SDDK

CarbonKernel

Real-time Operating System Simulator

Version 1.4

Simulated Driver
Development Kit

October 2001

CarbonKernel

CarbonKernel

Table of Contents
1.INTRODUCTION 1

2.SDDK CONCEPTS 2

2.1MODULES AND STREAMS 2
2.2DEVICE MINOR NUMBER 2
2.3THE MESSAGING SYSTEM 3
2.3.1Structure of a message block header 4
2.3.2Sructure of a data block header 4
2.3.3Message queue protocol 5
2.3.3.1Filter processing 5
2.3.3.2Driver processing 5
2.3.43tructure of ani/o block 6
2.4INTERFACE WITH THE APPLICATION 6
2.5INTERFACE WITH THE SIMULATION KERNEL 7
2.6SRUCTURE OF A MODULE 7
2.7MODULE IDENTIFICATION AND ATTACHMENT 7
2.7.1Description of the module information block 8
2.7.2Modul e attachment protocol 8

3.SDDK INTERFACE 9

SDDK 2

1. Introduction

This documentdescribesthe Simulated Device DevelopmentKit (aka SDDK) which is
part of CarbonKernel, the real-time operatingsystemsimulator. The SDDK is an API
built on top of the simulation kernel which allows developing simulated device drivers.

The main goal of a simulateddevice driver is to implementthe simulation counter-part
of a "real" driver accessing"real" hardware for the application, by providing a
normalizedway for sendingand receiving data to/from a pseudo-devicefaking the real
hardware during the simulation process.

The simulateddevice driver is in somerespectsstructuredlike a usual kernel driver. It
displays canonicalentry points allowing the simulation kernel to completei/o operations
through them. For the people who are familiar with UNIX(tm) kernel programming
principles, the SDDK specifications are a simplified combination of legacy and
STREAMS driver concepts. These characteristicsmake a driver rather simple to
implement, whilst it can provide powerful device virtualization support to the
application.

2. SDDK Concepts

2.1 Modules and streams

A module is the genericnamefor a piece of software which may act like a filter,
or a device driver end-point.

An application can communicatewith a simulated device through a collection of
modules, linked together by a bi-directional messagequeue. The logical path of
data created by such collection is named a stream. Each module may refine the
message®btainedon its input queuefrom the precedentmodule in the streamand
pass the resulting messagesto the next module through its output queue. This
processends when the first or last module of the streamis reached,dependingon
the direction imposed by the current i/o operation.

. > - ==
filter #1 filter #n driver |
x stream end :
|
stream head \
v v

— —
— ~

_ ilosimulator
-~

Application

The device driver is closestto the simulated device in the stream:it is known as
the stream end. An unlimited numberof filter modulesmay be pushedbetweenthe
application and the device driver: the module closestto the applicationis seenas
the stream head. The simpleststreammakesa given device driver next to both the
stream head and the stream end.

A direct application of this approachwould allow pushing modulesaimed to emit
perturbations or have otherwise impact on the message flow for testing purposes.

The driver module can be coupled to any piece of code which can operateas a
data source and/or sink, in order to fake the behaviour of a simulated hardware
device. CarbonKernel provides a straightforward communicationchannel between
simulation threads known as the message port system based on the VRTOS'
internal event bus which is first candidateto relay bulks of data betweena driver
and the hardware simulation code. But one can use almost any other method to
establisha dialog betweenthese components,ncluding shareddata regions and so
on.

Messagesflowing from the streem head to the stream end are said to go
downstream. Conversely,messagedlowing from the stream end to the stream head
are said to go upstream.

2.2 Device minor number

A communicationpath is always establishedbetweenthe application and a single
instance of a simulated device, at least through a driver module, and eventually

acrossone or more filter modules.The conceptof a device minor numberallows a
single driver to manage multiple instances of a given simulated device. For
instance, an application may refer to the same keyboard driver while opening
communication streams to several distinct instances of simulated keyboards.

At any time in the module'scode, the routine sddGetMinof) can be called with the
current stream handleto retrieve the device minor numberconcernedby the current
i/o operation. A minor number is 0-based.

In the CarbonKernel's (inner) world, the driver's name (i.e. mod_name)and the
device minor number passedto ckOpenDevic@ respectivelystand for the device's
node directory entry and the minor number carried by its i-node in a UNIX world.

2.3 The messaging system

Modules pushed on a given stream communicate through messageblocks, each
holding a variable size data block. A linked-list of messageblocks forming a single
logical messageis passedfor input by the simulation kernel to a module, as the
result of the output of the previous module in the stream. Hence, a simple or
multi-parts logical messagecan be composedusing one or severalmessageblocks
and channeledthrough the stream by the mean of input and output queues.The
active module may then :

0 push the incoming message blocks to its output queue without modification;

0 composea refined logical messageby changingin whole or in part the
incoming message block(s) before pushing them to the output queue;

0 abort the current i/o operation, usually returning an error code to the
simulation kernel.

0 complete the current i/o operation before returning a successstatusto the
simulation kernel.

When a messagearrives at the stream end, the driver should be able to deliver the
received data to any piece of code faking the behaviour of a simulated device.
Sometimes the driver embodies such code. However this code can also be
independentfrom the driver's, which should communicate with it through any
available means, such as message ports.

When a read request is emitted, always starting from thestreamend , the driver can
obtain the data which should be passed to the application from any relevant source.

When a messagearrives at the stream head, the contentsof the output queue of
the first module is simply copied into the receiving application's buffer.

When a write requestis emitted, always startedfrom the stream head, the message
flows across the stream until the driver is reached.

2.3.1 Structure of a message block header

m_wptr (write pointer inside the data)

m_rptr (read pointer inside the data)

m_data (address of attacheddata)

m_cont (link to continued logical message)

m_next (link to next logical message)

A messagelock headercan be traversedby two concurrentqueues.First, it can
be linked to other messagesblocks forming a single logical messagehaving
multiple parts throughthe m_cont memberfield. Second,it can be linked to the
next logical message in a multi-messages queue through tha_nextfield.

\ |

\ \

\ m cont \

\ \

‘ m_cont »| m_cont »| m_cont |

\ \ ,

| m next m_neXt m next | Mu'“_parts msg #1

- e e \

L |

\ \

\ \

: m_cont }

L | \ .

| m_next ! | Single-part msg #2

\

2.3.2 Structure of a data block header

A datablock headeris held by a messageblock header,and carriesthe valuable
information attached to a logical message segment. A reference count is
maintainedby the SDDK's messagemanipulationroutines allowing a given data
block to be held by several messageblocks. A data block headercontains a
pointer to the memory area holding the valuable information. The recycling
method of such memory is also specified at the data block level.

d_free (pointer to the free policy descriptor)

d_base(pointer to the beginning of the information

Ll [PAY

d_lim (pointer after the end of the information block)

d_ref (reference count)

A messageblock containstwo dedicatedpointers, namely m_rptr and m_wptr,

to designate respectively the current read and write addresses inside the region of
memory laid betweenthe d_base and d_lim pointer values. It should be noted
that the SDDK routines and the i/o device support code from the simulation
kernel both exclusively use the ranges [d base..m rptr] and [d base..
m_wptr] to computethe effective size of what has beenread or written from/to
the data region. The module should update these pointers consistently as needed.

mwptr |-~~~ === = ==
miptr [-—————————————/~——
m_data

/4

d_base

m_wptr / d_lim
m_rptr dref=2
m_data

Data block headerscarrying no data are allowed; in sucha case,the d_baseand
d_lim fields are set to NULL, and so should remain the m_wptr and m_rptr
from the holding message block header.

2.3.3 Message queue protocol

The protocol used betweenthe simulation kernel and a module to passmessages
back and forth on a given streamdiffers whether the current module is a filter
or a driver.

2.3.3.1 Filter processing

mod_read and mod_write routines should extract the incoming logical
message from the input queue, process -and eventually alter/refine its
contents- then push the resulting messageto its output queue using the
dedicatedSDDK services.

2.3.3.2 Driver processing

mod_read should collect the next bulk of data to pass upstream by any
meanit hasaccessto, including starting a simulated physical read operation,
during which a piece of code faking the hardwaredevice behaviourproduces
the necessaryinput data. The available data should be packagedin a
sequenceof messageblock headersforming a single logical messagewhich
should be pushed on the driver's output queue.

If the driver providessupportfor readingmessagesaheadfrom the simulated
hardware,outside any outstandingread operation, it should be noted that a

special queueslot is transparentlyused by the SDDK routinesto store those
messagesuntil they are finally claimed during a subsequentmod_read

execution. This slot is known as the "wait queue”, and is transparently
selectedby the messagequeuing routine (i.e. sddPutMessage()jvhen it is

invoked on behalf of an asynchronouscontext, such as an interrupt handler
and so on. In order to passthe available read-aheaddata upstream before
attempting to simulate a physical read operation, the mod_read routine
should call the sddGetMessagefp extractthose pendingmessageslt should
be noted that unlike the input queue, the wait queue is a multi-messages

queue linking the heading blocks of distinct logical messageghrough their

m_next field. Each heading messageblock may be continued through the
m_contfield, thus forming a multi-parts logical message.

mod_write should extract the logical messageto emit from its input queue,
then it may use the attached data blocks freely, including starting a
simulated physical write operation,during which a piece of code faking the
hardware device behaviour consumes the available output data.

It should be noted that the simulation kernel automatically discardsthe module's
input queue contents on return of the mod read or mod_write routines.
Similarly, the output queue gets automatically flushed after the stream head or
end is reached, depending on the direction of the undergoing i/o operation.

2.3.4 Structure of an i/o block

The i/o block is a data structure passed by the simulation kernel to the
mod_read and mod_write routines,describingthe undergoingi/o operation.This
information block also containsthe input and output queueslots the module will
refer to when consumingmessagesrom the previous module in the stream,and
pushing new ones to the next module.

The pointer to the active i/o block is generally requestedby SDDK services
operating on messages queues or simulating a physical read/write operation.

The memberfields of the i/o block should never be directly manipulatedby the
module's code, but rather through the documented SDDK API. Otherwise,
incompatibilities with later simulation kernel or SDDK versions will possibly
arise.

The i/o block contains an error field which should be updated using the
sddloErrof) macro when a failure to complete the undergoingi/o operationis
encountered Conversely,the macro sddGetloError()can be usedto retrieve the
current error code set for a given i/o block.

2.4 Interface with the application

One of the significant contribution of the CarbonKernel's device i/o schemeis to
allow the applicationto accessany kind of simulateddevice through a small set of
generic primitives defined in the CarbonKernel's CKPI interface. Moreover, the
services called by those primitives are not "tainted" by the underlying simulated
RTOS personality. This means that both the SDDK drivers and the primitives
allowing to access their services are portable across all supported RTOS semantics.

These five primitives are :

0 ckOpenDevic§ opensa bi-directional communicationstreamwith a designated
device;

0 ckCloseDevic@ closes a previously opened communication stream;
0 ckReadDevic@ reads a stream of bytes from the device;

0 ckWriteDevice) writes a stream of bytes to the device;

0 ckloctiDevicg) sends an i/o control command to the device.

Information is passedback and forth betweenthe simulation kernel and the driver
by the mean of data and messageblocks. These data structuresallow composing
messagesncrementallywhich can then be passedthrough the modulesthat form a
SDDK stream.

2.5 Interface with the simulation kernel

The SDDK interface provides a comprehensiveset of servicesfor implementinga
module. Becausethe module'scode is run on behalf of the calling thread'scontext
by the simulation kernel (except the interrupt handlers),all the servicesfrom the
CKPI are still available in the context of a module; this way, both APIs do not
overlap functionally.

The services can be dispatched in four distinct groups :
0 the binding services

0 the physical i/o simulation services

0 the context management services

0 the message and data blocks management services

2.6 Structure of a module

A SDDK moduleis always structuredthe sameway, whetherit actslike a filter or
the final driver for the simulated device. It should display a set of canonical
routines used by the simulation kernel to request a well-defined set of i/o
operations. These operations currently are :

0 attachmentprocedure of the module to the running kernel (mod_attach,
optional)

0 detachmentprocedureof the module from the running kernel (mod_detach,
optional)

0 creation of a new logical path of communicationidentified by a stream
(mod_open, mandatory)

0 destruction of a logical path of communication (nod_close, optional)

0 data reception from the device on a given stream inod_read, optional)
0 data emission to the device on a given streamifiod_write, optional)

0 module's state control and status requesinod ioctl, optional)

Each routine should return a POSIX status code to the simulation kernel after
completion, taken from the available set defined in the standard header <errno.h>.

2.7 Module identification and attachment

A SDDK module must be identified before it can be successfullyattachedto a
running kernel. The mean of identification is a simple (static) routine embodiedin
the module's code which must be named sdd_info(). This routine must return a
pointer to a sdd_modinfo_t structure defined in ck/sddk.h, describing the module's
interface to the simulation kernel.

2.7.1 Description of the module information block

2.7.2

The sdd_modinfo_t structure containsa set of pointersto functions which must
be filled in with the addressesof the supplied canonical routines. When a
canonical service is optional, the SDD_NODEYV value can be used to give an
unspecified entry point. This structure contains four other members giving
additional information on the module :

0 atype field, defining whether the module is a driver or a filter;

0 a name field, pointing to a null-terminated charactersstring, which will
identify the module at the application level,

0 a 32-bits version code; the sdd get minver() and sdd_get majver() macros
can be usedto crack this value to obtain respectivelythe minor and major
version numbers.

0 an auto-push list field, which is a null-terminated array of characters
string pointers identifying the modules which should be consideredas
prerequisitesfor the current module to operate. Those modules will be
pushedon top of the stream head before attemptingto push the current
one.

Module attachment protocol

A module's object code must be statically linked to the simulator's executable
image in order to be identified. During its early stagesof initialization, the
simulator searchedts own symbol table for entriesnamedsdd_info storedin the
TEXT section of the running executableimage. Each found entry's addressis
resolved in the simulator's addressspace, and called in order to get back a
pointer to the sdd _modinfo_t structure each identified module should export this
way.

The found modules are then registered under the name given by the current
value of the mod name field from their respective information block. This
external name should be known by the application wanting to open a streamto
this module using the ckOpenDevicf service. Only communicationpaths to
stream end modules(i.e. drivers) can be openedby applications.Filter modules
may not be directly targeted by the ckOpenDevic@ service.

For each registeredmodule, the mod_type field is checkedto see whether the
module should be statically and permanentlyattachedduring the simulation, or if
a dynamic protocol should be involved. In the latter case, a module whose
mod_type field containsthe SDD_MOD_DYNAMIC flag will be attachedwhen
the first streamis createdto it, then detachedwhen its last stream has been
closed. Otherwise, if the module attachmentprotocol is static, the simulation
kernel invokes the attachmentroutine (if given) as a part of its own initialization
procedure.

3. SDDK Interface

mod_attach

10

SYNOPSIS

#i ncl ude <ck/sddk. h>
int nod_attach(sdd_devinfo_t *devinfo);

DESCRIPTION

The module should provide for an attachmentprocedureto initialize its global
context before acceptingulterior creation of communicationpaths. In the caseof a
static attachment protocol, this routine is called once during the system
initialization. If the attachmentprotocol is dynamic, this routine is called eachtime
the system is about to open the first active stream to this module.

One of the standardinitializations performed by a module is allocating enough
memory to store the module's private information on a per-instance basis. The
sddInitSoftStatg service from the SDDK's "software state" facility should be used
for this.

PARAMETERS

devinfo the handle of an internal information block which can be passedto
the SDDK servicesrequiring such input. This information has no direct value for
the current module, thus it is given as an opaque handle.

RETURN VALUES

ENODEV should be returned by the attachment procedure during a static
attachmentphaseif the module denies ulterior creation of any stream. Doing so
will prevent the simulation kernel to register the module as a valid target for
subsequentkOpenDevic§ calls.

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

When called during a static attachment phase, the running node is partially
initialized, and the current context should be consideredas an asynchronousone,
with all the limitations which apply to, especially concerningthe set of CKPI
services that can be invoked.

When called during a dynamic attachment phase, the routine is run on behalf of the
context of the simulation thread which issued the outstanding ckOpenDevic§
request creating the first active stream to the module.

When called during an explicit push of the module on the given stream through
and i/o control operation,the routine is run on behalf the context of the simulation
thread which issued the outstanding ckloctiDevic€) submitting a SDIO_PUSH
command.

SEE ALSO

11

mod_detacf), sddInitSoftState(),ckOpenDevicé

mod_detach

12

SYNOPSIS

#i ncl ude <ck/sddk. h>
i nt nod_detach(sdd_devinfo_t *devinfo);

DESCRIPTION

The module should provide for a detachment procedure to perform all the
housekeepinghoresit needsbefore being removedfrom the list of active modules.
In the caseof a static attachmentprotocol, this routine is currently never called. If
the attachmentprotocol is dynamic, this routine is called each time the system
closesthe last active streamto this module, after the mod_close has returned for
the stream.

One of the standard housekeepingchores performed by a module is freeing the
memory it currently holds to store its private information using the
sddFreeSoftState() service.

PARAMETERS

devinfo the handle of an internal information block which can be passedto
the SDDK servicesrequiring such input. This information has no direct value for
the current module, thus it is given as an opaque handle.

RETURN VALUES
SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

When called during a dynamic detachmentphase, this routine is run on behalf of
the context of the simulation thread which issued the outstandingckCloseDevic@
request closing the last active stream to the module.

When called during an explicit pop of the module on the given streamthrough and
i/o control operation,the routine is run on behalf of the context of the simulation
thread which issued the outstanding ckloctlDevicg) submitting a SDIO_POP
command.

SEE ALSO
mod_attacf), sddFreeSoftStafg ckCloseDevic@

mod_open

13

SYNOPSIS

#i ncl ude <ck/sddk. h>
i nt nod_open(sdd_streamt *stream int node);

DESCRIPTION

The module should provide for an open procedure which is responsible for
initializing a new communicationpath. If the SDDK's "software state" facility is
usedto managethe module's private information, sddGetSoftStaf¢ can be used to
get a pointer to the memory block that will hold the stream'sstate information
during its lifetime.

PARAMETERS

stream an opaque handle which uniquely identifies the new communication
path during its lifetime.

mode a mask describing the current operation. A combination of the
following flags can be passed through this parameter :

0 SDEV_READ tells the module that the stream is open for reading.
0 SDEV_WRITE tells the module that the stream is open for writing.

0 SDEV_EXCL tells the module that the device instance should not be
shared.It is up to the mod_open routine to perform the necessarystepsin
identifying conflicts with existing streams and returning the appropriate
error status accordingly (usually EBUSY). If the module operateson a
device that cannot be shared by nature (e.g. a keyboard),it is free to
enforce the exclusivenessof the accesseven if the SDEV_EXCL flag is
not set in the mode mask.

RETURN VALUES
SDD_SUCCESS should be returned on success.
Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstandingckOpenDevic@ request.

SEE ALSO
mod_closé), ckOpenDevicé

mod_close

14

SYNOPSIS

#i ncl ude <ck/sddk. h>
int nod_cl ose(sdd_streamt *strean);

DESCRIPTION

The module should provide for a close procedurewhich is responsiblefor releasing
any resource held by a communication path before it is destroyed.

PARAMETERS

stream an opague handle which identifies the closed communication path.
RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstandingckCloseDevic@ request.

SEE ALSO
mod_opef), ckCloseDevic@

mod_read

15

SYNOPSIS

#i ncl ude <ck/sddk. h>
int nod_read(sdd_streamt *stream sdd_iob_t *iob);

DESCRIPTION

The module should provide for a read procedurewhich is responsiblefor retrieving
and sendingthe next data available upstream. Once the stream head is reached,the
data collected on the output queue of the first module is made available to the
application by the simulation kernel.

The mod_read routine of a driver module usually starts a simulated physical read
operation from the faked hardware device, unless some read-aheaddata exists in
the stream'swait queue.If the streamis boundto a messageoort as a result of a
call to sddBindStrear), the straightforwardmannerto initiate a simulated physical
read operation stands in using thesddPhysReddl service.

PARAMETERS
stream an opague handle which identifies the stream to read from.
iob an i/o block describingthe undergoingi/o operation,which also holds

the input and output queues for the active stream in the current module.

RETURN VALUES
SDD_SUCCESS should be returned on success.
Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstandingckReadDevic@ request.

SEE ALSO

mod_writ€), ckReadDevic@

mod_write

16

SYNOPSIS

#i ncl ude <ck/sddk. h>

int nrod wite(sdd_streamt *stream sdd_iob_t *iob);
DESCRIPTION

The module should provide for a write procedurewhich is responsiblefor sending
the submitted output data downstream. Once the stream end is reached,the output
data should be made available to the piece of code faking the simulated hardware
device.

The mod_write routine of a driver module usually starts a simulated physical write
operation to the faked hardware device. If the stream is bound to a message port as
a result of a call to sddBindStrearf), the straightforward manner to initiate a
simulated physical write operation stands in using thesddPhysWrit@ service.

PARAMETERS

stream an opague handle which identifies the stream to write to.

iob an i/o block describingthe undergoingi/o operation,which also holds
the input and output queues for the active stream in the current module.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.
CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstandingckWriteDevicd) request.

SEE ALSO

mod_reaf), ckWriteDevicg)

mod_ioctl

17

SYNOPSIS

#i ncl ude <ck/ sddk. h>

int nod_ioctl(sdd _streamt *stream int cnd, void *arg, int
*retval);

DESCRIPTION

The module can provide for a control procedurewhich is responsiblefor changing
the current module's or stream'sstate, or return some valuable information to its
caller.

The mod_ioctl routine is called in turn for each module presenton a given stream
as a result of the application layer issuing the ckloctlDevicd) call. Hence, the
direction of the i/o control stream walk is always downstream.

The SDEV_I0x() macros from ck/sdeviceh can be used to encodei/o control
commands.A sub-setof thesecommandsallows an applicationto push/popSDDK
filter moduleson an open stream.See the SDDIO documentationfor more on the
standard i/o control commands.

PARAMETERS
stream an opague handle which identifies the stream to write to.
cmd an integer value encoding the command word and miscellaneous

information used by the simulation kernel for transferring data to or from the
module.

arg a generic pointer passedby the application layer as an argumentto
the commandto apply. The length of the region of memory this pointer refers to
and the type of the pointed object dependon the commandword. The imposed
maximum size of an argument is 255 bytes (inclusive).

retval an integer value that will be returnedto the application layer as a
result of calling ckloctlDevice().

RETURN VALUES
SDD_SUCCESS should be returned on success.

Any other standarderror code found in errno.h can be returned. If one of the
mod_ioctl routines defined for the stream returns a non-zero error code, then
ckloctlDevicd) will return -1 to the application,and errno will be set to that error
code.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstandingckloctlDevicd) request.

SEE ALSO

18

mod_read), ckWriteDevicg)

sddBindStream - bind a stream to a message port

19

SYNOPSIS

#i ncl ude <ck/ sddk. h>

i nt sddBi ndStrean(sdd_streamt *stream sdd_iohandler _t
*r _handl er, sdd_i ohandler_t *w _handl er, ckhandl e_t
*handl ep) ;

DESCRIPTION

This service binds an i/o streamto a messageport. Using messageports is the
easiestway of exchangingvariable size data bulks within an application.Binding a
streamto a messageport implies using this CKPI's messagingservice for reading
data from and writing data to the code faking a hardware device's behaviour.
sddBindStrearf) takes internal dispositionsfor the module to call sddPhysRedul
and sddPhysWrit@ in order to simulate physicali/o operationson a given stream.
This is the reasonwhy this service is exclusively called by drivers from their
mod_opef) routine, and never by filter modules.

In order to exchangedata through a messageport, a conventionalport name should
be agreedbetweenthe sender(s)and the receiver(s).sddBindStrearf) determinesthe
implicit port nameto which the streamcan sendand/or receive datato/from remote
threads, using the following rule:

portName = "<mod_name>:<minor_number>".

For instance,if the kbd driver invokes sddBindStreai) in its mod_opef) routine,
as a result of an application requestto open instance#0 of the simulatedkeyboard
device, then the implicit port namewill be "kbd:0". This way, any thread sending
data through the messageport named "kbd:0" will provide input to the keyboard
driver for the correspondingstream.Conversely,writing to this port will causethe
driver to send messages concerning this device instance to any thread reading it.

If a messageport with the given name pre-exists before sddBindStrearf) is called,
the stream will be bound to it. Otherwise, a new messageport will be built
internally for the stream to be bound to.

Magnets, which are GUI front-ends connectedto messageports, can be used to
feed drivers with input and display their output in an interactive, user-friendly
manner.

PARAMETERS
stream the streamhandle passedby the simulation kernel to the mod_ope()
routine.

r_handler a pointer to a user routine which is expectedto simulate the physical
reading of data from a faked hardware device. This routine will be called in
responseto the invocation of the sddPhysRed)l service by the mod_rea) routine
of the current module. This indirection allows passingthe addressof a routine
conforming to the SDDK standards,which can be implementedin a foreign piece
of code, or directly accessiblefrom the current module, simulating the behaviourof
some hardware device.

20

w_handler a pointer to a user routine which is expectedto simulate the physical
writing of datato a faked hardwaredevice. This routine will be called in response
to the invocation of the sddPhysWrit@ service by the mod_writ€) routine of the

currentmodule. This indirection allows passingthe addressof a routine conforming
to the SDDK standardswhich can be implementedin a foreign piece of code, or

directly accessiblefrom the current module, simulating the behaviour of some
hardware device.

handlep a pointer to an opaque object's handle identifying the bi-directional
messageport to which the streamis bound. On error, the value of this handleis
undefined.

RETURN VALUES

SDD _SUCCESS:Is returnedif the streamwas successfullybound to the message
port. A non-zero port handle has been written to the memory pointed to by
handlep.

SDD_FAILURE is returned on error.
CONTEXT

sddBindStrearf) can be called on behalf of the context of any canonical service
routine. However, mod_open is best candidate for binding a new streamto a
message port.

Calling sddBindStrearf) more than once for a given stream is allowed. The
previous binding will be merely replaced by the new one.

ERRORS

Two causes of failure may arise :

0 the calling module is a filter. Only drivers can invoke this service, because
they are exclusively responsible for simulating physical i/o.

0 there is no receiver waiting for messages on the designated port.
SEE ALSO
ckBindPort(), ckReadPort(), ckWritePort(sddPhysRed), sddPhysWrit@

sddUnbindStream - unbind a stream from a message
port

21

SYNOPSIS

#i ncl ude <ck/ sddk. h>

i nt sddUnbi ndStrean(sdd_streamt *stream ckhandl e_t
handl e) ;

DESCRIPTION

This serviceunbindsan i/o streamfrom a messageport. This operationreverts the
actionsof a previouscall to sddBindStreai) for the given stream.It has no effect
on the messageport itself. After this service has returned, calls to sddPhysRedl
and sddPhysWrit@ will beget an error.

PARAMETERS

stream the streamhandle passedby the simulation kernel to the mod_ope()
routine.

handle the opaqueobject's handle identifying the bi-directional messageport

which should have been returned by a previous call tosddBindStrearf).
RETURN VALUES

SDD_SUCCESS is always returned.

CONTEXT

sddUnbindStreafh can be called on behalf of the contextof any canonicalservice
routine.

SEE ALSO
sddBindStrearf), sddPhysRedyl sddPhysWrit@

sddGetMinor - get minor device number from a
stream

SYNOPSIS

#i ncl ude <ck/sddk. h>
int sddGet M nor (sdd_streamt *stream;

DESCRIPTION

This servicereturnsthe minor number identifying the device instancethe streamis
bound to. This number is a 0-based integer.

PARAMETERS

stream the stream handle.

RETURN VALUES

The minor number.

CONTEXT

sddGetMinof) can be called on behalf of any context.

SEE ALSO
sddOpenDevice()

22

sddInitSoftState - initialize the software states allocator

23

SYNOPSIS

#i ncl ude <ck/ sddk. h>

int sddlnitSoftState(void **statesp, size_t nbytes, int
ni nst ances) ;

DESCRIPTION

This service initializes a local allocator for the calling module which provides
chunks of memory for storing any kind of private state information on a per-
device instance basis.

PARAMETERS

statesp the addressof a generic pointer into which the sddinitSoftStat@
service will store the new allocation root. This information should be seenas an
opaque handle and remain private to the module.

Nbytes the size (in bytes) of the memory chunk neededto hold a single
software state. One usually provides the size of a C structure defining the private
state components.

ninstances the maximum number of active instancesof the simulated device
which can be managedby the module. The minor number ranges from 0 to
ninstances - 1 (inclusive).

RETURN VALUES

SDD_SUCCESSIs returnedif the state allocator was successfullyinitialized for the
calling module.

SDD_FAILURE is returned on error.
CONTEXT

sddInitSoftStatg can be called on behalf of the context of any canonical service
routine. Nevertheless,the mod_attach canonical routine is first candidate for
allocating this kind of resources.

ERRORS

Two causes of failure may arise :
0 the calling module supplied a null nbytes parameter.
0 there is not enough available memory to complete the operation.

SEE ALSO
sddFreeSoftState sddGetSoftStafe

sddGetSoftState - retrieve a software state block

24

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d sddGet Soft State(void *states, int mnor);

DESCRIPTION

This service returns the addressof the software state block assignedto a specific
instance of a simulated device managed by the module.

PARAMETERS
states the allocation handle returned by a previous call tosddInitSoftStatg.
minor the minor number of the device instance. One should use

sddGetMinof) to retrieve the minor number attached to the current stream.

RETURN VALUES

The address of the private state block is return on success.

A null pointer is returned on error.

CONTEXT

sddGetSoftStafg can be called on behalf of any context.
ERRORS

The sddGetSoftStafg@ routine returnsan error if the minor numberis negative,or
greater or equal than the maximum number of instances declared to the
sddInitSoftStat@ service.

SEE ALSO
sddInitSoftStat@

sddFreeSoftState - release all software states

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d sddFreeSoft State(void *states);

DESCRIPTION

This service frees all the resourcesattachedto a given state allocator, such as
returning the allocated memory to the simulation system. This operationis usually
part of the housekeeping chores performed by a detaching module.

PARAMETERS

states the allocation handle returned by a previous call tosddInitSoftStat@.
RETURN VALUES

none.

CONTEXT

sddFreeSoftState can be called on behalf of any context. Nevertheless,the
mod_detach canonicalroutine is first candidateto releaseall the resourcesattached
to a module.

SEE ALSO
sddInitSoftStat@

25

sddSetPrivate - set stream's private cookie

26

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d sddSet Private(sdd_streamt *stream void *cookie);

DESCRIPTION

This service stores a cookie defined by the module in a reservedfield of the
stream descriptor. This cookie can be used to hold private data on a per-stream
basis, and in any case remains opaque to the simulation sytem.

PARAMETERS

stream the opaque handle of the stream to attach the cookie to.

Cookie the new value of the stream's cookie.
RETURN VALUES

none.

CONTEXT

sddSetPrivai@ can be called on behalf of any context.

SEE ALSO
sddGetPrivatg

sddGetPrivate - get stream's private cookie

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d *sddCet Private(sdd_streamt *strean);

DESCRIPTION

This service returns the cookie attachedto a stream by a previous call to
sddSetCookie().

PARAMETERS
stream the opaque handle of the stream to retrieve the cookie from.

RETURN VALUES

The current value of the stream's cookie. If the cookie was unset, NULL is
returned.

CONTEXT

sddGetPrivatg can be called on behalf of any context.

SEE ALSO
sddSetPrivai@

27

sddPhysRead - simulate a physical read operation

28

SYNOPSIS

#i ncl ude <ck/sddk. h>
i nt sddPhysRead(sdd_streamt *stream sdd_iob_t *iob);

DESCRIPTION

This service should be called from the mod_read routine of a driver which uses
i/o streamsboundto messageoorts (see sddBindStreaif)). This routine arrangesfor
the physical read handlerto be called on behalf of a safe context before returning
to the caller.

The read handlerwill be passedthe sameparameterson entry than sddPhysReddl
has received(i.e stream and iob handles).It should perform the necessarystepsto
collect the next data available for input from the given instanceof the simulated
hardware device. The message port obtained from a previous call to
sddBindStrearf) should be used to get them.

The read handler should return SDD_SUCCESS on successful completion, or
SDD_FAILURE otherwise.In the later case,the appropriateerror code should also
be set in the i/o block structure before returning to the caller, using the
sddloErrof) macro.

PARAMETERS
stream the opaque handle identifying the stream to read from.
iob the i/o block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returned if the stream is not bound to any message port.
Otherwise, the status returned by the read handler is passed back to the caller.

ERRORS

ENXIO is set in the i/o block error field if the streamis not bound to any
message port.

Any error code set by the read handlerin the i/o block error field can be present
if the operation failed.

CONTEXT

This service should be calledon behalf of the context of the mod_read routine.

SEE ALSO

mod_rea), ckReadDevic@

sddPhysWrite - simulate a physical write operation

29

SYNOPSIS

#i ncl ude <ck/sddk. h>
i nt sddPhysWite(sdd_streamt *stream sdd_iob_t *iob);

DESCRIPTION

This service should be called from the mod_write routine of a driver which uses
i/o streamsboundto messageports (see sddBindStream())This routine arrangesfor
the physical write handlerto be called on behalf of a safe context before returning
to the caller.

The write handlerwill be passedthe sameparameterson entry than sddPhysWrit§
has received(i.e stream and iob handles).It should perform the necessarystepsto
sendthe currentoutput data to the given instanceof the simulatedhardwaredevice.
The messageport obtainedfrom a previouscall to sddBindStrearf) should be used
to send them.

The write handler should return SDD SUCCESS on successful completion, or
SDD_FAILURE otherwise.In the later case,the appropriateerror code should also
be set in the i/o block error field before returning to the caller, using the
sddloErrof) macro.

PARAMETERS
stream the opaque handle identifying the stream to write to.
iob the i/o block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returned if the stream is not bound to a message port.
Otherwise, the status returned by the write handler is passed back to the caller.

ERRORS

ENXIO is set in the i/o block error field if the streamis not bound to any
message port.

Any error code set by the write handlerin the i/o block error field can be present
if the operation failed.

CONTEXT

This service should be calledon behalf of the context of the mod_write routine.
SEE ALSO

mod_writg), ckWriteDevice)

sddDataAlloc - allocate a new data block header

30

SYNOPSIS

#i ncl ude <ck/sddk. h>

sdd_dbl k_t *sddDataAl |l oc(void *base, size t len, sdd_fdata_t
*fdata);

DESCRIPTION

This service returns a new data block headerset to hold the specified memory
region. The allocation/free policy of this region is defined by the fdata parameter.

If fdata equalsSDD FDATA VOLATILE, the memory arearanging from base to
base + len - 1 is copiedto a private memory block attachedto the new header,
unlessbaseis NULL, so as to define an empty data block. This memory will be
automatically returned to the system when the header is freed.

If fdata equalsSDD FDATA_STATIC, this servicewill assumeit is safe to hold a
pointer to the original memory arearanging from baseto base + len - 1, with no
private copy needed.No action will be performedto releasethis memory block
when its holder is freed.

If fdata is a valid pointerto a sdd_fdata t structure,this service will assumeit is
safe to hold a pointer to the original memory arearanging from base to base +
len - 1, with no private copy needed.Moreover,it will call the free handlerwhose
addressis defined in the structureto releasethe original chunk of memory. The
free policy information structure has the following fields :

struct sdd_fdata {
void (*fdata_handler)(void *base, void *cookie);
void *fdata_cookie;

}

The fdata_handler field is a pointer to the handlerwhich is passedthe baseaddress
of the memory region to free, and a private cookie the user may set in the
fdata_cookie field.

PARAMETERS

base the baseaddressof the data. A NULL value is allowed, standingfor
an empty data block.

len the length of the data area.

fdata a pointer to the allocation/free policy information.

RETURN VALUES

NULL is returnedif thereis not enoughmemory to allocate the data block and/or
its header.

A pointer to the new data block header is returned on success.

31

CONTEXT

sddDataAllo€) can be called on behalf of any context.

SEE ALSO
sddDataFre@, sddMsgAllog)

sddDataFree- free a data block

32

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d sddDat aFree(sdd_dbl k_t *dbl k) ;

DESCRIPTION

This service releasesthe memory used by the data block headerand the memory
region it holds, accordingto the free policy defined at the time the headerwas
allocated.

PARAMETERS

dblk a pointer to the data block header to free, as returned by the
sddDataAllo€) service.

RETURN VALUES

none.

CONTEXT

sddDataFre@ can be called on behalf of any context. This service is usually not
called directly by the driver's code, but rather indirectly through the sddMsgFre@
service.However, data blocks which have not been attachedto any messageshould
be freed this way.

SEE ALSO
sddDataAllo€), sddMsgAllog)

sddMsgAlloc - allocate a new message block header

33

SYNOPSIS

#i ncl ude <ck/sddk. h>

sdd_mbl k_t *sddMsgAl | oc(sdd_dbl k_t *dbl k) ;
DESCRIPTION

This service returns a new messageblock headerset to hold the specified data
block. The data block header should have been returned by the sddDataAlloc()
service.

On success, the reference count maintained for the data block is incremented.

PARAMETERS

dblk the addressof a valid data block headerwhich will be held by the
new message block.

RETURN VALUES

NULL is returnedif thereis not enough memory to allocate the messageblock
header.

A pointer to the new message block header is returned on success.

CONTEXT

sddMsgAllog) can be called on behalf of any context.

SEE ALSO
sddMsgFre@, sddDataAllo€)

sddMsgFree - free a message block

34

SYNOPSIS

#i ncl ude <ck/sddk. h>
voi d sddMsgFree(sdd_nbl k_t *nbl k) ;

DESCRIPTION

This servicereleasesthe memory used by a messageblock header,and attemptsto
free the associated data block.

sddMsgFre@ decrementsthe referencecount of the data block headerand calls
sddDataFre@ for it if this count reaches zero.

PARAMETERS

dblk a pointer to the messageblock headerto free, as returned by the
sddMsgAlloqg) service.

RETURN VALUES

none.

CONTEXT

sddMsgFre@ can be called on behalf of any context.

SEE ALSO
sddMsgAllog), sddDataFre@

sddMsgPut - gueue a message block

35

SYNOPSIS

#i ncl ude <ck/ sddk. h>

i nt sddMsgPut (sdd_streamt *stream sdd_iob_t *iob,
sdd_nbl k_t *nbl k) ;

DESCRIPTION

This service links the specified message block to the appropriate message queue.

If the calling context is asynchronous(e.g. an interrupt handler), the messageis
linked to the stream'swait queue.Otherwise the messageis linked to the current
module's output queue.

PARAMETERS

stream the handle of the stream sending/receiving data.

iob the information block describing the undergoing i/o operation.
mblk the message block to link to a queue.

RETURN VALUES

This service returns the new count of messageblocks currently linked to the
affected queue.

CONTEXT
sddMsgPu should be called:

o from the mod_read) routine (or on behalf of it) to pass data upstream.

0 from the mod_writd) routine (or on behalf of it) when acting as a filter, to
pass datadownstream.

0 from other contexts, for the purpose of adjusting the wait queue's contents.
SEE ALSO
sddMsgAllog), sddMsgGe()

sddMsgGet

36

extract a message block

SYNOPSIS

#i ncl ude <ck/sddk. h>
sdd_nbl k_t *sddMsgGet (sdd_streamt *stream sdd_iob_t *iob);

DESCRIPTION

This serviceextractsthe next available messageblock from the appropriatemessage
queue.

If this service is called on behalf of the mod_writ€) routine, the messageis
obtained from the current module's input queue. Otherwise, the messageis
obtained from the stream's wait queue.

PARAMETERS
stream the handle of the stream sending/receiving data.
iob the information block describing the undergoing i/o operation.

RETURN VALUES

This servicereturnsthe next available messageblock unlinked from the appropriate
queue.

CONTEXT
sddMsgGdj should be called:

o0 from the mod_rea@ routine (or on behalf of it), to fetch the current read-
ahead data.

0 from the mod_writd) routine (or on behalf of it) when acting as a filter, to
fetch the data to be passeddownstream.

0 from the mod_writ€) routine (or on behalf of it) when acting as a driver, to
fetch the data to output to the simulated device.

0 from an asynchronousontext, for the purposeof adjustingthe wait queue's
contents.

SEE ALSO
sddMsgPup

sddloWait - wait for i/o completion

37

SYNOPSIS

#i ncl ude <ck/sddk. h>
int sddloVWait(sdd_iob_t *iob);

DESCRIPTION

This service blocks the calling simulation thread until the service sddloSignd]) is
called for the same i/o information block from another thread.

This servicecan be usedto synchronizea thread with an asynchronousvent, such
as an interrupt.

sddloWaif) is aware of the timeout value associatedto the i/o operation by the
application, and enforces this constraint automatically.

PARAMETERS
stream the handle of the stream sending/receiving data.
iob the information block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returnedupon timeout, if the eventwas not signaledwithin the
alloted amount of time. The i/o block is also marked for error.

SDD_SUCCESS is returned on success.
CONTEXT

sddloWaif) must be called from a synchronous context, such as the
mod_rea¢)/mod_writ€) routines. It is usually called from a driver module,
simulating the interaction betweensynchronousand asynchronouscode (such as an
interrupt handler).

The samekind of synchronizationcan be achievedusing the "condition variables"
servicesfrom the CKPI. Neverthelessthis SDDK-specific service silently handlesa
few housekeeping chores for the driver, such as dealing with the operation timeout.

SEE ALSO
sddloSignd))

sddloSignal - signal i/o completion

38

SYNOPSIS

#i ncl ude <ck/sddk. h>

voi d sddl oSi gnal (sdd_iob_t *iob);
DESCRIPTION

This service signals the simulation thread pending for i/o completion (i.e.
sddloWaif)) on the specified information block. This thread is woken up and
resumes execution according to its priority.

If more than one thread pend on the i/o block, all of them are resumedby the
signal.

PARAMETERS

iob the information block describing the undergoing i/o operation.
RETURN VALUES

none.

CONTEXT

sddloSignd]) can be called on behalf of any context.

SEE ALSO
sddloWaif)

SDDIO - Device control commands

39

SYNOPSIS

#i ncl ude <ck/ sdevi ce. h>

DESCRIPTION

A few standard device control commands are currently supported. The
corresponding command words and parameters should be passed to the
ckloctlDevicd) by the application to obtain the expected results.

COMMANDS
0 ckloctlIDevicdstream$SDIO _PUSHmMod_name,retval)

Requestgo push the filter module namedmod_name on top of the communication
channelidentified by stream. Modules are always pushedon the stream head side
of an existing channel.

As a consequencef this call, the mod_attacf) routine may be called for dynamic
filters before mod_ope() is invoked for the first stream.

0 ckloctlIDevicdstream$SDIO _PORmMod_name,retval)

Requeststo pop the filter module named mod_name from the communication
channel identified by stream.

As a consequencef this call, the mod_detacf) routine may be called for dynamic
filters after mod_closé) is invoked for the last stream.

The operation statusis returnedin retval. Zero is returnedon success.Otherwise,
an error occured:

0 ENODEV is returned if mod_nameis not a known module name.

0 EBUSY is returnedwhen an attemptis madeto push a filter module which
is already active for the stream.

0 ENXIO is returnedwhen an attemptis madeto pusha driver on a stream,
or to pop the driver off the stream, which are both illegal operations.

0 Any other error code whether returned by the attachmentor detachment
routines of the target filter module.

SEE ALSO

ckloctiDevicd), mod_attact), mod_detact)

I ndex

C
ckCloseDevice 6, 11, 13

ckloctlDevice

6, 10p., 16, 37

ckOpenDevice 3, 6, 8, 10, 12
ckReadDevice 6, 14, 26
ckWriteDevice 6, 15p., 27

M

m 6, 21, 23

mod_attach 7, 10p., 37
mod_attach 21

mod_close 7, 11pp, 37
mod_close 11

mod_detach 7, 10p., 37
mod_detach 23

mod_ioctl 7,16

mod_open 7, 12p., 17pp, 37
mod_read 5pp, 14pp, 26, 33pp
mod_read 5p., 14, 26
mod_write 7, 14p., 17, 27, 33pp
mod_write 6, 15

S

sddBindStream 14p., 17pp, 26p.
sddDataAlloc 28pp
sddDataFree 29p., 32
sddFreeSoftState 11, 21, 23
sddGetMinor 3, 20, 22
sddGetPrivate 24p.

40

sddGetSoftStatel 2, 21p.
sddInitSoftStatel0, 21pp

SDDIO 186, 37

sddloError 6, 26p.
sddloSignal 35p.
sddloWait 35p.
sddMsgAlloc 29pp
sddMsgFree 30pp
sddMsgGet 33p.
sddMsgPut 33p.
sddPhysRead 14, 17pp, 26
sddPhysWrite 15, 17pp, 27
sddSetPrivate 24p.
sddUnbindStream 19
SDIO_POP 11, 37
SDIO_PUSH 10, 37

