
Event−dr iven Simulator

����������	�
���
��

SIMEX Programmer ’s Manual

July 2001

SIMEX FROGS 1.2

Overview

SIMEX is an event−driven simulation kernel available as a C++ library which is part of
the FROGS environment. FROGS is an object−oriented, general−purpose simulation tool
designed for efficient and fast behavioral evaluation of complex architectures. It can be
used interactively either as a tool for aiding design and tuning of time−constrained
systems or as a decision aid tool for adjusting the behavior of these systems in
production.

FROGS exhibits event−driven simulation techniques based on a unique, internally
maintained time reference, which is totally independent from the host workstation’s idea
of time.

FROGS consists of :� SIMEX which provides a rich set of objects required for system modelling, such
as threads or activities, synchronization objects, measurement tools and statistical
support.� A GUI application for interactive configuration and on−line monitoring of the
simulation. The simulation monitor allows you to display and analyze selected
parameter evolution, such as state transitions of simulation objects.

SIMEX FROGS 1.2

1

SxDaemon

PURPOSE

SxDaemon is the superclass of classes implementing local asynchronous actions, which
may occur upon the occurrence of state transitions or signals to system objects (i.e.
SxObject).

Multiple daemons can be linked together to create an activation list.

This class should be subclassed to implement the body() method which is expected to
perform the required actions.

CONSTRUCTOR

SxDaemon(int prio)

Creates a daemon object of priority pr io. The priority value is used to determine the
firing order of multiple daemons linked together in a given activation list. 0 is the lowest
priority.

METHODS

SxDaemon *addDaemon(SxDaemon *devil)

Adds daemon devil to the linked list of daemons starting from this, according to its
priority. Highest priority daemons are put at the front of the linked list, lowest are put at
the rear. FIFO insertion order applies when two daemons have the same priority. This
method returns a pointer to the daemon at the front of the linked list after the insertion is
performed.

As a special case, passing NULL to devil leads to a null−effect, and always causes the
method to return this.

virtual void body()

The callback method called when the deamon is fired. Subclasses from the SxDaemon
class must reimplement this method to define the proper actions to be performed when
activated. The basic callback does nothing.

SxDaemon *remDaemon(SxDaemon *devil)

Removes daemon devil from the linked list of daemons starting from this. This method
returns a pointer to the daemon which remains at the front of the linked list after the
removal is performed. NULL indicates that no other daemon follows the just removed
head of list.

int fire(int ord)

Activates the daemon, calling back its body() method. All the daemons eventually linked
to this using addDaemon() are also activated in sequence, according to their priority.

SIMEX FROGS 1.2

2

ord is the 0−based ordinal position of the current daemon in the activation list. The
method returns the actual number of fired daemons.

SxDaemon *isLinked(SxDaemon *devil)

Checks whether devil is currently linked to the activation list headed by this. Returns
devil if true, NULL if not.

SxDaemon *next()

Returns a pointer to the daemon following this in the activation list, or NULL if there is
none.

static void setGlobalTrace(int level)

Set the current trace level of the SxDaemon methods to level. A value of 1 gives
minimal trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

3

SxEvent (extends SxObject)

PURPOSE

SxEvent implements a basic event object, used to signal elementary conditions.

Multiple events can be linked together to create a signaling list. When an event is
signaled, each following event from the signaling list it is heading is signaled in turn.

Events have two active states:� LOW denotes an idle condition.� HIGH denotes a raised event.

CONSTRUCTOR

SxEvent(SxDaemon *handler, SxEvent *buddy)

Builds a new event object. handler is a pointer to a daemon object that will be fired each
time the event’s internal state switches from LOW to HIGH. buddy is a pointer to the
event object following this one in the signaling list.

METHODS

void addEvent (SxEvent *event)

Adds event at the end of the signaling list headed by this.

SxEvent *remEvent(SxEvent *event)

Removes event from the signaling list headed by this. This method returns a pointer to
the event that remains at the front of the linked list after the removal is performed. NULL
indicates that no other event follows the just removed head of list.

As a special case, passing NULL to event leads to a null−effect, and causes the method
to return this.

void addHandler(SxDaemon *handler)

Adds handler to the linked list of handlers the event holds. Highest priority handlers are
put at the front of the linked list, lowest are put at the rear. FIFO insertion order applies
when two handlers have the same priority.

SxDaemon *remHandler(SxDaemon *handler)

Removes handler from the linked list of handlers the event holds. This method returns
handler on success, or NULL if the non−null handler is not a member of the current
activation list.

As a special case, all handlers are removed from the event’s handler list in a single
operation if handler is a NULL pointer, and the pointer to the handler which was heading
the list before the complete removal is returned.

SIMEX FROGS 1.2

4

SxDaemon *isArmed(SxDaemon *handler)

Checks whether handler is currently armed (i.e. member of the activation list) for the
event. Returns handler if true, NULL if not.

SxEvent *isLinked(SxEvent *event)

Checks whether event is currently linked to the signaling list headed by this. Returns
event if true, NULL if not.

void link(SxEvent *event)

Makes event follow this in the signaling list it is heading.

SxEvent *next()

Returns a pointer to the event following this in the signaling list, or NULL if there is
none.

virtual int signal(int state)

Signals the event with state. If the event object’s internal state switches from LOW to
HIGH, the activation list of handlers held by the event is fired. The events eventually
linked to this are also signaled in sequence with the same input state, according to their
insertion order.

static void setGlobalTrace(int level)

Set the current trace level of the SxEvent methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

5

SxStateEvent (extends SxEvent)

PURPOSE

SxStateEvent implements a specialized event object used to signal state changes from
SxObject instances. SxObject implementation causes the events associated with system
objects to be signaled after each significant state transition.

The state event object must go alternatively through the off and on states for the event
processing handlers to be fired. The expected values used to encode both states are up to
the user, and should be passed to the appropriate parameters from the constructor.

CONSTRUCTOR

SxStateEvent(int onState, int offState, SxDaemon *handler, SxEvent *buddy)

Builds a new state event object. handler is a pointer to a daemon object that will be fired
each time the event’s internal state switches from offState to onState. buddy is a pointer
to the event object following this one in the signaling list.

SIMEX FROGS 1.2

6

SxFlag (extends SxSynchro)

PURPOSE

SxFlag implements a synchronization object allowing a set of threads to wait for a
condition. A simulation flag has two possible states, whether ON (i.e. the condition is
satisfied) or OFF (i.e. the condition is unsatisfied).

Multiple threads can pend on a single flag until the condition is satisfied.

CONSTRUCTORS

SxFlag(const char *name, SxSynchroState state =OFF)

Builds a new simulation flag. name is a null−terminated character string identifying the
new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

The flag is set to the initial state passed to the constructor, whether OFF (default) or ON.

SxFlag()

Builds a new anonymous simulation flag, initially set to OFF.

METHODS

virtual void pend()

Makes the current thread pend for the condition to be satisfied. If the condition is already
satisfied when the call is issued, the method returns immediately. Otherwise, the current
thread is put in the flag’s waiting list and suspended, thus causing a thread switch.

void post()

void setOn()

Sets the flag’s internal state to ON, causing any pending thread to resume immediately.

void reset()

void setOff()

Sets the flag’s internal state to OFF, causing further pend requests to block the calling
thread.

static void setGlobalTrace(int level)

Set the current trace level of the SxFlag methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

7

SxInfo

PURPOSE

SxInfo is a superclass for information message classes. Messages are usually generated
by simulation sources (i.e. SxSource) and stored into queues (i.e. SxQueue) pended by
threads.

Information messages have at least the following attributes:� a priority level, used to order the messages when they are inserted in prioritized
queues;� a traffic identifier, which can be used to discriminate message categories when
performing statistical measurements on queue throughputs;� a message generation time−stamp.

CONSTRUCTORS

SxInfo(int prio =0, int traffic =0)

Builds a new information message of priority pr io and a traffic identifier set to traffic.
The internal time−stamp is set to the value of the global variable SxClock when the
message is built.

SxInfo(const SxInfo& src)

Builds a copy of the source information message. The internal time−stamp is set to the
value of the global variable SxClock when the copy is built.

METHODS

virtual SxInfo *clone()

Returns a clone of the current information message. However, the internal time−stamp
should be reset to the value of the global variable SxClock when the message is cloned.
This method must be implemented in every subclass extending the SxInfo superclass. It
is called by the source object (i.e. SxSource) to generate copies of the original message
template when feeding its destination queue.

SxInfo *copy()

Returns a copy of the current information message. All data members of the original
message instance are copied, including the time−stamp, which is left to its original value.

void free()

Removes the current message from the simulation queue it has been posted to, if any.

SxQueue *getQueue() const

Returns a pointer to the simulation queue the current message has been posted to, if any,
or NULL if not.

SIMEX FROGS 1.2

8

ITime getTime()

Returns the current message’s generation time−stamp.

int getTraf() const

Returns the traffic identifier of the current message.

void setTraf(int traffic)

Sets the message’s traffic identifier to traffic.

SIMEX FROGS 1.2

9

SxManager (extends SxThread)

PURPOSE

This class should be instantiated only once during the simulation life−time. It implements
a set of services aimed mainly at controlling the simulation initialization and termination
phases.

The simulation manager should be created during the early initialization steps of a
simulator process. It creates a set of simulation management objects, including a monitor
when the interactive simulation mode is in effect. This monitor is running as a separate
thread in the simulation system, and establishes a bi−directional communication link
between an external GUI application displaying simulation data and the active objects
that are monitored in the system.

The simulation manager can parse the initial argument vector given to the main() routine
to find out additional runtime parameters. A parameter set in the argument vector always
overrides the same parameter given to the constructor, when applicable. When the
constructor returns, one can retrieve user−defined local arguments − which are left
unprocessed by the manager’s option parser − in the updated argument vector.

As a thread, the simulation manager also performs the global sampling of all declared
statistical objects concurrently to other threads, or simply sits in an idle wait until the
simulation ends if no sampling is required.

PUBLIC DATA MEMBERS

static SxManager *This

The pointer to the active manager for the current simulation. This pointer is updated by
the SxManager constructor.

static ITime execTime

The simulation time defined for the simulation. ZEROTIME means infinite.

static ITime warmupTime

The warm up time defined for the simulation.

static ITime finishTime

The sum of the warmupTime and execTime times, which is the absolute time the
executive’s clock should reach for the simulation to end. This value is set to ZEROTIME
if the simulation is infinite.

static int numSamples

The number of statistical samples that will be collected during the execution time,
starting after the warm up phase. This value is set to 0 if the simulation is infinite.

static ITime samplingPeriod

SIMEX FROGS 1.2

10

The duration of a sampling period, which equals execTime / numSamples unless the
sampling is disabled due to an infinite simulation.

static ITime samplingTime

The starting simulation date of the last sampling started. This variable is updated at the
beginning of each sampling period.

static int fMonitored

A flag telling whether monitoring is active for the simulation. If true, the
SxMonitor::This class data member should contain a valid pointer to the active monitor.

static int fInfinite

A flag telling whether simulation is infinite. If true, execTime should be equal to
ZEROTIME.

static int fDone

A flag telling whether simulation has finished. If true, SxManager::run() is about to
return to its caller, or has already done so.

static int fRunning

A flag telling whether simulator has entered its running state. This state is entered by
invoking the SxManager::run() method.

static char *progPath

A null−terminated character string containing the absolute path of the currently executing
program. This path is determined inside the SxManager constructor, using the value of
argv[0] as a hint to find it. If the argument vector is not passed, this variable is set to
point to an empty string.

CONSTRUCTOR

SxManager(ITime simuTime,ITime warmupTime, int *argc =0, char *argv[] =0, int
nSamples =1)

Creates the simulation manager. Once created, the manager should be initialized
(initialize()) then activated (run()) to actually start the simulation.

simuTime is an internal time value specifying the total duration of the simulation
process. A value of ZEROTIME means an infinite simulation time, and disables the
sampling procedure.

warmupTime is an internal time value giving the duration of the warmup period starting
the simulation. The manager will wait for this period to elapse before sampling the
declared statistical objects. A value of ZEROTIME causes the manager to begin
sampling immediately after the simulation is started.

argc is a pointer to the argument count passed to the main() function. An updated value
(lesser or equal to the original) representing the number of remaining options to process

SIMEX FROGS 1.2

11

(i.e. left unprocessed by the simulation manager’s option parser) is written before the
constructor returns. A NULL pointer (default) prevents the option parsing to take place.

argv is a pointer to the argument vector passed to the main() function. The unprocessed
options are trimmed to fill the lower indices of the vector. Hence, iterating from 0 to argc
− 1 after the constructor has returned gives access to the set of unprocessed options. A
NULL pointer (default) prevents the option parsing to take place.

numSamples is used to determine the sampling period used by the manager. The
sampling period is equal to: simuTime / numSamples. However, if numSamples is 0,
simuTime is forced to ZEROTIME, causing the simulation to be infinite. The default
value for this parameter is 1.

COMMAND−LINE ARGUMENTS

The options interpreted by the simulation manager when found in the argument vector
passed to the constructor are:� −x <flags>, where flags is a string of single−letter toggles. “a” should be used to

suspend the simulation on trace alerts. This flag is ignored if the simulation is not
interactive (i.e. no monitoring support). “m” causes all threads to use a
conservative context−switching method, instead of the faster (default) one. This
flag is useful when the program code is tweaked by machine−code level
instrumenters (such as Purify™) requiring the full context of a suspended thread
to be saved. You should try setting this flag each time your simulation crashes
unexpectedly at startup after such instrumenter altered the original executable
image. “w” causes the simulator to be suspended by the monitor each time a
warning message is sent to the simulation manager (i.e. SxManager::warning()).
For instance, −Xamw toggles all options on.� −p <tcpPort> where tcpPort is a TCP port number a GUI application can pass to
the simulator it spawns, in order to connect back to it. The GUI front−end should
have previously created a server TCP socket the simulator will connect to, usually
on behalf of the invocation of SxManager:createMonitor(). The port number
can be retrieved using the SxManager::getTcpPort() accessor.� −u <unit> where unit is the default external time unit, “sec” standing for seconds,
“msc” for milliseconds and “usc” for microseconds. This unit will be used as the
default one when constructing ETime objects (see statobj package
documentation). The ETime class implements the external representation of the
internal (i.e. ITime) simulation time, in which the simulation clock is expressed.� −k <dtick> where dtick is the display tick value used to scale internal time values
when formatting their external representation. dtick is a time string composed of a
number and a time unit. For instance, passing –k “1 msc” causes time values to
be displayed in number of milliseconds when formatted.

SIMEX FROGS 1.2

12

� −t <simuTime> where simuTime is the total duration of the simulation. When
this date is reached, the manager automatically terminates the simulation
program, exiting with a zero return code. simuTime is a time string composed of
a number and a time unit. When set, this option overrides the simuTime
parameter passed to the constructor.� −w <warmupTime> where warmupTime is the total duration of the simulation
warm up phase. When this date is reached, the manager starts collecting the
statistical information according to the sampling period. warmupTime is a time
string composed of a number and a time unit. When set, this option overrides the
warmupTime parameter passed to the constructor.� −s <numSamples> where numSamples is the number of statistical samples to
collect during the simulation life−time, after the warm up phase. When set, this
option overrides the numSamples parameter given to the constructor.� −d <rundir> where rundir should be a valid path of a directory the simulation
process will enter shortly after SxManager::run() is invoked. If no run directory
is specified, the current directory on entry is kept.� −l <logFile> where logFile is the path of a text file to which the simulator
messages, such as warnings and errors, will be directed to. A value of “−“ (i.e.
minus) causes the messages to be written to the simulator’s standard error stream,
which also happens to be the default setting.� −z <speedVal> where speedVal is the simulation speed value to set before the
simulation starts. The lower the speed value, the greater the hog factor set for to
the SxHog instance. Hence, lowering the simulation speed makes the hog thread
slow down the whole simulation process. The lowest speed value is 1, the highest
is 10 (inclusive).� −C <config> specifies the name of the configuration (or architecture) which
should be instantiated to populate the simulation at startup. Configurations are
built using the FROGS monitor.� −f <project−file> tells the simulation manager to extract the simulated
architecture to instantiate (see –C option) from the project file given in argument.
A project file is created using the FROGS monitor, and usually ends with the .frg
extension. In this mode, the monitor becomes a slave of the simulator which
spawns it. This mode is useful to run the simulator under the control of a
debugger while keeping the monitoring support.

METHODS

virtual SxMonitor *createMonitor()

This callback method should be implemented by subclasses to connect to a GUI
application as needed. This application would be expected to display the information
obtained from the monitored objects inside the simulation. This double−tasks architecture
(simulation backend attached to a graphical front−end, both in separate processes) is
recommended, although the monitoring protocol classes (e.g. GraphProto) do not
specifically enforce it.

SIMEX FROGS 1.2

13

createMonitor() should return a pointer to an instance of a SxMonitor subclass, which
will be remembered as the global monitor object for the simulation. Returning NULL
causes the executive to switch to the non−interactive mode.

The default implementation of this method attempts to connect to an external program
using the current value of the TCP port number (see the discussion about the command−
line argument –p). If it succeeds, a basic SxMonitor class instance is created and a
pointer to it is returned to the caller.

virtual void initialize()

Initializes the manager before the simulation is started. This method does the following
tasks:� the error log stream is opened. One should note that the run directory which may

have been specified through the command line options (i.e. –d flag) has not been
entered yet, when evaluating relative file pathes;� if the simulation is interactive, the monitor is created through a call to
SxManager::createMonitor() and the communication channel is opened with its
display application;� the simulation is populated by instantiating the current architecture (i.e. –C flag);� the hog thread is created (see SxHog).

This method should be called on behalf of the main() thread, usually shortly after the
manager object is created, and before SxManager::run() is invoked to start the
simulation.

virtual int run()

This method actually starts the simulation process, yielding the processor control to the
thread having the earliest scheduling time. An integer status code is returned to the caller
after the simulation ends, whether normally (zero exit code) or abnormally (non−zero
exit code).

As a consequence of starting a monitored simulation, the StProto::protoInit() method is
called for all the instances of classes extending the StProto class which were created
during the configuration phase (i.e. SxManager::initialize()).

This method must be called on behalf of the main() thread context.

virtual void finish(int exitCode)

Terminates the simulation. The control is switched to the main() thread, causing
SxManager::run() to return with the termination status exitCode. finish() should be the
preferred way of terminating a simulation, rather than calling the C−level exit() routine
directly.

int getTcpPort() const

Returns the TCP port number passed to the simulator through the command−line
arguments (i.e. –p option), or –1 if none has been given.

SIMEX FROGS 1.2

14

int getFatalCount() const

Returns 1 or 0, whether a fatal error occured or not.

int getWarningCount() const

Returns the number of emitted warning messages, which corresponds to the number of
times the warning() method has been called.

virtual void fatal(const char *format, …)

Formats then emits an abort message to the error log file. format is a format string
conforming to the printf(3S) specifications. An adequate variable argument list should
follow this parameter. The control is switched to the main() thread after the message is
logged, causing SxManager::run() to return with an abnormal termination status of 1.

virtual void warning(const char *format, …)

Formats then emits a warning message to the error log file. format is a format string
conforming to the printf(3S) specifications. An adequate variable argument list should
follow this parameter. The count of warnings is incremented.

The simulator may be suspended by the monitor (if active) after the message is reported
if the “w” (i.e. break on warnings) option flag was passed to the simulation manager (see
SxManager::SxManager()).

SIMEX FROGS 1.2

15

SxMonitor (extends SxThread)

PURPOSE

This class should be instantiated only once during the simulation life−time. It implements
a set of services aimed at providing monitoring capabilities. Monitoring should be
understood as an ability to interact with the internal simulation objects from an external
application during the simulation life−time, such as displaying or eventually changing the
objects’ internal state. For instance, threads behavior against time can be displayed using
a state diagram while the simulation monitor exports each state transition automatically.

The embedded monitor runs as a separate thread in the simulation; it is mainly in charge
of waiting for commands from the external (usually the GUI) application, listening to a
TCP socket for input. The monitor uses the StProto communication scheme to dispatch
received messages and send information to the display front−end. Describing the specific
protocol values (such as message identifiers and structs) currently shared between
SIMEX and the ISE is outside the scope of this document. The information given below
only describes the general way of using the simulation monitor as a communication end−
point between the internal objects managed by the executive and a display front−end.

The monitor is only created while running in interactive mode; when enabled, it is also in
charge of holding and releasing the simulation process as requested by the display front−
end. The monitor uses the callout management service from the SxScheduler class to
register itself for asynchronous input notification from the communication channel.

The simulation monitor should be created in response to the invocation of
SxManager::createMonitor() by the simulation manager.

CONSTRUCTOR

SxMonitor(SxTcp *tcpChannel)

Creates a monitor object using tcpChannel as a pointer to a TCP communication object
for sending and receiving data to/from the display front−end.

PUBLIC DATA MEMBERS

static SxMonitor *This

The pointer to the active monitor for the current simulation. This pointer is updated by
the SxMonitor constructor. This pointer may be null if the simulation is not started in
interactive mode.

METHODS

virtual void send(int mtype, StProtoMessage *mbuf, int msize)

Sends the message of type mtype, starting from mbuf to msize bytes to the TCP channel
associated with the monitor object. See the documentation of the StProto
communication scheme for more on these parameters.

SIMEX FROGS 1.2

16

virtual void stopSimulation(int stopCondition)

Stops the simulation, sending the stopCondition word to the display front−end as an
indication of the cause of the suspension. This method immediately switches control to
the monitor thread, which in turn calls SxMonitor::holdSimulation() as a consequence
of entering the stopped state.

virtual void holdSimulation()

Issues a blocking read request on the communication channel to hold the simulation
process. Because the SIMEX multi−threading is based on co−routines, the overall
process is blocked until a release message is sent from the ISE to the embedded monitor.

virtual void terminate()

Emits a finalization message to the display front−end before entering some kind of
“zombie” state, allowing the front−end to request information to the embedded monitor
through the communication channel, usually for post−mortem analysis purposes. At this
point, all other threads are suspended. This callback method is called from the simulation
manager, after the simulation has finished but before SxManager::run() returns to its
caller.

SIMEX FROGS 1.2

17

SxObject (extends StStateDiagram)

PURPOSE

SxObject is the root class for most of the SIMEX simulation object classes. This class
implements the basic simulation system object. This object can have multiple
programmable states the simulation monitor can export to a display front−end upon
transition from one state to another. For instance, timed objects are system objects
managed by the executive’s scheduler which can be idle, pending on a resource,
preempted by another object or running. State transition logging is performed by the
inherited StStateDiagram class implementation.

SxObject instances can hold a list of SxStateEvent instances which will be signaled
each time a significant state transition occurs at the system object level.

CONSTRUCTOR

SxObject(const char *name, int pflags =0, int logSize =NSTVALUEDEF)

Creates a system object. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

pflags is a set of protocol flags such as defined by the StProto interface.

logSize is the size of the state log for the object. This value is used to determine the
number of consecutive state transitions the simulation executive will keep in memory for
this object at any time, specifically for statistical and monitoring purposes.
NSTVALUEDEF is currently 100.

METHODS

int getState() const

Returns the current object’s state.

int setState(int state)

Sets the object’s new internal state to state. If the new state differs from the current one,
the associated state event objects are immediately signaled with the new state. Finally,
the new state value is logged at the state diagram level, which in turn eventually sends it
to the display front−end. The total number of fired signal handlers is returned.

SxStateEvent *armEvent(int onState, int offState, SxDaemon *handler)

Creates and associates a new state event object with the current system object. The
SxStateEvent object is instantiated in order to call handler each time the system object
’s internal state switches from offState to onState. A pointer to the new state event
object is returned.

SxStateEvent *armEvent(SxStateEvent *event, SxDaemon *handler)

SIMEX FROGS 1.2

18

Ensures that event is currently armed for the current system object, inserting it in the
object’s event list if necessary. The daemon object handler is then armed for event. If
more than one event objects are headed by event, all are inserted in the system object’s
event list, but only event gets handler armed for it.

SxDaemon *remEvent(SxStateEvent *event, SxDaemon *handler)

If event is armed for the current system object and handler is armed for event, this
method disarms handler and returns it.

If event is armed for the current system object and handler is NULL, this method
removes event from the system object’s event list and returns the first handler which was
armed for it.

As a special case, passing a NULL event leads to a null−effect and always returns
NULL.

SxStateEvent *isArmed(int onState, int offState, SxDaemon *handler =0) const

Searches for a state event associated with the current system object monitoring transitions
from onState to offState. If handler is non−zero, it must be armed for the found event.
A pointer to a matching event is returned on success, otherwise NULL is returned if no
state event was found.

The first event matching the conditions found in the system object’s event list is retained,
even if more than one could satisfy them.

SxStateEvent *isArmed(SxStateEvent *event, SxDaemon *handler =0) const

Checks whether event in a member of the current system object’s event list. If handler is
non−zero, it must be armed for event. event is returned if successful, otherwise NULL if
no matching event was found.

SxStateEvent *isArmed(SxDaemon *handler) const

Returns a pointer to the first state event from the current system object’s event list for
which handler is armed. NULL is returned if no matching event is found.

static void setGlobalTrace(int level)

Set the current trace level of the SxObject methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

virtual int stateIndex(int state)

This method should be implemented by subclasses if the system object’s state values need
to be rescaled before sending them to the state diagram superclass. SxObject::signal()
typically calls this method with the new entered state before passing it to the
StStateDiagram::add() method for logging and export (i.e. to the display front−end).

For instance, one could need to map states DEAD =3 and KILLED =7 to the display state
“DORMANT” indexed on value 0. So this method could be reimplemented as in the
following one:

SIMEX FROGS 1.2

19

int SomeTaskObject::stateIndex (int _state)

{

if (_state == DEAD || _state ==KILLED)

return 0;

return _state;

}

void SomeTaskObject::protoInit ()

{

const char *stateArray[3];

stateArray[0] = “DORMANT”;

stateArray[1] = “….”;

 …

}

SIMEX FROGS 1.2

20

SxQueue (extends SxSynchro)

PURPOSE

This class implements a thread synchronization object allowing threads to wait for
messages. Messages are prioritized, and must be subclasses of the SxInfo superclass.

A queue has four active states:� PENDED indicates that at least one thread is pending for messages on input. This
state denotes an empty queue.� OFF means that the queue is idle, with neither messages stored, nor pending
consumer threads.� ON means that at least one message is available to consumer threads, but no
output contention exists.� POSTED means that an output contention currently exists on the queue, which
needs to dispatch available messages before accepting further posting from
suspended producer thread(s).

CONSTRUCTORS

SxQueue(const char *name, InsertMode qmode, unsigned msgMax
=SXQUEUE_MAXMSG, InsertMode pmode =FIFO)

Creates a message queuing object. name is a null−terminated character string identifying
the new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

Messages are queued following the qmode insertion order, which may be one of the
following:� FIFO requests a first−in, first−out insertion.� LIFO requests a last−in, first−out insertion.� PRUP (or PRUPFF) applies an insertion rule driven by increasing priority of

messages (lowest priority value first). When two messages have the same priority,
FIFO ordering is applied.� PRUPLF applies an insertion rule driven by increasing priority of messages.
When two messages have the same priority, LIFO ordering is applied.� PRDN (or PRDNFF) applies an insertion rule driven by decreasing priority of
messages (highest priority value first). When two messages have the same
priority, FIFO ordering is applied.� PRDNLF applies an insertion rule driven by increasing priority of messages.
When two messages have the same priority, LIFO ordering is applied.

A maximum of maxMsg can be queued before producer threads are suspended until
queued messages are consumed, and the number of messages waiting to be read falls

SIMEX FROGS 1.2

21

under this limit. The special value SXQUEUE_MAXMSG can be used to indicate a
pseudo−infinite (2^32 − 1) limit.

Threads pend on the queue object according to the pmode order, whether they are
producer threads suspended due to an output contention, or consumer threads waiting for
input messages. This mode may be one of the following:� FIFO ensures that the oldest pending thread is always served first.� LIFO ensures that the latest pending thread is always served first.� PRUP (or PRUPFF) ensures that the thread having the lowest priority is always

served first. When two threads have the same priority, the oldest pending one is
prioritary.� PRUPLF ensures that the thread having the lowest priority is always served first.
When two threads have the same priority, the latest pending one is prioritary.� PRDN (or PRDNFF) ensures that the thread having the highest priority is always
served first. When two threads have the same priority, the oldest pending one is
prioritary.� PRDNLF ensures that the thread having the highest priority is always served first.
When two threads have the same priority, the latest pending one is prioritary.

SxQueue(InsertMode qmode, unsigned msgMax =SXQUEUE_MAXMSG,
InsertMode pmode =FIFO)

Creates an anonymous message queuing objects. The parameters are the same as
described for the previous constructor.

SxQueue()

Creates an anonymous message queuing object, with default parameters, such as calling
this constructor is identical to invoke:

new SxQueue(FIFO,SXQUEUE_MAXMSG,FIFO);

METHODS

void post(SxInfo *msg)

Posts a message to the current queue object. msg is a pointer to an instance of a subclass
of the SxInfo superclass. If a thread is currently pending for a message on this queue, it
is dispatched the message and resumed immediately, thus preempting the caller.

If no thread is waiting for messages, msg is inserted according to the queue’s insertion
mode. This insertion is done immediately, unless the queuing limit has been reached, in
which case the calling thread is suspended until a message slot is freed by a consumer
thread. This special case denotes an output contention. A producer thread resumed after
an output contention does not preempt the consumer thread clearing the condition.

void postFront(SxInfo *msg)

This method is a variant of post() which bypasses the queue’s message insertion mode.
The jammed msg is posted at front of the message list.

SIMEX FROGS 1.2

22

SxInfo *get()

Returns the first available message from the queue. The calling thread is suspended until
the message comes in if the queue is empty. The incoming message is unlinked from the
queue before its address is returned to the caller.

If pend hooks exist for the current queue, they are fired immediately before the first
available message is extracted from the queue.

SxInfo *accept ()

Returns the first available message from the queue, or NULL if no message is
immediately available. The incoming message is unlinked from the queue before its
address is returned to the caller.

If pend hooks exist for the current queue, they are fired immediately before the first
available message is extracted from the queue.

void remove(SxInfo *msg)

Removes a message from the queue. If msg is valid and currently linked to the queue,
pend hooks (if any) are fired immediately before the message is removed. Passing NULL
or the address of a message not linked to the queue leads to a null−effect.

SxInfo *first()

Returns the address of the first message available from the current queue to consumer
threads, or NULL if none.

SxInfo *last()

Returns the address of the last message available from the current queue to consumer
threads, or NULL if none.

unsigned getOCount() const

Returns the count of messages available from the current queue to consumer threads.

unsigned getOMax() const

Returns the current queue’s output contention threshold (in number of messages).

StObject *setStatistics(SxStatisticType type =STAT_MEAN)

Creates and returns the address of a statistical object which will integrate the number of
messages in the current queue over the time. In the current implementation, type must be
STAT_MEAN.

static void setGlobalTrace(int level)

Set the current trace level of the SxQueue methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

23

SxResource (extends SxSynchro)

PURPOSE

This class implements a thread synchronization object acting like a semaphore. Thread
execution can be serialized using this object, by allowing a limited number of resources
to be dispatched to them. The lack of resource causes the requesting thread to pend on the
object until one becomes available.

A resource has three active states:� PENDED indicates that at least one thread is pending for a resource. This state
denotes that no resource unit is currently available.� OFF means that the resource is idle, with neither units, nor pending threads.� ON means that at least one resource unit is available to threads.

CONSTRUCTOR

SxResource(const char *name =0, unsigned initCount =0, InsertMode pmode
=FIFO, InsertMode hmode =FIFO, int fPreempt = 0)

Creates a resource object. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

initCount specifies the number of units initially available for the resource.

Threads pending for a resource availability are queued according to pmode, which may
take one of the following values:� FIFO ensures that the oldest pending thread is always served first.� LIFO ensures that the latest pending thread is always served first.� PRUP (or PRUPFF) ensures that the thread having the lowest priority is always

served first. When two threads have the same priority, the oldest pending one is
prioritary.� PRUPLF ensures that the thread having the lowest priority is always served first.
When two threads have the same priority, the latest pending one is prioritary.� PRDN (or PRDNFF) ensures that the thread having the highest priority is always
served first. When two threads have the same priority, the oldest pending one is
prioritary.� PRDNLF ensures that the thread having the highest priority is always served first.
When two threads have the same priority, the latest pending one is prioritary.

If fPreempt is non−zero, threads can preempt themselves for the resource, and hmode
gives the preemption order. This parameter may take one of the following values:� FIFO ensures that the oldest pending thread is preempted before latest ones.� LIFO ensures that the latest pending thread is preempted before oldest ones.

SIMEX FROGS 1.2

24

� PRUP (or PRUPFF) ensures that the thread having the lowest priority is
preempted by others. When two threads have the same priority, the oldest
pending one is preempted.� PRUPLF ensures that the thread having the lowest priority is preempted by
others. When two threads have the same priority, the latest pending one is
preempted.� PRDN (or PRDNFF) ensures that the thread having the highest priority is
preempted by others. When two threads have the same priority, the oldest pending
one is preempted.� PRDNLF ensures that the thread having the highest priority is preempted by
others. When two threads have the same priority, the latest pending one is
preempted.

METHODS

void request()

void pend()

Attempts to dispatch a resource unit to the calling thread. If the currently available unit
count is non−zero, it is decremented and the method returns immediately. Otherwise, the
following actions may take place:� the current resource object is marked as preemptable, and the most preemptable

thread among the current one and those currently owning units from this object is
selected, according to the preemption order. If the selected thread differs from the
calling one, it is immediately preempted and the caller returns. It should be noted
that no provision is made to resume the execution of the preempted thread.� the current source object is not marked as preemptable, or the most preemptable
thread is the current one, then the calling thread is suspended until a resource unit
becomes available.

If pend hooks exist on the current object, they are fired immediately before the method
returns.

void release()

void post()

Releases a resource unit. If a thread is currently waiting for a unit to become available, it
is resumed and the caller returns immediately. Otherwise, the count of resource units is
incremented.

If post hooks exist on the current object, they are fired immediately before the method
returns.

unsigned getOCount() const

Returns the count of resource units available from the current object.

void setPreemptable(InsertMode hmode, int fPreempt)

SIMEX FROGS 1.2

25

Changes the preemptability state of the resource object. hmode and fPreempt both
specify the new setting, and have the same meaning than the constructor parameters. This
method does not reorder the current preemption list contents, but rather sets the new
mode for subsequent updates.

StObject *setStatistics(SxStatisticType type =STAT_MEAN)

Creates and returns the address of a statistical object which will integrate the number of
units in the current resource over time. In the current implementation, type must be
STAT_MEAN.

static void setGlobalTrace(int level)

Set the current trace level of the SxResource methods to level. A value of 1 gives
minimal trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

26

SxSource (extends SxTimed)

PURPOSE

This class is the superclass of message−generating objects. The behavior of a source
consists in producing messages at specific times determined by a private generation law.
Message types must be subclasses of the SxInfo superclass. Once generated, a message is
automatically posted to a destination queue (i.e. SxQueue). The insertion order is
controlled by the message priority.

A pre−defined set of typical subclassed sources is available with SIMEX, including
periodical (SxPerSource), exponential (SxExpSource), uniform (SxUniSource) and
file−based (SxFileSource) sources.

CONSTRUCTOR

SxSource(SxInfo *msgTempl, StNumericLaw *law, SxQueue *destq, int ngen =1,
ITime& tStart =ZEROTIME, ITime& tEnd =MAXITIME, int prio =0, int fAutoDel
=0)

Creates a message source object. msgTempl will be used by the source as a template to
produce the messages posted to the destination queue destq. The virtual method
SxInfo::clone() will be invoked to obtain a cloned instance of the template each time it
is necessary. The message template is deleted by the source object as a part of its
destructor actions, so the required way of initializing a source is to create a new template
object each time.

The source is only active between the given time bounds specified by tStar t and tEnd.
After tEnd is reached, the source calls its finalize() virtual method to perform its
cancellation. The default action of this method is to delete the calling object if the
fAutoDel flag was passed when building the source. One may reimplement this method
in subclasses to have different housekeeping policies for sources.

After a message is posted to the destination queue, the source determines the next arrival
date by calling the get() virtual method of the law object, which return value is added to
the current contents of the global SxClock variable (i.e. the numeric law is expected to
return positive or null time increments relative to the simulation clock). ngen messages
are cloned and posted to the destination queue on arrival. Insertion order of messages in
the destination queue may be affected by the pr io parameter defining the auto−generated
messages priority.

If tStar t is a negative time value, the source will remain indefinitely idle. If tStar t is
ZEROTIME, a starting date is drawn from the law object to determine the first message
arrival date. Otherwise, the first message will be generated exactely at tStar t.

DESTRUCTOR

virtual ~SxSource()

SIMEX FROGS 1.2

27

Deletes the message template passed to the constructor, and unlinks the source from the
manager’s source chain.

METHODS

virtual void finalize()

This callback method is invoked by the source object itself to perform its cancellation
when its time limit is reached. The default action of this method is to delete the calling
object if the fAutoDel flag was passed when building the source. It should be
reimplemented for subclasses having different housekeeping policies.

static void setGlobalTrace(int level)

Set the current trace level of the SxSource methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

SIMEX FROGS 1.2

28

SxPerSource (extends SxSource)

PURPOSE

This class defines a periodical message source. Messages are generated at times
determined by a periodical numeric law.

CONSTRUCTOR

SxPerSource(ITime period, SxInfo *msgTempl, SxQueue *destq, int ngen =1,
ITime& tStart =ZEROTIME, ITime& tEnd =MAXITIME, int prio =0)

Creates a periodical message source object. msgTempl will be used by the source as a
template to produce the messages posted to the destination queue destq. The virtual
method SxInfo::clone() will be invoked to obtain a cloned instance of the template each
time necessary. The message template is deleted by the source object as part of its
destructor actions, so the required way of initializing a source is to create a new template
object each time a new source is built.

The source is only active between the given time limits specified by tStar t and tEnd.
After tEnd is reached, the source is automatically deleted.

Message arrival dates are based on the per iod value. ngen messages are cloned and
posted to the destination queue on arrival. Insertion order of messages in the destination
queue may be affected by the pr io parameter defining the auto−generated messages
priority.

If tStar t is a negative time value, the source will remain indefinitely idle. If tStar t is
ZEROTIME, the starting date will be SxClock + per iod. Otherwise, the first message
will be generated exactely at tStar t.

SIMEX FROGS 1.2

29

SxExpSource (extends SxSource)

PURPOSE

This class defines an exponential message source. Messages are generated at times
determined by an exponential numeric law.

CONSTRUCTOR

SxExpSource(ITime mean, SxInfo *msgTempl, SxQueue *destq, int ngen =1,
ITime& tStart =ZEROTIME, ITime& tEnd =MAXITIME, int prio =0)

Creates an exponential message source object. msgTempl will be used by the source as a
template to produce the messages posted to the destination queue destq. The virtual
method SxInfo::clone() will be invoked to obtain a cloned instance of the template each
time necessary. The message template is deleted by the source object as part of its
destructor actions, so the required way of initializing a source is to create a new template
object each time a new source is built.

The source is only active between the given time limits specified by tStar t and tEnd.
After tEnd is reached, the source is automatically deleted.

Message arrival dates are based on the outcomes of an exponential numeric law of mean
mean. ngen messages are cloned and posted to the destination queue on arrival. Insertion
order of messages in the destination queue may be affected by the pr io parameter
defining the auto−generated messages priority.

If tStar t is a negative time value, the source will remain indefinitely idle. If tStar t is
ZEROTIME, the starting date will be obtained by adding the next outcome of the
exponential law to the content of SxClock. Otherwise, the first message will be
generated exactely at tStar t.

SIMEX FROGS 1.2

30

SxUniSource (extends SxSource)

PURPOSE

This class defines a uniform message source. Messages are generated at times determined
by a uniform numeric law.

CONSTRUCTOR

SxUniSource(ITime min, ITime max, SxInfo *msgTempl, SxQueue *destq, int
ngen =1, ITime& tStart =ZEROTIME, ITime& tEnd =MAXITIME, int prio =0)

Creates a uniform message source object. msgTempl will be used by the source as a
template to produce the messages posted to the destination queue destq. The virtual
method SxInfo::clone() will be invoked to obtain a cloned instance of the template each
time necessary. The message template is deleted by the source object as part of its
destructor actions, so the required way of initializing a source is to create a new template
object each time a new source is built.

The source is only active between the given time limits specified by tStar t and tEnd.
After tEnd is reached, the source is automatically deleted.

Message arrival dates are based on the outcomes of a numeric law producing values
uniformely distributed in the range [min .. max]. ngen messages are cloned and posted
to the destination queue on arrival. Insertion order of messages in the destination queue
may be affected by the pr io parameter defining the auto−generated messages priority.

If tStar t is a negative time value, the source will remain indefinitely idle. If tStar t is
ZEROTIME, the starting date will be obtained by adding the next outcome of the
uniform law to the contents of SxClock. Otherwise, the first message will be generated
exactely at tStar t.

SIMEX FROGS 1.2

31

SxFileSource (extends SxSource)

PURPOSE

This class defines a file−based message source. Message arrival dates are stored in a text
file in increasing order.

CONSTRUCTORS

SxFileSource(const char *fileName, SxInfo *msgTempl, SxQueue *destq, int
ngen =1, int prio =0)

Creates a file−based message source object. msgTempl will be used by the source as a
template to produce the messages posted to the destination queue destq. The virtual
method SxInfo::clone() will be invoked to obtain a cloned instance of the template each
time necessary. The message template is deleted by the source object as a part of its
destructor actions, so the required way of initializing a source is to create a new template
object each time a new source is built.

Message arrival dates are read from the file named fileName. ngen messages are cloned
and posted to the destination queue on arrival. Insertion order of messages in the
destination queue may be affected by the pr io parameter defining the auto−generated
messages priority.

If tStar t is a negative time value, the source will remain indefinitely idle. If tStar t is
ZEROTIME, the starting date will be obtained by adding the next outcome of the file law
to the contents of SxClock. Otherwise, the first message will be generated exactely at
tStar t.

Please refer to the documentation of the StFileLaw class for a description of the
expected file format.

SIMEX FROGS 1.2

32

SxSampler (extends SxThread)

PURPOSE

This class implements a simple sampler thread synchronizing the activity of a filter
object. The sampler triggers a filter update periodically during the simulation life−time.
Samplers are privately used by time graphs (i.e. SxTimeGraphs) for collecting data
periodically from the statistical object it monitors.

CONSTRUCTOR

SxSampler(const char *name, SxFilter *filter)

Creates a sampler. name is a null−terminated character string identifying the new object
which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

The sampling thread fires the SxFilter::update() virtual method of the filter object on a
periodical basis. The period is initially obtained from the filter through a call to the
SxFilter::getDtUpdate() method.

The first update occurs immediately after the sampler starts running.

SIMEX FROGS 1.2

33

SxTimeGraph (extends StTimeGraph)

PURPOSE

This class implements a measurement object designed to grasp the temporal evolution of
a given statistical object all along the simulation. The collected results can be exported to
the display front−end on−the−fly, whenever the simulation monitor is active.

The actual computation is performed by the general StTimeGraph superclass; however,
the SxTimeGraph subclass integrates these computations in the context of an event−
driven simulation made of timed objects, and connects the time graph to the
communication channel held by the simulation monitor.

CONSTRUCTORS

SxTimeGraph(const char *name, StObject *so, ITime dtUpdate, StValueType
type =VAL, int logSize =NTGVALUEDEF)

Creates a time graph. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

The time graph will collect the value corresponding to type from the statistical object so,
on a periodical basis fixed by dtUpdate. type must be one of the valid enumerated
values one may pass to StObject::getValue(). Please refer to the documentation of the
StObject class for more information on this parameter.

logSize is the size of the sample log for the object. This value is used to determine the
number of consecutive samples the simulation executive will keep in memory for this
object at any time, specifically for statistical and monitoring purposes. NTGVALUEDEF
is currently 500.

A sampler thread (i.e. SxSampler) is started for the current object.

DESTRUCTOR

virtual ~SxTimeGraph()

Cancels the sampler thread associated with the current object.

SIMEX FROGS 1.2

34

SxHistogram (extends StHistogram)

PURPOSE

This class implements a measurement object which determines the probability density of
any statistical law, with computation of mean and standard deviation and accuracy
evaluation for a given confidence interval. The collected results can be exported to the
display front−end on demand, whenever the simulation monitor is active.

The actual computation is performed by the general StHistogram superclass; however,
the SxHistogram subclass integrates these computations in the context of an event−
driven simulation made of timed objects, and connects the histogram to the
communication channel held by the simulation monitor.

CONSTRUCTORS

SxHistogram(const char *name, int nbins, double leftb, double rightb,
StHistAdjustMode mode =MULTIPLY)

Creates an histogram with floating−point bounds, namely leftb and r ightb. name is a
null−terminated character string identifying the new object which can be used during
tracing and monitoring; NULL is an acceptable value, preventing the anonymous object
from being visible from the display front−end. The number of counting bins is specified
by nbins.

Histograms can automatically adjust themselves to the actual range of entered values.
The expected behavior when a value falls outside the current range of an histogram is
selectable by an adjust mode setting:� MULTIPLY causes the histogram range to be adjusted by successive

multiplications by 2, either to the left or to the right according to the bound which
is overshooted. This is the default mode.� GARBAGE prevents the histogram range to be adjusted, all the values falling
outside this range are collected in the leftmost and rightmost bins.

SxHistogram(const char *name, int nbins, int leftb, int rightb, StHistAdjustMode
mode =MULTIPLY)

Creates an histogram with integer bounds, namely leftb and r ightb. Other parameters
have the same meaning than previously.

The right bound and the number of counting bins are adjusted to obtain an integer bin
size.

SIMEX FROGS 1.2

35

SxScaler (extends StObjectScaler)

PURPOSE

This class implements a measurement object designed to compute and report the division
of a given value type of a scaled statistical object by a given value type of a scaling
statistical object. The collected results can be exported to the display front−end on−the−
fly, whenever the simulation monitor is active.

The actual computation is performed by the general StObjectScaler superclass;
however, the StScaler subclass integrates these computations in the context of an event−
driven simulation made of timed objects, and connects the scaler to the communication
channel held by the simulation monitor.

CONSTRUCTORS

SxScaler(const char *name, StObject *scaledObject, StObject *scalingObject,
StValueType vtScaled =VAL, StValueType vtScaling =VAL, int pflags =0)

Creates a statistical object scaler. name is a null−terminated character string identifying
the new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

scaledObject is a pointer to the scaled statistical object, and scalingObject is a pointer to
the scaling one.

vtScaled and vtScaling specify the type of values used in the scaling process. These
types must be compatible with the computation available from the scaled and scaling
objects respectively. Typical settings are:� VAL stands for last entered value.� NUM is the number of aggregated values.� SUM represents the global sum of all collected values since the beginning of

measure.

pflags is a set of protocol flags such as defined by the StProto interface.

SIMEX FROGS 1.2

36

SxCounter (extends StCounter)

PURPOSE

This class implements a measurement object designed to sum numerical values, while
sampling their sum all along the simulation. The collected results can be exported to the
display front−end on−the−fly, whenever the simulation monitor is active.

The actual computation is performed by the general StCounter superclass; however, the
SxCounter subclass integrates these computations in the context of an event−driven
simulation made of timed objects, and connects the counter to the communication
channel held by the simulation monitor.

CONSTRUCTORS

SxCounter(const char *name, int pflags =0)

Creates a counter. name is a null−terminated character string identifying the new object
which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

pflags is a set of protocol flags as defined in the StProto interface.

SIMEX FROGS 1.2

37

SxCounterGroup (extends StCounterGroup)

PURPOSE

This class implements a group of statistical counters gathered under a common name.
The collected results can be exported to the display front−end on−the−fly, whenever the
simulation monitor is active.

Please refer to the documentation of the StObjectGroup class for a detailed information
about the available methods.

The actual computation is performed by the general StCounterGroup superclass;
however, the SxCounterGroup subclass integrates these computations in the context of
an event−driven simulation made of timed objects, and connects the counter group to the
communication channel held by the simulation monitor.

CONSTRUCTORS

SxCounterGroup(const char *name, const char *indexName, int nitems, int iBase
=0, int pflags =0)

Creates a group of counters. name is a null−terminated character string identifying the
new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

indexName is a null−terminated character string representing the name of the varying
parameter of the group.

nitems specifies the number of counters in the group. The constructor builds as many
StCounter instances as required by nitems, plus an extra one which manages the sum of
all the others. The global sum counter is given the internal index #0.

iBase is the the lowest index value for the group. Indices passed to methods requiring
them will be scaled to take in account this threshold. For instance, passing an index base
of –2 for a 4−elements group allows using indices –2, −1, 0 (global value), 1 and 2.

pflags is a set of protocol flags such as defined by the StProto interface.

SIMEX FROGS 1.2

38

SxTimeIntegrator (extends StIntegrator)

PURPOSE

This class implements a measurement object designed to automatically compute the
integration of a given variable against the simulated time. The collected results can be
exported to the display front−end on−the−fly, whenever the simulation monitor is active.

The actual computation is performed by the general StIntegrator superclass; however,
the SxTimeIntegrator subclass integrates these computations in the context of an event−
driven simulation made of timed objects, and connects the integrator to the
communication channel held by the simulation monitor.

CONSTRUCTORS

SxIntegrator(const char *name, int pflags =0)

Creates a time integrator. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

pflags is a set of protocol flags as defined in the StProto interface.

SIMEX FROGS 1.2

39

SxSynchro (extends SxObject)

PURPOSE

This pure class is the superclass of thread synchronization objects. Synchronization
objects are tightly coupled with simulation threads (i.e. SxThread), as this class
implements the basic functionalities for them to wait for and set conditions.

Threads waiting for a condition are put to sleep, then resumed when the synchronization
object is signaled, thus indicating that the condition is met.

A synchronization object has four basic states:� PENDED indicates that a thread (at least) is waiting for the condition to be met.� OFF means that the object is idle, the condition being unsatisfied but with no
threads waiting for it.� ON means that the condition is met. This implies that no threads are currently
waiting for it.� POSTED is a variant of the ON state the subclasses can use to exhibit an
additional status to the mere condition availability. For instance, the message
queue object (i.e. SxQueue) enters the POSTED state when an output contention
occurs, which means that messages are available for reading by consumer threads,
but producer threads cannot send more messages until some are effectively
consumed.

PROTECTED DATA MEMBERS

SxThreadGList pendList

The list of currently pending threads, waiting for the condition to be met.

SxDaemon *pendHook

A pointer to the SxDaemon object heading the list of triggers which should be fired in
turn each time a pend request is issued to the object.

SxDaemon *postHook

A pointer to the SxDaemon object heading the list of triggers which should be fired in
turn each time the condition is signaled to the object.

CONSTRUCTOR

SxSynchro(const char *name =0)

Creates a synchronization object. name is a null−terminated character string identifying
the new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

DESTRUCTOR

SIMEX FROGS 1.2

40

virtual ~SxSynchro()

The destructor checks for pending threads before returning. If some threads are still
waiting for the destroyed object to be signaled, the alert() virtual method is fired, and a
warning message is sent to the simulation manager.

METHODS

int getPCount() const

Returns the number of threads currently pending on the object.

void addPendHook(SxDaemon *devil)

Adds the daemon object devil to the list of triggers which should be fired each time a
pend request is issued to the current object. The exact context in which those triggers are
fired depends on the subclassed implementation for this functionality. The SxSynchro
object only manages the registration of such triggers.

Multiple calls to this method cause all the daemons to be linked in a single activation list,
ensuring that all of them will get called in turn for each event, in a first−in first−out
order.

void remPendHook(SxDaemon *devil)

Removes the daemon object devil, previously added by a call to addPendHook(), from
the list of triggers.

void addPostHook(SxDaemon *devil)

Adds the daemon object devil to the list of triggers which should be fired each time the
condition is signaled to the current object. The exact context in which those triggers are
fired depends on the subclassed implementation for this functionality. The SxSynchro
object only manages the registration of such triggers.

Multiple calls to this method cause all the daemons to be linked in a single activation list,
ensuring that all of them will get called in turn for each event, in a first−in first−out
order.

void remPostHook(SxDaemon *devil)

Removes the daemon object devil, previously added by a call to addPostHook(), from
the list of triggers.

void setWaitMode(InsertMode mode)

Changes the insertion policy of the thread waiting list. This method does not reorder the
current waiting list contents, but rather sets the new mode for subsequent updates. mode
can be one of the following:� FIFO ensures that the oldest pending thread is always considered first.� LIFO ensures that the latest pending thread is always considered first.

SIMEX FROGS 1.2

41

� PRUP (or PRUPFF) ensures that the thread having the lowest priority is always
considered first. When two threads have the same priority, the oldest pending one
is prioritary.� PRUPLF ensures that the thread having the lowest priority is always considered
first. When two threads have the same priority, the latest pending one is
prioritary.� PRDN (or PRDNFF) ensures that the thread having the highest priority is always
considered first. When two threads have the same priority, the oldest pending one
is prioritary.� PRDNLF ensures that the thread having the highest priority is always considered
first. When two threads have the same priority, the latest pending one is
prioritary.

InsertMode getWaitMode() const

Returns the current insertion mode in the thread waiting list.

virtual void alert()

Resumes all threads currently waiting for the condition to be signaled. As a result of this
operation, the current object’s waiting list is emptied.

virtual void forget(SxThread *thread)

Removes the simulation thread from the object’s waiting list.

virtual void pend()

Makes the current thread pend on the object. If the object’s state is ON or POSTED,
indicating that the condition is met, the method returns immediately to the caller.
Otherwise, the current thread is linked to the object’s waiting list, and suspended through
a call to SxThread::pend(SxSynchro *).

SIMEX FROGS 1.2

42

SxTcp (extends SxL istener)

PURPOSE

This class implements a communication object above the socket interface, managing a
bi−directional TCP/IP channel. This class is first candidate for providing the
communication channel needed to support the monitoring facility through the SxMonitor
object.

SxTcp is a subclass of the SxListener superclass, which allows a thread to wait
asynchronously for input events on the TCP/IP channel, through the callout facility
provided by the SIMEX thread scheduler.

Messages sent and received through an SxTcp instance are made of a message type
identifier followed by an optional block of dynamically sized, unstructured data.

CONSTRUCTORS

SxTcp()

Creates a client or server TCP/IP channel.

In client mode, the user subsequently issues a SxTcp::connect() request to the object to
establish the connection with the server. In server mode, the user issues a SxTcp::bind()
request to bind the object to a valid TCP port, followed by a call to SxTcp::accept() in
order to wait for a client to connect to.

SxTcp(int s)

Creates a communication object from an already connected socket whose descriptor is
given by s.

DESTRUCTOR

virtual ~SxTcp()

Closes the socket channel associated with the object, unless the socket descriptor was
obtained from the user. In all cases, all internal buffers held by the object are freed.

int getHandle() const

Returns the socket descriptor associated with the object.

int connect(const char *host, int port)

Obtains a connection−oriented socket descriptor from the host operating system, then
connects the client socket to the server running at host and listening to port. If host is a
NULL pointer, the local host name is used.

SIMEX FROGS 1.2

43

This method asks for the Nagle algorithm to be disabled for the connection (i.e.
TCP_NODELAY, no packet coalescence). Moreover, the obtained socket descriptor is
automatically registered as a monitored source at the SxListener level, through a call to
SxListener::addFildes().

Returns SXTCP_SUCCESS on success, SXTCP_LINKDOWN otherwise.

int bind(int port =0)

Obtains a connection−oriented socket descriptor from the host operating system, then
binds the master server socket to port. If port is zero, the operating system will be asked
to choose it freely.

The method tells the operating system to accept connections from any hosts from any
networks. It always tries to reuse local addresses by setting the SO_REUSEADDR flag at
the socket protocol level.

The port to which the socket is finally bound is returned to the caller on success.
Otherwise, SXTCP_FAILURE is returned.

int accept(u_long timeout)

Waits for a client socket to connect to the current object. The current object must have
been configured as a server socket, and bound to a valid TCP port using SxTcp::bind().
The incoming connection is awaited for timeout seconds before returning an error status
(seconds is meant to be “real” wall clock units here, rather than simulated time).
However, if timeout is zero, the method waits indefinitely for the connection.

On success, the socket descriptor is automatically registered as a monitored source at the
SxListener level, through a call to SxListener::addFildes().

SXTCP_SUCCESS is returned on success. Otherwise, SXTCP_LINKDOWN is returned
on protocol error, and SXTCP_WOULDBLOCK is returned whenever the timeout
expires before a connection is established.

int send(int mid, const void *mbuf =0, int nbytes)

Sends a message of type mid and length nbytes, whose data starts from mbuf. The
message only consists of the type information whenever mbuf is NULL or nbytes is zero
or negative. mid must be a strictly positive integer not to conflict with error return
values.

The transmission protocol enforced by the SxTcp object ensures that the message will be
received as a whole by another peer SxTcp object which issues the corresponding call to
SxTcp::recv() on the other end of the communication channel.

nbytes is returned on success. Otherwise, SXTCP_LINKDOWN is returned on
transmission error, such as a broken link detected with the peer.

int recv(void **mbufp, int *ubytes)

Receives the next available message from the connected peer. The starting address of the
data buffer associated with the incoming message is written to mbufp, and its length is

SIMEX FROGS 1.2

44

written to ubytes. If no data buffer comes with the message, *mbufp is set to NULL,
and *ubytes to zero.

Unless an error is detected, this method guarantees that message boundaries are kept
between the sender and the receiver end−points.

Data buffers whose size fits in the object’s internal receive buffer (statically allocated at
object’s creation) are returned directly from it. Messages longer than this size are
transfered to a dynamically allocated buffer whose address is also returned to the caller.
The size of the internal buffer is fixed by the constant SXTCP_MBUFSZ, which is
currently set to 4096 bytes. The dynamic buffer can be freed explicitely by a call to
dispose().

The message type identifier is returned on success. Otherwise, SXTCP_LINKDOWN is
returned on receive error.

int poll(void **mbufp, int *ubytes)

Attempts to receive the next available message from the connected peer, but does not
block the caller if none is available. If a message is immediately available, this method
acts like SxTcp::recv().

Returns the incoming message type identifier on success. Otherwise,
SXTCP_WOULDBLOCK is returned, meaning that no message is immediately available
for input.

int dispose()

Frees the memory associated with a current dynamic receive buffer (if any). The SxTcp
implementation handles this deallocation from one call recv() to another, and at object’s
deletion, so there is usually no need to do it explicitely. However, this call is provided for
unusual circumstances where forcing this release is needed.

SIMEX FROGS 1.2

45

SxThread (extends SxTimed)

PURPOSE

This class implements the SIMEX’s thread object behavior. Threads are concurrent
activities inside the simulation system having a private execution stack while sharing the
global address space of the host application.

As timed objects, threads are prioritized objects scheduled according to their requested
activation time. The list of runnable threads is called the run chain. The run chain is
unique in the system, and is actually an instance of the SxScheduler class. Control of
the CPU is always given to one SIMEX thread at any time during the simulator’s life−
time. The executing thread only changes whenever it issues a suspensive call, yielding
control to the next runnable thread from the run chain. SxThread::currentThread is a
pointer to the currently executing thread object (please note that current or executing are
used indifferently to refer to the thread in control of the CPU).

A subtle distinction exists between the executive state of a thread, and its simulation
state, which is of great importance. From the executive’s perspective, a thread is owning
the CPU or not. From the simulation’s perspective, a thread can be in a running state,
even if it does not currently own the CPU, provided it is a member of the run chain. In
the latter case, the thread is said to be delayed. It is simply held until the executing thread
yields control to another by calling a suspensive service, but the simulation date it was
requested to run at is honoured, even if real hours of computation have taken place
before the CPU is finally available to it.

Threads have four basic states:� IDLE denotes the unconditionally suspended state. The thread is removed from
the run chain, and will not regain the CPU until it is explicitely resumed.� PENDED indicates the thread is waiting for the condition of a synchronization
object to be met. Such object must be a subclass of the SxSynchro class. The
thread is removed from the run chain, and will not regain the CPU until the
condition is finally met or it is explicitely resumed.� PREEMPTED tells that the thread has been explicitely preempted by another one.
The thread is removed from the run chain, and will not regain the CPU until it is
explicitely resumed.� RUNNING denotes a running thread. The thread is whether currently executing
or a member of the run chain.

PUBLIC DATA MEMBERS

static SxThread *currentThread

A pointer to the currently executing thread object.

static SxThread *mainThread

SIMEX FROGS 1.2

46

A pointer to the main thread object. The main thread refers to the execution context
which has created the SxManager global instance for the simulation process. This
context is automatically re−hosted by a SIMEX thread object whose address is written to
this variable. Unlike other threads, the main thread object has no allocated stack, but
rather recycles the stack which was active at the time the manager was created.

SxScheduler runChain

The thread scheduler object for the entire simulation system. The run chain is basically a
list of timed objects the SxThread class manages. It links all threads being in the
RUNNING state in a timely order, but the executing one. Threads having identical
activation dates are ordered using their internal priority values (higher priority values
first). Priority groups are managed on a FIFO basis.

int fConservative

A flag indicating whether the thread manager runs in conservative mode. Please refer to
the documentation of setMtMode() for more information on this topic.

CONSTRUCTOR

SxThread(const char *name, int pflags =0, int stackSize =32768)

Creates a thread object. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

pflags is a set of protocol flags such as defined by the StProto interface.

stackSize is the size (in bytes) of the execution stack the constructor will allocate for the
new thread. A current minimum value of 8192 bytes is enforced by the constructor. A
rather simple stack checking mecanism is active for each declared thread. An extra page
guard of 1024 bytes is left at the bottom of the stack, and an overflow detection pattern is
tested each time the thread invokes a suspensive call. This scheme should be sufficient
for detecting most of the stack overflow problems; however, one should acknowledge the
fact that stack memory is a scarce resource, and probably refrain from using
unreasonably large automatic variables on behalf of SIMEX thread contexts.

The new thread inherits the priority of the current thread. Once started, the thread enters
the RUNNING state and the SxThread::body() virtual method is invoked on behalf of
its execution context. The child thread never preempts its creator at startup, ensuring the
constructor is normally exited on behalf of the parent context before the new thread starts
executing.

DESTRUCTOR

virtual ~SxThread()

The delete operator and this destructor should never be called directly by the user for a
thread object. Instead, thread deletion should rather be done by invoking the cancel()
method.

SIMEX FROGS 1.2

47

The destructor first unlinks the thread from any synchronization objects’ waiting lists it is
member of. Finally, internal resources are freed, including the stack space.

METHODS

static void setMtMode(int fConservative)

Changes the thread switching mode. If fConservative is true, a conservative way of
switching thread contexts will be enforced by the thread manager. This mode ensures that
the full context of a suspended thread is saved then restored when a switch occurs; it is
slower than a light switch is, but safer under certain circumstances, such as running an
executable image tweaked by an object code instrumenter (e.g. Purify™ et al.).
Technically, the conservative mode differs from the faster one by calling the
sigsetjmp()/siglongjmp() pair to save/restore thread contexts instead of
setjmp()/longjmp(). Conversely, the fast−switch mode is enabled if fConservative is
false.

static void setGlobalTrace(int level)

Set the current trace level of the SxThread methods to level. A value of 1 gives minimal
trace information. A value of 2 adds detailed information to the output.

void resume(SxSynchro *so)

Resumes the thread object. so is an optional pointer to a synchronization object which
may have motivated this call, usually because the condition awaited by the thread was
finally met. so may be NULL if the action is independent from any specific
synchronization object.

The actions taken by this method depend on the target thread’s state:� if previously PREEMPTED, the thread is put in the run chain. If the thread was
preempted while in the RUNNING state but not executing, the delay time
remainder is renewed (see preempt()).� if previously RUNNING and not executing (i.e. delayed), the thread activation
time is set to the current value of SxClock (i.e. “now”), and the run chain is
reordered to reflect the change.� if previously IDLE or PENDING, the thread is inserted into the run chain with an
activation time set to the current value of SxClock (i.e. “now”).

As a result of this call, the target thread enters (or remains in) the RUNNING state.
Resuming the executing thread leads to a null effect.

This method does not preempt the executing thread in any case.

virtual void resume()

Invokes resume(NULL).

void prioritize(int incr)

SIMEX FROGS 1.2

48

Adds incr to the base thread priority value and sets the resulting priority to the target
thread. The base priority is set to 100 for the current implementation. Increments which
would lower the priority value to a negative number are silently rejected.

This method reorders the run chain to reflect the change, but does not preempt the
executing thread in any case.

void renice(int incr)

Invokes prioritize() with the priority increment value incr , then attempts to preempt the
executing thread if a prioritary thread is leading the run chain as a result of the operation.

unsigned getStackSize() const

Returns the thread’s execution stack size (in bytes). As a special case, this method always
returns 0 when invoked for the main thread.

caddr_t getStackTop()

Returns the thread’s execution stack top address. As a special case, this method always
returns NULL when invoked for the main thread.

int onStackOverflow() const

Returns a boolean value telling whether the target thread has overwritten its overflow
detection pattern.

int onStack(caddr_t addr) const

Returns a boolean value telling whether addr belongs to the target thread’s stack address
space.

void immediateResume(SxSynchro *so)

Resumes immediately the thread object. so is an optional pointer to a synchronization
object which may have motivated this call, usually because the condition awaited by the
thread was finally met. so may be NULL if the action is independent from any specific
synchronization object.

The executing thread is put at the front of the run chain, and CPU control is immediately
relinquished to the target thread.

As a result of this call, the target thread enters (or remains in) the RUNNING state.
Resuming the executing thread leads to a null effect.

SxSynchro *waitUntil (SxSynchro *so, ITime timeout)

Makes the target thread wait for the condition expressed by the synchronization object so
to be met. The amount of time the thread can wait for the condition to be met is specified
by timeout. If timeout equals ZEROTIME, the condition must be immediately satisfied
for the call to succeed.

A thread switch may occur if the executing thread needs to wait for the condition to be
met.

SIMEX FROGS 1.2

49

This calls returns either so if the condition is met within the alloted time, or NULL
otherwise.

SxSynchro *waitUntil (SxSynchro *so)

Invokes waitUntil(so,ZEROTIME).

SxSynchro *waitOrUntil (SxSynchroGroup *sog, ITime timeout)

Makes the target thread wait for at least one condition among the group of
synchronization objects sog to be met (disjunctive wait). The amount of time the thread
can wait for a condition to be met is specified by timeout. If timeout equals
ZEROTIME, the condition must be immediately satisfied for the call to succeed.

A thread switch may occur if the executing thread needs to wait for the condition to be
met.

This calls returns a pointer to the first synchronization object from the group whose
condition is met within the alloted time. Otherwise, NULL is returned indicating a
timeout condition.

SxSynchro *waitOr(SxSynchroGroup *so)

Makes the target thread indefinitely wait for at least one condition among the group of
synchronization objects sog to be met (disjunctive wait).

A thread switch may occur if the executing thread needs to wait for the condition to be
met.

This calls returns a pointer to the first synchronization object from the group whose
condition is met.

int xtry(SxThreadContext& buf)

Saves the target thread context information to buf. This call performs like setjmp() or
sigsetjmp() depending on the current thread switching mode (see setMtMode() for
more on this topic).

The saved context should be restored using xraise().

void xraise(SxThreadContext& buf)

Restores the target thread context using the information stored into buf, which must have
been previously set by a call to xtry(). This call performs like a longjmp() or
siglongjmp() depending on the thread switching mode which was in effect at the
moment the context was saved.

If the target thread is currently executing, the stack frame is immediately unwind.
Otherwise, the target thread will later resume execution using the restored context
information.

virtual void cancel()

Cancels the target thread. An internal thread named “the undertaker” is immediately
resumed to take in charge the thread deletion. Once resumed, the undertaker actually

SIMEX FROGS 1.2

50

deletes the canceled thread on behalf of its own context, which means than threads can
cancel themselves safely.

After the effective deletion has taken place, the CPU control is gained by the thread
leading the run chain.

Invoking cancel() is the required way of deleting a thread from the simulation executive.
No other mean should be used, such as using the delete operator directly.

virtual void pend(SxSynchro *so)

Makes the target thread wait the synchronization object so to be signaled. so may be
NULL if the wait is unconditional.

The target thread is removed from the run chain, then enters the PENDING state. A
thread switch occurs if the target thread is currently executing. Making a non−
RUNNING thread pend leads to a null effect.

This method is usually called from synchronization objects as they put to sleep threads
waiting for their condition to be met.

virtual void activate()

Makes the executing thread yield the CPU control to the target thread. The run chain is
not altered by this call, but the global simulation clock variable (i.e. SxClock) and the
executing thread pointer (i.e. SxThread::currentThread) are. The clock variable value
bumps to the target thread activation time value, and the executing thread pointer is set to
this.

This method is used by the executive’s scheduler and should not be invoked directly by
the user, unless low level SIMEX kernel code is involved.

virtual void preempt()

Preempts the target thread which must be in a RUNNING state. The thread is removed
from the run chain until it is explicitely resumed, and enters the PREEMPTED state.

If the target thread is not executing, the delay remainder of the preempted thread is
computed by substracting the thread’s next activation time stamp from the simulation
clock current value (i.e. SxClock). This remainder will be renewed when the thread is
resumed.

A thread switch occurs if the target thread is currently executing.

virtual void delay(ITime dt)

Delays the target thread which must be already in a RUNNING state. The delay period is
given by dt which must be a positive or null internal time value. The next activation time
is computed for the target thread and the run chain is reordered to reflect the change. The
target thread is always inserted at the end of its priority group (i.e. round−robin effect)
after the last thread having an earlier activation time and a higher priority.

Delaying a thread must not be confused with suspending it. The delayed thread remains
runnable and does not leave the RUNNING state while it is (re−)inserted the run chain.

SIMEX FROGS 1.2

51

The major effect of delaying a thread is making the simulation clock bump to its
scheduled activation time value when it is elected to regain the CPU.

A thread switch occurs if the target thread does not lead the run chain as a result of the
operation.

virtual void suspend()

Suspends the target thread. If the thread was runnable, it is removed from the run chain
until it is explicitely resumed. The target thread enters the IDLE state as a result of the
suspension.

The suspension is not cumulative with the PENDING state. Therefore, a pending thread
which gets suspended remains in the synchronization object’s waiting list, and thus, is
resumed when the condition is met. Only the thread object’s intermediate state transitions
will testify of such behavior (i.e. PENDING – IDLE – RUNNING instead of PENDING
– RUNNING).

A thread switch occurs if the target thread is currently executing.

virtual void timeout(SxTimer *timer)

This callback method is invoked when a simulation timer (i.e. SxTimer) armed for the
target thread has elapsed. The default action of this method is to resume the target thread.

It is safe to destroy the elapsed timer object on behalf of the timeout() callback if
needed.

SIMEX FROGS 1.2

52

SxTimed (extends SxObject)

PURPOSE

This pure class is the superclass of objects having a behavior related to simulated time,
such as threads (SxThread) and sources (SxSource). Each object inheriting this class is
managed by a scheduler object (SxScheduler) which orders its activation in a timely
manner.

A raw timed object has basically two states:� IDLE if the object is not a current member of the scheduler’s activation list.� RUNNING otherwise, denoting a runnable object.

SxTimed class should be rarely inherited directly by user−level classes, but is rather
used by low−level SIMEX kernel code.

CONSTRUCTOR

SxTimed(const char *name, SxScheduler *sched, int pflags)

Creates a timed object. name is a null−terminated character string identifying the new
object which can be used during tracing and monitoring; NULL is an acceptable value,
preventing the anonymous object from being visible from the display front−end.

sched is the address of a valid scheduler object which will control the object activation
during its life−time. A well−known scheduler object is the thread manager’s run chain
(see SxThread).

pflags is a set of protocol flags such as defined by the StProto interface.

METHODS

ITime getTime() const

Returns the timed object’s next activation time.

void setTime(ITime t)

Sets the timed object’s next activation time to t. This method does not reorder the
associated scheduler’s activation list.

void insert(ITime t)

Invokes delay(t).

virtual void suspend()

Removes the timed object from the associated scheduler’s activation list. The object
enters the IDLE state as a result of the operation.

virtual void resume()

SIMEX FROGS 1.2

53

Inserts the timed object into the associated scheduler’s list with an activation time equal
to the current simulation clock value (i.e. “now”).

virtual void activate() =0

This pure virtual method must be implemented by subclasses to take the necessary steps
to make the target object executing. This method is called by the associated scheduler
when the object’s activation time has come.

virtual void delay(ITime t)

Sets the timed object’s activation time to the current value of the simulation clock (i.e.
SxClock) incremented by t. The increment must be a positive or null internal time value.

The target object must be the currently active timed object at the scheduler’s level,
otherwise, unexpected results may occur.

SIMEX FROGS 1.2

54

SxCallout

PURPOSE

Objects from the pure SxCallout class provide a simple mean of having callback routines
executed all along the simulation process, whathever thread is currently in control. This
functionality should be used to perform fast low−level tasks which need to run on a
permanent basis in the background, but cannot be devoluted to a given simulation thread
in particular.

Callouts are managed by the instance of the SxScheduler class they are attached to.
Technically, they get fired each time the scheduler is asked to switch control to the next
activable object (i.e. SxScheduler::schedule()).

A typical application of the callouts is the data channel listener (i.e. SxListener), which
checks for available input for client threads on a set of file descriptors. Listeners are
callouts attached to the thread manager’s run chain.

PROTECTED DATA MEMBERS

SxThread *boundThread

The address of the thread object passed when constructing the current object.

CONSTRUCTOR

SxCallout(SxThread *boundThread =0)

Creates a callout object, optionally bound to the thread whose address is boundThread.
This pointer is not directly used at the SxCallout superclass level, but is only maintained
as a convenience for its subclasses. One usually sets this pointer to the address of a thread
related to the callout action, if any. boundThread may be NULL if unused.

METHODS

virtual void process()

This callback method is invoked by the scheduler object to which the current callout
object is attached. The scheduler ensures that this callback is fired often and regularly, all
along with the simulation process.

SIMEX FROGS 1.2

55

SxListener (extends SxCallout)

PURPOSE

This class implements a file descriptor monitoring object, used by threads to detect input
conditions pending on input channel synchronously or asynchronously, while other
threads are still allowed to run concurrently.

The simulation executive implements multi−threading on behalf of co−routines, not
native threads from the host operating system. This is relevant with the idea of time
independence which is needed to have an event−driven scheduling kernel which
guarantees reproducible behavior of threads accross simulation sessions. The simulation
threads (i.e. SxThread instances) are executed in a serialized order from the host
operating system’s prospective. Thus, it becomes quite obvious that issuing
indeterminately blocking system calls to the host operating system on behalf of a
simulation thread is a bad idea, unless one doesn’t mind that a given thread blocks the
whole simulation process while waiting for an event/resource which is external to the
simulator itself. The listener object has been designed to circumvent this constraint.

A listener monitors a given set of file descriptors for input, resuming a target thread each
time the condition is met. Once created, a listener should be attached to the thread
manager’s run chain using SxScheduler::addCallout().

CONSTRUCTORS

SxListener(int fd =−1)

Creates a listener to monitor the file descriptor fd. More descriptors can be added
subsequently by calling addFildes(). With a negative argument, this constructor creates
an idle listener.

SxListener(fd_set *waitSet)

Creates a listener to monitor the set of file descriptors waitSet. The initial wait set can be
updated using addFiles() and removeFildes().

METHODS

const fd_set& getWaitSet() const

Returns the current wait set, composed of the monitored file descriptors.

int getWaitCount() const

Returns the number of file descriptors monitored in the current wait set.

const fd_set& getReadySet() const

Returns the set of file descriptors which are marked as having pending input since the last
check. The current ready set is also altered by SxListener::poll() invoked with a null
ready set pointer. A client thread resumed by the listener usually calls this method to
retrieve the readied file descriptor(s).

SIMEX FROGS 1.2

56

void addFildes(int fd)

Adds fd to the set of monitored file descriptors. Calling this method for an already set
descriptor is harmless.

void removeFildes(int fd)

Removes fd from the set of monitored file descriptors. Calling this method for an unset
descriptor is harmless.

int poll(fd_set *readySet, struct timeval *tv)

Attempts to check for available input on the monitored file descriptors immediately. This
call simply invokes the synchronous i/o multiplexing service (i.e. select(2)) from the
host operating system with the current wait set as input. The resulting set is stored in
readySet. If readySet is NULL, the internal ready set is used.

tv is used to specify the alloted amount of time for the condition to be met before poll()
returns with a zero value. If tv is NULL, the wait is infinite. If tv is valid, and both
tv_usec and tv_sec are zero, poll() immediately returns with the available status.
Otherwise, the wait is limited to the amount of time given by this parameter. It should be
noted that in such case, the host time representation is applied, not the simulated time.

This method returns the number of ready file descriptors in the ready set. If readySet
was NULL, the returned set can be retrieved by a call to getReadySet().

int poll(fd_set *readySet)

Invokes poll(fd_set *readySet, struct timeval *tv) with tv being a valid, zeroed time
specification; this causes the method to return immediately with the available status.

SIMEX FROGS 1.2

57

SxScheduler

PURPOSE

The SIMEX scheduler is in charge of managing a set of runnable time−related objects,
maintaining their respective activation order. Timed objects (i.e. SxTimed) are first
ordered by scheduled activation date, then by decreasing priority. Objects with identical
activation dates and priorities are scheduled according to the FIFO insertion order. At
any time, the object having the highest priority among those having the earliest activation
date is active.

The current time reference used by the SxScheduler class is the contents of the
SxClock variable.

The thread manager’s run chain is an instance of the SxScheduler class (see
SxThread).

 CONSTRUCTOR

SxScheduler()

Creates a scheduler object. At this point, there are neither runnable nor active objects.

void insert(SxTimed *timed, ITime t)

Inserts the runnable object in the scheduling list, with a relative delay of t. The absolute
activation date of object is set to SxClock + t.

void insert(SxTimed *timed)

Inserts the runnable object in the scheduling list, with an activation date equal to
SxClock (i.e. “now”).

SxTimed *exchange()

Activates the next runnable object and returns its address. The previously active object is
pushed back at front of the scheduling list. If there is no runnable object currently linked
to the scheduler, a fatal error is raised.

A timed−object is activated by invoking its activate() callback method.

virtual SxTimed *schedule()

Activates the next runnable object and returns its address. If there is no runnable object
currently linked to the scheduler, a fatal error is raised.

A timed−object is activated by invoking its activate() callback method.

int isActive(SxTimed *object) const

Returns a boolean value telling whether object is currently active for the scheduler. An
object gets active whenever it is elected to run either by the schedule() or exchange()
methods.

SIMEX FROGS 1.2

58

SxTimed *getActiveObject()

Returns the address of the active object for the scheduler. NULL is returned before the
first runnable object is inserted.

void addCallout(SxCallout *callout, SxThread *boundThread =0)

Adds callout to the list of callouts the scheduler will fire before each object activation.
boundThread is an optional pointer to a thread object bound to the callout.

Please refer to the SxCallout documentation for more on this topic.

void removeCallout(SxCallout *callout)

Removes callout from the list of active callouts. Calling this method for an unregistered
– but valid − callout object is harmless.

Please refer to the SxCallout documentation for more on this topic.

SIMEX FROGS 1.2

59

SxSlaveScheduler (extends SxScheduler)

PURPOSE

This class implements a slave scheduler depending on a primary scheduler
(SxScheduler) to activate the runnable timed−object it holds. This quite exotic object is
mostly used by SIMEX source and timer managers.

SxSchedSlave(SxScheduler *master =0, SxTimed *manager)

Creates a slave scheduler. master is a pointer to the primary scheduler holding the
manager object. Both pointers may be NULL at object creation. In such a case, the
correct master and manager addresses should be set subsequently using setMaster() and
setManager() before the first runnable object is scheduled.

void setMaster(SxScheduler *sched)

Sets the primary scheduler address to sched.

void setManager(SxTimed *manager)

Sets the activation manager address to manager .

virtual SxTimed *schedule()

Activates the next runnable object and returns its address. If there is no runnable object
currently linked to the scheduler, NULL is returned.

The elected object is activated indirecty, by scheduling its activation manager held by the
primary scheduler at the object’s activation date. As a special case, a suspended manager
is simply resumed at the current date.

SIMEX FROGS 1.2

60

SxTimer (extends SxTimed)

PURPOSE

This class implements a timer object, allowing to perform specific actions at predefined
simulation dates.

A timer has basically three active states:� IDLE denotes an idle timer object.� ARMED indicates that an expiration date currently exists for the timer.� DISARMED indicates that a request to disarm the previously armed timer has
been issued.� EXPIRED denotes an expired timer.

The current time reference used by the timer manager is the contents of the global clock
variable SxClock.

CONSTRUCTOR

SxTimer(const char *name, ITime timeout, SxThread *wthread =0, int pflags =0)

Creates a simulation timer. name is a null−terminated character string identifying the
new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

The timer is immediately armed with an expiration date of SxClock + timeout.

wthread is the optional address of a bound thread, whose timeout() callback will be
fired at timer expiration. If this pointer is NULL, the timer will simply enter the
EXPIRED state.

pflags is a set of protocol flags such as defined by the StProto interface.

SxTimer(const char *name, SxThread *wthread =0, int pflags =0)

Creates a simulation timer. name is a null−terminated character string identifying the
new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

The timer is idle.

wthread is the optional address of a bound thread, whose timeout() callback will be
fired at timer expiration. If this pointer is NULL, the timer will simply enter the
EXPIRED state.

pflags is a set of protocol flags such as defined by the StProto interface.

SxTimer(const char *name =0, int pflags =0)

SIMEX FROGS 1.2

61

Creates a simulation timer. name is a null−terminated character string identifying the
new object which can be used during tracing and monitoring; NULL is an acceptable
value, preventing the anonymous object from being visible from the display front−end.

The timer is idle and has no bound thread.

pflags is a set of protocol flags such as defined by the StProto interface.

void set(ITime timeout)

Arms the timer. The expiration date is set to SxClock + timeout. Re−arming an armed
timer is perfectly legal; in such a case, the expiration date is simply set to the new value.

void reset()

If the timer is armed, disarms it. Otherwise, the IDLE state is entered.

virtual void activate()

This callback method is invoked by the timer manager when the current timer expires. Its
default action is to make the timer enter the EXPIRED state, then invoke the timeout()
callback method of any bound thread.

SIMEX FROGS 1.2

62

SxTr igger (extends SxThread)

PURPOSE

SxTrigger is the superclass of trigger subclasses. Triggers are threads driven by event
sources to start a client handler. The handler is fired according to the underlying source,
which may be periodic, exponential, and so on.

This class should not be instantiated “as is”, but it should be extended by specific trigger
implementations.

PROTECTED DATA MEMBERS

SxSource *source

The address of the source object driving the trigger object.

void (*handler)(void *)

The address of the user−defined handler to call.

void *clientData.

The user−provided cookie to pass to the handler.

SxQueue wakeupQ

The internal message queue pended by the trigger’s body which gets posted by the source
object.

CONSTRUCTOR

SxTrigger(void (*handler)(void *cookie), void *cookie, unsigned stackSize
=SXTRIGGER_MINSTACKSZ)

Creates a trigger object. handler is the user−provided handler to call with the argument
cookie. stackSize is passed to the SxThread constructor. Controlling the stack size may
be useful if complex actions are to be performed by the handler.

virtual int isValid() const

Returns a boolean value indicating whether the trigger object has a valid source.

virtual void body()

Implements the main loop for the trigger object thread. The handler gets fired each time a
new message is obtained from the internal queue bound to the driving source.

SIMEX FROGS 1.2

63

SxPerTr igger (extends SxTr igger)

PURPOSE

This class implements a periodic trigger. Objects from this class are driven by a periodic
source (SxPerSource).

CONSTRUCTOR

SxPerSource(void (*handler)(void *cookie), const char *param, void *cookie =0,
int priority =0, unsigned stackSize =SXTRIGGER_MINSTACKSZ)

Creates a periodic trigger. handler is the user−provided handler to call with the argument
cookie.

stackSize is passed to the SxThread constructor. Controlling the stack size may be
useful if complex actions are to be performed by the handler.

param is the source parameter string, which must be formatted as [tMin−tMax/]period,
where tMin and tMax are the optional source activation bounds, and period is the trigger
period.

Messages generated by the periodic source are given the pr ior ity value.

SIMEX FROGS 1.2

64

SxExpTr igger (extends SxTr igger)

PURPOSE

This class implements an exponential trigger. Objects from this class are driven by a
periodic source (SxExpSource).

CONSTRUCTOR

SxExpSource(void (*handler)(void *cookie), const char *param, void *cookie =0,
int priority =0, unsigned stackSize =SXTRIGGER_MINSTACKSZ)

Creates an exponential trigger. handler is the user−provided handler to call with the
argument cookie.

stackSize is passed to the SxThread constructor. Controlling the stack size may be
useful if complex actions are to be performed by the handler.

param is the source parameter string, which must be formatted as [tMin−tMax/]mean,
where tMin and tMax are the optional source activation bounds, and mean is the source’s
mean.

Messages generated by the exponential source are given the pr ior ity value.

SIMEX FROGS 1.2

65

SxFileTr igger (extends SxTr igger)

PURPOSE

This class implements a file−based trigger. Objects from this class are driven by a file−
based source (SxFileSource).

CONSTRUCTOR

SxFileSource(void (*handler)(void *cookie), const char *fileName, void *cookie
=0, int priority =0, unsigned stackSize =SXTRIGGER_MINSTACKSZ)

Creates a file−based trigger. handler is the user−provided handler to call with the
argument cookie.

stackSize is passed to the SxThread constructor. Controlling the stack size may be
useful if complex actions are to be performed by the handler.

fileName is the path of the file containing the time specifications.

Messages generated by the file−based source are given the pr ior ity value.

SIMEX FROGS 1.2

66

SxUniTr igger (extends SxTr igger)

PURPOSE

This class implements a uniform trigger. Objects from this class are driven by a uniform
source (SxPerSource).

CONSTRUCTOR

SxUniSource(void (*handler)(void *cookie), const char *param, void *cookie =0,
int priority =0, unsigned stackSize =SXTRIGGER_MINSTACKSZ)

Creates a uniform trigger. handler is the user−provided handler to call with the argument
cookie.

stackSize is passed to the SxThread constructor. Controlling the stack size may be
useful if complex actions are to be performed by the handler.

param is the source parameter string, which must be formatted as [tMin−tMax/]dMin−
dMax, where tMin and tMax are the optional source activation bounds, and dMin and
dMax are the distribution bounds.

Messages generated by the uniform source are given the pr ior ity value.

SIMEX FROGS 1.2

67

SxTimerTr igger (extends SxTr igger)

PURPOSE

This class implements a one−shot timer trigger. As a special exception, objects from this
class are not driven by a source.

Once expired, a timer trigger suspends itself.

CONSTRUCTOR

SxTimerSource(void (*handler)(void *cookie), const char *param, void *cookie
=0, unsigned stackSize =SXTRIGGER_MINSTACKSZ)

Creates a timer trigger. handler is the user−provided handler to call with the argument
cookie.

stackSize is passed to the SxThread constructor. Controlling the stack size may be
useful if complex actions are to be performed by the handler.

param is the timer parameter string, which must be a valid time specification.

SIMEX FROGS 1.2

68

