
Event−dr iven Simulator

STATOBJ − Programmer ’s Manual

July 2001

STATOBJ FROGS 1.2
1

StObject (extends StProto)

PURPOSE

This superclass implements the basic behavior of a statistical object. The StProto class is
inherited to connect each measurement object to a display front−end through a protocol
pilot. In other words, a statistical object’s value can be exported to a front−end for
display (usually an external application), and receive specific directives interactively that
may alter its value and/or behavior.

A given statistical object can be used in two separate contexts:
� As a backend object, it performs statistical measurements; It may also send the

collected data to its front−end counterpart through its protocol pilot, and receive
directives from it through the same channel. This operating mode may be seen as
the object’s master role.

� As a front−end object, it is updated by data received from its protocol pilot, which
was produced by its backend counterpart. This operating mode may be seen as the
object’s slave role.

The protocol pilot should be seen as a communication object aimed at exchanging
messages back and forth between a measurement object and its display.

A statistical object has five major properties:
� A current value (floating−point).
� A count of received values since the object was last reset or created.
� Two varying bounds (lower and upper) that are updated each time a new value is

logged.
� A current count of samples.

Subclassed statistical objects may need a time reference as part of their input. In such a
case, the global variable Clock is used to retrieve the current time value.

This class is usually not instantiated directly, but rather subclassed to provide some
specific statistical behavior.

CONSTRUCTORS

StObject(const char *name =0, StProtoPilot *pilot =0, int pflags =0)

Creates a statistical object. name is a null−terminated character string identifying the
new object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

STATOBJ FROGS 1.2
2

StObject(StProtoExportMessage *pex, StProtoPilot *pilot)

Creates a slave statistical object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

METHODS

virtual void add(double value)

Stores the current object’s value. The object’s lower and upper bounds are updated
accordingly, and the number of collected values is incremented. Of course, this method is
expected to be specialized by subclasses that performs more complex statistical
processing.

void add(int value)

Invokes add((double)value).

virtual void double getValue (StValueType vtype =VAL)

Gets the object’s value. Because a statistical object actually stores different values, vtype
is used to specify the kind of desired value on return. At this class level, the method can
be asked the following value types:

� VAL causes the last added value to be returned.
� NUM represents the number of collected values since the object was created or

reset.
� MINVAL represents the object’s lower bound value. In other words, it it the

lowest value collected through a call to add(), since the object was created or
reset.

� MAXVAL represents the object’s upper bound value. In other words, it it the
greatest value collected through a call to add(), since the object was created or
reset.

Subclasses usually provide more value types as they hold additional statistical results.

virtual void resetValues()

Resets the object. The count of collected values and samples are set to zero. The lower
and higher bounds are reset so as they bounce to the next collected value when available.

virtual void sample()

Performs a sampling operation on the object. At this class level, sampling only causes the
internal count of samples to be incremented. Subclasses usually provide more complexity
to this action, but they still should increment this count.

virtual void result()

STATOBJ FROGS 1.2
3

This method is aimed at computing the statistical object’s final value, just before it is
inquired. At this class level, this method does nothing.

STATOBJ FROGS 1.2
4

StObjectGroup (extends StObject)

PURPOSE

Instances of this class gather multiple statistical objects under a common name to
perform grouped computation. Held objects are referred to by an index into an internal
array. An extra cell is automatically reserved to store the group’s global value.

The global value index is always #0. Individual object indices range from the specified
index base to the sum of this base with the number of held objects. Negative bases are
allowed.

This class should never be instantiated directly, but rather extended by subclasses
implementing specific group behavior.

PROTECTED DATA MEMBERS

int ncells

The number of cells in the group’s internal array (i.e. number of held objects + 1).

int iscale

The group’s index scaling value (i.e. 1 – iBase).

StObject **vector

The array of pointers to the held objects. Index #0 is reserved for the global measure.

CONSTRUCTORS

StObjectGroup(const char *name, const char *indexName, int nitems, int iBase
=0, StProtoPilot *pilot =0, int pflags =0)

Creates a statistical object group. name is a null−terminated character string identifying
the new object; NULL is an acceptable value, preventing the anonymous object from
being visible from the display front−end.

indexName is the logical name of the index that will be used in composing the held
objects names.

nitems is the number of statistical objects the group constructor will hold.

iBase is the the lowest index value for the group. Indices passed to methods requiring
them will be scaled to take in account this threshold. For instance, passing an index base
of –2 for a 4−elements group allows using indices –2, −1, 0 (global value), 1 and 2.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

STATOBJ FROGS 1.2
5

This method allocates an array of pointers which can subsequently be used by the
subclass constructor.

StObjectGroup(StProtoExportMessage *pex, StProtoPilot *pilot, const char
*indexName, int nitems, int iBase =0)

Creates a slave group object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

indexName, nitems and iBase have the same meaning than previously.

METHODS

StObject *getAddress(int nth)

Returns the address of the nth object from the group. The index scaling is applied.

virtual void add(double value)

Adds value to the global object’s value.

void add(double value, int nth)

Adds value to the nth object from the group, then to the global object’s value. The index
scaling is applied.

void add(int value, int nth)

Invokes add((double)value,nth).

virtual void resetValues()

Resets the values in turn for each held object, including the global one.

virtual void sample()

Samples each held object in turn, including the global one.

virtual void result()

Computes the held objects’ final results in turn, including the global object’s one.

STATOBJ FROGS 1.2
6

StCounter (extends StObject)

PURPOSE

This class implements a measurement object aimed at summing numerical values, with a
sampling capability.

CONSTRUCTORS

StCounter(const char *name, StProtopilot *pilot =0, int pflags =0)

Creates a statistical object group. name is a null−terminated character string identifying
the new object; NULL is an acceptable value, preventing the anonymous object from
being visible from the display front−end.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StCounter(StProtoExportMessage *pex, StProtoPilot *pilot)

Creates a slave group object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

METHODS

virtual void add(double value)

Adds value to the counter’s sum of values. The object’s lower and upper bounds are
updated accordingly, and the number of summed values is incremented.

virtual void double getValue (StValueType vtype =VAL)

Gets the object’s value. Because a counter object actually stores different values, vtype is
used to specify the kind of desired value on return. At this class level, the method can be
asked the following value types:

� VAL causes the last added value to be returned.
� CMES returns the sum on the current sample.
� NUM represents the number of summed values since the object was created or

reset.
� SUM returns the global sum of values since the beginning of the measure.
� SUM2 returns the square sum of values since the beginning of the measure.

STATOBJ FROGS 1.2
7

� MINVAL represents the object’s lower bound value. In other words, it it the
lowest value collected through a call to add(), since the object was created or
reset.

� MAXVAL represents the object’s upper bound value. In other words, it it the
greatest value collected through a call to add(), since the object was created or
reset.

� MEAN return the mean of values since the beginning of the measure.
� STDEV returns the standard deviation since the beginning of the measure.

void inc()

Invokes add(1.0).

virtual void resetValues()

Resets the object. The count of summed values and samples are set to zero. The lower
and higher bounds are reset so as they bounce to the next added value when available.

virtual void sample()

Samples the counter, updating the sum and square sums for the current sample.

virtual void result()

No action.

STATOBJ FROGS 1.2
8

StCounterGroup (extends StObjectGroup)

PURPOSE

Instances of this class gather multiple counter objects under a common name to perform
grouped computation. Held counters are referred to by an index into an internal array. An
extra cell is automatically reserved to store the group’s global counter.

The global counter index is always #0. Individual counter indices range from a given
index base to the sum of this base with the number of held counters. Negative bases are
allowed.

CONSTRUCTORS

StCounterGroup(const char *name, const char *indexName, int nitems, int iBase
=0, StProtoPilot *pilot =0, int pflags =0)

Creates a counter group. name is a null−terminated character string identifying the new
object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

indexName is the logical name of the index that will be used in composing the held
counters names.

nitems is the number of counters the group constructor will create.

iBase is the the lowest index value for the group. Indices passed to methods requiring
them will be scaled to take in account this threshold. For instance, passing an index base
of –2 for a 4−elements group allows using indices –2, −1, 0 (global counter), 1 and 2.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StObjectGroup(StProtoExportMessage *pex, StProtoPilot *pilot, const char
*indexName, int nitems, int iBase =0)

Creates a slave group object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

indexName, nitems and iBase have the same meaning than previously.

STATOBJ FROGS 1.2
9

StIntegrator (extends StObject)

PURPOSE

This class implements a time integrator object which is aimed at computing the
integration of a given variable with respect to time. The current time is obtained from the
contents of the global variable Clock.

CONSTRUCTORS

StIntegrator(const char *name, const ITime& tStart, const ITime& tEnd, const
ITime& dtSample, StProtoPilot *pilot =0, int pflags =0)

Creates a time integrator. name is a null−terminated character string identifying the new
object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

tStar t is the starting time of survey, tEnd specifies its end. dtSample is the sampling
period that applies for this object.

pflags is a set of protocol flags such as defined by the StProto interface.

StIntegrator(StProtoExportMessage *pex, StProtoPilot *pilot, const ITime& tStart,
const ITime& tEnd, const ITime& dtSample)

Creates a slave time integrator, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

tStar t, tEnd and dtSample have the same meaning than previously.

METHODS

virtual void add(double value)

Integrates the last entered value up to the current time (0.0 if none), then sets the last
value to value.

void inc()

Adds the last entered value incremented from 1.0 to the object.

void dec()

Adds the last entered value decremented from 1.0 to the object.

STATOBJ FROGS 1.2
10

virtual double getValue(StValueType vtype =VAL)

Gets the object’s value. Because an integrator object actually stores different values,
vtype is used to specify the kind of desired value on return. At this class level, the
method can be asked the following value types:

� VAL causes the last added value to be returned.
� CMES returns the mean of the variable on the current sample.
� NUM represents the number of summed values since the object was created or

reset.
� SUM returns the global integral since the beginning of the measure.

virtual void resetValues()

Resets the object. The count of collected values and samples are set to zero. The lower
and higher bounds are reset so as they bounce to the next collected value when available.

virtual void sample()

Performs a sampling operation on the object.

virtual void result()

No action.

STATOBJ FROGS 1.2
11

StIntegratorGroup (extends StObjectGroup)

PURPOSE

Instances of this class gather multiple time integrator objects under a common name to
perform grouped computation. Held integrators are referred to by an index into an
internal array. An extra cell is automatically reserved to store the group’s global
integrator.

The global integrator index is always #0. Individual integrator indices range from a given
index base to the sum of this base with the number of held integrators. Negative bases are
allowed.

CONSTRUCTORS

StIntegratorGroup(const char *name, const char *indexName, int nitems, const
ITime& tStart, const ITime& tEnd, const ITime& dtSample, int iBase =0,
StProtoPilot *pilot =0, int pflags =0)

Creates a time integrator group. name is a null−terminated character string identifying
the new object; NULL is an acceptable value, preventing the anonymous object from
being visible from the display front−end.

indexName is the logical name of the index that will be used in composing the held
integrators names.

nitems is the number of integrators the group constructor will create.

tStar t is the starting time of survey, while tEnd specifies its end. dtSample is the
sampling period that applies for this object.

iBase is the the lowest index value for the group. Indices passed to methods requiring
them will be scaled to take in account this threshold. For instance, passing an index base
of –2 for a 4−elements group allows using indices –2, −1, 0 (global integrator), 1 and 2.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StIntegratorGroup(StProtoExportMessage *pex, StProtoPilot *pilot, const char
*indexName, int nitems, const ITime& tStart, const ITime& tEnd, const ITime&
dtSample, int iBase =0)

Creates a slave group object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

STATOBJ FROGS 1.2
12

indexName, nitems, tStar t, tEnd, dtSample and iBase have the same meaning than
previously.

STATOBJ FROGS 1.2
13

StHistogram (extends StObject)

PURPOSE

This measurement object is aimed at determining the probability density of any statistic
law, and computes the mean and standard deviation and accuracy evaluation for a given
confidence interval.

CONSTRUCTORS

StHistogram(const char *name, int nbins, double leftb, double rightb,
StHistAdjustMode mode =MULTIPLY, StProtoPilot *pilot =0, int pflags =0)

Creates an histogram with floating−point bounds, namely leftb and r ightb. name is a
null−terminated character string identifying the new object that can be used during
tracing and monitoring; NULL is an acceptable value, preventing the anonymous object
from being visible from the display front−end. The number of counting bins is specified
by nbins.

Histograms can automatically adjust themselves to the actual range of entered values.
The expected behavior when a value falls outside the current range of an histogram is
selectable by an adjustment mode:

� MULTIPLY causes the histogram range to be adjusted by successive
multiplications by 2, either to the left or to the right side according to the bound
that is overshooted. This is the default mode.

� GARBAGE prevents the histogram range to be adjusted, all the values falling
outside this range are collected in the leftmost and rightmost bins.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StHistogram(const char *name, int nbins, int leftb, int rightb, StHistAdjustMode
mode =MULTIPLY, StProtoPilot *pilot =0, int pflags =0)

Creates an histogram with integer bounds, namely leftb and r ightb. Other parameters
have the same meaning than previously.

The right bound and the number of counting bins are adjusted to obtain an integer bin
size.

StHistogram(StHistogramExportMessage *pex, StProtoPilot *pilot =0)

Builds the histogram from values stored in the pex export message. If not NULL, pilot
should point to a front−end protocol pilot object. This constructor is usually invoked on
behalf of the StProtoFrontPilot::createDisplay() method to build the graphical
counterpart of a statistic object that has just been exported by the backend program.

STATOBJ FROGS 1.2
14

virtual void add(double value)

Adds value to the proper histogram’s bin. If value is outside the current range of the
histogram, then perform the adjustment according to the histogram’s adjustment mode
(whether MULTIPLY or GARBAGE).

virtual double getValue(StValueType vtype =VAL)

Gets the object’s value. Because a histogram object actually stores different values, vtype
is used to specify the kind of desired value on return. At this class level, the method can
be asked the following value types:

� VAL causes the last added value to be returned.
� NUM represents the number of summed values since the histogram was created or

reset.
� SUM returns the total sum of values.
� SUM2 returns the square sum of values.

virtual void resetValues()

Resets the histogram, flushing its internal log. The count of collected values and samples
are set to zero. The lower and higher bounds are reset so as they bounce to the next
collected value when available.

virtual void sample()

Performs a sampling operation on the histogram.

virtual void result()

This method is designed to compute the statistical object’s final value, just before it is
inquired. At this class level, this method does nothing.

STATOBJ FROGS 1.2
15

StHistogramGroup (extends StObjectGroup)

PURPOSE

Instances of this class gather multiple histograms under a common name to perform
grouped computation. Held histograms are referred to by an index into an internal array.
An extra cell is automatically reserved to store the group’s global histogram.

The global histogram index is always #0. Individual histogram indices range from a
given index base to the sum of this base with the number of held histograms. Negative
bases are allowed.

CONSTRUCTORS

StHistogramGroup(const char *name, const char *indexName, int nitems, int
nbins, double leftb, double rightb, StHistAdjustMode mode =MULTIPLY, int iBase
=0, StProtoPilot *pilot =0, int pflags =0)

StHistogramGroup(const char *name, const char *indexName, int nitems, int
nbins, int leftb, int rightb, StHistAdjustMode mode =MULTIPLY, int iBase =0,
StProtoPilot *pilot =0, int pflags =0)

Creates an histogram group. name is a null−terminated character string identifying the
new object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

indexName is the logical name of the index that will be used in composing the held
histograms names.

nitems is the number of histograms the group constructor will create.

Each histogram from the set is created either with floating−point or integer bounds,
namely leftb and r ightb. The number of counting bins is specified by nbins. For integer
bounded histograms, the right bound and the number of counting bins are adjusted to
obtain an integer bin size.

Histograms can automatically adjust themselves to the actual range of entered values.
The expected behavior when a value falls outside the current range of an histogram is
selectable by an adjustment mode setting:

� MULTIPLY causes the histogram range to be adjusted by successive
multiplications by 2, either to the left or to the right side according to the bound
that is overshooted. This is the default mode.

� GARBAGE prevents the histogram range to be adjusted, all the values falling
outside this range are collected in the leftmost and rightmost bins.

iBase is the the lowest index value for the group. Indices passed to methods requiring
them will be scaled to take in account this threshold. For instance, passing an index base
of –2 for a 4−elements group allows using indices –2, −1, 0 (global histogram), 1 and 2.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)

STATOBJ FROGS 1.2
16

or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StHistogramGroup(StProtoExportMessage *pex, StProtoPilot *pilot, const char
*indexName, int nitems, int nbins, double leftb, double rightb, StHistAdjustMode
mode =MULTIPLY, int iBase =0)

StHistogramGroup(StProtoExportMessage *pex, StProtoPilot *pilot, const char
*indexName, int nitems, int nbins, int leftb, int rightb, StHistAdjustMode mode
=MULTIPLY, int iBase =0)

Creates a slave group object, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

indexName, nitems, nbins, leftb, r ightb, mode and iBase have the same meaning than
previously.

STATOBJ FROGS 1.2
17

StScaler (extends StObject)

PURPOSE

StScaler instances are statistical measurement objects aimed at computing the ratio of a
given value by an other. A scaler establishes a relationship between a scaled object and a
scaling one.

This pure class should be extended by subclasses in order to implement the way the
scaling is done.

CONSTRUCTORS

StScaler(const char *name, StObject *scaledObject, StValueType vtype =VAL,
StProtoPilot *pilot =0, int pflags =0)

Creates a scaler object. name is a null−terminated character string identifying the new
object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

scaledObject is a pointer to a valid statistical object to scale.

vtype is used to specify which value type should be obtained from the scaled object to
compute the ratio. Valid types are defined by the scaled object’s getValue() method.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StScaler(StProtoExportMessage *pex, StProtoPilot *pilot, StObject
*scaledObject, StValueType vtype =VAL)

Creates a slave scaler, whose specifications are given in the export message pointed to by
pex. pilot is the address of the new object’s protocol pilot, that should belong to the
display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

scaledObject and vtype have the same meaning than previously.

METHODS

virtual double getValue(StValueType vtype =VAL)

Gets the object’s value. Because a scaler object actually stores different values, vtype is
used to specify the kind of desired value on return. At this class level, the method can be
asked the following value types:

STATOBJ FROGS 1.2
18

� VAL causes the last entered value to be returned. This operation implies the
retrieval of the current scaled and scaling values to compute the ratio.

� NUM represents the number of times the ratio has been computed.

STATOBJ FROGS 1.2
19

StTimeScaler (extends StScaler)

PURPOSE

StTimeScaler instances are statistical measurement objects aimed at computing the
division of a scaled object’s value by the multiplication of the current clock value by a
given factor.

Each time the inherited StScaler::getValue() method is invoked for a time scaler, the
following actions take place:

� First, the current value of the scaled object is obtained by a call to its getValue()
method, with the appropriate value type.

� Then, the divisor is computed by multiplying the current clock value by the object
’s time factor.

� Finally, the current time scaler’s value is set to the result of dividing the scaled
object’s value by the divisor.

CONSTRUCTORS

StTimeScaler(const char *name, StObject *scaledObject, StValueType vtype
=VAL, double timeFactor=1.0, StProtoPilot *pilot =0, int pflags =0)

Creates a time scaler object. name is a null−terminated character string identifying the
new object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

scaledObject is a pointer to a valid statistical object to scale.

vtype is used to specify which scaled value type should be obtained from the object to
compute the ratio. Valid types are defined by the scaled object’s getValue() method.

timeFactor is the multiplication factor applied to the clock value.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StTimeScaler(StProtoExportMessage *pex, StProtoPilot *pilot, StObject
*scaledObject, StValueType vtype =VAL, double timeFactor =1.0)

Creates a slave scaler, whose specifications are given in the export message pointed to by
pex. pilot is the address of the new object’s protocol pilot, that should belong to the
display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

scaledObject, vtype and timeFactor have the same meaning than previously.

STATOBJ FROGS 1.2
20

StObjectScaler (extends StScaler)

PURPOSE

StObjectScaler instances are statistical measurement objects aimed at computing the
ratio of a scaled object’s value by the value of a scaling object.

CONSTRUCTORS

StScaler(const char *name, StObject *scaledObject, StObject *scalingObject,
StValueType scaledVtype =VAL, StValueType scalingVtype =VAL, StProtoPilot
*pilot =0, int pflags =0)

Creates an object scaler. name is a null−terminated character string identifying the new
object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

scaledObject is a pointer to a valid statistical object, that will be scaled by the scaling
object pointed to by scalingObject.

scaledVtype and scalingVtype are respectively used to specify which scaled and scaling
value types should be obtained from the objects to compute the ratio. Valid types are:

� VAL, that is the last stored value.
� NUM, representing the number of aggregated values since the object was created

or reset.
� SUM, that is the global aggregated value since the beginning of the measure.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StScaler(StProtoExportMessage *pex, StProtoPilot *pilot, StObject
*scaledObject, StObject *scalingObject, StValueType scaledVtype =VAL,
StValueType scalingVtype =VAL)

Creates a slave scaler, whose specifications are given in the export message pointed to by
pex. pilot is the address of the new object’s protocol pilot, that should belong to the
display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

scaledObject, scalingObject, scaledVtype and scalingVtype have the same meaning
than previously.

STATOBJ FROGS 1.2
21

StFilter (extends StObject)

PURPOSE

StFilter instances can be applied to any statistical object to build derivative or first order
filter on any measurement performed by such object.

The filter class does not implement the update trigger that should invoke the
StFilter::update() method periodically, according to the time reference stored in the
global variable Clock. An example of a filter management class named SxSampler can
be found in FROGS’ SIMEX simulation kernel.

CONSTRUCTORS

StFilter(const char *name, StObject *filteredObject, ITime dtUpdate,
StValueType vtype, int logSize =2, StProtoPilot *pilot =0, int pflags =0)

Creates a filter. name is a null−terminated character string identifying the new object;
NULL is an acceptable value, preventing the anonymous object from being visible from
the display front−end.

filteredObject is a pointer to the statistical object to filter each dtUpdate time units.

vtype is used to specify which object’s value type should be filtered. Valid types are
defined by the filtered object’s getValue() method.

logSize specifies the number of computed values that should be kept in the object’s
internal log. The log is circular, causing the oldest values to be overwritten when the
overflow limit is reached. Each cell of the log contains the value computed during an
update, up to logSize * dtUpdate back in time.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StFilter(StProtoExportMessage *pex, StProtoPilot *pilot, StObject *filteredObject,
ITime dtUpdate, StValueType vtype =VAL, int logSize =2)

Creates a slave filter, whose specifications are given in the export message pointed to by
pex. pilot is the address of the new object’s protocol pilot, that should belong to the
display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

filteredObject, dtUpdate, vtype and logSize have the same meaning than previously.

METHODS

virtual void update()

STATOBJ FROGS 1.2
22

Obtains the current filtered object’s value, then stores it into the filter’s log. This method
should be called on a periodical basis, according to the time reference value given by the
global variable Clock. The time elapsed between two invocations of this method should
be equal to the dtUpdate parameter passed to the filter constructor.

virtual void resetValues()

This method leads to a null−effect. A filter cannot be reset.

virtual void add(double value)

Stores value in the filter’s log. The lower and upper object’s value bounds are maintained
by this method. The current time value (i.e. Clock contents) is remembered.

virtual double getValue(StValueType vtype =VAL)

Gets the object’s value. Because a filter object actually stores different values, vtype is
used to specify the kind of desired value on return. At this class level, the method can be
asked the following value types:

� VAL causes the last stored value to be returned.
� NUM represents the total number of measures performed.
� DMES is derivative over the full range of the filter.

virtual void derive(ITime dt)

Computes and returns the derivative of the value serie for a time interval of dt. dt must
be inside the range dtUpdate .. logSize * dtUpdate. If dt is outside of this range, a value
for dt is taken as the closest of these bounds; otherwise, dt is rounded to the closest
multiple of dtUpdate.

virtual void sift()

Computes and returns the current value sifted through a first order filter of time constant
dt. dt must be inside the range dtUpdate .. logSize * dtUpdate. If dt is outside of this
range, a value for dt is taken as the closest of these bounds; otherwise, dt is rounded to
the closest multiple of dtUpdate.

STATOBJ FROGS 1.2
23

StTimeGraph (extends StFilter)

PURPOSE

This class implements a measurement object designed to grasp the temporal evolution of
a given statistic object. A time graph can be connected to a plotter drawing its graphical
representation through the StProto interface.

CONSTRUCTORS

StTimeGraph(const char *name, StObject *filteredObject, ITime dtUpdate,
StValueType vtype, int logSize =NTGVALUEDEF, StProtoPilot *pilot =0, int
pflags =0)

Creates a filter. name is a null−terminated character string identifying the new object;
NULL is an acceptable value, preventing the anonymous object from being visible from
the display front−end.

filteredObject is a pointer to the statistical object to filter each dtUpdate time units.

vtype is used to specify which object’s value type should be filtered. Valid types are
defined by the filtered object’s getValue() method.

logSize specifies the number of computed values that should be kept in the object’s
internal log. The log is circular, causing the oldest values to be overwritten when the
overflow limit is reached. Each cell of the log contains the value computed during an
update, up to logSize * dtUpdate back in time. The default value, NTGVALUEDEF, is
currently 500.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StTimeGraph(StProtoExportMessage *pex, StProtoPilot *pilot)

Creates a slave time graph, whose specifications are given in the export message pointed
to by pex. pilot is the address of the new object’s protocol pilot, that should belong to the
display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

STATOBJ FROGS 1.2
24

StStateDiagram (extends StObject)

PURPOSE

This class implements a backend object designed to log and export state information to a
drawing program. A state diagram can be connected to a plotter drawing the transitions
between states through the StProto interface.

Basically, a state diagram is used to log state transitions along with the current Clock
value at which they occur. It makes easy to propagate the state changes to a graphical
display for monitoring those transitions.

Known states are stored in an array of strings. A state diagram object’s current value is
the array index of the last state entered by a call to the add() method.

CONSTRUCTORS

StStateDiagram(const char *name, int nstates, const char *const *sarray, int
logSize =NSTVALUEDEF, StProtoPilot *pilot =0, int pflags =0)

Creates a state diagram. name is a null−terminated character string identifying the new
object; NULL is an acceptable value, preventing the anonymous object from being
visible from the display front−end.

sarray is a pointer to an array of null−terminated strings naming the states the object can
go through. nstates is the number of valid cells in the array. nstates can be negative or
null, in which case the valid state names will remain unidentified until defineStates() is
called for the object. If nstates is negative or null, sarray remains unused and thus can
be passed as NULL.

logSize specifies the number of states that should be kept in the object’s internal log. The
log is circular, causing the oldest values to be overwritten when the overflow limit is
reached. The default value, NSTVALUEDEF, is currently 100.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StStateDiagram(const char *name, int logSize =NSTVALUEDEF, StProtoPilot
*pilot =0, int pflags =0)

Creates a state diagram, with no defined states yet. The existing states should be defined
by a subsequent invocation of the defineStates() method with the proper arguments.

name is a null−terminated character string identifying the new object; NULL is an
acceptable value, preventing the anonymous object from being visible from the display
front−end.

STATOBJ FROGS 1.2
25

logSize specifies the number of states that should be kept in the object’s internal log. The
log is circular, causing the oldest values to be overwritten when the overflow limit is
reached. The default value, NSTVALUEDEF, is currently 100.

pilot is the address of the object’s protocol pilot. The current object’s operating mode is
determined by the nature of its pilot, whether slave (if pilot extends StProtoFrontPilot)
or master (if pilot extends StProtoBackPilot). If NULL, the object has no interface
channel.

pflags is a set of protocol flags such as defined by the StProto interface.

StStateDiagram(StProtoExportMessage *pex, int logSize =NSTVALUEDEF
StProtoPilot *pilot =0)

Creates a slave state diagram, whose specifications are given in the export message
pointed to by pex. pilot is the address of the new object’s protocol pilot, that should
belong to the display front−end application.

An export message is received as a result of the protoExport() method being called for a
backend object.

logSize specifies the number of states that should be kept in the object’s internal log. The
log is circular, causing the oldest values to be overwritten when the overflow limit is
reached. The default value, NSTVALUEDEF, is currently 100.

METHODS

void defineStates(int nstates, const char *const *sarray)

Defines the object’s states. This method should be called once, whenever no states were
passed to the constructor.

sarray is a pointer to an array of null−terminated strings naming the states the object can
go through. nstates is the number of valid cells in the array.

int getNStates() const

Returns the number of defined states.

const char *getStateName(int nth) const

Returns the nth state name from the array. nth is zero−based.

virtual void resetValues()

Resets the object. The count of collected values and samples are set to zero. The lower
and higher bounds are reset so as they bounce to the next collected value when available.

virtual void add(double stateno)

Enters a new state. stateno is converted to an integer index referring to the name of the
new state into the state array. This index is remembered into the object’s log.

If the state diagram is exported by the StProto object protocol, a message is immediately
sent to the display front−end propagating the entered state value.

STATOBJ FROGS 1.2
26

StProto

PURPOSE

This class implements a basic export protocol feature for statistical object’s to send their
current results and/or values to a display front−end. StProto is the superclass of all
exportable objects defined in the STATOBJ library. This class is documented in the hope
it will help implementing additional statistical objects.

The purpose of this class is to define a conventional way of sending and receiving data
between objects communicating remotely from a computation back−end and a display
front−end. It makes subclassed objects exhibit a simple interface to accomplish this task
in a well−defined, centralized manner.

The StProto class does not define the actual mean of exchanging data, such as using
sockets, shared memory, files or simple function calls. It rather defines a protocol to
follow for each side involved in the communication. The actual i/o operations are
performed by protocol pilots supplied by the programmer. Messages are composed of a
type identifier and an optional dynamically sized data buffer. FROGS SIMEX’s SxTcp
illustrates how to implement a TCP−based communication channel one can use to
connect protocol pilots.

It is important to understand that the object classes involved in the communication (i.e.
from back−end and front−end code) should both extend the StProto class. This is the
reason why all exportable objects defined in this library inherit the StProto object, and
have two construction modes, each defining a distinct behavior. A statistical object has a
master operation mode in which it actually performs computation and produces results. It
also has a slave operation mode receiving data produced by a master object, logging it
for display purpose. The slave object should be seen as an image of the master object
used by a remote display code. An illustration of such code can be found in the TKPLOT
library, that conforms to the StProto protocol for building a graphical plotter of
STATOBJ classes.

A protocol object has two major states, whether it is exported or not. To be eligible for
export, a protocol object must have a valid name. A protocol object can be explicitely
hidden, preventing any further export. When exported, a protocol object can be displayed
by the front−end or not.

Each protocol object has a unique internal identifier passed along with the messages it
sends and receives. This identifier keeps both sides in sync while allowing to destroy a
back−end object without jeopardizing the application.

The major steps of the protocol are:
� A protocol object can be given a name at creation time, or by using the

protoSetName() method. If the object does not need to be exported, it can be
hidden using protoSetHidden() or given a NULL name, which leads to the same
effect.

� Once the communication channel is established between the back−end and the
front−end code (maybe in the same application), a master object should be
exported by sending an appropriate message to the front−end through the

STATOBJ FROGS 1.2
27

protoExport() method. It should be noted that statistical objects tend to provide
this code in their respective protoInit() method. When received by the front−end
pilot, the message should cause a slave counterpart object to be created.

� Both sides can send messages to their respective counterpart using the
protoSend() method.

� As messages are received and dispatched by the protocol pilots, the
protoProcess() method is invoked to forward the input to the recipient protocol
object.

Messages can be of six types, all extending the StProtoMessage type:
� Export messages relay the characteristics of a master object to the display front−

end, expecting a slave counterpart object to be built as a result of processing such
messages. Export messages contain the master object’s name and an optional type
field.

� Unexport (deletion) message is sent to the peer whenever an object is destroyed,
whichever side deleted it.

� Display messages are used to forward an object’s display status to the peer. A
boolean value indicates whether the object has been put to or removed from
display.

� Informational messages are sent using the protoInfo() method to the peer object.
They should relay replies to general information requests back to the peer. This
kind of information is passed as a character string, instead of a raw data buffer.

� Breakpoint messages can flow on the communication channel as a result of setting
or clearing internal breakpoints one can set on statistical objects supporting this
feature. The StProto class implements a simple breakpoint management scheme
that is used by time graphs and state diagrams to provide graphical breakpoint
capabilities to the external plotter.

� Other messages are defined by the application code.

CONSTRUCTORS

StProto(const char *name =0, StProtoPilot *pilot =0, int pflags =0)

Creates a master protocol object. name is a null−terminated character string identifying
the new object; NULL is an acceptable value, preventing the anonymous object from
being visible from the display front−end. A new named object is implicitely exportable,
unless STPROTO_HIDDEN appears in the pflags parameter.

pilot is a pointer to the protocol pilot that is in charge of handling the communication for
the back−end side. NULL is an acceptable value telling the object is not currently
exportable. Setting this information may be postponed until a subsequent call to
protoSetPilot() is issued for the object.

pflags should be zero, or STPROTO_HIDDEN if the object should not be exported to
the display front−end.

StProto(const StProtoExportMessage *pex, StProtoPilot *pilot)

STATOBJ FROGS 1.2
28

Creates a slave protocol object. pex is a pointer to the information block passed by the
master object to its slave, defining the characteristics of the image it should build.

pilot is a pointer to the protocol pilot that is in charge of handling the communication for
the front−end side. Because a slave object makes no sense without a master creating it, it
should always have a valid pilot. However, setting this information may be postponed
until a subsequent call to protoSetPilot() is issued for the object.

METHODS

StProtoHandle protoGetHandle() const

Returns the object’s protocol handle. A valid handle is set whenever a master object is
exported, or a slave object is created using the information stored in the export message.
This handle is unique among all objects.

void protoSetPilot(StProtoPilot *pilot)

Sets the pilot information for the target object.

void protoSetName(const char *name)

Sets the object’s external name. If name is NULL, the object becomes unexportable,
unless it has already been exported. protoSetExportable() needs to be called next in
order to mark the object as exportable.

void protoSetExportable()

Mark the object as exportable. This method should be invoked to validate the ability to
export the object after a name has been set through protoSetName(), and before
protoInit() is called.

const char *protoGetName() const

Returns the object’s name, or NULL if none.

void protoSend(int mtype, STProtoMessage *pm =0, int msize =0)

Sends a message to the peer object. The data is relayed by the protocol pilot currently
active for the object through its send() method. This method leads to a null effect if the
current object has no defined pilot.

mtype is the message’s type identifier serving as a tag for the receiver to interpret it. This
identifier should be strictely positive.

pm is a pointer to an optional data buffer whose size is given by msize. If pm is NULL,
the recipient gets notified of a basic StProtoMessage arrival of type mtype. msize
should be zero whenever pm is invalid.

When received, the message is dispatched to the peer object identified by its protocol
handle. Related master and slave objects share the same handle.

int protoIsDisplayed() const

int protoIsConcealed() const

STATOBJ FROGS 1.2
29

Returns the object’s display status. Whenever the display front−end has informed the
back−end that the current object has come to display (through the protoDisplay()
method), protoIsDisplayed() returns true. Conversely, protoIsConcealed() returns true
when the previous assertion is false.

int protoIsExportable() const

int protoIsHidden() const

Tells whether the object is exportable or not. An object must have a valid name, and
should not have been explicitely hidden to be exportable.

int protoIsExported() const

Returns the object’s export status. Whenever the object has already been exported to the
display front−end, this method returns true.

void protoExport(StProtoExportMessage *pex, int msize)

Sends an export notification message of type STPROTO_EXPORT_OBJECT to the peer.
The message is relayed by the protocol pilot currently active for the object through its
send() method. This method is reserved for use with the master object role and is
typically called on behalf of protoInit().

pex is a pointer to an optional information buffer whose size is given by msize. If pex is
NULL, the recipient gets notified of a basic StProtoMessage arrival of type
STPROTO_EXPORT_OBJECT. msize should be zero whenever pex is invalid.

The message is sent to the peer only if all of the following conditions are met:
� The current object has a valid name, and was not explicitely hidden (i.e. is

exportable);
� A valid back−end protocol pilot has been set for the current object;
� The object has not already been exported by a previous call to protoExport().

void protoDestroy()

Sends an unexport notification message of type STPROTO_UNEXPORT_OBJECT to
the peer. The message is relayed by the protocol pilot currently active for the object
through its send() method. This method can be called either for the master or slave
objects.

The message is dispatched by the recipient’s protocol pilot to the proper destination,
whether the deletion was requested from the master or slave side. The following steps
may be taken as a result of receiving this kind of notification:

� If the message is sent from the master object side, the notification should be
processed by the StProtoFrontPilot::dispatch() method, which in turn calls the
virtual StProtoFrontPilot::destroyDisplay() method passing the corresponding
slave object address. The latter is expected to handle the deletion for the front−
end side of the protocol, doing all the necessary housekeeping chores in order to
remove the destroyed object from the current display as needed. The
StProtoFrontPilot::destroyDisplay() method is pure, thus must be implemented
by subclasses.

STATOBJ FROGS 1.2
30

� If the message is sent from the slave object side, the notification should be
processed by the StProtoBackPilot::dispatch() method, which in turn calls the
virtual StProtoFrontPilot::destroyObject() method passing the corresponding
slave object address. The latter is expected to handle the deletion for the front−
end side of the protocol. Its base implementation causes the slave object to be
deleted (i.e. the C++ delete operator is called for it), but can be specialized by
subclasses to perform extended deletion processing.

void protoDisplay()

Sends a display notification message of type STPROTO_DISPLAY_TOGGLE to the
peer, along with a StProtoDisplayMessage buffer. This type of message contains a
boolean value telling the new display status, which in this case is set to true. The message
is relayed by the protocol pilot currently active for the object through its send() method.
This method is reserved for the slave object role.

This kind of notification is used by the front−end code to inform the back−end
application that the corresponding slave object has just been put on display. As a result of
receiving this message, the master object should start sending data to its peer.

void protoConceal()

Sends a display notification message of type STPROTO_DISPLAY_TOGGLE to the
peer, along with a StProtoDisplayMessage buffer. This type of message contains a
boolean value telling the new display status, which in this case is set to false. The
message is relayed by the protocol pilot currently active for the object through its send()
method. This method is reserved for the slave object role.

This kind of notification is used by the front−end code to inform the back−end
application that the corresponding slave object has just been removed from display. As a
result of receiving this message, the master object should stop sending data to its peer.

void protoInfo(int mtype, const char *info, int slen =−1)

Sends an information message to the peer object. The data is relayed by the protocol pilot
currently active for the object through its send() method. This method is similar to the
protoSend() method, except the message body that must be a character string instead of
a raw data buffer. The peer may assume the received buffer is always a null−terminated
character string.

mtype is the message’s type identifier serving as a tag for the receiver to interpret it. This
identifier should be strictely positive.

info is a pointer to character string whose length is given by slen. If slen is negative, the
actual string length is determined by a call to strlen(). This means that info may not be
null−terminated, provided that slen has a correct value. However, the received buffer will
always be null−terminated. There is no static limit imposed to the string length.

When received, the message is dispatched to the peer object identified by its protocol
handle. Related master and slave objects share the same handle.

virtual void protoInit()

STATOBJ FROGS 1.2
31

Initializes a master object for export. This method should be implemented by subclasses
to call the protoExport() method appropriately. This is not an internal service, but rather
a conventional location where to put an object’s export directive. This method should be
called for each object extending the StProto superclass after the communication channel
has been established between the back−end and the front−end sides.

The default implementation does nothing.

virtual void protoSignal(int signo)

Processes a StProto signal sent to the current object. This service is not currently used
by the StProto interface. It is rather defined for classes extending the StProto superclass
as a conventional signal handler. If of any use, subclasses should implement this method
in order to catch existing signals, and behave appropriately.

signo can be:
� STPROTO_SIGBREAK telling that a breakpoint has been reached. The signal

handler should take the appropriate steps to react to this condition. For instance,
statistical objects from the FROGS executive suspend the simulation process upon
receipt of such signal.

� Any other user−defined signal.

virtual void protoProcess(int mtype, const StProtoMessage *pm, int msize)

This method should be implemented by subclasses to process the messages received from
the peer object.

mtype is the message’s type identifier serving as a tag for the receiver to interpret it. This
identifier is strictely positive.

pm is a pointer to a data buffer whose size is given by msize. A valid buffer is always
passed to the method, even if the peer gave no message body. In such a case, the address
of a basic StProtoMessage is passed.

The layout of the StProtoMessage struct is as follow:

struct StProtoMessage {
StProtoHandle handle;
u_long seqNum;

}

handle is the sender object’s identifier. This value is local to the back−end side, thus
remote from the front−end side.

seqNum is the message sequence number computed by the sender. This value can be
used to uniquely identify a message in a flow. All back−end objects share a single
counter for numbering.

The base implementation of protoProcess() does nothing.

void protoSetBreak(double threshold)

STATOBJ FROGS 1.2
32

Records a breakpoint on the current object. The StProto interface maintains a simple
breakpoint list on a per−object basis for subclasses implementing breakpoints on
numerical values, such as StTimeGraph and StStateDiagram.

threshold is the numerical value the object should reach or cross for the breakpoint to be
hit. The routine gracefully and silenty ignores duplicate breakpoints with identical
thresholds. Otherwise, a breakpoint for the given threshold is attached to the object’s
breakpoint list.

When run on behalf of a slave object, this method attempts to send a breakpoint
notification to the master peer. This notification consists of a
STPROTO_BREAK_TOGGLE message. The message body is a StProtoBreakpoint
struct containing the given threshold and a boolean status telling whether the breakpoint
should be set or removed. In this case, this boolean value is set to true. Upon receipt, the
master object is expected to start monitoring the breakpoint condition and react as needed
when it is reached or crossed.

Triggering breakpoints is not in the scope of the StProto superclass. Implementing the
defined breakpoints is definitely a task devoluted to its subclasses, as they process events
and state transitions. The superclass only maintains the breakpoint information.

void protoClrBreak(double threshold)

Removes a breakpoint from the current object. The StProto interface maintains a simple
breakpoint list on a per−object basis for subclasses implementing breakpoints on
numerical values, such as StTimeGraph and StStateDiagram.

threshold is the numerical value for which a breakpoint has been set using a previous
call to protoSetBreak(). The routine gracefully and silenty ignores inexistent
breakpoints for the given threshold. Otherwise, the breakpoint for the given threshold is
removed from the object’s breakpoint list.

When run on behalf of a slave object, this method attempts to send a breakpoint
notification to the master peer. This notification consists of a
STPROTO_BREAK_TOGGLE message. The message body is a StProtoBreakpoint
struct containing the given threshold and a boolean status telling whether the breakpoint
should be set or removed. In this case, this boolean value is set to false. Upon receipt, the
master object is expected to stop monitoring the breakpoint condition.

STATOBJ FROGS 1.2
33

StProtoPilot

PURPOSE

This class implements the statistical objects interface protocol pilot for the STATOBJ
library. One should first have a look to the discussion about the StProto class before
reading the following information.

Protocol pilots are objects performing the actual i/o and dispatching tasks to establish a
communication channel between related master and slave objects.

The StProtoPilot class is a pure superclass that must be subclassed to implement the
actual protocol processing.

CONSTRUCTOR

StProtoPilot(StProtoPilotType ptype)

Creates a protocol pilot. ptype indicates the kind of service provided by the object,
whether StProtoBACKEND for a back−end pilot managing master objects, or
StProtoFRONTEND for a front−end pilot managing slave objects.

METHODS

StProto *search(StProtoHandle handle)

Searches for a protocol object identified by handle and managed by the current pilot,
then returns its address when found. Otherwise, returns NULL.

void remap(StProto *object, StProtoHandle handle)

Sets an object’s internal identifier to handle. This method should be used with extreme
care as it may jeopardize the library consistency if misused. Anyway, it is sometimes
useful when implementing specific protocol pilots.

A unique identifier is set for each object when it is exported. This method allows to
change it for internal management purposes.

virtual int dispatch(int mtype, const void *mbuf, int msize)

Dispatches a message received from the i/o channel to the proper recipient. At this class
level, the method searches for the object identified by the handle received in the message
body which is interpreted as a buffer of type StProtoMessage.

If the object is not found, the method returns a boolean false value.

If the object is found and mtype is equal to STPROTO_BREAK_TOGGLE, the
breakpoint notification is processed locally. Otherwise, the message is passed to the
StProto::protoProcess() method for the recipient object. The method always returns a
boolean true value, indicating that the message has been successfully dispatched.

This method should be called by the underlying i/o management code in order to dispatch
the received messages.

STATOBJ FROGS 1.2
34

virtual void send(int mtype, const void *mbuf, int msize) =0

This pure virtual method is called to send messages to the peer object. It should be
implemented by the subclassed protocol pilot to perform the appropriate tasks in order to
relay the message identifier and data to the remote peer.

STATOBJ FROGS 1.2
35

StProtoBackPilot (extends StProtoPilot)

PURPOSE

This pure class implements the STATOBJ protocol pilot handling the backend side of the
communication between master and slave statistical objects.

CONSTRUCTOR

StProtoBackPilot()

Creates a backend protocol pilot. This object should be used to handle the
communication for the master statistical objects.

virtual int dispatch(int mtype, const void *mbuf, int msize)

Dispatches a message received from the i/o channel to the proper recipient. At this class
level, the method traps messages of type STPROTO_DESTROY_OBJECT, searching for
the object identified by the handle received in the message body which is interpreted as a
buffer of type StProtoMessage. If the object is not found, the method returns a boolean
false value. Otherwise, destroyObject() is called and given the address of the target
object.

If mtype is different from STPROTO_DESTROY_OBJECT, the message is simply
relayed to StProtoPilot::dispatch (). The method always returns a boolean true value
whenever the message has been successfully dispatched.

This method should be called by the underlying i/o management code in order to dispatch
the received messages.

virtual void destroyObject(StProto *object)

Destroys object by calling the C++ delete operator. This method should be implemented
by subclasses whenever additional housekeeping chores should be performed upon
master object deletion by the frontend application.

STATOBJ FROGS 1.2
36

StProtoFrontPilot (extends StProtoPilot)

PURPOSE

This pure class implements the STATOBJ protocol pilot handling the front−end side of
the communication between slave and master statistical objects.

CONSTRUCTOR

StProtoFrontPilot()

Creates a front−end protocol pilot. This object should be used to handle the
communication for the slave statistical objects.

virtual int dispatch(int mtype, const void *mbuf, int msize)

Dispatches a message received from the i/o channel to the proper recipient. At this class
level, the action taken depends on mtype’s value:

� if mtype is STPROTO_EXPORT_OBJECT, createDisplay() is called and given
the export message’s address and size. This method should return a valid new
StProto object handling the slave side of the protocol, or NULL if an error
occured. In the latter case, the method returns a boolean false value.

� if mtype is STPROTO_UNEXPORT_OBJECT and the target object is found,
destroyDisplay() is called and given the address of that object. If the target
object cannot be found, the method returns a boolean false value.

� If mtype has another value from the above, the message is simply relayed to
StProtoPilot::dispatch ().

StProtoFrontPilot::dispatch() always returns a boolean true value whenever the
message has been successfully dispatched.

This method should be called by the underlying i/o management code in order to dispatch
the received messages.

virtual StProto *createDisplay(const StProtoExportMessage *pex, int msize)

This pure method must be implemented by subclasses to create a slave counter−part to
the master object whose export has just been notified through an incoming
STPROTO_EXPORT_MESSAGE.

The information needed for creation should be contained in the export struct of size
msize pointed to by pex.

This method should return a valid slave object on success, otherwise NULL on failure.

virtual void destroyDisplay(StProto *object) =0

This pure method must be implemented by subclasses to perform the needed
housekeeping chores (such as removing the object from the display) upon slave object
deletion by the backend application.

STATOBJ FROGS 1.2
37

StNumer icLaw

PURPOSE

This class implements the basic object for all numeric laws and number generators.
Whilst it can be instantiated directly, it is usually subclassed to implement specific
behaviors.

StNumericLaw(double x =0.0)

Creates a number generator with x as seed.

int iget()

Calls get() to obtain the next value and returns it as an integer.

 virtual double get()

Draws and returns the next value. At this class level, this method always returns the
initial seed.

STATOBJ FROGS 1.2
38

