharl&lause
[Assignments, commands and instructions are statements.]

Stem collection
Stem variable
Strictly order

Subkeyword is akeyword but the prefix "sub” stresses the fact thaanbolis a keyword only in
certain contexts [e.g. inside a particular instruction)].

Subroutine is aroutinewhich has been invoked from anotiEXX routine i.e. it can not be the
"main” program of &REXX script.

Symbol

Symbol table
Tail substitution
Term

Token

Token separator
Uninitialized
Variable name
Variable symbol
WhitespaceOne or several consecutitdankcharacters.
hex literal

norm. hex string

bin {digit,string,literal}



norm. bin string
packed char string

Character strings is the only type of data available in Rexx, but to some extent there are 'subtypes' of
character strings; character strings which contents has certain format. These special formats is discussed
below.

64 Bibliography

[KIESEL]

Peter C. KieselREXX - Advanced Techniques for Programm#tsGraw-Hill, 1993, ISBN O-
07-034600-3

[CALLAWAY]

Merill Callaway, The ARexx Cookbool11-A Girard Blvd. SE, Albuquerque, NM 87106:
Whitestone, 1992, ISBN 0-9632773-0-8

[TRL2]

M. F. Cowlishaw, The REXX Language- Second Editi&@mglewood Cliffs: Prentice-Hall,
1990, ISBN 0-13-780651-5

[TRL1]

M. F. Cowlishaw,The REXX Language - First EditioEnglewood Cliffs: Prentice-Hall, 1985,
ISBN 0-13-780735-X

[SYMPOSS3]

Proceedings of the REXX Symposium forDdevelopers andUuSt&sford: Stanford Linear
Accelerator Center, 1992

[TRH:PRICE]

Stephen G. PriceSAA Portability chapter 37, pp 477-498. In Goldberg ans Smith Ill [TRH],
1992

[TRH]

Gabriel Goldberg and Smith 1ll, Philip HThe REXX HandboolcGraw-Hill, 1992, ISBN 0-
07-023682-8

[DANEY]

Charles DaneyProgramming in REXXMcGraw-Hill, 1992, ISBN 0-07-015305-1
[BMARKS]

Brian Marks, Advanced REXX programmingicGraw-Hill, 1992
[ZAMARA]

Chris Zamara and Nick Sullivakising ARexx on the Amigabacus, 1991, ISBN 1-55755-
114-6

[REXXSAA]



W. David Ashley,SAA Procedure Language REXX ReferebcEmberline Dr., Trophy Club,
Tx 76262: Pedagogic Software, 1991

[MCGH:DICT]

Sybil P. ParkerMcGrw-Hill Dictionary of ComputersMcGraw-Hill, 1984, ISBN 0-07-
045415-9

[PIPLAUGER]

P. J. PlaugerThe Standard C LibraryEnglewood Cliffs: Prentice Hall, 1992, ISBN 0-13-
131509-9

[KR]

Brian W. Kernighan and Dennis M. Ritchi€he C Programming Language - Second Edition
Englewood Cliffs: Prentice Hall, 1988, ISBN 0-13-110362-8

[ANSIC]

Programming languages -.C, Technical Report ISO/IEC 9899:1990, ISO, Case postale 56,
CH-1211 Geneve 20, Switzerland, 1990

[OX:CDICT]

Edward L. Glaser and I. C. Pyle and Valerie Illingswor@®xford Reference Dictionary of
Computing - Third EditionOxford University Press, 1990, ISBN 0-19-286131-X

[ANSI]

Programming Languages - REXXANSI X3.274-1996, 11 West 42nd Street, New York,
New York 10036



	Purpose of this document
	Implementation
	Ports of Regina
	Executing Rexx programs with Regina
	Switches
	External Rexx programs

	Definitions
	Null clauses
	Commands
	Assignments

	Instructions
	The ADDRESS Instruction
	The ARG Instruction
	The CALL Instruction
	The DO/END Instruction
	The DROP Instruction
	The EXIT Instruction
	The IF/THEN/ELSE Instruction
	The INTERPRET Instruction
	The ITERATE Instruction
	The LEAVE Instruction
	The NOP Instruction
	The NUMERIC Instruction
	The OPTIONS Instruction
	The PARSE Instruction
	The PROCEDURE Instruction
	The PULL Instruction
	The PUSH Instruction
	The QUEUE Instruction
	The RETURN Instruction
	The SELECT/WHEN/OTHERWISE Instruction
	The SIGNAL Instruction
	The TRACE Instruction
	The UPPER Instruction

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparative Operators
	Concatenation Operators
	Logical Operators

	Implementation-Specific Information
	Miscellaneous
	Implementation of the ADDRESS environment
	Windows
	Unix
	OS/2

	List of All Environment Names in Use
	Regina Restricted Mode
	Native Language Support
	Error Messages
	Implementation


	General Information
	The Syntax Format
	Precision and Normalization
	Standard Parameter Names
	Error Messages
	Possible System Dependencies
	Blanks vs. Spaces

	REXX Standard Built-in Functions
	ABBREV(long,short[,length])
	ABS(number)
	ADDRESS()
	ARG([argno[,option]])
	B2X(binstring)
	BEEP(frequency[,duration])
	BITAND(string1[,[string2][,padchar]])
	BITOR(string1[,[string2][,padchar]])
	BITXOR(string1[,[string2][,padchar]])
	BUFTYPE()
	C2D(string[,length])
	C2X(string)
	CD(directory)
	CHDIR(directory)
	CENTER(string, length [, padchar ] )
	CENTRE(string, length [, padchar ] )
	CHANGESTR(needle, haystack, newneedle )
	CHARIN([streamid][,[start][,length]])
	CHAROUT([streamid][,[string][,start]])
	CHARS([streamid])
	COMPARE(string1,string2[,padchar])
	CONDITION([option])
	COPIES(string,copies)
	COUNTSTR(needle,haystack)
	CRYPT(string,salt)
	DATATYPE(string[,option])
	DATE([option_out [,date [,option_in]]])
	DELSTR(string,start[,length])
	DELWORD(string,start[,length])
	DESBUF()
	DIGITS()
	DIRECTORY([new directory])
	D2C(integer[,length])
	D2X(integer[,length])
	DROPBUF([number])
	ERRORTEXT(errno[, lang])
	FIND(string,phrase)
	FORK()
	FORM()
	FORMAT(number[,[before][,[after][,[expp][,[expt]]]]])
	FUZZ()
	GETENV(environmentvar)
	GETPID()
	GETTID()
	INDEX(haystack,needle[,start])
	INSERT(string1,string2[,position[,length[,padchar]]])
	JUSTIFY(string,length[,pad])
	LASTPOS(needle,haystack[,start])
	LEFT(string,length[,padchar])
	LENGTH(string)
	LINEIN([streamid][,[line][,count]])
	LINEOUT([streamid][,[string][,line]])
	LINES([streamid][,option])
	MAKEBUF()
	MAX(number1[,number2]...)
	MIN(number[,number]...)
	OVERLAY(string1,string2[,[start][,[length][,padchar]]])
	POPEN(command[,stem.])
	POS(needle,haystack[,start])
	QUALIFY([streamid])
	QUEUED()
	RANDOM(max)
	RANDOM([min][,[max][,seed]])
	REVERSE(string)
	RIGHT(string,length[,padchar])
	RXFUNCADD(externalname,library,internalname)
	RXFUNCDROP(externalname)
	RXFUNCERRMSG()
	RXFUNCQUERY(externalname)
	RXQUEUE(command[,queue])
	SIGN(number)
	SLEEP(seconds)
	SOURCELINE([lineno])
	SPACE(string[,[length][,padchar]])
	STATE(streamid)
	STREAM(streamid[,option[,command]])
	STRIP(string[,[option][,char]])
	SUBSTR(string,start[,[length][,padchar]])
	SUBWORD(string,start[,length])
	SYMBOL(name)
	TIME([option_out [,time [option_in]]])
	TRACE([setting])
	TRANSLATE(string[,[tableout][,[tablein][,padchar]]])
	TRUNC(number[,length])
	UNAME([option])
	UNIXERROR(errorno)
	USERID()
	VALUE(symbol[,[value],[pool]])
	VERIFY(string,ref[,[option][,start]])
	WORD(string,wordno)
	WORDINDEX(string,wordno)
	WORDLENGTH(string,wordno)
	WORDPOS(phrase,string[,start])
	WORDS(string)
	XRANGE([start][,end])
	X2B(hexstring)
	X2C(hexstring)
	X2D(hexstring[,length])

	Implementation specific documentation for Regina
	Deviations from the Standard
	Interpreter Internal Debugging Functions
	REXX VMS Interface Functions

	What are Conditions
	What Do We Need Conditions for?
	Terminology


	The Mythical Standard Condition
	Information Regarding Conditions (data structures)
	How to Set up a Condition Trap
	How to Raise a Condition
	How to Trigger a Condition Trap
	Trapping by Method SIGNAL
	Trapping by Method CALL
	The Current Trapped Condition

	The Real Conditions
	The SYNTAX condition
	The HALT condition
	The ERROR condition
	The FAILURE condition
	The NOVALUE condition
	The NOTREADY condition

	Further Notes on Conditions
	Conditions under Language Level 3.50
	Pitfalls when Using Condition Traps
	The Correctness of this Description

	Conditions in Regina
	How to Raise the HALT condition

	Possible Future extensions
	Background and Historical Remarks
	REXX's Notion of a Stream
	Short Crash-Course
	Naming Streams
	Persistent and Transient Streams
	Opening a Stream
	Closing a Stream
	Character-wise and Line-wise I/O
	Reading and Writing
	Determining the Current Position
	Positioning Within a File
	Errors: Discovery, Handling, and Recovery
	Common Differences and Problems with Stream I/O
	Where Implementations are Allowed to Differ
	Where Implementations might Differ anyway
	LINES() and CHARS() are Inaccurate
	The Last Line of a Stream
	Other Parts of the I/O System
	Implementation-Specific Information
	Stream I/O in Regina 0.07a
	Functionality to be Implemented Later
	Stream I/O in ARexx 1.15
	Main Differences from Standard REXX
	Stream I/O in BRexx 1.0b
	Problems with Binary and Text Modes

	Why Have Extensions
	Extensions and Standard REXX
	Specifying Extensions in Regina
	The Trouble Begins
	The Format of the OPTIONS clause
	The Fundamental Extensions
	Meta-extensions
	Semi-standards
	Standards
	Background and history
	General functionality of the stack
	Basic functionality
	LIFO and FIFO stack operations
	Using multiple buffers in the stack
	The zeroth buffer
	Creating new stacks

	The interface between REXX and the stack
	Strategies for implementing stacks
	Implementations of the stack in Regina
	Implementation of the internal stack in Regina 2.2
	Implementation of the external stack in Regina 2.2
	rxstack
	rxqueue
	rxqueue Built-in Function
	Queue Names
	Security of External Queues
	Environment Variables


	Overview of functions in SAA
	Include Files and Libraries
	Preprocessor Symbols
	Data structures and data types
	The RXSTRING structure
	The RXSYSEXIT structure


	The Subcommand Handler Interface
	What is a Subcommand Handler
	The RexxRegisterSubcomExe() function
	The RexxRegisterSubcomDll() function
	The RexxDeregisterSubcom() function
	The RexxQuerySubcom() function

	The External Function Handler Interface
	What is an External Function Handler
	The RexxRegisterFunctionExe() function
	The RexxRegisterFunctionDll() function
	The RexxDeregisterFunction() function
	The RexxQueryFunction() function

	Executing REXX Code
	The RexxStart() function

	Variable Pool Interface
	Symbolic or Direct
	The SHVBLOCK structure
	Regina Notes for the Variable Pool
	The RexxVariablePool() function

	The System Exit Handler Interface
	The System Exit Handler
	List of System Exit Handlers
	RXFNC - The External Function Exit Handler
	RXCMD - The Subcommand Exit Handler
	RXMSQ - The External Data Queue Exit Handler
	RXSIO - The Standard I/O Exit Handler
	RXHLT - The Halt Condition Exit Handler
	RXTRC - The Trace Status Exit Handler
	RXINI - The Initialization Exit Handler
	RXTER - The Termination Exit Handler


	RXENV - The External Environment Exit Handler
	The External Queue Interface
	The RexxCreateQueue() function
	The RexxDeleteQueue() function
	The RexxQueryQueue() function
	The RexxAddQueue() function
	The RexxPullQueue() function

	The Macro Space Interface
	The RexxAddMacro() function
	The RexxDropMacro() function
	The RexxSaveMacroSpace() function
	The RexxLoadMacroSpace() function
	The RexxQueryMacro() function
	The RexxReorderMacro() function
	The RexxClearMacroSpace() function

	Allocating and De-allocating Space
	The RexxAllocateMemory() function
	The RexxFreeMemory() function

	Why Use Limits?
	What Limits to Choose?
	Required Limits
	Older (Obsolete) Limits
	What the Standard does not Say
	What an Implementation is Allowed to "Ignore"
	Limits in Regina
	Definitions
	Bibliography

