Effective Date: Dec 31,2000

1ts Page

How to use

FROGS

Freely available Object-oriented General purpose simulator

Revision History

Revision No. Date Prepared By
with E-mail Id
1.0 Dec 31 2000. Vasanth.varathan@wipro.com
Authorised By: Signature: Name: Date:
Contents
L.INErodUCTiON tO FROGS.......co ittt ettt ettt bt e bttt a2 e bt e e be e e ahee a2 eabe e e abeeeabeeeesabeeeabeeesneeeesbeeesbeeeanes 4
1.1Simulation EXECULIVE (SIMEX).....co ittt ettt et sb e et e e be e e sbe e e sasbeeebeeeabeeesnneesaes 4

How to use FROGS.

Effective Date: Dec 31,2000

1.2Statistical ODJECLS (STATOBUJ).....cciiteeitie ettt sttt ettt e s sh e sb e e e s b e e sb e sae e sbeesbe e sbeesn e e sbee s aneenneeennee s 4
1.3Configuration Class & TCL INTEITACE.uii ittt et sb e saee e sar e e e sbe e e saeeesaes 4
2.General information on how FROGS aCtually WOrKS...........oouiiiiiiiii e 5
3.FROGS features for creating a Simulation SYSEEIM..........c.eiiituiieiiie et eee et e sabe et e e sbe e e e sbe e e seeeeanes 5
SIMUIELION EXECULIVE LIDIary......cooeeieeeeee ettt ettt et rbe et eebe e e saaeesaes 6
Figure 1: Simulation Executive’ S inheritanCe diagram...........oceio ettt 6
S () o] = TP TR PROTRTPPRT 6

S 1 01 T T TP TP PR OTPROPRT 6
SXDBEIMION. ...ttt ettt r e e e e 7

oY | ST TSP T PP OTR PRSPPI 7

Figure 2: State Transition diagram fOr SKEVENT..........ooiiiii ettt er e 7
S o OO TSSO TP T R PPR PRSP 8

Figure 3: State Transition diagram fOr SXFIAQ........oooueiiii e 8
SXQUEUER. ... ettt ettt e oottt e e e et e e s s e bbb et et e e e e s e s s e e s b b ee e e e e e e s aaa s ean e b eeeeeae e e aan naarrpeeeeaeennanen 8

Figure 4: State Transition diagram fOr SXQUEUE..........co.ueiiiiiie ittt ettt e et sebe e e sbe e sabe e e bbeeeaae 9
SXRESDUICTE. ...ttt ettt et e r et e e e s b e se e h e e e e r e e s e sa b e e s s h et e sbae e e sr e e e srne e sane e e ren s 9

Figure 5: State Transition diagram fOr SXRESOUICE.........ccicueii ittt 10
S o U o PP PP PR VPRPPTRTRI 10

S O OO TR PP PR PR PRRURRPRI 10

S T 11 TP PP P R OPP R PR PRRPORRPRI 10

Figure 6: State Transition Diagram fOr SXTIMENoiuiiiiiiie ettt b e sbe e 11
S QI 1o o (< S TR PP UURRRTPRN 11

S I 1= o TP OO U PR PPRPRPRPRRORRPRI 11

Figure 7: State Transition Diagram for SXTRIEAM...........iiieiiiiiiii e e 13
| = 1710 L= U OO U TP PP PR TP 14

1Y, o a1 (o SO TP PR P RO PP PR PRRRORRPRI 15
SXSCNEAUIEN ...ttt b bt h e e s b et e sb e e sb e e e sreesbe e e sbeesaeeesbeesbeeesbeesreeenree e 15

SXTIME. ..ottt r bbb e e s b e e e bt e sE e e s Re e sb e e aRe e e sbeeabeesbeesbeesbeeenbeesreesreenree e 15

S I (= 11 OO PP PP PP PR PRPRORRPRI 15
StatiStiCal ClasS lIDIary........ocuei i ettt et e b e 16
Statistical Class hierarChy DIagram............ooi i ettt e et b e st e e sree e e b 16
.. 16
Numerical law classes iNhEritanCe diagramM...........uei ittt e e sae e e e sbe e e sree s 16
S (@] 1= o F OO OO R PP PR PRRRORRPRI 17

R (0011 1= OO PP R TR TR 18

S g1 o = (o SO PTPT U PP PR 18

S L [o0 =T O TR TPURUTRRUPR 18

S o= = OO TP O PP PP PPRPPPPPRRORRORI 19
SETTMESCAIEN ... ettt h b s b e e bt e sh e e sb e e e ab e e sbe e sb e e sbe e e sbeesbeesbeesbeeesreesreenree e 19

S (0 o105 o 1 PP RRURRUPR 19

S] 401 €= o o SRR TROURRRTPR 19

S R = D F= o =0 0 FO ORI UUTRRTPR 19

R L][0 O TP RO TR PRSP 20
SENUMEITICLBW. .. 1ttt ettt ettt sb e e s bt bt e e sb e e s bt e s ehe e sbe e s she e sbe e s sheeabeesebeesbeesnbeenbeennbeenree e 20
4.Stepsto create a simple simulation system with Sample files.........couii i 20
T L @e 11 Te 0= (o] N L =PRI 20
4.2SMUIELTON MOUE! T, bbb bbb e re e 21
B.BIMBKE TR E e E e b b e reens 21
4.4How to run the SMulation through GUI ..ot ettt reee s 23
4.5How to run the simulation in COMMEN TINE..........uuiiiiiii e 23
4.6ENvironment SettingS fOr [TDIaITES.........ii ettt et eaee s 23
5.Points to remember while Creating SIMUIBLTON.oiuiiiiiiieii et et 24
5.1C0—0pEratiVe SCREAUITNG.cveie ittt ettt sate et e ebe e e sabe e e e be e e sbee e e sabeeebeeeesaneasnes 24
5.2Incrementing simulation clock (through delay)..........ooo i 24
5.3Instantiating statistical objects with appropriate construction parameter............cccooveeriiieeensiee e 24
5.4Defining and changing states of Simulation SyStem ODJECES.........ooiuiiiiiiiii e 24
5.5Exporting the simulation system objects to display front end............cccooeiriiiiiiiiii s 26
B.UNEXPIOIEA GIEES. ... eei ettt ettt ettt ettt h e oottt e bt e e e s a b e e s ab e e e eh et e sabe e eab et e ebee e sabbeeebe e e aaeeeeenbeeenteas 26
B.LSCIIPE ALLITDULE. ... ettt ettt e bt e sttt e e sabe e sa b e e e sbee e s sabeeebeeeesaneanae 26
6.2Separation Of ISE frOomM KEIMEL..........ooi it ettt st e be e s b b e e e saneesne 27
6.30ther means to increment the SIMUIELION CIOCK............c.oiiiiiiiiiiie s 28
............... 6.4 Possibility of an application outside FROGS environment to communicate with model instances.

How to use FROGS.

Effective Date: Dec 31,2000

.. 28
List of Figures

Figure 1: Simulation Executive’ s inheritance diagraim...........oceio et 6
Figure 2: State Transition diagram fOr SKEVENT..........ooiiiiiii ettt e e 7
Figure 3: State Transition diagram fOr SXFIAQ........co et 8
Figure 4: State Transition diagram fOr SXQUEUE..........couueiiaiiiie ettt e e st e e e sabe e e sbe e sasbeesbaeeesae 9
Figure 5: State Transition diagram fOr SXRESOUICE.........cciueii ittt sbe e 10
Figure 6: State Transition Diagram fOr SXTIMENoiuii ittt bbb e e sbe e sneeas 11
Figure 7: State Transition Diagram for SXTHIEaM............oii i 13

How to use FROGS.

Effective Date: Dec 31,2000

1. Introduction to FROGS

It is an object oriented general-purpose simulation tool using which one could evaluate
complex architectures. It can be used interactively either as a tool for aiding design & tuning of
time—constrained systems or as decision aid tool for adjusting the behaviour of these systems
in production. FROGS is event—driven simulator based on unique, internally maintained time
reference, which is conceptually continuous & totally independent from the host workstation’s

idea of time.

FROGS consists of SIMEX or the simulation executive & STATOBJ or the statistical
objects. It also consists of configuration class in the SIMEX, which enables one to define
attribute values through a TCL/TK-based GUI. This enables one to change the simulation
settings for a given configuration without having to rebuild the simulator. The ISE co-ordinates
the entire process of configuring the interface, defining events sources, defining the architecture
attributes etc.

1.1 Simulation Executive (SIMEX)

This forms the core of simulation system. It provides rich set of C++ objects for system
modelling, such as threads, synchronisation objects, interface to measurement tools,
sources, events & few data structures like queues.

To use any of the facilities provided by the above mentioned classes, all that one need
to do is, inherit these objects & implement the body method to perform appropriate

actions as intended.
1.2 Statistical Objects (STATOBJ)

This gives a collection of C++ classes, which performs different kinds of statistical
measurements. To perform statistical analysis on one’s system objects, one has to
instantiate the display front—-end objects like histogram or time curve & pass the
calculated statistical data from different statistical objects using the appropriate
methods provided. All the statistical objects can define the sampling interval according

to which they should collect data from system objects.

Some of the statistical objects provided are counter, integrator, histogram, scaler,
numerical law & time curves. A set of compatible objects could be grouped to form a

statistical group object to form group computation.

1.3 Configuration Class & TCL interface

Iterating through the design decisions by setting different parameters for the simulation
system to find out its influence on the systems performance & functionality is basic

expectation from a simulator. To do this without having to re—build the simulator is what

How to use FROGS.

Effective Date: Dec 31,2000

one would feel handy. This configuration class purpose is to satisfy this requirement.
This configuration class abstraction provides a set of attributes, which provide dynamic
support to the GUI for displaying automatically the configuration windows containing the
model parameters. These collected values are finally stored into configuration
database. The tuneable attribute of your simulation system must be defined in the

model library using this configuration class interface.

2. General information on how FROGS actually works

In FROGS the simulation model describes the behaviour of given activity. The Architecture
associates various elements of a simulation system to define its initialisation rules. The librarian
must explicitly load the model libraries before they can be used. The main function of the model
library is to export definitions of simulation models, along with their configuration characteristics.
The Frogs librarian’s role is to offer GUI for creating & configuring the chosen instances
according to required characteristics of behaviour. The ISE also provides features for setting

behavioural parameters.

FROGS expects the model or your simulation system code implementing simulation system
objects, resource definition for instantiation using GUI with tuneable system parameter (if
present) in the implementation of class inherited from configuration class. It should also
implement that instantiate method populating the simulation system with system object
instances based on the parameters collected in the configuration database. It also expects a
typical boot strap code which is the same for any simulation system to create an executable

which is used to bootstrap the simulation.

First the obscan tool parses the configuration support code, which is part of obstick
package. This parsing result in the creation of Database implementation file, containing
methods to support the persistence of instances from the configuration classes. Each instance
holds a list of configuration attributes, which describes its settings. The memory layout of
persistent classes found while parsing configuration class file are determined & saved in a

repository named filename.pcr.

3. FROGS features for creating a simulation system

FROGS provides a set of simulation kernel facilities to implement the simulation system. It also
provides a set of statistical analysis tools to analyse the simulation systems output. Some of the
important features are explained below. For detailed notes refer to FROGS programmers
manual SIMEX and STATOBJ.

How to use FROGS.

Effective Date: Dec 31,2000

Simulation Executive library

StStateDiagram

Figure 1: Simulation Executive’sinheritance diagram

SxThread i

SxSource

SxSynchro -I—

[SxCalout | Sxtistner |- ['sxTcP |

SxObject

SxInfo

This is the base class for most of the simulation executive’s simulation object
classes. It implements basic simulation object, which can take multiple programmable
states the simulation monitor can export to a display front—-end upon transition from one
state to another. Inherited statistical object’s state diagram class performs state
transition logging. This class object can hold a list of state event object instances that
will be signalled when significant state transition occurs at the system object level. It
provides methods to set state of the simulation object, associate a state event with the
simulation object, and define states for the system object and also methods to

manipulate its state index.

This class is the super class for information message classes. Messages are
usually generated by simulation source & stored into queue pended by threads. One
could inherit this class & implement their own message class & add data members as

per requirement. The basic information message class has the following attributes

» Priority level, used to order the messages when they are inserted in prioritised

queues;

« A traffic identifier, which can be used to discriminate message categories when

How to use FROGS.

Effective Date: Dec 31,2000

performing statistical measurement on queue throughputs.
* A message generation time—stamp.

Methods to copy (i.e. copy all data members including the time—stamp), clone (copy the
details except for the time—stamp information, re—setting it to current system clock

time), free a message from queue, get & set traffic attributes are provided.
SxDaemon

This is a super class implementing local asynchronous actions, which may
occur upon state transitions or signals to system objects (i.e. any simulation object
SxObject). Multiple daemons can be linked together to create an activation list. This
class should be sub-classed to implement the body method, which is expected to
perform the required actions. The priority value supplied during its creation determines
the firing order of multiple daemons linked together in a given activation list. Methods to
add a daemon, remove a daemon, fire or activate a daemon’s body procedure are
provided. There is also a method called "is linked" to check if a particular daemon is

linked in the activation list.
SxEvent

This class implements, the basic event object used to signal elementary
actions. Multiple events can be linked together to create a signalling list. When an event

is signalled, all the events in the signalling list which it heading are signalled in turn.

The event object on its creation takes a pointer to a handler, which is a daemon object
that will be fired each time the event’s internal state switches from low to high. Event
objects can also be linked to form an event list. It provides methods to add and remove
handlers to event objects. There are also methods to check if an event is currently
armed with a particular handler. One could link, signal & set trace level for an event

object using appropriate methods.

Figure 2: State Transition diagram for SxEvent

-
-

-~

i FireHandlers signal

]

This class extends the functionality of an event object & specialises it to signal

How to use FROGS.

Effective Date: Dec 31,2000

state changes from simulation object instances. SxObject implementation causes the
events associated with the system objects to be signalled after each significant state
transition. The state event object must go through the off & on states alternatively for
the event processing handlers to be fired. The on & off states are encoded into the

object during its creation time.

SxFlag
This class implements a synchronisation object, which allows a set of threads
to wait for a condition. A simulation flag has two possible states, ON meaning the
condition is satisfied & OFF meaning the condition is not satisfied. The initial state of
the flag is set during its creation as a parameter to the constructor. Its default state is
OFF. Methods like pend, post, set-on, set-off & reset are provide to perform the
necessary operations on flag object.
Figure 3: State Transition diagram for SxFlag
m reset
Qeset | post
4 o] post
SxQueue

This class implements a thread synchronisation object allowing threads to wait
for messages. Messages are prioritised, and must be subclasses of the SxInfo super
class. The queue can operate in any of the following priority mode FIFO, LIFO, PRUP -
thread having the lowest priority is always served first. When two threads have the
same priority, the oldest pending one is chosen. In PRUPLF the lowest priority thread is
server first. When two threads have same priority, the latest one is chosen. Similarly
PRDN & PRDNLF exists where the highest priority thread is always served first. It
provides methods to do post a message and get a message from the queue. It also
provides methods to do some statistical analysis on queue throughput, retrieve the
average number of messages over time and maximum / minimum number of messages

in queue etc.
The instance of this class can take four active states

1. PENDED indicates that at least one thread is pending for messages on input. This
state denotes an empty queue.

How to use FROGS.

Effective Date: Dec 31,2000

2. OFF means that the queue is idle, with neither messages stored, nor pending
consumer threads.

ON means that at least one message is available to consumer threads, but no
output contention exists.

POSTED means that an output contention currently exists on the queue, which
needs to dispatch available messages before accepting further posting from

suspended producer threads.

Figure 4: State Transition diagram for SxQueue

one_msg_get

-
a
9
A
R

|
one_msg_acocept /‘ *,

. ™. - B
- t ™ - : t
- aceoe £ oRE_msg_ge
| PENDED | i [ON [pest ! ame. mag 20

one_msg_accept

J aceept i N
! v gfull_and_post
| get !

-, L] -
.,
- L ’

POSTED

SxResource

This class implements a thread synchronisation object, which would act like a
semaphore. Thread execution can be serialised using this object, by allowing limited
number of resources to be dispatched to them. The lack of resource causes the

requesting thread to pend on the object until one becomes available. The three active
states of the resource objects are

1. PENDED indicating that at least one thread is waiting for a resource. This state
denotes that no resource unit is currently available.

2. OFF means that the resource is idle, with neither units, nor pending threads.
3. ON means that at least one resource unit is available for the threads.

The priority modes available in the queue apply to this object also.

How to use FROGS.

Effective Date: Dec 31,2000

Figure 5: State Transition diagram for SxResour ce

—_—
- -—
- ” T
o - i
- - ==
- .

- - -
f release -7 reguest \\x one_res_regquest) release
1 - - -
|\‘ p rd - - ,-"

bl - -

- e releaze
i
SxSource

This class is the super class of message generating objects. The behaviour of
a source consists in producing messages at specific times determined by a private
generation law. Message types must be subclasses of the SxInfo super class. Once
generated message is automatically posted to a destination queue. A pre—define set of
typical subclassed sources is available with the simulation executive, including periodic
source, exponential source, uniform source, and file—based sources. The type of
message that should be generated is determined by the message template, which is
supplied during the creation of source object. The source object is active only between
the given time bounds specified by time start & time end during its creation. The virtual
method clone will be invoked to obtain a cloned instance of the template each time it is
necessary. The source object as part of its destructor actions deletes the message
template, so the required way of initialising a source is to create a new template object

each time a new source is built.
SXTCP

This class implements a communication object above the socket interface,
managing a bi—directional TCP/IP channel. This class only provides the needed support
for monitoring through SxMonitor object. This class being the subclass of SxListener
super—class has the capability of waiting for asynchronous input events on the TCP/IP
channel. Messages sent and received through a SxTcp instances are made of a
message type identifier followed by an optional block of dynamically sized unstructured
data. The TCP channel can be created in either server or client mode by passing
appropriate parameter during construction. The usual socket functions like connect,

bind, accept, send, receive and poll are available for working with this object.
SxTimer

The main purpose of this class is to perform specific actions at predefined

simulation times. A timer class basically takes three active states as stated below

1. IDLE denotes idle timer object

How to use FROGS.

Effective Date: Dec 31,2000

2. ARMED indicates that an expiration time currently exists for the object.

3. DISARMED indicates that a request to disarm the previously armed timer has been

issued.
4. EXPIRED denotes expired timer.

Figure 6: State Transition Diagram for SxTimer

reset -
~

-

DISARKMED

Methods like set time, reset time, activate are provided for manipulating this object.

SxTrigger

Triggers are threads driven by event sources to start a client handler. The
handler is fired according to the event source object. This class cannot be used "as is",
but can be extended by specific trigger body implementation. Method to check the

validity of the trigger is also provided.
SxThread

This class implements the simulation executive’s thread object behaviour.
Threads are concurrent activities inside the simulation system having a private
execution stack while sharing the global address space of the host application. As timed
objects, threads are prioritised objects scheduled according to their requested activation
time. The list of threads that are ready to run is maintained in run chain, which is unique
in the system. The run chain is an instance of scheduler class. Control of the CPU is
always given to one simulation executive’'s thread at any time during the simulator’s
lifetime. The executing thread changes only whenever it issues a suspensive call,
yielding control to other. The static pointer current thread has the pointer to the

currently executing thread object. Threads have four basic states:

How to use FROGS.

How to use FROGS.

Effective Date: Dec 31,2000

IDLE referring to unconditionally suspended state. The thread is removed from the

run chain, and will not regain the CPU until it is explicitly resumed.

PENDED indicates the thread is waiting for the condition of synchronisation object
to be met. Here also the thread is removed from the run chain and will not regain

the CPU until explicitly resumed.

PREEMPTED indicates that the thread has been explicitly pre—empted by another
one. The thread is removed from the run chain, and will not regain the CPU until

explicitly resumed.

READY to RUN denotes that the thread is part of the run chain and is waiting to be

chosen for execution by the scheduler.

RUNNING denotes a thread currently owning the CPU.

Effective Date: Dec 31,2000

Figure 7: State Transition Diagram for SxThread

vee--e DEAD
-__,J'----f il.i"l i t.l "\‘
,f"'-" - !] h
PR PR by L
J_f'f ‘f‘di Jr |Il- I‘I“\.
,f- fr‘ [' &
JFJ . ! b 5
, . ! | A
(. ; cangel 0 |
F-:::-) -H'h ! ! !
1 F__.:':_a' "-_H Il 3
| J_.-F'f,-' ! 5 H'\,H ! 1 l
| i_‘_‘-4- L { 4 \ . / ; |
! < POV amed O\ innedesme / caneel |
| - ; ; \,, " i |
¢ / " ' I
| ’ i " /
1 _f' / / \ . f.f" f |
| / / i . -~ ! |
[/ { : : b ’ { I
!
Loangel | / ! ' opend | RUNNNG ... , |
1 I fea
' ' ! / e T o e |
| ! (u""\il !"' sy ! h"\. |
| 1 || . ‘; ‘\.‘ ! L‘ |
| f - \ 7 Y \
| | / [|
| [suspend ! rEme e b L premgt | immedresme { 5 | bancel
I | ! : W TN | Ia \ |
I : 'I'I | i-iI ' “}‘ : r’f I i !
! ! | I f Ty S ‘ !
]] 1 l ‘f. i ' I fi | "I |
| | ' L immedresume ; | | |
' | slspend ' Ll . | teley | . |
' | \ R l | | |
! | | - ; o | | [
\-\‘ ! \ .] o | | I !
| | ! [I Il ,"' 1 | : |
- | \ N) . ! | r
" b , + waitnti !
| N ; ; ! I :
. y) preempt [resume ¢ immedresme 1
| % ! ¢ i |
L \ ' ‘) ;- fend
“"\. \\' ‘ a! | f !
| AL S . h / |
| "\.__-‘-_- 27 ! |
| m=aTh -
: et -~ felay | / !
. ORI [, . / J
| & Ieume X / '
] ., | /)/
\ S | / 7
. i ‘
* v T] -+
v waithdl / o
CooEme | / .
N, oo/
‘L"-u.,_ \"-_H ‘\ ‘,/ £ d-'i-‘.iI
'-n...__- " A p" --Fa
o, A/ gl

R

Different methods provided by this class are as follows

1. Set context—switching mode — This method enables one to make context switching

either in conservative mode or normal mode. The conservative mode ensures that
the entire context of the suspended thread is saved and restored when a switch
occurs; it is slower than the light switch is but is safer under certain circumstances.
Technically, the conservative mode differs from the faster one by calling the

sigsetjmp/siglongjmp pair to save/restore the context instead of the sigjmp/longjmp.

How to use FROGS.

Effective Date: Dec 31,2000

Resume, This resumes the thread object. It takes an optional synchronisation
object as parameter, which could have invoked this call. The actions taken by this

call depends on the target thread state:

If previously pre-empted, the thread is put into run chain. If the thread was pre—

empted while running the delay time remainder is renewed.

If the thread was ready to run the thread activation time is set to current clock time.

If the thread was idle or pending, the thread is inserted into the run chain and

enters ready to run state.

Prioritise, This method takes an increment as a parameter and adds it to the base
priority of the thread. Then the run chain is re—ordered to reflect the change, but

does not pre—empt the executing thread in any case.

Renice, This invokes prioritise method with the increment that comes in as
parameter, then it attempts to pre—empt the executing thread if a priority thread is

leading the run chain as a result of the operation.

There are several thread synchronisation methods like wait until, wait or until, wait

or etc. The working of them should be evident from the state transition diagram that

is given above.

Methods to save the stack context, check stack over flow, get the stack size and

stack top are also provided.

Methods like activate, suspend, immediate resume, pre—empt and delay manipulate

the execution of the thread body method implementation.

The following classes are rarely inherited and implemented unless a low level kernel

operation is required. It is advised not to inherit and instantiate the following class

objects more than once.

SxManager

This class implements a set of services aimed at controlling the simulation initialisation

and termination. The simulation manager should be created during start of simulation. It creates

a set of simulation management objects like simulation monitor when interactive mode is in

effect. This monitor runs as a separate thread in the simulation system, and establishes a bi—

directional communication link between the GUI application displaying simulation data and the

active objects that are monitored in the system. This class should be instantiated only once

How to use FROGS.

Effective Date: Dec 31,2000

during the simulation lifetime. The main purpose of the simulation manager thread is to perform
global sampling of all declared statistical objects, if no such object is available it simply waits till
the simulation ends. Some of the attributes in the simulation manager class are execution time,
warm-up time, finish time, number of samples, sampling period. It also has flags to indicate if it

is monitored, running, infinite execution time etc.

SxMonitor

This class inherits the properties of SxThread; it implements a set of services aimed at
providing monitoring capabilities. Monitoring refers to the ability to interact with the simulation
objects from an external application during the simulation lifetime. This monitor runs as a
separate thread in simulation; primarily waiting for commands from the external (usually GUI)
application, listening to a TCP socket for input. This is created only when the simulation runs in
an interactive mode. It is also in charge of holding and releasing the simulation process as
requested by the display front—end. The monitor uses the callout management service from the
scheduler class to register itself for asynchronous input notification from the communication

channel.

SxScheduler

The simulation executive’s scheduler is in charge of managing a set of runnable time—
related objects, maintaining their respective activation order. Timed objects are first ordered by
scheduled activation time, then by decreasing priority. The highest priority thread is chosen for
activation. The current time reference used by this class is the contents of the SxClock variable.

The thread manager’s run chain is an instance of this class.

SxTimed

This pure class is the super class of objects having behaviour related to the simulated
time, such as threads and sources. The scheduler object manages all simulation system objects
that are inherited from this class. This classes object takes two states one being IDLE & the
other RUNNING. IDLE refers to a state where the object is not a member of the scheduler’s
activation list. RUNNING refers otherwise; denoting an object is scheduled to run. This class
should rarely be inherited directly by the user—level classes, but is rather used by the low-level
simulation executive’s kernel code. This object provides methods to set time, get time, insert
into activation list, delay the current by specified time, suspend the object, resume the object

and activate the object.

SxListener

This class implements file descriptor-monitoring object, used by threads to detect input
conditions pending on input channel synchronously or asynchronously, while the other threads

are allowed to run concurrently. The simulation executive implements multi-threading on behalf

How to use FROGS.

Effective Date: Dec 31,2000

of the co-routines, not native threads from the operating system. This is relevant with the idea
of time independence, which is needed to have an event-driven scheduling kernel, which
guarantees reproducible behaviour of threads across simulation sessions. Hence it is obvious
that issuing indeterminately blocking call would make the entire simulation system process wait
for an event/resource which is external to the simulator itself. This object is designed to
circumvent this constraint. A listener monitors a given set of file descriptors for input, resuming
a target thread each time the condition is met. Once created, a listener should be attached to
the thread manager’s run chain using the scheduler’s callout method. The callout objects are
the one, which provide a simple means of having call back routines executed all along the
simulation process, irrespective of the thread that is currently holding the control. These callout

objects get fired each time the scheduler is asked to switch control to the next activable object.

Statistical Class library

All the statistical classes have a corresponding simulation executive class, which
exports the statistical classes computation to the display front—-end using the monitor when the
simulation is started in interactive mode. A simple basic set of statistical classes as stated
below has been provided. Adding a few more for interested readers after understanding the

clean interface with which the exiting ones have been implemented should be straightforward.

Statistical Class hierarchy Diagram

StTimeGraph

| StStateDiagram |

StScaler

Stintegrator

StHistagram
StCounter

StTimeScaler
StObjectScaler

StProto StObject

Numerical law classes inheritance diagram

How to use FROGS.

Effective Date: Dec 31,2000

| StTimeMumericalLaw |

StRandLaw

StExplLaw

StTimeMumericLaw

StModulation
StFileLaw

StObject

The basic behaviour of the statistical objects is implemented in this class. The StProto
class is inherited to connect each measurement object to a display front—end through a protocol
pilot. In other words, a statistical object’s value can be exported to a front-end for display
(usually an external application), and receive specific directives interactively that may alter its
value and/or behaviour. The protocol pilot should be seen as a communication object aimed at
exchanging messages back and forth between a measurement object and its display. A
statistical object can be used in two separate contexts either as backend object, where it
performs statistical measurements and send the collected data or as a front—end object, where

it receives the data sent by the back—end object.

A statistical object has five major properties:

* A current value (floating—point).

* A count of received values since the object was last reset or created.

» Two varying bounds (lower and upper) that are updated each time a new value is

logged

* A current count of samples.

Two primary methods that this object implements are add method using which
values are added to the statistical object and get value method using which appropriate
values are received based on the parameter passed to the get value method. Some of

the valid parameters that can be passed to the get value method are as follows:

* VAL causing the last added value to be returned.

How to use FROGS.

Effective Date: Dec 31,2000

* NUM represents the number of collected values since the object was created or

reset.

* MINVAL represents the object’s lower bound value. In other words it is the lowest

value collected through the add method.

« MAXVAL represents the object’s upper bound value.

It also implements methods to reset values, sample values and calculate the final result

on the object just before enquired.

StCounter

This class implements a measurement object, which is aimed at summing
numerical values, with sampling capability. This class provides all the methods provided

by the statistical object class.

Stintegrator

This class implements a time integrator object, which is aimed at computing the
integration of a given variable with respect to time. The current time is obtained from
the contents of the global variable clock. The start and end time duration for the
integration process is specified during the creation of the integration object. In addition
to the methods available from statistical object base class, it also provides methods like
increment and decrement which adds the last entered value incremented or
decremented from 1.0 to the object. Passing CMES as parameter to the get value
function can retrieve the mean of the variable of the current sample. Similarly SUM
would return the global integral measure since the beginning of measure. The rest are

same as the basic statistical object’s property.

StHistogram

This measurement object is aimed at determining the probability density of any
statistical law, and computes the mean and standard deviation and accuracy evaluation
for a given confidence interval. During the creation of a histogram values like number of

bins, left bound and right bound are compulsory requirement.

Histograms can automatically adjust themselves to the actual range of the
entered values. The expected behaviour when a value falls outside the current range of
a histogram is selectable by an adjustable mode. Which can either be multiply or
garbage. Multiply causes the histogram range to be adjusted by successive
multiplication’s by two, either to the left or to the right side according to the bound that

is exceeded. This is the default mode. In the case of garbage mode all the values falling

How to use FROGS.

Effective Date: Dec 31,2000

outside are collected in the leftmost and the rightmost bins. By calling get value method
with appropriate parameter one can retrieve the last added value, number of summed
values since the histogram was created, sum of the values and the square of summed

values.

StScaler

This class instances are statistical measurement objects aimed at computing
the ration of a given value by another. A scaler establishes a relationship between a

scaled object and a scaling one.

StTimeScaler

StTimeScaler instances are statistical measurement objects aimed at
computing the division of a scaled object’s value by the multiplication of the current
clock value by a given factor. Whenever the inherited StScaler’'s get value method is

invoked the following takes place

1. The current value of the scaled object is obtained by a call to its get value method

with appropriate value type.

2. The divisor is computed by multiplying the current clock value by the object’s time

factor.

3. Finally, the current time scaler’s value is set to the result of the dividing the scaled

object’s value by the divisor.

StObjectScaler

This class instances are statistical measurement objects aimed at computing

the ratio of a scaled object’s value by the value of a scaling object.

StTimeGraph

This class implements a measurement object, which is designed to grasp the
temporal evolution of a give statistical object. A time graph can be connected to a

plotter drawing its graphical representation through the StProto interface.

StStateDiagram

This class implements a backend object, which is designed to log and export
state information to a drawing program. A state diagram can be connected to a plotter
drawing the transitions between states through the StProto interface. Basically the state

diagram is used to log state transitions along with the current clock value at which they

How to use FROGS.

Effective Date: Dec 31,2000

occur. It makes easy to propagate the state changes to a graphical display for
monitoring those transitions. Known states are stored in array of strings. A state
diagram object’s current value is the array index of the last state entered by a call to
add method.

StProto

This class implements a basic export protocol feature for statistical object’s to
send their current values and/or values to a display front-end. StProto is the super
class of all exportable objects defined in the statistical object library. The purpose of this
class is to define a conventional way of sending and receiving data between objects
communicating remotely from computation back-end and the display front—end. It
makes the sub classed objects exhibit a simple interface to accomplish this task in a
well-defined manner. The StProto class does not define the actual mean of exchanging
data, such as using sockets, shared memory, files or simple function calls. It rather
defines a protocol to follow for each side involved in communication. The protocol pilots
provided by the programmer perform the actual I/O operations. Messages are

composed of type identifier and an optional dynamically sized data buffer.
StNumericLaw

This class implements the basic object for all numeric law and number
generators. Though this class can be instantiated directly, it is usually subclassed to
implement specific behaviours. Some of the methods that this class provides are iget to

get an integer value and get to get a double value.

4. Steps to create a simple simulation system with sample files

4.1 Configuration file

The configuration file defines the GUI for tuneable parameters to the model. FROGS
provides a set of pre—defined configuration attributes under its cfclass implementation.
Using these configuration attributes one can define the necessary tuneable parameters
for the model. The attributes should be defined in the constructor of the model defined
under the RDEFINE (resource definition) structure. The values of the attributes are
collected in the in the instantiate method. These configuration attributes allow the user

to create a TCL/TK graphical user interface to set model’s tuneable parameters.

Some of the predefined configuration class attributes are:
1. Integer Attribute — specifies integer value limited by a range

2. String Attribute — specifies strings.

How to use FROGS.

Effective Date: Dec 31,2000

3. Time Attribute — specifies time either in micro sec, Millie sec, or sec.

4. Option Attribute — specifies a set of options from which one can be chosen.
5. Resource Attribute — specifies another model resource for linked initialisation.
6. Real Attribute — specifies real values limited by range.

7. Radio Attribute — provides a set of from which one can be chosen.

8. Check Attribute — provides options from which multiple choices can be chosen.

4.2 Simulation Model file

This file defines the actual simulation code, which is to be simulated. An object of this
class serves as a starting point for model instantiation, instantiated by the configuration

class instantiate method.

4.3 Make file

Typical make file for model library creation would be something like this

CC =c++
RM=rm —f
LN S=In-s

Set the FROGS variable to point to your installation root
FROGS = /usr/local/frogs—-1.1

DESTDIR = /home/vasanth/project/lib/

OBSCAN = $(FROGS)/bin/obscan

INCLUDES = -I. -I$(FROGS)/include

—fwritable—strings is for Tcl-related code

CXXFLAGS = —fwritable—strings —fpcc—struct-return —fnonnull-objects —fno-

exceptions

LIBS = -L$(FROGS)/lib —Isimex —Istatobj —Icfclass —lobstick —ldevkit —Itoolshop -lItcl
—lelf —=Im —Insl —IdI

%.0: %.cc %.h SarDefs.h SarReg.h

$(CC) $(CXXFLAGS) —c —g $< -0 $@ $(INCLUDES)
all: SAR15
"SAR" is the executable used to bootstrap the simulation

SAR15: $(DESTDIR)IIbSAR15.s0 Main.o

How to use FROGS.

Effective Date: Dec 31,2000

$(CC) -0 $(DESTDIR)$@ Main.o ~L$(DESTDIR) -ISAR15 $(LIBS) ~WI,——
export—dynamic —WI,——rpath -WI,$(FROGS)/lib

Main.o: Main.cc
$(CC) $(CXXFLAGS) —c —g $< -0 $@ $(INCLUDES)
This is how to build the model library
$(DESTDIR)IibSAR15.s0: Dbimpl.o SarConfig.o $(OBJFILES)
$(RM) $(DESTDIR)/libSAR15.s50*

$(CC) —shared —o $(DESTDIR)IibSAR15.50.0.0.0 Dbimpl.o SarConfig.o
$(OBJFILES) -~WI,-soname -WI,$(DESTDIR)libSAR15.50.0

$(LN_S) $(DESTDIR)IibSAR15.50.0.0.0 $(DESTDIR)IibSAR15.50
$(LN_S) $(DESTDIR)IibSAR15.50.0.0.0 $(DESTDIR)IibSAR15.50.0
Update the p—class repository from config file
Dbimpl.pcx: SarConfig.cc
$(OBSCAN) —i SarConfig.cc -r $@ $(INCLUDES)
Generate the obstick support code from the repository contents
Dbimpl.cc: Dblmpl.pcx
$(OBSCAN) -0 $@ -r $<
The compiled obstick support code is part of the model library
Dbimpl.o: Dbimpl.cc
$(CC) $(CXXFLAGS) $(INCLUDES) -fPIC —c -g -0 $@ $<
SarModel.cc Main.cc: SarModel.h
SarConfig.cc: SarConfig.h
clean:

rm —f *.0 $(OBJIFILES) *.pcx $(DESTDIR)SAR15 $(DESTDIR)IiIbSAR15.s0*
Dblmpl.cc *~ *.*~

rm:
rm —f *.cc~ *.h~ *~
.PHONY: clean

.PHONY: rm

How to use FROGS.

Effective Date: Dec 31,2000

4.4 How to run the simulation through GUI

First the model library has to be loaded and the directory path should be exported in the
LD_LIBRARY_PATH environment variable. Then once the model library is loaded u can
instantiate model instance by right clicking on the model instances class under FROGS
root node, Any configurable setting for the model can also be set by double clicking the
model instances. After instantiating all the necessary models they should be associated
in the architecture, create a new architecture using the ISE and add models by right
clicking on the instantiated new architecture instance. The above would open the
resource browser with available models which can be added to the architecture by
double clicking on the model instance appearing in the resource browser. Then the
project file is created by associating the executable created during model library
creation and the created architecture. Subsequently the simulation can be started using
the simulation run command in GUI. The FROGS user manual gives a detailed

description on this process with necessary diagrams. Kindly refer to it for more details.
4.5 How to run the simulation in command line

To run the simulation through the command line you need to do the following:

1. <Simulation executable name> —C <architecture name> or

2. <simulation executable name> —F <project file name>

The section 9.2 simulator’s start options in FROGS’s user manual would give a detailed

overview on other start up facilities provided by FROGS.

4.6 Environment settings for libraries

Some of the simulation environment settings that are provided can be set using the

simulation configuration menu provided in the ISE. Some of them are listed below:

1. TCP/Server port is the TCP/IP port number used for communication between the

ISE’s monitor and the simulator.

2. Watchdog timeout is the time limit during which the connection must be made

between the monitor and the simulator, in seconds.

3. Trace Buffer is the number of lines of text that can be stored in the monitor’s trace

result window.

4. Simulation Time is the simulation’s duration.

5. Warm up Time is the start up period during which no statistical samples are taken.

6. Sampling Time is the number of statistical samples that must be taken. If the value

How to use FROGS.

Effective Date: Dec 31,2000

is null, the simulation is considered as having indefinite duration and the time

indicated for simulation time is take as the sampling period.
7. Display tick defines the smallest time interval that can be displayed

8. Time unit is the default unit for displaying time.

5. Points to remember while creating simulation

5.1 Co—-operative Scheduling

Since the event drive simulation kernel implements parallelism using co-routines and
co—operative scheduling. The simulation system programmer should ensure that every
process yields control for the execution of the other programmatically. Moreover it
should also be ensured that all the simulation systems threads are not blocked at the
same time, resulting in empty event list or schedule queue. The previous stated

condition would abort the simulation process with a fatal error.

5.2 Incrementing simulation clock (through delay)

The only know way of incrementing the simulation system clock is delay method which
bumps the system cock to the specified activation time when chosen by the scheduler
for gaining the CPU. This seems to appear a major drawback when working out

statistical analysis with respect to time which the user pre—defines in his program code.

5.3 Instantiating statistical objects with appropriate construction
parameter.

Instantiation of statistical objects with appropriate parameters in very essential to get
observable and meaningful statistical output. If the methodology for adding / collecting
simulation data is selected without understanding its functionality then some absurd
results can be observed. To avoid this it is better to have clear picture about the
statistical object’s functionality from the source. The brief explanation provided by the

STATOBJ documentation would also help.

5.4 Defining and changing states of simulation system objects
Any instance of SxObject can be defined a set of states and can be manipulated as
follows:

void SxThread::protolnit ()
{

const char *stateArray|[6];

How to use FROGS.

Effective Date: Dec 31,2000

stateArray[0] = "DEAD";

stateArray[1] = "IDLE";

stateArray[2] = "PENDING";

stateArray[3] = "PREEMPT";

stateArray[4] = "READY2RUN";

stateArray[5] = "RUNNING";

defineStates(sizeof(stateArray) / sizeof(stateArray[0]),stateArray);

SxTimed::protolnit();
}

The above method shows how a simulation system object can be defined to take
different states.

int SxThread::statelndex (int s)

{

returns<2?0:s-7;

}

The above implementation shows how the subclasses can re—scale the system object’s
state values before sending them to the state diagram superclass. The SxObject::signal
typically calls this method with the new entered state before passing it to the

StStateDiagram::add() method for logging and export to display front end.

For instance, one could need to map states DEAD and KILLED to the display state
DORMANT indexed on value 0. So this method could be reimplemented as in the

following one:

Int SomeTaskObject::statelndex(int _state)

if(_state == DEAD || _state == KILLED)

return O;

return _state;

void SomeTaskObject::protolnit()

const char* stateArray|[3];

How to use FROGS.

Effective Date: Dec 31,2000

stateArray[0] = "DORAMANT";

stateArray[1] = ?

}

The system Objects State can be retrieved and set through the following methods
Int getState();

Int setState(int state);

5.5 Exporting the simulation system objects to display front end.

To display the state transitions of the simulation system objects or other statistical
objects time—curves, the appropriate object should be exported to the display front-end

by the setProtoname and setProtoexportable in its constructor.

6. Unexplored areas

6.1 Script Attribute

Basically, the "script" attribute is designed to allow implementing any other kind of
attributes that's not provided by default by the CfClass package. This means that
instead of using a built—in Tcl script to draw an attribute on the Tk frame, collect then
pass back its value to the manager (such as they already exist for time values, integers,
handlers, resource links etc.). A user—provided Tcl script, which is given as part of the
attribute definition, is invoked to do the job. Create a script attribute like this, in the C++

constructor of a class extending CfClass:

ScriptAttributePointer scriptPtr =

new ScriptAttribute("<attribute name>", this, "<tcl-plugin>", "<tcl-prefix>", "<config tab

name>");
— <attribute name> is used in the attribute label.

— <tcl-plugin> is a directory name under <frogs—install>/share/frogs/tcl from where
the user—provided Tcl script is expected to be loaded (ensure that a tclindex file is
available from it). If your script is embedded into your executable, just pass a

default value like "generic" or whatever.

- - <tcl-prefix> is the prefix of the (conventionally nhamed) procedures the attribute

manager expects to find in your script (There are two procs to provide to the

How to use FROGS.

Effective Date: Dec 31,2000

manager, Check the example below, where the prefix is "MyAttribute™).

— <config tab name> tells to which configuration group your attribute will be
attached by the manager. Each group has its own graphic tab from the
configuration (Tix) notebook associated to each instance. The protocol is as
follows: When a script attribute is encountered as part of a configuration window, its
configure{} proc is called to draw any number of graphic widgets it needs to allow
the user to give this attribute a value. When the "Save" button is called for the
configuration window (i.e. Tix notebook) holding a script attribute, the script’s
validate{} proc is called to fetch back its value. This value will be stored into the
resource database by the attribute manager. The value will be passed as the last
argument ("settings") of the script’s configure{} proc the next time this attribute is

activated, and so on.

proc MyAttribute:configure {context frame name settings} { # "context" identifies the
TkBridge context. You can use it # as a unique key naming the configuration
window. # "frame" is the Tk frame on which the script is expected to # place some
kind of widget enabling the user to enter a value # for the attribute (a text field, a
checkbox...). The script # "owns" this frame exclusively. # "name" is the name of
the attribute you can use to label a # widget with. # "settings" is the current value of

the attribute (i.e. on # entry). }

proc MyAttribute:validate {context frame} { # Return the value of the attribute (i.e.

on exit) return { { keyl valuel } { key2 value2 } ... { keyN valueN } } }

Take a look at the carbonkernel sources in carbonkernel/ise/frontend/tcl/panel.tcl to
find a current use of this attribute. It is used to implement the CarbonKernel

"magnet” feature.

Note: The CfClass package defines the protocol and the C++ part of the attribute
manager, but the Tcl/Tk (i.e. graphical) parts are always provided by the high—end
application using it, such as "frogs" or "ck" (i.e. frogsl/iseltcl or

carbonkernel/ise/frontend/tcl).

6.2 Separation of ISE from kernel

The integrated simulation environment or the ISE communicates with the simulation

kernel through a SxTCP socket interface implemented in the SIMEX implementation.

The simulation configuration window, which requests for a monitor port substantiates

this claim. The way the current implementation works is as follows:

How to use FROGS.

The monitor or the ISE is the first one to get instantiated by the simulation manager

or simulation system thread.

Effective Date: Dec 31,2000

» The simulation monitor starts in server mode and opens a socket in the specified
simulation configuration port and forks for the simulation kernel, which then

connects back to the simulation monitor.

* Manipulating this process after understanding the StProto the protocol defining the
communication can extend this to a pseudo distributed environment. This extension
would help in better performance of the simulation system. As the simulation

workload (computation and graphical display) is done on separate processors.

6.3 Other means to increment the simulation clock

Currently the usage of delay method seems to be the only way incrementing the
simulation system clock. Hence estimating any desired parameters with reference to
simulation time is very inaccurate. The above statement simply means that in event
driven simulation process, where simulation of non-interacting parallel processes is
simulated the concept of analysing any parameter with respect to time is baseless. This

is because the simulation clock as such is incremented by the user’s simulation code.

6.4 Possibility of an application outside FROGS environment to
communicate with model instances.

Unfaithfully, there is no such programming interface. But since the ISE is written in Tcl,
you could use the remote command feature of Tcl "send". To get requests from an
outsider app, then call the C++ and/or Tcl layers of the receiving ISE. Warning, the Tcl
"send" command is inhibited being replaced by an empty procedure in the main.tcl
module. You’'ll need to provide your own if you follow this path. If you only want to start
the simulation, you can use the command-line options to start it from the mere
simulator executable instead of using the ISE. At any cost the configuration and
creation of models and architecture should once again be done only with the help of
ISE.

How to use FROGS.

