
CarbonKernel

CarbonKernel
Real-time Operating System Simulator

Version 1.4

Simulated Driver
Development Kit

October 2001

SDDK 1

CarbonKernel

Table of Contents

1.INTRODUCTION 1

2.SDDK CONCEPTS 2

2.1MODULES AND STREAMS 2
2.2DEVICE MINOR NUMBER 2
2.3THE MESSAGING SYSTEM 3

2.3.1Structure of a message block header 4
2.3.2Structure of a data block header 4
2.3.3Message queue protocol 5

2.3.3.1Filter processing 5
2.3.3.2Driver processing 5

2.3.4Structure of an i/o block 6
2.4INTERFACE WITH THE APPLICATION 6
2.5INTERFACE WITH THE SIMULATION KERNEL 7
2.6STRUCTURE OF A MODULE 7
2.7MODULE IDENTIFICATION AND ATTACHMENT 7

2.7.1Description of the module information block 8
2.7.2Module attachment protocol 8

3.SDDK INTERFACE 9

SDDK 2

1. Introduction

This documentdescribesthe SimulatedDevice DevelopmentKit (aka SDDK) which is
part of CarbonKernel, the real-time operatingsystemsimulator. The SDDK is an API
built on top of the simulation kernel which allows developing simulated device drivers.

The main goal of a simulateddevice driver is to implement the simulation counter-part
of a "real" driver accessing "real" hardware for the application, by providing a
normalizedway for sendingand receiving data to/from a pseudo-devicefaking the real
hardware during the simulation process.

The simulateddevice driver is in somerespectsstructuredlike a usual kernel driver. It
displayscanonicalentry points allowing the simulation kernel to completei/o operations
through them. For the people who are familiar with UNIX(tm) kernel programming
principles, the SDDK specifications are a simplified combination of legacy and
STREAMS driver concepts. These characteristics make a driver rather simple to
implement, whilst it can provide powerful device virtualization support to the
application.

1

2. SDDK Concepts

2.1 Modules and streams
A module is the generic name for a piece of software which may act like a filter,
or a device driver end-point.

An application can communicatewith a simulated device through a collection of
modules, linked together by a bi-directional messagequeue. The logical path of
data created by such collection is named a stream. Each module may refine the
messagesobtainedon its input queuefrom the precedentmodule in the streamand
pass the resulting messagesto the next module through its output queue. This
processends when the first or last module of the streamis reached,dependingon
the direction imposed by the current i/o operation.

The device driver is closest to the simulated device in the stream: it is known as
the stream end. An unlimited numberof filter modulesmay be pushedbetweenthe
application and the device driver: the module closest to the application is seen as
the stream head. The simpleststreammakesa given device driver next to both the
stream head and the stream end.

A direct application of this approachwould allow pushing modules aimed to emit
perturbations or have otherwise impact on the message flow for testing purposes.

The driver module can be coupled to any piece of code which can operateas a
data source and/or sink, in order to fake the behaviour of a simulated hardware
device. CarbonKernel provides a straightforward communicationchannel between
simulation threads known as the message port system based on the VRTOS'
internal event bus which is first candidateto relay bulks of data betweena driver
and the hardwaresimulation code. But one can use almost any other method to
establisha dialog betweenthesecomponents,including shareddata regions and so
on.

Messages flowing from the stream head to the stream end are said to go
downstream. Conversely,messagesflowing from the stream end to the stream head
are said to go upstream.

2.2 Device minor number
A communicationpath is always establishedbetweenthe application and a single
instance of a simulated device, at least through a driver module, and eventually

i/o simulator

Application

filter #1 filter #n driver
stream end

stream head

2

acrossone or more filter modules.The conceptof a device minor numberallows a
single driver to manage multiple instances of a given simulated device. For
instance, an application may refer to the same keyboard driver while opening
communication streams to several distinct instances of simulated keyboards.

At any time in the module'scode, the routine sddGetMinor() can be called with the
current stream handle to retrieve the device minor numberconcernedby the current
i/o operation. A minor number is 0-based.

In the CarbonKernel's (inner) world, the driver's name (i.e. mod_name)and the
device minor number passedto ckOpenDevice() respectivelystand for the device's
node directory entry and the minor number carried by its i-node in a UNIX world.

2.3 The messaging system
Modules pushed on a given stream communicate through messageblocks, each
holding a variable size data block. A linked-list of messageblocks forming a single
logical messageis passedfor input by the simulation kernel to a module, as the
result of the output of the previous module in the stream. Hence, a simple or
multi-parts logical messagecan be composedusing one or severalmessageblocks
and channeledthrough the stream by the mean of input and output queues.The
active module may then :

� push the incoming message blocks to its output queue without modification;
� compose a refined logical messageby changing in whole or in part the

incoming message block(s) before pushing them to the output queue;
� abort the current i/o operation, usually returning an error code to the

simulation kernel.
� complete the current i/o operation before returning a successstatus to the

simulation kernel.

When a messagearrives at the stream end, the driver should be able to deliver the
received data to any piece of code faking the behaviour of a simulated device.
Sometimes the driver embodies such code. However this code can also be
independent from the driver's, which should communicate with it through any
available means, such as message ports.

When a read request is emitted, always starting from the stream end , the driver can
obtain the data which should be passed to the application from any relevant source.

When a messagearrives at the stream head, the contentsof the output queue of
the first module is simply copied into the receiving application's buffer.

When a write requestis emitted, always startedfrom the stream head, the message
flows across the stream until the driver is reached.

3

2.3.1 Structure of a message block header

A messageblock headercan be traversedby two concurrentqueues.First, it can
be linked to other messagesblocks forming a single logical messagehaving
multiple parts through the m_cont memberfield. Second,it can be linked to the
next logical message in a multi-messages queue through the m_next field.

2.3.2 Structure of a data block header

A data block headeris held by a messageblock header,and carries the valuable
information attached to a logical message segment. A reference count is
maintainedby the SDDK's messagemanipulationroutines allowing a given data
block to be held by several messageblocks. A data block header contains a
pointer to the memory area holding the valuable information. The recycling
method of such memory is also specified at the data block level.

m_wptr (write pointer inside the data)

m_rptr (read pointer inside the data)

m_data (address of attached data)

m_cont (link to continued logical message)

m_next (link to next logical message)

m_next m_next

m_cont
m_cont

m_next

m_cont

m_cont

m_next

Multi-parts msg #1

Single-part msg #2

d_free (pointer to the free policy descriptor)

d_base (pointer to the beginning of the information
block)
d_lim (pointer after the end of the information block)

d_ref (reference count)

m_cont

4

A messageblock contains two dedicatedpointers, namely m_rptr and m_wptr ,
to designate respectively the current read and write addresses inside the region of
memory laid betweenthe d_base and d_lim pointer values. It should be noted
that the SDDK routines and the i/o device support code from the simulation
kernel both exclusively use the ranges [d_base .. m_rptr] and [d_base ..
m_wptr] to computethe effective size of what has been read or written from/to
the data region. The module should update these pointers consistently as needed.

Data block headerscarrying no data are allowed; in such a case,the d_baseand
d_lim fields are set to NULL, and so should remain the m_wptr and m_rptr
from the holding message block header.

2.3.3 Message queue protocol

The protocol used betweenthe simulation kernel and a module to passmessages
back and forth on a given streamdiffers whether the current module is a filter
or a driver.

2.3.3.1 Filter processing

mod_read and mod_write routines should extract the incoming logical
message from the input queue, process -and eventually alter/refine its
contents- then push the resulting messageto its output queue using the
dedicated SDDK services.

2.3.3.2 Driver processing

mod_read should collect the next bulk of data to pass upstream by any
mean it has accessto, including starting a simulatedphysical read operation,
during which a piece of code faking the hardwaredevice behaviourproduces
the necessaryinput data. The available data should be packaged in a
sequenceof messageblock headersforming a single logical messagewhich
should be pushed on the driver's output queue.

If the driver providessupport for readingmessagesaheadfrom the simulated
hardware,outside any outstandingread operation, it should be noted that a

m_wptr

m_rptr

m_data

d_base

d_limm_wptr

m_rptr

m_data

d_ref = 2

5

special queueslot is transparentlyusedby the SDDK routines to store those
messagesuntil they are finally claimed during a subsequentmod_read
execution. This slot is known as the "wait queue", and is transparently
selectedby the messagequeuing routine (i.e. sddPutMessage())when it is
invoked on behalf of an asynchronouscontext, such as an interrupt handler
and so on. In order to pass the available read-aheaddata upstream before
attempting to simulate a physical read operation, the mod_read routine
should call the sddGetMessage()to extract thosependingmessages.It should
be noted that unlike the input queue, the wait queue is a multi-messages
queue, linking the heading blocks of distinct logical messagesthrough their
m_next field. Each heading messageblock may be continued through the
m_cont field, thus forming a multi-parts logical message.

mod_write should extract the logical messageto emit from its input queue,
then it may use the attached data blocks freely, including starting a
simulatedphysical write operation,during which a piece of code faking the
hardware device behaviour consumes the available output data.

It should be noted that the simulation kernel automaticallydiscardsthe module's
input queue contents on return of the mod_read or mod_write routines.
Similarly, the output queue gets automatically flushed after the stream head or
end is reached, depending on the direction of the undergoing i/o operation.

2.3.4 Structure of an i/o block

The i/o block is a data structure passed by the simulation kernel to the
mod_read and mod_write routines,describingthe undergoingi/o operation.This
information block also containsthe input and output queueslots the module will
refer to when consumingmessagesfrom the previous module in the stream,and
pushing new ones to the next module.

The pointer to the active i/o block is generally requestedby SDDK services
operating on messages queues or simulating a physical read/write operation.

The member fields of the i/o block should never be directly manipulatedby the
module's code, but rather through the documented SDDK API. Otherwise,
incompatibilities with later simulation kernel or SDDK versions will possibly
arise.

The i/o block contains an error field which should be updated using the
sddIoError() macro when a failure to complete the undergoing i/o operation is
encountered.Conversely,the macro sddGetIoError()can be used to retrieve the
current error code set for a given i/o block.

2.4 Interface with the application

One of the significant contribution of the CarbonKernel's device i/o schemeis to
allow the application to accessany kind of simulateddevice through a small set of
generic primitives defined in the CarbonKernel's CKPI interface. Moreover, the
services called by those primitives are not "tainted" by the underlying simulated
RTOS personality. This means that both the SDDK drivers and the primitives
allowing to access their services are portable across all supported RTOS semantics.

These five primitives are :

6

� ckOpenDevice() opens a bi-directional communicationstream with a designated
device;

� ckCloseDevice() closes a previously opened communication stream;
� ckReadDevice() reads a stream of bytes from the device;
� ckWriteDevice() writes a stream of bytes to the device;
� ckIoctlDevice() sends an i/o control command to the device.

Information is passedback and forth betweenthe simulation kernel and the driver
by the mean of data and messageblocks. These data structuresallow composing
messagesincrementallywhich can then be passedthrough the modules that form a
SDDK stream.

2.5 Interface with the simulation kernel

The SDDK interface provides a comprehensiveset of servicesfor implementing a
module. Becausethe module'scode is run on behalf of the calling thread'scontext
by the simulation kernel (except the interrupt handlers),all the servicesfrom the
CKPI are still available in the context of a module; this way, both APIs do not
overlap functionally.

The services can be dispatched in four distinct groups :
� the binding services
� the physical i/o simulation services
� the context management services
� the message and data blocks management services

2.6 Structure of a module

A SDDK module is always structuredthe sameway, whether it acts like a filter or
the final driver for the simulated device. It should display a set of canonical
routines used by the simulation kernel to request a well-defined set of i/o
operations. These operations currently are :

� attachment procedure of the module to the running kernel (mod_attach,
optional)

� detachmentprocedureof the module from the running kernel (mod_detach,
optional)

� creation of a new logical path of communication identified by a stream
(mod_open, mandatory)

� destruction of a logical path of communication (mod_close, optional)
� data reception from the device on a given stream (mod_read, optional)
� data emission to the device on a given stream (mod_write, optional)
� module's state control and status request (mod_ioctl, optional)

Each routine should return a POSIX status code to the simulation kernel after
completion, taken from the available set defined in the standard header <errno.h>.

7

2.7 Module identification and attachment

A SDDK module must be identified before it can be successfullyattachedto a
running kernel. The mean of identification is a simple (static) routine embodiedin
the module's code which must be named sdd_info(). This routine must return a
pointer to a sdd_modinfo_t structure defined in ck/sddk.h, describing the module's
interface to the simulation kernel.

2.7.1 Description of the module information block

The sdd_modinfo_t structure contains a set of pointers to functions which must
be filled in with the addressesof the supplied canonical routines. When a
canonical service is optional, the SDD_NODEV value can be used to give an
unspecified entry point. This structure contains four other members giving
additional information on the module :

� a type field, defining whether the module is a driver or a filter;
� a name field, pointing to a null-terminated charactersstring, which will

identify the module at the application level;
� a 32-bits version code; the sdd_get_minver() and sdd_get_majver() macros

can be usedto crack this value to obtain respectivelythe minor and major
version numbers.

� an auto-push list field, which is a null-terminated array of characters
string pointers identifying the modules which should be considered as
prerequisitesfor the current module to operate. Those modules will be
pushedon top of the stream head before attempting to push the current
one.

2.7.2 Module attachment protocol

A module's object code must be statically linked to the simulator's executable
image in order to be identified. During its early stages of initialization, the
simulator searchesits own symbol table for entriesnamedsdd_info stored in the
TEXT section of the running executableimage. Each found entry's addressis
resolved in the simulator's addressspace, and called in order to get back a
pointer to the sdd_modinfo_t structureeach identified module should export this
way.

The found modules are then registeredunder the name given by the current
value of the mod_name field from their respective information block. This
external name should be known by the application wanting to open a streamto
this module using the ckOpenDevice() service. Only communicationpaths to
stream end modules(i.e. drivers) can be openedby applications.Filter modules
may not be directly targeted by the ckOpenDevice() service.

For each registeredmodule, the mod_type field is checked to see whether the
module should be statically and permanentlyattachedduring the simulation, or if
a dynamic protocol should be involved. In the latter case, a module whose
mod_type field contains the SDD_MOD_DYNAMIC flag will be attachedwhen
the first stream is created to it, then detachedwhen its last stream has been
closed. Otherwise, if the module attachmentprotocol is static, the simulation
kernel invokes the attachmentroutine (if given) as a part of its own initialization
procedure.

8

3. SDDK Interface

9

mod_attach

SYNOPSIS

#include <ck/sddk.h>

int mod_attach(sdd_devinfo_t *devinfo);

DESCRIPTION

The module should provide for an attachmentprocedure to initialize its global
context before acceptingulterior creation of communicationpaths. In the caseof a
static attachment protocol, this routine is called once during the system
initialization. If the attachmentprotocol is dynamic, this routine is called each time
the system is about to open the first active stream to this module.

One of the standard initializations performed by a module is allocating enough
memory to store the module's private information on a per-instance basis. The
sddInitSoftState() service from the SDDK's "software state" facility should be used
for this.

PARAMETERS

devinfo the handle of an internal information block which can be passedto
the SDDK servicesrequiring such input. This information has no direct value for
the current module, thus it is given as an opaque handle.

RETURN VALUES

ENODEV should be returned by the attachment procedure during a static
attachmentphase if the module denies ulterior creation of any stream. Doing so
will prevent the simulation kernel to register the module as a valid target for
subsequent ckOpenDevice() calls.

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

When called during a static attachment phase, the running node is partially
initialized, and the current context should be consideredas an asynchronousone,
with all the limitations which apply to, especially concerning the set of CKPI
services that can be invoked.

When called during a dynamic attachment phase, the routine is run on behalf of the
context of the simulation thread which issued the outstanding ckOpenDevice()
request creating the first active stream to the module.

When called during an explicit push of the module on the given stream through
and i/o control operation,the routine is run on behalf the context of the simulation
thread which issued the outstanding ckIoctlDevice() submitting a SDIO_PUSH
command.

SEE ALSO

10

mod_detach(), sddInitSoftState(), ckOpenDevice()

11

mod_detach

SYNOPSIS

#include <ck/sddk.h>

int mod_detach(sdd_devinfo_t *devinfo);

DESCRIPTION

The module should provide for a detachment procedure to perform all the
housekeepingchoresit needsbefore being removedfrom the list of active modules.
In the caseof a static attachmentprotocol, this routine is currently never called. If
the attachmentprotocol is dynamic, this routine is called each time the system
closes the last active stream to this module, after the mod_close has returned for
the stream.

One of the standardhousekeepingchores performed by a module is freeing the
memory it currently holds to store its private information using the
sddFreeSoftState() service.

PARAMETERS

devinfo the handle of an internal information block which can be passedto
the SDDK servicesrequiring such input. This information has no direct value for
the current module, thus it is given as an opaque handle.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

When called during a dynamic detachmentphase,this routine is run on behalf of
the context of the simulation thread which issued the outstandingckCloseDevice()
request closing the last active stream to the module.

When called during an explicit pop of the module on the given streamthrough and
i/o control operation, the routine is run on behalf of the context of the simulation
thread which issued the outstanding ckIoctlDevice() submitting a SDIO_POP
command.

SEE ALSO

mod_attach(), sddFreeSoftState(), ckCloseDevice()

12

mod_open

SYNOPSIS

#include <ck/sddk.h>

int mod_open(sdd_stream_t *stream, int mode);

DESCRIPTION

The module should provide for an open procedure which is responsible for
initializing a new communicationpath. If the SDDK's "software state" facility is
used to managethe module'sprivate information, sddGetSoftState() can be used to
get a pointer to the memory block that will hold the stream'sstate information
during its lifetime.

PARAMETERS

stream an opaque handle which uniquely identifies the new communication
path during its lifetime.

mode a mask describing the current operation. A combination of the
following flags can be passed through this parameter :

� SDEV_READ tells the module that the stream is open for reading.
� SDEV_WRITE tells the module that the stream is open for writing.
� SDEV_EXCL tells the module that the device instance should not be

shared.It is up to the mod_open routine to perform the necessarystepsin
identifying conflicts with existing streams and returning the appropriate
error status accordingly (usually EBUSY). If the module operateson a
device that cannot be shared by nature (e.g. a keyboard), it is free to
enforce the exclusivenessof the accesseven if the SDEV_EXCL flag is
not set in the mode mask.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstanding ckOpenDevice() request.

SEE ALSO

mod_close(), ckOpenDevice()

13

mod_close

SYNOPSIS

#include <ck/sddk.h>

int mod_close(sdd_stream_t *stream);

DESCRIPTION

The module should provide for a close procedurewhich is responsiblefor releasing
any resource held by a communication path before it is destroyed.

PARAMETERS

stream an opaque handle which identifies the closed communication path.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstanding ckCloseDevice() request.

SEE ALSO

mod_open(), ckCloseDevice()

14

mod_read

SYNOPSIS

#include <ck/sddk.h>

int mod_read(sdd_stream_t *stream, sdd_iob_t *iob);

DESCRIPTION

The module should provide for a read procedurewhich is responsiblefor retrieving
and sendingthe next data availableupstream. Once the stream head is reached,the
data collected on the output queue of the first module is made available to the
application by the simulation kernel.

The mod_read routine of a driver module usually starts a simulated physical read
operation from the faked hardwaredevice, unless some read-aheaddata exists in
the stream'swait queue.If the streamis bound to a messageport as a result of a
call to sddBindStream(), the straightforwardmanner to initiate a simulatedphysical
read operation stands in using the sddPhysRead() service.

PARAMETERS

stream an opaque handle which identifies the stream to read from.

iob an i/o block describingthe undergoingi/o operation,which also holds
the input and output queues for the active stream in the current module.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstanding ckReadDevice() request.

SEE ALSO

mod_write(), ckReadDevice()

15

mod_write

SYNOPSIS

#include <ck/sddk.h>

int mod_write(sdd_stream_t *stream, sdd_iob_t *iob);

DESCRIPTION

The module should provide for a write procedurewhich is responsiblefor sending
the submittedoutput data downstream. Once the stream end is reached,the output
data should be made available to the piece of code faking the simulated hardware
device.

The mod_write routine of a driver module usually starts a simulatedphysical write
operation to the faked hardware device. If the stream is bound to a message port as
a result of a call to sddBindStream(), the straightforward manner to initiate a
simulated physical write operation stands in using the sddPhysWrite() service.

PARAMETERS

stream an opaque handle which identifies the stream to write to.

iob an i/o block describingthe undergoingi/o operation,which also holds
the input and output queues for the active stream in the current module.

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standard error code found in errno.h can be returned.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstanding ckWriteDevice() request.

SEE ALSO

mod_read(), ckWriteDevice()

16

mod_ioctl

SYNOPSIS

#include <ck/sddk.h>

int mod_ioctl(sdd_stream_t *stream, int cmd, void *arg, int
*retval);

DESCRIPTION

The module can provide for a control procedurewhich is responsiblefor changing
the current module's or stream'sstate, or return some valuable information to its
caller.

The mod_ioctl routine is called in turn for each module presenton a given stream
as a result of the application layer issuing the ckIoctlDevice() call. Hence, the
direction of the i/o control stream walk is always downstream.

The SDEV_IOx() macros from ck/sdevice.h can be used to encode i/o control
commands.A sub-set of thesecommandsallows an application to push/popSDDK
filter modules on an open stream.See the SDDIO documentationfor more on the
standard i/o control commands.

PARAMETERS

stream an opaque handle which identifies the stream to write to.

cmd an integer value encoding the command word and miscellaneous
information used by the simulation kernel for transferring data to or from the
module.

arg a generic pointer passedby the application layer as an argument to
the commandto apply. The length of the region of memory this pointer refers to
and the type of the pointed object depend on the command word. The imposed
maximum size of an argument is 255 bytes (inclusive).

retval an integer value that will be returned to the application layer as a
result of calling ckIoctlDevice().

RETURN VALUES

SDD_SUCCESS should be returned on success.

Any other standarderror code found in errno.h can be returned. If one of the
mod_ioctl routines defined for the stream returns a non-zero error code, then
ckIoctlDevice() will return -1 to the application,and errno will be set to that error
code.

CONTEXT

This routine is run on behalf of the context of the simulation thread which issued
the outstanding ckIoctlDevice() request.

SEE ALSO

17

mod_read(), ckWriteDevice()

18

sddBindStream - bind a stream to a message port

SYNOPSIS

#include <ck/sddk.h>

int sddBindStream(sdd_stream_t *stream, sdd_iohandler_t
*r_handler, sdd_iohandler_t *w_handler, ckhandle_t
*handlep);

DESCRIPTION

This service binds an i/o stream to a messageport. Using messageports is the
easiestway of exchangingvariable size data bulks within an application.Binding a
streamto a messageport implies using this CKPI's messagingservice for reading
data from and writing data to the code faking a hardware device's behaviour.
sddBindStream() takes internal dispositions for the module to call sddPhysRead()
and sddPhysWrite() in order to simulate physical i/o operationson a given stream.
This is the reason why this service is exclusively called by drivers from their
mod_open() routine, and never by filter modules.

In order to exchangedata through a messageport, a conventionalport nameshould
be agreedbetweenthe sender(s)and the receiver(s).sddBindStream() determinesthe
implicit port name to which the streamcan sendand/or receivedata to/from remote
threads, using the following rule:

 portName = "<mod_name>:<minor_number>".

For instance,if the kbd driver invokes sddBindStream() in its mod_open() routine,
as a result of an application requestto open instance#0 of the simulatedkeyboard
device, then the implicit port namewill be "kbd:0". This way, any thread sending
data through the messageport named "kbd:0" will provide input to the keyboard
driver for the correspondingstream.Conversely,writing to this port will causethe
driver to send messages concerning this device instance to any thread reading it.

If a messageport with the given name pre-exists before sddBindStream() is called,
the stream will be bound to it. Otherwise, a new messageport will be built
internally for the stream to be bound to.

Magnets, which are GUI front-ends connectedto messageports, can be used to
feed drivers with input and display their output in an interactive, user-friendly
manner.

PARAMETERS

stream the streamhandle passedby the simulation kernel to the mod_open()
routine.

r_handler a pointer to a user routine which is expectedto simulate the physical
reading of data from a faked hardware device. This routine will be called in
responseto the invocation of the sddPhysRead() service by the mod_read() routine
of the current module. This indirection allows passing the addressof a routine
conforming to the SDDK standards,which can be implementedin a foreign piece
of code, or directly accessiblefrom the current module, simulating the behaviourof
some hardware device.

19

w_handler a pointer to a user routine which is expectedto simulate the physical
writing of data to a faked hardwaredevice. This routine will be called in response
to the invocation of the sddPhysWrite() service by the mod_write() routine of the
current module. This indirection allows passingthe addressof a routine conforming
to the SDDK standards,which can be implementedin a foreign piece of code, or
directly accessible from the current module, simulating the behaviour of some
hardware device.

handlep a pointer to an opaque object's handle identifying the bi-directional
messageport to which the streamis bound. On error, the value of this handle is
undefined.

RETURN VALUES

SDD_SUCCESSis returned if the stream was successfullybound to the message
port. A non-zero port handle has been written to the memory pointed to by
handlep.

SDD_FAILURE is returned on error.

CONTEXT

sddBindStream() can be called on behalf of the context of any canonical service
routine. However, mod_open is best candidate for binding a new stream to a
message port.

Calling sddBindStream() more than once for a given stream is allowed. The
previous binding will be merely replaced by the new one.

ERRORS

Two causes of failure may arise :
� the calling module is a filter. Only drivers can invoke this service,because

they are exclusively responsible for simulating physical i/o.
� there is no receiver waiting for messages on the designated port.

SEE ALSO

ckBindPort(), ckReadPort(), ckWritePort(), sddPhysRead(), sddPhysWrite()

20

sddUnbindStream - unbind a stream from a message
port

SYNOPSIS

#include <ck/sddk.h>

int sddUnbindStream(sdd_stream_t *stream, ckhandle_t
handle);

DESCRIPTION

This serviceunbinds an i/o streamfrom a messageport. This operationreverts the
actionsof a previouscall to sddBindStream() for the given stream.It has no effect
on the messageport itself. After this service has returned,calls to sddPhysRead()
and sddPhysWrite() will beget an error.

PARAMETERS

stream the streamhandle passedby the simulation kernel to the mod_open()
routine.

handle the opaqueobject's handle identifying the bi-directional messageport
which should have been returned by a previous call to sddBindStream().

RETURN VALUES

SDD_SUCCESS is always returned.

CONTEXT

sddUnbindStream() can be called on behalf of the context of any canonicalservice
routine.

SEE ALSO

sddBindStream(), sddPhysRead(), sddPhysWrite()

21

sddGetMinor - get minor device number from a
stream

SYNOPSIS

#include <ck/sddk.h>

int sddGetMinor(sdd_stream_t *stream);

DESCRIPTION

This service returns the minor number identifying the device instancethe streamis
bound to. This number is a 0-based integer.

PARAMETERS

stream the stream handle.

RETURN VALUES

The minor number.

CONTEXT

sddGetMinor() can be called on behalf of any context.

SEE ALSO

sddOpenDevice()

22

sddInitSoftState - initialize the software states allocator

SYNOPSIS

#include <ck/sddk.h>

int sddInitSoftState(void **statesp, size_t nbytes, int
ninstances);

DESCRIPTION

This service initializes a local allocator for the calling module which provides
chunks of memory for storing any kind of private state information on a per-
device instance basis.

PARAMETERS

statesp the address of a generic pointer into which the sddInitSoftState()
service will store the new allocation root. This information should be seen as an
opaque handle and remain private to the module.

Nbytes the size (in bytes) of the memory chunk needed to hold a single
software state. One usually provides the size of a C structure defining the private
state components.

ninstances the maximum number of active instances of the simulated device
which can be managed by the module. The minor number ranges from 0 to
ninstances - 1 (inclusive).

RETURN VALUES

SDD_SUCCESSis returnedif the state allocator was successfullyinitialized for the
calling module.

SDD_FAILURE is returned on error.

CONTEXT

sddInitSoftState() can be called on behalf of the context of any canonical service
routine. Nevertheless, the mod_attach canonical routine is first candidate for
allocating this kind of resources.

ERRORS

Two causes of failure may arise :
� the calling module supplied a null nbytes parameter.
� there is not enough available memory to complete the operation.

SEE ALSO

sddFreeSoftState(), sddGetSoftState()

23

sddGetSoftState - retrieve a software state block

SYNOPSIS

#include <ck/sddk.h>

void sddGetSoftState(void *states, int minor);

DESCRIPTION

This service returns the addressof the software state block assignedto a specific
instance of a simulated device managed by the module.

PARAMETERS

states the allocation handle returned by a previous call to sddInitSoftState().

minor the minor number of the device instance. One should use
sddGetMinor() to retrieve the minor number attached to the current stream.

RETURN VALUES

The address of the private state block is return on success.

A null pointer is returned on error.

CONTEXT

sddGetSoftState() can be called on behalf of any context.

ERRORS

The sddGetSoftState() routine returns an error if the minor number is negative,or
greater or equal than the maximum number of instances declared to the
sddInitSoftState() service.

SEE ALSO

sddInitSoftState()

24

sddFreeSoftState - release all software states

SYNOPSIS

#include <ck/sddk.h>

void sddFreeSoftState(void *states);

DESCRIPTION

This service frees all the resourcesattached to a given state allocator, such as
returning the allocated memory to the simulation system.This operation is usually
part of the housekeeping chores performed by a detaching module.

PARAMETERS

states the allocation handle returned by a previous call to sddInitSoftState().

RETURN VALUES

none.

CONTEXT

sddFreeSoftState() can be called on behalf of any context. Nevertheless, the
mod_detach canonicalroutine is first candidateto releaseall the resourcesattached
to a module.

SEE ALSO

sddInitSoftState()

25

sddSetPrivate - set stream's private cookie

SYNOPSIS

#include <ck/sddk.h>

void sddSetPrivate(sdd_stream_t *stream, void *cookie);

DESCRIPTION

This service stores a cookie defined by the module in a reserved field of the
stream descriptor. This cookie can be used to hold private data on a per-stream
basis, and in any case remains opaque to the simulation sytem.

PARAMETERS

stream the opaque handle of the stream to attach the cookie to.

Cookie the new value of the stream's cookie.

RETURN VALUES

none.

CONTEXT

sddSetPrivate() can be called on behalf of any context.

SEE ALSO

sddGetPrivate()

26

sddGetPrivate - get stream's private cookie

SYNOPSIS

#include <ck/sddk.h>

void *sddGetPrivate(sdd_stream_t *stream);

DESCRIPTION

This service returns the cookie attached to a stream by a previous call to
sddSetCookie().

PARAMETERS

stream the opaque handle of the stream to retrieve the cookie from.

RETURN VALUES

The current value of the stream's cookie. If the cookie was unset, NULL is
returned.

CONTEXT

sddGetPrivate() can be called on behalf of any context.

SEE ALSO

sddSetPrivate()

27

sddPhysRead - simulate a physical read operation

SYNOPSIS

#include <ck/sddk.h>

int sddPhysRead(sdd_stream_t *stream, sdd_iob_t *iob);

DESCRIPTION

This service should be called from the mod_read routine of a driver which uses
i/o streamsbound to messageports (seesddBindStream()). This routine arrangesfor
the physical read handler to be called on behalf of a safe context before returning
to the caller.

The read handler will be passedthe sameparameterson entry than sddPhysRead()
has received(i.e stream and iob handles).It should perform the necessarystepsto
collect the next data available for input from the given instanceof the simulated
hardware device. The message port obtained from a previous call to
sddBindStream() should be used to get them.

The read handler should return SDD_SUCCESS on successful completion, or
SDD_FAILURE otherwise.In the later case,the appropriateerror code should also
be set in the i/o block structure before returning to the caller, using the
sddIoError() macro.

PARAMETERS

stream the opaque handle identifying the stream to read from.

iob the i/o block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returned if the stream is not bound to any message port.

Otherwise, the status returned by the read handler is passed back to the caller.

ERRORS

ENXIO is set in the i/o block error field if the stream is not bound to any
message port.

Any error code set by the read handler in the i/o block error field can be present
if the operation failed.

CONTEXT

This service should be called on behalf of the context of the mod_read routine.

SEE ALSO

mod_read(), ckReadDevice()

28

sddPhysWrite - simulate a physical write operation

SYNOPSIS

#include <ck/sddk.h>

int sddPhysWrite(sdd_stream_t *stream, sdd_iob_t *iob);

DESCRIPTION

This service should be called from the mod_write routine of a driver which uses
i/o streamsbound to messageports (seesddBindStream()).This routine arrangesfor
the physical write handler to be called on behalf of a safe context before returning
to the caller.

The write handler will be passedthe sameparameterson entry than sddPhysWrite()
has received(i.e stream and iob handles).It should perform the necessarystepsto
sendthe current output data to the given instanceof the simulatedhardwaredevice.
The messageport obtainedfrom a previouscall to sddBindStream() should be used
to send them.

The write handler should return SDD_SUCCESS on successful completion, or
SDD_FAILURE otherwise.In the later case,the appropriateerror code should also
be set in the i/o block error field before returning to the caller, using the
sddIoError() macro.

PARAMETERS

stream the opaque handle identifying the stream to write to.

iob the i/o block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returned if the stream is not bound to a message port.

Otherwise, the status returned by the write handler is passed back to the caller.

ERRORS

ENXIO is set in the i/o block error field if the stream is not bound to any
message port.

Any error code set by the write handler in the i/o block error field can be present
if the operation failed.

CONTEXT

This service should be called on behalf of the context of the mod_write routine.

SEE ALSO

mod_write(), ckWriteDevice()

29

sddDataAlloc - allocate a new data block header

SYNOPSIS

#include <ck/sddk.h>

sdd_dblk_t *sddDataAlloc(void *base, size_t len, sdd_fdata_t
*fdata);

DESCRIPTION

This service returns a new data block header set to hold the specified memory
region. The allocation/free policy of this region is defined by the fdata parameter.

If fdata equalsSDD_FDATA_VOLATILE, the memory area ranging from base to
base + len - 1 is copied to a private memory block attachedto the new header,
unlessbase is NULL, so as to define an empty data block. This memory will be
automatically returned to the system when the header is freed.

If fdata equalsSDD_FDATA_STATIC, this servicewill assumeit is safe to hold a
pointer to the original memory area ranging from base to base + len - 1, with no
private copy needed.No action will be performed to releasethis memory block
when its holder is freed.

If fdata is a valid pointer to a sdd_fdata_t structure,this service will assumeit is
safe to hold a pointer to the original memory area ranging from base to base +
len - 1, with no private copy needed.Moreover, it will call the free handlerwhose
addressis defined in the structure to releasethe original chunk of memory. The
free policy information structure has the following fields :

struct sdd_fdata {

void (*fdata_handler)(void *base, void *cookie);

void *fdata_cookie;

}

The fdata_handler field is a pointer to the handlerwhich is passedthe baseaddress
of the memory region to free, and a private cookie the user may set in the
fdata_cookie field.

PARAMETERS

base the baseaddressof the data. A NULL value is allowed, standingfor
an empty data block.

len the length of the data area.

fdata a pointer to the allocation/free policy information.

RETURN VALUES

NULL is returnedif there is not enoughmemory to allocate the data block and/or
its header.

A pointer to the new data block header is returned on success.

30

CONTEXT

sddDataAlloc() can be called on behalf of any context.

SEE ALSO

sddDataFree(), sddMsgAlloc()

31

sddDataFree - free a data block

SYNOPSIS

#include <ck/sddk.h>

void sddDataFree(sdd_dblk_t *dblk);

DESCRIPTION

This service releasesthe memory used by the data block headerand the memory
region it holds, according to the free policy defined at the time the header was
allocated.

PARAMETERS

dblk a pointer to the data block header to free, as returned by the
sddDataAlloc() service.

RETURN VALUES

none.

CONTEXT

sddDataFree() can be called on behalf of any context. This service is usually not
called directly by the driver's code, but rather indirectly through the sddMsgFree()
service.However, data blocks which have not been attachedto any messageshould
be freed this way.

SEE ALSO

sddDataAlloc(), sddMsgAlloc()

32

sddMsgAlloc - allocate a new message block header

SYNOPSIS

#include <ck/sddk.h>

sdd_mblk_t *sddMsgAlloc(sdd_dblk_t *dblk);

DESCRIPTION

This service returns a new messageblock header set to hold the specified data
block. The data block header should have been returned by the sddDataAlloc()
service.

On success, the reference count maintained for the data block is incremented.

PARAMETERS

dblk the addressof a valid data block headerwhich will be held by the
new message block.

RETURN VALUES

NULL is returned if there is not enough memory to allocate the messageblock
header.

A pointer to the new message block header is returned on success.

CONTEXT

sddMsgAlloc() can be called on behalf of any context.

SEE ALSO

sddMsgFree(), sddDataAlloc()

33

sddMsgFree - free a message block

SYNOPSIS

#include <ck/sddk.h>

void sddMsgFree(sdd_mblk_t *mblk);

DESCRIPTION

This service releasesthe memory used by a messageblock header,and attemptsto
free the associated data block.

sddMsgFree() decrementsthe referencecount of the data block header and calls
sddDataFree() for it if this count reaches zero.

PARAMETERS

dblk a pointer to the messageblock header to free, as returned by the
sddMsgAlloc() service.

RETURN VALUES

none.

CONTEXT

sddMsgFree() can be called on behalf of any context.

SEE ALSO

sddMsgAlloc(), sddDataFree()

34

sddMsgPut - queue a message block

SYNOPSIS

#include <ck/sddk.h>

int sddMsgPut(sdd_stream_t *stream, sdd_iob_t *iob,
sdd_mblk_t *mblk);

DESCRIPTION

This service links the specified message block to the appropriate message queue.

If the calling context is asynchronous(e.g. an interrupt handler), the messageis
linked to the stream'swait queue.Otherwise the messageis linked to the current
module's output queue.

PARAMETERS

stream the handle of the stream sending/receiving data.

iob the information block describing the undergoing i/o operation.

mblk the message block to link to a queue.

RETURN VALUES

This service returns the new count of messageblocks currently linked to the
affected queue.

CONTEXT

sddMsgPut() should be called:
� from the mod_read() routine (or on behalf of it) to pass data upstream.
� from the mod_write() routine (or on behalf of it) when acting as a filter, to

pass data downstream.
� from other contexts, for the purpose of adjusting the wait queue's contents.

SEE ALSO

sddMsgAlloc(), sddMsgGet()

35

sddMsgGet - extract a message block

SYNOPSIS

#include <ck/sddk.h>

sdd_mblk_t *sddMsgGet(sdd_stream_t *stream, sdd_iob_t *iob);

DESCRIPTION

This serviceextractsthe next availablemessageblock from the appropriatemessage
queue.

If this service is called on behalf of the mod_write() routine, the messageis
obtained from the current module's input queue. Otherwise, the messageis
obtained from the stream's wait queue.

PARAMETERS

stream the handle of the stream sending/receiving data.

iob the information block describing the undergoing i/o operation.

RETURN VALUES

This servicereturns the next available messageblock unlinked from the appropriate
queue.

CONTEXT

sddMsgGet() should be called:
� from the mod_read() routine (or on behalf of it), to fetch the current read-

ahead data.
� from the mod_write() routine (or on behalf of it) when acting as a filter, to

fetch the data to be passed downstream.
� from the mod_write() routine (or on behalf of it) when acting as a driver, to

fetch the data to output to the simulated device.
� from an asynchronouscontext, for the purposeof adjusting the wait queue's

contents.

SEE ALSO

sddMsgPut()

36

sddIoWait - wait for i/o completion

SYNOPSIS

#include <ck/sddk.h>

int sddIoWait(sdd_iob_t *iob);

DESCRIPTION

This service blocks the calling simulation thread until the service sddIoSignal() is
called for the same i/o information block from another thread.

This servicecan be used to synchronizea thread with an asynchronousevent, such
as an interrupt.

sddIoWait() is aware of the timeout value associatedto the i/o operation by the
application, and enforces this constraint automatically.

PARAMETERS

stream the handle of the stream sending/receiving data.

iob the information block describing the undergoing i/o operation.

RETURN VALUES

SDD_FAILURE is returnedupon timeout, if the event was not signaledwithin the
alloted amount of time. The i/o block is also marked for error.

SDD_SUCCESS is returned on success.

CONTEXT

sddIoWait() must be called from a synchronous context, such as the
mod_read()/mod_write() routines. It is usually called from a driver module,
simulating the interaction betweensynchronousand asynchronouscode (such as an
interrupt handler).

The same kind of synchronizationcan be achievedusing the "condition variables"
servicesfrom the CKPI. Nevertheless,this SDDK-specific servicesilently handlesa
few housekeeping chores for the driver, such as dealing with the operation timeout.

SEE ALSO

sddIoSignal()

37

sddIoSignal - signal i/o completion

SYNOPSIS

#include <ck/sddk.h>

void sddIoSignal(sdd_iob_t *iob);

DESCRIPTION

This service signals the simulation thread pending for i/o completion (i.e.
sddIoWait()) on the specified information block. This thread is woken up and
resumes execution according to its priority.

If more than one thread pend on the i/o block, all of them are resumedby the
signal.

PARAMETERS

iob the information block describing the undergoing i/o operation.

RETURN VALUES

none.

CONTEXT

sddIoSignal() can be called on behalf of any context.

SEE ALSO

sddIoWait()

38

SDDIO - Device control commands

SYNOPSIS

#include <ck/sdevice.h>

DESCRIPTION

A few standard device control commands are currently supported. The
corresponding command words and parameters should be passed to the
ckIoctlDevice() by the application to obtain the expected results.

COMMANDS
� ckIoctlDevice(stream,SDIO_PUSH,mod_name,retval)

Requeststo push the filter module namedmod_name on top of the communication
channel identified by stream. Modules are always pushedon the stream head side
of an existing channel.

As a consequenceof this call, the mod_attach() routine may be called for dynamic
filters before mod_open() is invoked for the first stream.

� ckIoctlDevice(stream,SDIO_POP,mod_name,retval)

Requeststo pop the filter module named mod_name from the communication
channel identified by stream.

As a consequenceof this call, the mod_detach() routine may be called for dynamic
filters after mod_close() is invoked for the last stream.

The operation status is returned in retval. Zero is returned on success.Otherwise,
an error occured:

� ENODEV is returned if mod_name is not a known module name.
� EBUSY is returnedwhen an attempt is made to push a filter module which

is already active for the stream.
� ENXIO is returnedwhen an attempt is made to push a driver on a stream,

or to pop the driver off the stream, which are both illegal operations.
� Any other error code whether returned by the attachmentor detachment

routines of the target filter module.

SEE ALSO

ckIoctlDevice(), mod_attach(), mod_detach()

39

Index

C
ckCloseDevice 6, 11, 13
ckIoctlDevice 6, 10p., 16, 37
ckOpenDevice 3, 6, 8, 10, 12
ckReadDevice 6, 14, 26
ckWriteDevice 6, 15p., 27

M
m 6, 21, 23
mod_attach 7, 10p., 37
mod_attach 21
mod_close 7, 11pp, 37
mod_close 11
mod_detach 7, 10p., 37
mod_detach 23
mod_ioctl 7, 16
mod_open 7, 12p., 17pp, 37
mod_read 5pp, 14pp, 26, 33pp
mod_read 5p., 14, 26
mod_write 7, 14p., 17, 27, 33pp
mod_write 6, 15

S
sddBindStream 14p., 17pp, 26p.
sddDataAlloc 28pp
sddDataFree 29p., 32
sddFreeSoftState 11, 21, 23
sddGetMinor 3, 20, 22
sddGetPrivate 24p.
sddGetSoftState12, 21p.
sddInitSoftState10, 21pp
SDDIO 16, 37
sddIoError 6, 26p.
sddIoSignal 35p.
sddIoWait 35p.
sddMsgAlloc 29pp
sddMsgFree 30pp
sddMsgGet 33p.
sddMsgPut 33p.
sddPhysRead 14, 17pp, 26
sddPhysWrite 15, 17pp, 27
sddSetPrivate 24p.
sddUnbindStream 19
SDIO_POP 11, 37
SDIO_PUSH 10, 37

40

