
CarbonKernel
Real-time Operating System Simulator

Version 1.4

User Manual

October 2001

Contents

1.Introduction 5
1.1Overview 5

1.1.1What is CarbonKernel? 5
1.1.2What is the tool for? 5
1.1.3What are the event-driven simulation approach's advantages?5

2.Installation from a binary distribution 7
2.1User Environment Self-Test 7

3.Description of the simulation system 8

3.1Overview of the system architecture 8
3.2Hosting real-time applications in the simulation system 9

3.2.1Working with the code instrumenter9
3.2.2Removing machine-level dependencies 12
3.2.3Startup code 12

4.Setting up a simulation 13
4.1Instrumenting a C/C++ application with ckcc13

4.1.1Time Progression and Vectoring 13
4.1.2Instrumenter's Options 13
4.1.3Locally Controlling Preemption and Vectoring. 15
4.1.4Source Code Adaptation Requirements 16
4.1.5Preprocessor Signatures 17

4.2Ongoing Example: IBC Example 17
4.2.1Introduction 17
4.2.2Distribution 18
4.2.3Generating the Executable18

5.Configuring the Simulation 19
5.1The Librarian 19

5.1.1Simulated configurations 20
5.1.2Typical Architecture 21
5.1.3Loading Simulation Modules 21
5.1.4Creating/Copying a Model Instance22

5.2Modifying/Renaming a Model Instance 22
5.3Destroying a Model Instance 24
5.4Defining a Simulated Configuration 24

5.4.1Associating Nodes24
5.4.2Linking Add-ins to the Simulation 25

6.Simulation Project 27

6.1Creating a Project 27
6.2Modifying a Project 28
6.3Selecting a Project 28

7.Control Panels 29
7.1Message ports 29
7.2Dataports 29
7.3Magnets 29

 1997-2000 Realiant Systems

CarbonKernel

7.4Creating Control Panels29

8.Editing the project settings 33
8.1Configuring Event Sources 33

8.1.1Events, Interrupts and the Simulation Scenario 33
8.1.2Event Source Settings Syntax 33
8.1.3Generating Events Automatically 33
8.1.4Generating Events Manually 34

8.2General Simulation Settings 35
8.3Simulation Tool Parameters 36
8.4Operating Options 37

9.Exporting/Importing the work environment 39
9.1Exporting/Importing the current project 39
9.2Exporting/Importing the models library 39

10.Running a Simulation 40
10.1Interactive Execution 40

10.1.1Simulation Monitor 40
10.1.2Using the built-in Debugger 46

11.Displaying Statistics Graphs 56
11.1Selecting Graphs 56
11.2Display by Type of Graph 57

11.2.1Time Curves 57
11.2.2Composite Curves57
11.2.3Histograms 57

11.3Controlling the Simulation 57
11.3.1Continuing/Stopping Simulation 57
11.3.2Setting Breakpoints 57
11.3.3Displaying and Checking Breakpoints 58

11.4Scale Compression 59
11.4.1Y Compression 59
11.4.2X Compression 59
11.4.3Zoom In 60
11.4.4Zoom Out 60

11.5Composite Curves 60
11.6Placing Graphs60
11.7Selection and Cross Hairs 60

11.7.1Actions on Graph Sections 60
11.7.2Using the Cross Hairs 61

11.8Other Local Functions61
11.8.1Local Time Curve Functions 62
11.8.2Local Histogram Functions 62
11.8.3Common Functions 63

11.9General Options64
11.9.1Adjusting Abscissas 64
11.9.2Scroll Lock 64
11.9.3Auto-Select Color64
11.9.4Auto-Save Session 64

12.Using the Terminal Console 65
12.1Recording an Interactive Session 65

User Manual 2

CarbonKernel

12.2Replaying an Interactive Session 66
12.3Manually Creating a Replay File 66

12.3.1Format for Time Based Replay ("normal" mode) 66
12.3.2Format for Immediate Replay ("raw" mode) 67

12.4Saving Terminal Outputs 67
12.5Deleting the Terminal During Simulation 67

13.Command Lines 68
13.1ISE Start Options 68
13.2Simulator Start Options 69

User Manual 3

CarbonKernel

1. Introduction

1.1 Overview

1.1.1 What is CarbonKernel ?

CarbonKernel is a real-time operating system simulation tool basedon event-
driven simulation techniques.The main idea is to provide a common framework
for simulating the behaviour- from the application'sstandpoint- of one or more
RTOS flavours.

CarbonKernel featuresa virtual RTOS including a comprehensiveset of generic
services,allowing to build specific RTOS flavours on top of it. The result of
such specialization is called an RTOS personality. Each simulated RTOS is
expected to display the same kernel API as its embedded counterpart the
applicationscan dependon. The eCos kernel for which a simulation model is
available will be used to illustrate the CarbonKernel features later in this
document.

The event-driven general-purposesimulator underlying CarbonKernel 's virtual
RTOS is FROGS. It is available as a standalone package.

1.1.2 What is the tool for?

CarbonKernel is a versatile simulation system for running embeddedreal-time
software on a workstation, thus making the whole processof writing and testing
your code much faster and easier when compared to working in the target
environment.

Using CarbonKernel, embedded applications that use the standard services
displayed by the kernel API of a RTOS can run in a host environment.The
basic idea behind the simulation approach is to provide a comfortable
developmentand testing environment on a workstation for distributed and/or
complex embeddedapplications.CarbonKernel can simulate a global application
code running simultaneously on several RTOS instances with different
characteristics within a single session.

The compilation toolchain used to build the simulated application is the
workstation'snative one. Using CarbonKernel first, you don't needto dependon
a cross-compilationtoolchain for implementingand testing the target-independent
code. Due to the fact that CarbonKernel works at source code level, it is not
tied to any specific target processor or hardware.

1.1.3 What are the event-driven simulation approach's advantages?

An event-driven simulator does not rely on the hosting machine'ssystem clock
but insteadprovides a simulatedtimeline to schedulethe eventsthat occur when
the applicationcode is running. This meansthat a given applicationscenariocan
be repeatedvery simply an infinite number of times, with no perturbationfrom
the outside world (e.g. current load average of the simulating host and so on).

Not dependingon the host's idea of time also meansthat portions of code can
be executed at no time charge, such as instrumental code.

Becauseit can trigger user events automatically or manually at selectedtimes
when the application is running, CarbonKernel is very good at creating test and

User Manual 4

CarbonKernel

stresssituationsfor the applicationotherwisenearly impossibleto reach (at least
willingly...) on a real target.

To track thesesituations,CarbonKernel offers an integratedsimulation monitor
and symbolic debugger. These tools can help you to isolate the different
application contexts by focusing on specific execution pathes (thread scope,
target scopeor overall multi-target scope)and show and/or modify the statusof
the simulation objects involved.

CarbonKernel is not a processor instruction set simulator, but its is a RTOS
simulator. This means that CarbonKernel is not suitable to obtain accurate
performancefootprints for the simulatedapplication.On the other hand, not only
can it simulate different RTOSs’ personalities,but it can do the same for their
entire environment via FROGS native simulation models (i.e. Add-ins). For
example, communication protocol models can be attached to the simulator to
improve simulation accuracy and so use realistic settings to evaluate the
application's behaviour.

User Manual 5

CarbonKernel

2. Installation from a binary distribution
CarbonKernel binary distributions are usually available in tar.gz or tar.bz2 format.
Just inflate the selectedarchive appropriately into your CarbonKernel installation
directory, preserving file permission bits (i.e. One should use tar 's p flag).

A source distribution creates the same file hierarchy when installing the built
executablesand libraries. The --prefix option passedto the top-level build-all.sh script
should point to the installation directory. By default, /usr/local/ck is used as the
installation prefix.

Each CarbonKernel user's environment variables PATH and LD_LIBRARY_PATH
should be updated to include the access paths for the distribution's bin and lib
directories, respectively.

2.1 User Environment Self-Test

The standarddistribution containsa program called selftest, which can be used to
check that the current environmentis suitable for using CarbonKernel

�

s simulation
tools. This executable can be found in the bin directory.

Under the user account being tested, run the following command:

$ selftest

After the command has been run, an analysis shows whether the process was
successfulor not. If an error occurs, information for resolving it is automatically
displayed relative to the seriousness of the problem.

User Manual 6

CarbonKernel

3. Description of the simulation system

3.1 Overview of the system architecture

The CarbonKernel's system architecture is layered as follows:

� SIMEX is a versatile, object-oriented simulation executive featured by the
FROGS simulation framework, implementing an event-driven scheduling
system. Time-based activities are executed on behalf of pseudo-concurrent
threads,which can exchangemessagesand synchronizethemselvesusing a
pre-defined set of extensiblesimulation objects. The global simulation clock
is managed at this level.

� The virtual RTOS kernel (aka VRTOS) implements an extensible real-time
kernel on top of the SIMEX executive. It is an event-driven simulation
model that can be connectedto other native simulation models. The virtual
RTOS kernel provides a comprehensiveframework to implement personalities
of embeddablereal-time operatingsystems,aimed at simulating their original
kernel APIs. Its architectureallows multiple virtual RTOS instancescalled
nodes to run concurrently in a single simulation process.The concept of a
node should be understoodas the CarbonKernel's representationof a target
hardwarehosting an instanceof a RTOS personality. Whilst all these targets
are synchronizedon the unique SIMEX executive clock, they may locally
define the duration of a single clock tick of their own real-time clock.

� FROGS native simulation models can be added to the simulation systemto
implement the behaviour of virtually any kind of activity, whether hardware
or software. These models are designedto act as their real world counter-
parts do. Depending on the expected simulation accuracy, it's the model
designer'sjob to define what are the real world item's characteristicsthat
really need to be simulated. The virtual RTOS kernel should be seen as a
FROGS native model displaying the behaviourof common real-time system
objects (e.g. Such as threads,synchronizationobjects, schedulersand so on).
For instance,one could add hardware (e.g. UART), protocol software (e.g.
HDLC) or even complex system (e.g. DBMS) component models with
interfaces to accessthem from the application layer. Those models would
interact with the overall simulation processby triggering eventsand running

User Manual 7

FROGS/SIMEX event-driven executive

Virtual RTOS kernel FROGS native
simulation
models

CKPISDDKRTOS
personalities

Real-time Application

CarbonKernel

threads of control in parallel to the RTOS simulation performed by the
VRTOS.

� The SDDK interface (i.e. Simulated Driver Development Kit) is used to
developsimulateddevice drivers. The main goal of a simulateddevice driver
is to implement the simulation counter-partof a "real" driver accessing"real"
hardwarefor the application,by providing a normalizedway of sendingand
receiving data to/from a pseudo-devicefaking the real hardwareduring the
simulation process.

� The CKPI interface (i.e. CarbonKernel Programming Interface) gives the
application, the SDDK and the FROGS native models access to a
comprehensiveset of system servicesexported by the virtual RTOS kernel.
Becausethey do not dependon any specific RTOS personality, theseservices
can be used inside reusable simulation components.

� A RTOS personality is a simulation model built on top of the virtual RTOS
kernel. It exports the programming interface of an embeddable RTOS.

� The real-time application is the embeddedsoftware system one may want
CarbonKernel to host on a workstation.Such applicationmay requestsystem
services of a given RTOS using its public kernel API, which should be
simulatedby the appropriateRTOS personalityon top of the CarbonKernel's
virtual RTOS. C and C++ written applicationsare currently supportedby the
instrumentation tool.

3.2 Hosting real-time applications in the simulation system
Real-time applications written in C and/or C++ languages can be hosted by the
simulation system.The current discussionassumesthat you intend to host an existing
target-basedreal-time application into the CarbonKernel environment.However, if you
are rather writing a new application from scratch using CarbonKernel which is
designedto be ultimately embeddedinto a real target environment,some information
below could be of great help too.

Three major issues must be addressed for the hosting process to succeed:
� A meanmust be found to chargethe applicationcode for executiontime,

given that CarbonKernel is not a machine-codesimulator, but rather a
RTOS simulator (because we do want strictly reproducible, timely
behaviour of the application across simulation runs, depending on the
host computer's idea of time is definitely not the right thing to do
either). CarbonKernel's code instrumenter (i.e. ckcc for C and C++
source applications) provides all the needed support to complete this task.

� It should be allowed for multiple instancesof the applicationcode to run
concurrently in a single (process)addressspace.Once again, the code
instrumenter prepares the application code to support this feature.

� Finally, the hostedpart of the applicationmust not contain machine-level
dependencies,such as portions of code written in assemblylanguagefor
the target processor,or assumeany pre-defined memory mapping. Such
code will just not assembleor run, and if it does, it would probably
causefatal runtime exceptions.Removing or masking such machine-level
dependenciesin the context of using the simulator is the user's
responsability.

User Manual 8

CarbonKernel

3.2.1 Working with the code instrumenter

The code instrumenter preparesyour application code to be run by the simulation
kernel. The CarbonKernel's instrumenteryou should use dependson the programming
languageof your code. As of now, ckcc can be used for C/C++ source applications.
One should note that in no way the instrumenterchangesthe functional behaviour of
the application. It only adds code to bind the application to the simulation system.

The code instrumentershould be interposedat compilation and link time just before the
standard compiler and linker programs. You usually just need to set your Makefile
variables in order to use ckcc” instead of “ gcc” to compile and link your application.
By default, ckcc invokes gcc as the final compiler to produce the object file from the
instrumentedsource. Pleaserefer to the Instrumenter's options section to learn how
this behaviour can be changed.

For instance,here are the commandsneededto compile two C files, namely foo.c and
bar.c, then link the obtainedobject files to producea final simulation executable,using
the eCos simulation model:

ckcc -g -c foo.c
ckcc -g -c bar.c
ckcc -o app foo.o bar.o --rtos=ecos

3.2.1.1 Updating the global simulation clock

The instrumenteradds a call to an internal routine before each executablestatement
found in the original source code. This routine is meant to signal a new simulation
clock tick to the virtual RTOS kernel, each time a sourcestatementhas been executed,
and the next is about to start. The simulation clock tick should not be confusedwith
the real-time clock tick which occurs after each simulated RTC interrupt on a given
node.

When the simulation clock tick is signaled,the SIMEX's global clock is advancedby a
quantum of time, after all events whose scheduling times are prior to the new clock
value have been processed. The duration of the simulation clock tick is determined on a
per-node basis, by a special setting called the Target Warp factor, ranging from 0 to
10. In other words, changing this value directly affects the perceivedprocessingspeed
of a simulated node, independentlyof the other nodes'. The higher the Target Warp
factor, the shorter the time quantum charged per instruction. The time quantum is
computedin microsecondsfrom the Target Warp factor by the following formula: 1 /
exp(factor). For instance,a node (i.e. Target board) configured with a Warp factor of
3.7 will be charged for 1 / exp(3.7) = 0.02472, that is to say 24.72 (simulated)
nanoseconds for each source statement.

This is a fundamental point to catch in order to fully understand the way
CarbonKernel deals with the simulated time: a fixed quantum of time defined on a
per-node basis is charged for each source statementexecuted.This is obviously not
suitable for obtaining accurateperformancefootprints, but this is enoughto preservethe
time sequenceof real-time events as they occur. Raising or lowering a node's Warp
factor combined to the automatic event triggers (e.g. Interrupts) can also help you
stressingyour application,such as testing for correct critical sectionenforcementand so
on.

This time managementschemegives the multiple nodes in your simulation a single
common time frame, independent from the host's idea of time. This makes your
application's behaviour strictly repeatablebetween simulation runs, which is a very
desirable feature in debugging complex systems.Moreover, you have absolute control

User Manual 9

CarbonKernel

(except regression though) over the key component of an event-driven simulation
system: the clock.

3.2.1.2 Allowing multi-node execution

The code instrumenter turns regular data with static storage attribute found in the
original code into per-node variables, thus allowing the compiled form of a single
source code to be traversed by multiple node contexts within a single simulation
process,each of them having a private addressspace to store non-automatic, non-
constantdata. This way, you can instantiate a given node multiple times in a single
simulation configuration to build a symmetrical runtime configuration.

The instrumentedversion of a given sourcefile can be collected using the --save-
temps option when invoking ckcc for compilation. As far as C and C++ sourcecodes
are concerned,each global variable or static local variable becomesa pointer to an
array of pointers to the original data type, i.e. a kind of data vector. Each referenceto
such variable in the code is then tweakedto be indexedon the running node'sidentifier
(which is a 0-based ordinal value), thus selecting the node's private addressspace
appropriately.For instance,here are the changesapplied to a global pointer declaration
and to a statement referencing it:

/* Here is the original version... */

struct superblock {
cyg_sem_t lockSema4;

} TheBlock = NULL;

netshared int SharedInt = 1;

void lockSuperBlock ()
{

cyg_semaphore_wait(&TheBlock->lockSema4);
SharedInt = 0;
...

}

/* Here is the instrumented version... */

struct superblock {
cyg_sem_t lockSema4;

} *(*TheBlock);

int SharedInt = 1;

void lockSuperBlock ()
{

cyg_semaphore_post(&(*(TheBlock[ck nid __]))->lockSema4);
SharedInt = 0;
...

}

It seems obvious reading this fragment of code that the cknid __ integer variable
contains the running node's identifier. Because you have no guarantee that the
CarbonKernel's internal naming schemewill not evolve in the following revisions of
the system, you definitely should call the ckGetNid() service to get this information
rather than accessing this variable directly.

User Manual 10

CarbonKernel

You may have noticed that the SharedInt integer variable was not changedby the
instrumenter,thus keeping its value common to all node contexts.This is the effect of
the netshared specialdata qualifier defined by the code instrumenter.Passingthe --
netshare option to ckcc when compiling the source file makes this qualifier
implicitely applied to all data declarationsfound in the module.You may use it if your
runtime configuration is limited to a single node, but there is absolutely no obligation
to do so.

You may also have noticed that the initializer part of the data declaration(i.e. ... =
NULL) has been removedby the instrumenter.In fact, it has beenmemorizedand used
during the last phaseof the instrumentationprocesswhen the data vectors construction
code is emitted in a separatehidden routine. This initializer will be applied dynamically
to each instance of the original data type pointed to by the cells of the data vector.

3.2.2 Removing machine-level dependencies

It is usually admitted that most part of an embeddedapplication should be written
using a high-level programming language such as C or C++, leaving the assembly
language to the very low-level parts of the Board Support Package.

The Board SupportPackageusually providesmachine-levelhooks to bind the RTOS to
the target hardware. In most cases, this support is not needed in a simulator like
CarbonKernel which leavesthe whole burdenof managingthe real low-level resources
to the host operating system.

However, it may be useful or simply required for some hardware and/or software
activities to be simulated,such as interrupts,device driver i/o, specific hardwarewidget
behaviour and so on. Some may even find useful to simulate LAN and/or WAN
activities betweenmultiple nodes in a single simulation. There are answersfor each of
these concerns; some are pre-defined in the simulation kernel (e.g. interrupt
management),some can be supportedby specifically designedprogramming interfaces
(e.g. SDDK-based device drivers), others are provided by FROGS native simulation
models.

3.2.3 Startup code

3.2.3.1 Cold initialization code from BSP

The cold initialization code from the BSP should probably not be run by the simulator.
It is usually aimed at attaching the embedded RTOS to its hardware environment.

3.2.3.2 Dynamic initialization of global data objects

As we discussedearlier, the code instrumenterturns all non-constantdata declaration
defined in the program's global scope into data vectors. As a part of its warm
initialization procedure, the simulation kernel locates and initializes each vector
appropriately with instances of the originally declared data types.

Because the C++ language allows code to be executed for building global class
instancesduring the early initialialization phaseof the processthrough the use of static
constructors, the simulation kernel ensuresthat a set of systemsservices callable on
behalf of the initialization context can be issuedto the RTOS' kernel API exportedby
the current node. The members of this set are defined by the specificationsof the
programming interface of the simulated RTOS personality.

User Manual 11

CarbonKernel

The dynamic initialization of global data objects is performed before the simulation
kernel calls the entry point of the first activated node.

3.2.3.3 Application boot code

The simulation kernel initiates each node activity by calling an entry point. This entry
point is usually defined as a configurable parameterby the graphical configuration
window of the node. For the CarbonKernel's eCos model, the user entry point is
specified by the USER_START_ROUTINE parameter.

User Manual 12

CarbonKernel

4. Setting up a simulation
The first stagein setting up a simulation consistsof generatingthe executableprogram,
called the simulator, which will include the following parts:

� The instrumented application code.
� The CarbonKernel's system libraries, including the VRTOS.
� One or more RTOS personality libraries exporting the appropriatekernel API(s)

to the application.
� A set of optional FROGS native simulation models (i.e. Add-ins).

The first operation is carried out by the CarbonKernel source instrumenter for the
languageused to code the application (e.g. ckcc for C and C++). The other three
elementsare addedto the application code by the linker, which is also driven by the
instrumenter.

4.1 Instrumenting a C/C++ application with ckcc
The sourceinstrumenteris a vital link in the CarbonKernel developmenttoolchain.
Its role consistsof preparingthe application code for running in the CarbonKernel
simulator context and then acting as a relay to passit to the traditional compilation
process. However, instrumenting never changes the application's functional
characteristics.

In other words, ckcc precedesthe compiler in the source code preparationphase
before object files are generated and when the linker is run. The traditional
compilation process is still responsible for these two operations. Whenever
application code is written in C or C++, the ckcc instrumenter must be used.

CarbonKernel C/C++ languagesupport is provided by using a modified version
of the GCC/EGCScompiler in order to use its instrumentationfunction. However
this does not mean that a specific version of GCC/EGCS, or even GCC/EGCS
itself, must be used to generatethe application,as the instrumenterengineproduces
modified sourcecode, and does not directly produce the final object file. However,
ckcc managesthe different stages needed to produce the object file from the
original source file.

4.1.1 Time Progression and Vectoring

One of the main functions of instrumentingby ckcc is that each C/C++ source
code statementis preempted;another important effect of instrumenting is that
non-automaticdata is vectored (vital when simulating several concurrentnodes).
A separateinstanceof every item of non-automaticdata (i.e. global variable or
local static variable) in the application code must be createdfor each simulation
node context, so that the samecode can be traversedby multiple threadsrunning
in parallel on distinct nodes.

All vectoring of a file can be deactivatedby using the -- net-shared option in
the instrumenter's command line.

4.1.2 Instrumenter's Options

ckcc acceptsC/C++ compiler and linker commands,as well as its own specific
set of options. The general call syntax is as follows:

ckcc [options] <cc-args>|<ld-args>

User Manual 13

CarbonKernel

The ckcc-specific options are as follows:

-- time-locked Specifiesthat the sourcecode containedin the file must be
run at no time charge. In this mode, node switchescannot occur, and only the
current context progresses. By default, this mode is disabled and every
instruction executed is charged for a time quantum, allowing all nodes to be
scheduled by the simulator.

-- net-shared Disables vectoring of non-automatic variables defined or
declaredin the source file. This meansthat all global variables found and data
in otherwise static storage will not be prepared for multi-node simulation,
leaving all variable in their native form. By default, vectoring is enabled.

--dry-run Causes the source code to be instrumented without
performing the final compilation. This option is useful for validating a module's
syntax without generating the corresponding object file.

-- stdout Processesthe source file(s), whose instrumentedversion(s)
are sent to the standard output without calling the compiler.

-- minimal Reduces the internal information added to the original
source code by the instrumenter.This option currently disablesall information
for detectingreferenceconflicts betweenper-node and native variableswhile the
simulator is running (see vectoring).

--c-ext=<.c>

--c++-ext=<.cc,.C,.cxx,.c++,.cpp>

--obj-ext=<.o>

Theseoptions specify the extensionsfor a C sourcefile, C++ sourcefile
and object to the instrumenter,respectively.For instance,theseoptions are useful
when the application'sfiles are maintainedby a revision control systemthat uses
non-standard file extensions. The bracketed values are predefined by ckcc.

--cc=<cc-command-line>
Specifies the command line used to call the C/C++ compiler for generatingan
intermediateobject file or the final executable.To generatean object file, the
default values are:

� “gcc for a C source file.
� “g++ for a C++ source file.

To generate a final executable, the default values are:
� “gcc”to edit links for a program consisting only of C object files.
� “g++ to edit links for a program containing at least one C++ object

file.

--cpp=<cpp-command-line>
Specifies the commandline used to call the C/C++ preprocessorfor generating
the intermediatesource file the instrumenterwill work on. The default value is
obtained by appendingthe -E option to the current compilation command line
value. The resulting instrumented file will then be passed to the selected
compiler to get the corresponding object file.

--use-ck-cc Tells ckcc to use the C/C++ instrumenter as the final
compiler. When applicable,this option must be specified during compilation and

User Manual 14

CarbonKernel

link. (The GCC/EGCS version modified to include the CarbonKernel
instrumentationgeneratorstill possessesall of its original capabilitiesas a regular
C/C++ compiler).

--with-gnu-ld Tells ckcc that the current C/C++ developmentprocessuses
the GNU linker. This option is generally not useful, as ckcc automatically
determinesthe type of linker used. When specified this setting causesckcc to
pass the option -Wl,-export-dynamic to the linker.

--no-gnu-ld Forces ckcc to assumethat the GNU linker will not be
used, preventing the -Wl,-export-dynamic option to be passed.

--cplusplus Forces ckcc to assumethat links are being edited for a
programcontaining C++ code. As a result, the C++ linker (e.g. g++) is selected
from the available default values. If g++ is chosen,the libstdc++.a STL library
will also be automatically included unless otherwisespecified (i.e. -nostdlib). A
command for integrated code generation (compilation then link in the same
commandline) automaticallyselectsC++ mode if at least one C++ sourcefile is
detected in the modules to be compiled. This option is ignored if a --cc
instruction forces the linker invocation syntax.

--rtos=<osX,osY,...> When links are being edited, this option specifiesthe
list of executivemodelsused in the application. It enablesckcc to automatically
identify the RTOS model libraries that must be attachedto the simulator. For
instance, specifying -- rtos=ecos links in the eCos kernel simulation model
available from the shared library file libecos.so on a Linux platform.

--temp-dir=<temp-directory>
Specifies the accesspath for the directory that will contain the temporary files
generatedby ckcc. The default value dependson the host system.The temporary
files will be deletedafter processing,unlessthe option--save-temps appearsin
the command line.

-- save-temps Forces ckcc to keep the generatedtemporary files. These
files are produced during processingby the preprocessoras well as by the
original files instrumenter.

--verbose This option causes the compilation and link commands
issued by ckcc to be sent to the standard output.

--version Displays the instrumenter's identification version number.

-- gcc-version Displays the version identifier for the instrumenter'shost
compiler.

--help Displays the list of options for the command.

<cc-args> Lists the argumentsthat will be passedunmodified to the
compiler.

<ld-args> Lists the argumentsthat will be passedunmodified to the
linker.

4.1.3 Locally Controlling Preemption and Vectoring.

In certain situations,it is important to block the instrumenter'saction on a local
level. The instrumenter's command line options -- time-locked and -- net-

User Manual 15

CarbonKernel

shared, act upon all of the source file's content. Both have a local equivalent
that only acts upon part of the code.

� Time progressioncan be blocked for a part of the code between the
special service calls CK_TIME_LOCK() and CK_TIME_UNLOCK(). A
lock counter runs between the two calls, which must be used
symmetrically. The above two macro-definitions generate neutral code
when the instrumenter is inactive, i.e. during the target code generation
phase.

� Vectoring of a specific variable can be prevented by adding the
netshared qualifier to its type declaration.This qualifier shows that the
listed variable(s) is/are shared between all nodes, i.e. is/are unique
throughout the scope of the simulation network. By default, this qualifier
is implicitly selected for all variables declared in a system header file.

Care must however be taken to ensure that definitions and declarationsfor a
variable used in several different files are consistent. For example, two files
fileA.c and fileB.c use the global variable Counter and are compiled as follows:

fileA.c fileB.c
int Counter; extern int Counter;

$ ckcc -c fileA.c

$ ckcc -- net-shared -c fileB.c

The executableproducedby linking in theseobject moduleswill be unusable,as
the Counter variable in file fileA.c will be vectored whereasfile fileB.c will
create a traditional external referenceto an integer (the result of using the --
net-shared option).

The following exampledeactivatesall vectoring of the two defined variables,so
that they can be sharedbetweenall nodes.In this way, memory regions can be
created that are shared between the different node contexts.

netshared char sharedMemory[SHMSZ];
netshared int locked;

The next examplepreventsthe simulatedtime from progressingwhile the framed
expressionis running. This has two immediate effects on how the simulation
runs:

� The current node cannot be preempted by another node.
� The expression protected in this way runs at no time charge.

CK_TIME_LOCK();
rqtBuf->next = NULL;
*sharedMemory->qTail = rqtBuf;
sharedMemory->qTail = &rqtBuf->next;
CK_TIME_UNLOCK();

User Manual 16

CarbonKernel

4.1.4 Source Code Adaptation Requirements

Using CarbonKernel to simulate an application may lead the user to specially
modify or organize the application source to be simulated and where necessary
testing the instrumenter's signature to identify the current build context (i.e. target
or simulation).

� As the processortargetedby the applicationcode is generally incompatible
with the workstation'slocal processor,and given that CarbonKernel is not
a processorinstruction set simulator but rather a RTOS simulator, inline
assembly code aimed at the target processor cannot be simulated.

For this reason,no piece of application code written in assemblercan be used
without modification and all literal physical addressreferenceswithin application
code are illegal; they will almost invariably causea fatal error in the simulation
process.

All interrupt handling routines, hooks or callouts must therefore be coded in
C/C++.

� The main() function for running the application already exists in one of
the CarbonKernel system libraries and so must not be redefined in the
application code. For example, the main() function's name could be
conditionally changedin the simulation's context, by testing to detect the
CarbonKernel instrumenter's signature :

#ifdef _ CKCC_
<simulator code>
#else /* !_CKCC_ */
<target code>
#endif

� The executablefile must always be able to accessits symbol table while
it is running; when initialized CarbonKernel searchesdynamically for the
addressesof all functions linked to events,as well as the startup routine's
address declared for each node. In other words, never strip out the
symbols from a simulator's namelist.

� The instrumenterdoes not handle the conflicts raised when an attempt is
made to agregateseveral functions or data having the same name in a
single simulation executable. These must be handled individually when
the source code is adapted(e.g. identical variable or function names in
two pieces of application code that will be run simultaneouslyon two
different nodes). However, multiple instancesof a piece of code can be
run via the ckcc preprocessor.

� In C++, global referencescannot be vectored and so must always be
shared by all nodes, just because one cannot have pointers to C++
references (e.g. They are implicitly netshared).

4.1.5 Preprocessor Signatures

ckcc defines the CPP symbols “_CKCC_” and “_CARBONKERNEL_” before
passingthe sourcefile to the C/C++ preprocessor.Those signaturescan be used
to have conditional compilation control over any piecesof source code that are
reserved for running on the target or with CarbonKernel.

User Manual 17

CarbonKernel

4.2 Ongoing Example: IBC Example

4.2.1 Introduction

Throughoutthis document,we shall refer to a samplesimulation, which we will
use as an ongoing example.The example,called IBC, uses two nodes,each of
which runs a separate piece of application code requesting services to a
simulated eCos kernel. This example is intended to show CarbonKernel's ability
to simply and effectively simulate a distributed system environment.

Node “Server” receivesrequestsvia a faked sharedmemory region implemented
by a regular non-vectoredC struct, and sendsan acknowledgmentfor its running
to the calling Client node. The system for signaling incoming requests and
acknowledgments is based on using simulated hardware interrupts.
The“Client”node periodically submits requests to the server and awaits a
synchronous acknowledgment for each request.

In addition, a simulated manual interrupt can be used to cause requeststo be
sent from the CarbonKernel's graphical monitor to the Server on behalf of the
Client node. This mechanismshows very simply the possibilities of injecting
events into the simulation.

4.2.2 Distribution

A compressedtar archive can be found in the directory src/ck- version under
the installation root directory. This archive contains the IBC example among
others, which are pre-compiled in the demos subdirectory of a standard
CarbonKernel distribution. IBC consists of four C files: server.c, client.c,
shm.c and shm.h that will be compiled to build the simulation executable.

Once the archive contentsare deflated and extracted,you should be able to run
the configure script from the top-level directory. This is a GNU autoconf script
which is aimed at creating the Makefiles neededto build the examples.installdir
is the CarbonKernel installation directory.

$./configure –-with-ck-dir=<installdir> --prefix=`pwd`

We will describehow to define a simulation architecturefor this example later
in this document.

4.2.3 Generating the Executable

The code generation rules are given by the Makefile file. Simply enter the
following command in the directory containing this file:

$ make install

A simulation executable file called ibc is then created in the demos
subdirectory.

User Manual 18

CarbonKernel

5. Configuring the Simulation
The secondof the two main stagesneededto set up a simulation consistsof defining
the simulated configuration (aka architecture). This step is controlled by a central
graphic application combining all simulation session configuration and operation
services.This application is known as the ISE, which is an acronym for Integrated
Simulation Environment.

To run the ISE, start the following command:

$ ck &

The ISE initially appears as follows:

with a main toolbar, giving shortcut accessesto the following functions, from left to
right, respectively :

� Open the CarbonKernel's librarian to create/edit the simulated models
instances.

� Select an existing simulation project file.
� Access the current project's options.
� Start the application under the integrated debugger's control.
� Start the application under the standalone monitor's control.

5.1 The Librarian
The Librarian is used to define and associatethe various simulated elementsthat
will allow the application code to run, e.g. the simulatedRTOS characteristicsand

User Manual 19

CarbonKernel

settings.In the ISE, select the Open commandfrom the Library menu, or click the
icon (to the left of the toolbar). The following screen is then displayed.

This window shows the known models hierarchy, as well as the different existing
instances. Two separate directory structures can be seen:

� The first, at the root of which is the CarbonKernel element, organizes
instancesaccordingto whether they belong to the simulatedtargets(Nodes),
interrupt generators (Interrupts), software components associatedwith a
RTOS (Components), graphic panels (Panels), or FROGS native
simulation models (i.e. Add-ins) class. In our example,we will define two
targetseach running an eCos kernel, as well as an interrupt sourceon one
of the two nodes.

� The second,at the root of which is the Configurations element, lists the
existing simulation configurations as a single level.

5.1.1 Simulated configurations

Once the various local settingsof useful model instanceshave been individually
set up, they must be associatedtogetherbefore the actual simulation can begin.
The result of associatingthem together is called an architecture or a simulated
configuration. The simulator produced by linking together the application code
and the simulation kernel is then run in the environment described in this way.

The expressionsimulation node refers to the modeling of an embeddedelectronic
board associatedwith a specific RTOS. The term target, node or simulatedboard
will refer to that concept throughout the rest of this document.

A simulated configuration may be designedas a super-model instance, whose
role is to associatethe various elementsof a simulation system to define its
initialization rules. That process consists of five main phases:

� Creating and configuring the nodes (for example, creating our IBC
example's Client and Server nodes; see below);

� Creating and configuring the interrupt sources found on the nodes by
creating Interrupts model instances that must then be attached to the
proper nodes (i.e. CarbonKernel/Interrupts heading in the node's
configuration window). An instance of the target's real-time clock is

User Manual 20

CarbonKernel

automatically created by the eCos model, thus not needing to be
externally defined;

� Designing the graphic panels (for displaying the simulation's data inside
Tcl/Tk widgets) by creating instancesof the Panels model that must then
be attachedto the node (CarbonKernel/Control Panels heading in the
node's configuration window);

� Creating and configuring instances of the FROGS native simulation
models if any (there are none in our example);

� Setting up the interrupt generators, which means programming the
interrupts generation law, e.g. Periodical, exponential, manual and so on.

5.1.2 Typical Architecture

In its simplest form, a CarbonKernel simulation consists of an architecture
comprising a single target board, i.e. A single-node system. The IBC example
offers a more complex architecture, which includes two nodes exchanging
messages.

All information on the different known architectures is stored in a library file
containingthe simulation modelsand configurations. Only one library is active at
any time within the ISE, and is only updated via the Librarian.

5.1.3 Loading Simulation Modules

RTOS models and more generalizedFROGS native models are contained in
shared libraries on the host system called modules.

Thesemodulesmust be explicitly loadedby the Librarian before the models they
contain can be instantiated. Each sharedlibrary or module export one or more
implementations of simulation models, along with their configuration
characteristics.The Librarian makesuse of all that information in order to offer
a suitable graphic configuration interface when instantiating these models.

The CarbonKernel Librarian's role is therefore to offer a consistent graphic
interface for creating and configuring the chosen instances according to the
requiredcharacteristicsof behaviour.For example,an eCos simulation node may
be tuned according to the kind of schedulerused (bitmap or multi-level queue)
or the number of authorized scheduling priorities.

The various instancesof models are organized within a library of simulated
components.Using this approach,they can be reusedin different contextssimply
by association.

A module can be preloadedwhen the Librarian is first run under a given user
account, using an automatic loading system triggered when a file named
autoload is found in the share/ck subdirectory under the CarbonKernel's
installation directory.

This text file lists certain external resourcesthat can be attacheddynamically to
the ISE. Among theseresourcesare simulation moduleswhich designatesshared
libraries containing simulation models. Each simulation module begins with the
cfmod= radix followed by the library's generic name. For example, the eCos
module is loaded by the expressioncfmod=ecos. The correspondingmodule
file can be accessedfrom a regular installation's root directory, in the area
reserved for libraries (e.g. lib/libecos.so on a Linux platform).

User Manual 21

CarbonKernel

5.1.4 Creating/Copying a Model Instance
� To create our example'sServer node, right-click the eCos node in the

models directory structure, and then select the New commandto display
the following dialog box:

� Type the new instance’s name, for example Server , and then validate
with the ENTER key or click the OK button. Repeatthe sameprocessfor
the Client node. After each new instance is created,CarbonKernel
automatically opens it for editing.

A node's configuration characteristicsmainly depend on the simulated RTOS
characteristics. Always refer to the simulation model's implementation
documentation to see the meaning of the available settings.

� To duplicate an existing instance, select the Copy command from the
previous menu. A dialog box is then displayed, in which you enter the
copy's name.

5.2 Modifying/Renaming a Model Instance
� Each instance of a simulation model exports a series of settings through

which it can be configured. When an instance is created,a default set of
values chosenby the model's designeris initialized. If you wish to modify
those settings, double-click the selectedinstance'sname, or right-click the
icon representingit to display the local menu from which you select the
Open command.If you use this commandon the Server node instance
that you have just created, the following configuration window is displayed:

User Manual 22

CarbonKernel

Each tab represents a specific category of the node's settings. The eCos configuration
notebook displays an eCos tab for the kernel settings and a CarbonKernel tab,
containing a set of simulator-specific settings. In our example, an interrupt source must
be defined, that we shall call manual request, so that a manual request can be
triggered. To define it, create an instance of the Interrupts model found under the
CarbonKernel root, with the following settings:

� After validating the interrupt creation by clicking the Save button, open the
Client instance's,switching to the CarbonKernel tab. Right-click the list
of attached interrupts (i.e. Interrupts heading), and then select the Insert
command in the local menu. This function is used to select the hardware
interrupts that will be simulatedon the node. The list of known interrupts is
then displayed:

	 Double-click the manual request instanceto make the associationand then
end by clicking the Done button. In our example, the CarbonKernel tab
appears as follows once the association has been made:

User Manual 23

CarbonKernel

When all the settingshave been correctly updated,validate the modifications with
the Save button.

	 If you wish to renamea specific instance,right-click the icon representingit
in the models directory structure,and then select the Rename commandin
the local menu. A dialog box is then displayed, in which you enter the
instance's new name. Renaming an instance does not affect any existing links
between the different instances.

5.3 Destroying a Model Instance
If you wish to delete a model instance,right-click the icon representingit in the
modelsdirectory structure,and then select the Delete commandin the local menu.
A dialog box is then displayed, asking you to confirm the action.

Deleting an instanceautomaticallydestroyslinks from other model instancesto the
destroyeditem. That/thosemodel(s) can thereforeno longer work correctly if those
links must exist.

5.4 Defining a Simulated Configuration

5.4.1 Associating Nodes

A simulatedconfigurationor architectureis an associationof different simulation
models instances,including RTOS instances,that are intended to work together
within the CarbonKernel simulator. To create a configuration from the
CarbonKernel Librarian, right-click anywhere in the second directory structure
called Configurations , and then select the New command in the local menu. A
dialog box is then displayed, in which you enter the new configuration's name,
e.g. ibc :

User Manual 24

CarbonKernel

Validate with the ENTER key or click OK to continue creating the
configuration. When it has been created,the new configuration is displayed so
that its characteristics can be defined. The following window is displayed:

The graphic representationof a configuration displays two tabs: one for nodes
(i.e. Targets), and the other for FROGS native simulation models (i.e.“Add-
ins). The first phaseconsistsof choosing the nodes.Right-click the nodes list
(i.e. Nodes), and then select the Insert command in the local menu. This
function is used to choose the nodes that will be associatedtogether in the
simulation. In our example, the displayed selection window appears as follows:

Double-click both Client and Server to include the two nodes you have just
created. In our example, the order in which they are selected is unimportant.
When you have done so, click the Done button.

Each node will be allocateda unique numerical identifier when the simulation is
run. This identifier (called nid for Node IDentifier) is allocatedstarting from 0
for the first node appearing in a configuration's nodes list and is then
incremented by 1 in order of the nodes declarations in the list.

User Manual 25

CarbonKernel

5.4.2 Linking Add-ins to the Simulation

When Add-ins are neededto set up a simulation, select the Add-ins tab and
then continue as before to make the association.

An Add-In can for example simulate the behaviour of an 802.3 type network
linking the multiple nodestogether.Such kind of model is useful in refining a
configuration's behaviour.In simpler cases,only trivial routines that very roughly
simulate message transmissions may be needed. You must analyze your
simulation requirements to decide whether to include an Add-In or not.

Our example does not involve any Add-ins.

User Manual 26

CarbonKernel

6. Simulation Project
A CarbonKernel simulation project is createdby associatinga simulatedconfiguration
with a simulation executable.

All information regardinga specific project is stored in a separatefile, which refer to
the model library that was active when the file was created.

Before making the first simulation of the IBC example,that associationmust be made
using the Project menu's commands.

6.1 Creating a Project

Open the Project menu, and then select the New command.A window is then
displayed,offering two selection fields: one to select the new Project File , and
the other to select the associated Configuration .

 In the first field, enter the project file's accesspath. If you wish, you can
use a browser by clicking the icon displayedto the right of the input field.
The file must not already exist. CarbonKernel automatically adds the .ck
extension, which refers to all simulation projects' filename.

 You can enter the simulator's file name in the second field. Environment
variablesmay be used to representall or part of the accesspath, and will
only be expandedwhen the ISE actually usesthe accesspath. Note that the
simulator's file name need not be input at this point when the project's initial
details are entered. In that case, the project must later be modified to
complete its definition once the simulation executable is specified.

 Selecta simulatedconfigurationin the displayedlist, by clicking its nameso
that it is highlighted. Our example configuration ibc should appear in this
list.

 After you have specified all the above information, click the Create button
to create the project.

The new project is automatically selected by the ISE.

The ISE's commandsfor running a simulation can only be accessedwhen a current
project has been selected and the project's settings specifies a valid simulator's
executable file and simulated configuration.

User Manual 27

CarbonKernel

6.2 Modifying a Project

After selecting the current project, select the Edit command from the Project
menu. A window is then displayed, offering two input fields: one to select the
simulator'sExecutable , and the other to select the associatedConfiguration. The
current project's filename appears at the top of the dialog box, in read-only form.

 Enter the accesspath and nameof the simulator'sexecutablefile in the field
labeled Executable . If you wish, you can use a browser by clicking the
icon displayed to the right of the input field. The selectedfile must be a
simulator's executable generatedseparately by the normal CarbonKernel
procedure.Until a valid executablefile has been specified in this field, all
the ISE’s commandsfor running the simulation are inactive. This field may
contain environmentvariablesthat will be evaluatedwhen the accesspath is
actually used.

 Select a simulatedconfiguration from the proposedlist by clicking its name
to highlight it. In our list, we will find our example configuration ibc .

 When you have selectedthe previous two items, click the Save button to
modify the project.

6.3 Selecting a Project

To changethe ISE's current project, select the Open commandfrom the Project
menu. A browser is then displayed,with which you can select the chosenproject
file. Double-click the filename displayedin the browser, or select the file with the
right mousebutton and then click OK. From then on, all the ISE's commandswill
act upon the new active project, whose name is displayed in the main window's
title bar.

The most recently openedprojects can be quickly accessedusing the File entry in
the Projects menu.

User Manual 28

CarbonKernel

7. Control Panels
Control panelsare graphic windows used to display a set of interactive controls called
magnets, which show the simulation variables’ contents. A control panel is attached to a
specific node. There is virtually no limit - except readability -– to the number of
control panelsthat can be associatedwith any node, or the numberof magnetsthat can
be displayed by any control panel.

7.1 Message ports
Each graphic control displayed on a control panel receivesits data from an event
bus managed by the simulator. The access point for sending and receiving
information on that bus is called a messageport. As the simulator'sactivities send
information on the event bus, that information is automaticallysent to the defined
monitors, and especially ISE which then channels it to the appropriate graphic
controls.

7.2 Dataports

A dataport is a special type of messageport, becauseit is associatedwith a
programvariable in the languageusedto write the application.In other words, each
change in a variable associatedwith a dataport is automatically signaled on the
event bus. A graphic control monitoring a dataport therefore shows a program
variable'scurrent value and guaranteesthat it is updatedin real time. In C/C++, a
dataport can be distinguishedby the dataport qualifier in the variable'sdeclaration
syntax.

7.3 Magnets

Magnets are independentgraphic objects that are grouped together within control
panels.They are Tcl languagemoduleswith a standardinterfacedefined by the ISE
so that they can receive notifications from the event bus and if necessaryresend
information on the bus. New magnetscan thereforebe included within the ISE. For
this, they must obey the public interface standardsdocumented in the CKPI”
document's "Writing animated magnets"” chapter.

7.4 Creating Control Panels

We shall create a control panel for the magnets example. The example updates
certain dataports at regular intervals.

� Open the Librarian and create a new eCos node. Call it "eCosNode".
Validate by clicking Save.

� Create a new configuration called "MagnetConfig" and attach "eCosNode"
to it.

� Create a new project using the magnets executablefound in the demos
directory under the installation'sroot directory, togetherwith 'MagnetConfig"”
configuration.

� In the Librarian, right-click Control and then select the New commandin
the local menu to create a new control panel. Call the control panel
“"SamplePanel"”,and then validate by clicking OK. An empty panel is then
displayed:

User Manual 29

CarbonKernel

A set of icons is displayedon the panel'sleft side. The first icon opensa window
listing all of the defined dataports:

The simulator'sexecutable'sfilename is displayedat the root of this tree structure;
the items in the tree structure are the names of variables declared as dataports,
together with their respective C/C++ data type.

All the other icons displayedon the panel'sleft side are the availablemagnettypes.
We will now add a gauge type magnet.

� If necessary,close the dataports window. Click the icon representinga
gauge,to the left of the "SamplePanel"window. The window which is then
displayed is used to define the magnet's name and link it to the simulation
via a message port:

The icon to the right of the secondfield is used to choosethe messageport from
the list of available dataports (remember,a dataport is a special type of message
port). This list is automatically filtered so that it only shows the dataports
compatible with the current type of magnet (in this case, a gauge).

� Call this magnet“"Meter", and then click the messageport icon to open the
list of compatibledataports. Meter type magnetsacceptinteger values.Select
the meter” port, and then click Apply . Its name appears,precededby the
“'/'” characterto show that this is a dataport and not a basic messageport.
Validate with OK. The magnet is then displayed in the control panel:

User Manual 30

CarbonKernel

The magnet is decoratedwith a title bar, title and border. It is entirely manipulated
via the title bar: the magnet can be moved using the mouse'sleft button; a local
menu can be displayed by using the right button. In this menu, the Rename
command is used to rename the magnet and the Delete command is used to
remove it from the control panel. If the magnet was designedto be customizable,
the Customize command appears in the menu and opens a window specifically for
that type of magnet. The Configure command displays the following window:

The messageport usedby the magnetcan be changedfrom this window, either by
typing its name directly or by choosing a dataport in the list. A test expression can
also be entered, that will be evaluatedevery time that the value of the message
port associatedwith the magnetchanges. The simulation is automaticallysuspended
when the expressionbecomestrue. The simulation can then be resumedusing the
ISE's release button.

The expression'ssyntax is describedin the documentationfor the ckSetTestExpr()
service, in the CKPI document.

We will now associatethe control panel with the "MagnetConfig" configurationthat
we created earlier.

 Save the control panel by clicking Save, and then open "eCosNode".Click
the CarbonKernel tab, and then right-click the list of control panels
attachedto the node (i.e. Control Panels). Select the Insert commandin
the local menu. This function is used to select the control panels that will
be attached to the node. The list of known control panels is then displayed:

User Manual 31

CarbonKernel

 Double-click “"SamplePanel"”, and then click Done to close the window.
Save these settings by clicking the Save button.

When the simulation is run, the gauge is activatedand, becauseof the expression
already defined, stops the simulator when the associateddataport's value is greater
than 10.

User Manual 32

CarbonKernel

8. Editing the project settings
Editing the current project settings consistsboth of choosing the laws governing how
the different eventsdefined for eachnode are generated,and making certain settingsin
the control tools or the simulator itself. All these settings are stored for the active
project.

8.1 Configuring Event Sources

8.1.1 Events, Interrupts and the Simulation Scenario

A simulation scenario is defined by choosing laws governing how the events
attached to the nodes of a given configuration are generated.CarbonKernel
triggers an event when neededby calling a service routine attachedto it. An
interrupt is an extended event defined by the VRTOS whose service routine
immediately raisesan IRQ on the current node. The ISR and optionally the DSR
attached to the interrupt can be configured when editing the corresponding
interrupt model instance.

CarbonKernel offers seven predefined generation laws, each of which defines
how frequently an an event is raised. Configuring an event source consistsof
setting a selectorand entering a generationlaw setting. The following summary
lists the types of predefinedevent sources,with the graphic selectorposition and
correspondingsetting syntax for each.Both settingsshould be provided for each
source appearing in the configuration's Events window, otherwise the
unconfigured source remains inactive during the simulation.

If no event is defined for the current configuration, the Events window is not
displayed.

8.1.2 Event Source Settings Syntax

Selector Type of call Setting syntax

Periodical Periodic [t0-tmax/]<period>

Exponential Exponential [t0-tmax/]<mean>

Uniform Uniform [t0-tmax/]<dmin-dmax>

File Source file <source file>

Manual Manual <destination file>

Timer Unique <time>

Null -no call- -no setting-

8.1.3 Generating Events Automatically

An automaticsource is handledby the simulator without any action by the user
being needed.

An automatic source relates to a domain [t0-tmax] representingthe simulated
time frame during which the sourceshould be active. No event can be generated
outside its limits. If no limits have beendefined, the sourceis active throughout
the simulation. A simulated time limit is expressedby an absolute time value,
that may be associatedwith a unit, e.g. 100 msc (usc = microseconds,msc =
milliseconds, sec = seconds).The default unit is the microsecond(usc). If the

User Manual 33

CarbonKernel

tmax limit’s units are not specified, it always usesthe unit chosenfor limit t0.
The limits are separatedby a hyphen,and separatedfrom the rest of the setting
by one of the characters“ /” , “:” or “ ,”. The following syntaxescan also be
used:

Syntax Meaning

tx/... tx-<simulation end>

-tx/... <simulation start>-tx

tx-/... tx-<simulation end>

� For periodical sources, the period setting is a duration representingthe
generationlaw period, expressedin simulated time. It is expressedin the
same way as a simulated time limit.

� For exponential sources,the mean setting is a duration representingthe
mean of the generation law, expressed in simulated time.

� For uniform sources, the dmin-dmax setting is a domain expressedby
two simulated-time limits representingthe minimum and maximum limits
of the generationlaw. If dmax is omitted, the domain used is equal to
[0-2*dmin] .

� For file sources, the setting is the accesspath for the file containing
generationstart time instructions,with one start time in each line. So that
the rest of the file is correctly interpreted,the first line must begin with
the marker “#$@timelog”. All other lines in the file are evaluated
according to the same rules as a simulated time window limit, until an
invalid characteror end of line is reached(spacesand tabs are ignored).
Any line beginning with the “#” characteris seen as a comment; empty
lines are permitted and ignored. For example, the following file extract
lists three start times expressedin microseconds,followed by two others
expressed in seconds.

$@timelog
182.867 usc
183.1
184.9
12.5 sec
12.7 sec

� The time setting in Timer mode follows the same rules as a simulated
time window limit, and specifies a single fixed time for triggering the
event.

� The Null position inhibits the source throughout the simulation.

8.1.4 Generating Events Manually

A manual source is linked with a graphic button that can be accessedvia the
simulation inspector. Each click on this button immediately triggers the event.
For manual sources,the optional setting is the accesspath for an output file that

User Manual 34

CarbonKernel

will record the list of event start times injected by the user, in a format that can
be reused by an automatic source's file mode.

In our example, the manual request interrupt can be configured in manual
mode. To do so, use the Simulation menu's Configure command. The
following window is then displayed:

This window lists the events defined in the current configuration under the
Events title, so that their generationlaws can be set there. Double-click the
icon representingthe interrupt manual request so that the following dialog
box is displayed:

Choosethe Manual position without specifying any setting, and then validate by
clicking the Save button.

8.2 General Simulation Settings

The ISE can be used to set a seriesof settingsrelating to the simulation'sgeneral
behaviour.The parameterslisted under the Settings heading of the configuration
window discussed above mean the following:

� Simulation time is the simulation's duration. When the simulated time
reaches this value, the monitor permanently stops the simulation.
The value 0 is understoodas an indefinite duration. In that case, the user
must explicitly stop the simulation.

� Warmup time is the simulation's “warm-up time”, i.e. the startup period
during which no statistical samples are taken. This period must correspond to
the simulation's transitional initialization period, during which the statistical
data is unimportant or inaccurate.

User Manual 35

CarbonKernel

Warning: The total duration of the simulation is made up of the warm-up
period added to the Simulation time period during which readings are
taken.

� Sampling count is the number of statistical samplesthat must be taken.

If the value is null, the simulation is consideredas having an indefinite
duration and the time indicated for Simulation time is taken as the
sampling period. This setting's default value is suitable for standard
simulations. This is an advanced setting that is only used for certain types of
simulation that include highly specialized FROGS add-ins.

� Display tick defines the smallest time interval that can be displayed.
For example,if the display tick value is 0.1 usc, all times will be displayed
to the nearest tenth of a microsecond.

� Time unit is the default unit for displaying time.
For example, if the value of Time unit is msc and the value of Display
tick is 1 usc, all times will be displayedin the following format: 1 010.005
u. For example, if the value of Time unit is sec, the time will be
displayed as 1.010 005 s.

8.3 Simulation Tool Parameters

A secondseriesof parameterscan be accessedvia the main configuration window
Tools tab. These can be used to modify certain parametersfor the monitor
function and debugger built into the ISE. The window is displayed as follows:

� TCP/Server port is the TCP/IP port number used for communication
betweenthe ISE's monitor and the simulator. The default value was chosen
in order to avoid any conflict with the systemports. In addition, as this port
only remains active for a very short period of time while a simulation is
initialized, it can be shared by several users. Nevertheless,if any conflict
arises this value can be changed using this parameter for the active project.

� Watchdog Timeout is the time limit before which the connectionmust be
made between the monitor and simulator, in seconds. If this limit is
exceededthe ISE simulation startup processis automatically interrupted and
an error message is displayed.

User Manual 36

CarbonKernel
� Trace Buffer is the numberof lines of text that can be stored in the API's

trace results window. A non-null value meansthat the oldest messagesare
removed once that number of lines is reached.A null value representsa
trace buffer of unlimited size. The default value is 200 lines.

� Debug Engine is the identifier of the debug engine used by the ISE to
control the simulator via the integrated graphic debugger.Various engines
could be used provided a support library is available. The standardengine
supported by CarbonKernel is GDB.

� Source Directories containsthe list of accesspaths to the directoriesthat
contain the application’s source files; that list is used by the integrated
debugger.The expressionused must be compatiblewith the syntax expected
by the debug engine associatedwith the ISE. GDB is the default engine
used. This is an optional parameter.

� Working Directory indicates the access path to the simulator's startup
directory. This is an optional parameter.

� Local Arguments is an area specifically for simulator startup arguments
that are local to the application. Ideally, these options begin with the
reservedprefix (-Q) for this purpose,in order to avoid any conflict with the
simulator's internal options. These options are always added unmodified to
the end of the list of internal options set by the ISE when the simulator is
run. See the Command line” section for more detailed information on this
subject.

� Print Command contains the command line that will be used to submit
print requeststo the host system. A shell interpreter is called to run the
request.The first occurrenceof the “%f” control string is replacedby the
name of the file to be printed, if that string appearsin the body of the
command. In this way, the name of the file that must be printed can be
positioned in the command line in the required syntax.

8.4 Operating Options

A final seriesof options can be accessedvia the Options tab. Thesecan be used
to enable or disable certain of the simulator's and ISE's features.The window is
displayed as follows:

User Manual 37

CarbonKernel

The possible settings are:
� Break on Warnings : selectingthis option causesa temporarybreak in the

simulation when the simulator returns a warning. If the integrateddebugger
is running, the line of code that causedthe error is highlighted. In addition
to the temporary break, the messageis repeatedin the ISE's Error log
window, which can be accessedvia the Windows menu. Such warningsare
generally produced by simulation models; however user code can also
generate messagesvia a special service. For details, see the ckWarn()
routine detailed in the CKPI documentation.

� Break on Trace Alerts : selectingthis option causesa temporarybreak in
the simulation when a trace alert is returned by the simulator that has the
alert attribute set. Only applicationscan generatethis type of alert, using the
CKPI interface's ckTrace() service. Alerts of this type are stored in the
API's trace manager window.

� Auto-raise Error Log : selecting this option causes the Error log
window containing the simulator's alert messages to be automatically
displayed in the foreground as soon as a new message is received.

� Hide System Consoles : selecting this option prevents system consoles
from being createdfor nodeswhen the simulation is run. Consequently,the
simulator's standard I/O streams are not redirected.

� Fully Qualify Thread Identifiers : selecting this option allows the long
identifier to be displayed for threads in the focus selectors (debuggerand
traces).A long identifier attemptsto display the name of the thread'sentry
point instead of its internal identifier. For example, ibc_server(Server) is
the long identifier for the server thread running on the Server node in our
IBC example,whose entry point is defined by the ibc_server C routine. If
this information is unavailable, the internal identifier is displayed alone.

� Auto-Raise Trace Windows : selectingthis option causesthe inspector's,
the memory examiner'sand the global variableswindows to be automatically
raised in the foreground each time that the ISE has taken control of the
simulation (e.g. code stepping, break).

� Display Source Line Numbers : selecting this option causesthe source
file's line numbers to be displayed in the debugger's frames.

� Activate Evaluation Bubbles : selecting this option causesexpressions
under the mousepointer in a debug frame to be automaticallyevaluated.If
you are working with simulators having huge namelists,you may consider
deselectingthis option to improve the ISE's responsivenesswhen moving the
mouse pointer over the source window.

� Force Focus on Breakpoint : selectingthis option causesthe debugger's
Follow thread function to be run whenever any break is caused by a
breakpoint hit in the simulation. This automatically sets the focus to the
context that was active when the simulator was suspended,so that that
specific context can be tracked step by step later.

� Use glyph cursor in source : selectingthis option replacesthe highlight
normally used to indicate the current line in the debugger'sframe by a
graphic cursor in the left margin. This mode is automatically chosen if a
monochrome display is detected.

User Manual 38

CarbonKernel

9. Export ing/Import ing the work environment
The exact contentsof a CarbonKernel work environmentcan be exportedto a portable
ASCII format and then imported again using the Project and Library menus’
Import /Export commands.These functions can also be obtained in combinationusing
the ISE's -e and -i command line options.

Unlike the ISE's command line functions, which produce a combined export file
containing both the project information and the resourceslibrary contents,the functions
accessedvia the graphic menus concern either the project or the resourceslibrary
contents.

9.1 Export ing/Import ing the current project

Choose Export in the Project menu. After you have validated the export file's
name, every item in the active project is recorded in the export file in portable
ASCII format. You can import those items again using the same menu's Import
function. The imported items permanently replace the active project's existing
contents.

9.2 Export ing/Import ing the models library

Choose Export in the Library menu. After you have validated the export file's
name, every item in the resourceslibrary is recordedin the export file in portable
ASCII format. You can import those objects again using the samemenu's Import
function. The active library will be incrementally updated with any missing or
modified objects from the import file.

User Manual 39

CarbonKernel

10.Running a Simulation

10.1 Interactive Execution

The CarbonKernel ISE offers two built-in simulation control modes. The first
mode provides a display and control monitor for handling systemobjectspresentin
the simulation. This mode also provides step-by-step functions that are
synchronizedwith certain eventssuch as executingsystemcalls or changingthread
status. The second mode adds a symbolic debugger to the previous mode. The
functions of this debuggerare extendedto the CarbonKernel multi-focus control
system. For example, a powerful focus managementfunction lets you see the
concurrent operation of a number of threads running on different nodes.

10.1.1 Simulation Monitor

An additional toolbar displaysthe functions available from the Simulation menu
when the simulation is running. These functions will be described in detail
throughout this section. When the monitor is in standalone control of the
simulation, this toolbar's actions are the following, from left to right:

� Inspector button (disabled in this mode).
� Graphical plotter button.
� APIs tracer button.
� Simulation timers button.
� Continue simulation.
� Stop simulation (disabled).
� Host simulation speed selector.
� Iconic state information.

10.1.1.1Starting Simulation

Starting the simulator using the monitor alone is controlled by the Run
commandin the Simulation menu. In addition, the icon in the toolbar is
a direct alias for this command. After starting the simulator, the list of
system objects is displayed,arrangedunder different headings.There is one
headingfor eachnode, and one cross-functionalheadingthat groups general
objects that cannot be assigned to an individual simulation node. This
heading is called network .

In our example "ibc", the following display is generated:

User Manual 40

CarbonKernel

This presentation immediately displays the following information:
� Two nodes,Client and Server respectivelyhave been instancedfor

this simulation.
� An eCos counter object underlying the Client node's real-time clock

has been created.
� A manual interrupt has been defined on the Client node called

manual request .
� Both nodes have no other system objects created yet, becausethe

simulator has entered its initial break state at the beginning of the
first (i.e. Client) eCos node's entry point.

10.1.1.2Controlling Simulation
� Simulation is automaticallysuspendedat time value "0" after general

simulator initialization. Select the Release command from the
Simulation menu to start execution. This commandhas an alias in
the form of the icon in the simulation control bar displayed on
start-up in the right of the window. You can use this command to
resume simulation after any suspension,regardless of the reason
(breakpoint, step-by-step mode, etc.). After resuming the simulation,
the current simulated time shown under the Time label in the
monitor resumes incrementing.

� To suspend simulation again, select the Hold command from the
Simulation menu or click on the icon in the control bar.

� Host simulation speed can be controlled using the selector.
Slowing the simulator process is achieved using the activity on an
internal hog thread whose sole function is to periodically suspendthe
simulation process.The maximum simulation speedis obtained when
the selectordisplays a value of 10. At the other extreme,a value of
1 correspondsto the lowest speed.The host simulation speedshould
not be confusedwith the Target Warp discussedearlier. It does not
apply to the simulatednodes,but rather to the simulation process.In
other words, changing its value has effects in the actual time, not in
the simulated time.

� To definitively stop simulation, select the Kill command from the
Simulation menu.

User Manual 41

CarbonKernel
� To restart the simulation using the monitor alone or with the

debugger, use the Restart command from the Simulation or
Debug menus as appropriate.

It is not necessaryto suspendsimulation in order to use the monitor tool
functions, especially the simulation inspector.

10.1.1.3Simulator Status Indicator

The current simulator status is shown by an indicator displayed at the
extreme right of the monitor toolbar. The pictogram displayed specifies
whether or not simulation is active, and in the latter case, why it was
suspended.Given the large number of conditions that may warrant simulator
suspension,it is useful to refer to this pictogram to determinethe type of
suspension. The following table summarizes possible status displays:

Pictogram Status

Unconditional suspension

Suspension caused by receiving a warning message

Suspension caused by a timer that went off

Suspension caused by receiving a trace message

Suspension linked to a breakpoint activated in the graphs

Suspension caused by a code breakpoint (debugger)

Suspension caused by a data watchpoint (debugger)

Suspension caused by a fatal exception (debugger)

End of simulation

Simulation in progress

10.1.1.4Using the Inspector

The inspector is an important tool proposedby the simulation monitor. Its
function is to present the system objects created and altered as the
applicationcode is run. It allows interactionwith theseobjectsdependingon
the rules defined by the designerof the simulation models used.The central
graphic window in the monitor mode is usedby the simulation inspector. In
debuggermode, a dedicatedwindow is created and is accessedusing the
Inspect command from the Simulation menu.

10.1.1.4.1Object Organization

CarbonKernel organizessystemobjects using a hierarchy specified by the
simulation model designer.A heading exists for each node where all of
the systemobjects that are exportedare groupedin hierarchicalorder. An
additional heading called network , groups all of the general objects that

User Manual 42

CarbonKernel

are globally assigned to the simulation network and that are not
specifically dependent on an individual node.

10.1.1.4.2Interaction with an Object

Each object presentedhas its own graphic representationthat is used to
display and possibly change its status and/or its characteristics.Let the
simulator run for a short while using the "Continue simulation" green
arrow icon, then hold it again using the "Stop simulation" yellow hand
icon. Double-click on the icon for the Consumer thread in the Client
node to call-up the interface shown below:

The possible interaction with each object exported by a given simulation
model is dependenton the model implementation itself. For an eCos
thread, you may change the interrupt mask and the scheduling priority
interactively.

10.1.1.5Tracing the kernel APIs

The CarbonKernel monitor has a systemcalls trace function that is usedby

the application.Click on the icon in the simulation control bar or select
the Call interfaces systemobject from the inspector's network heading.In
our example, the following window is displayed:

User Manual 43

CarbonKernel

This window displaysall of the known kernel APIs, displaying one interface
per tab. Each tab lets the user accessthe designatedinterface. The trace
output buffer is located in the lower portion of the window. Traceable
system calls are grouped by families. Check the routine names in order to
get them traced.

The Node and Focus selectorslet the user specify a referencecontext for
tracing systemcalls. Any call made outside of the selectedcontext will not
be logged in the trace buffer. On the other hand, calling up a traced service
in the selected context will generate a trace message in the trace buffer.

The Node selector lists known nodes. The Focus selector shows those
threadswhich are active on the node chosenby the Node selector,plus two
generic inputs called (network) and (node) . The former representsthe
global context, regardlessof the node selection.In this case,tracedcalls will
all be reported, regardlessof the context on behalf of which they were
invoked. In this mode, you gain an overview of all systemcalls invocations,
over all contexts of all nodes. The second input representsall of the
synchronous(threads) or asynchronous(ISR/DSR routines) contexts for the
selected node.

The Selection menu is used to apply a global operation to all trace points:
� use Select All to select all trace points in a single operation,
� use Select None to inhibit all trace points in a single operation.

The Options menu provides an additional range of settings:
� use the Trace Callouts selector to include context change

information in the active trace. This information includes thread
creations, deletions and changes.

� the Break on error selector holds the simulation when a traced
system call sends back an error state.

� the No filtering selector is used to inhibit filtering on system call
traces.In other words, this action is the sameas selectingall of the
calls present in the various trace selectors. Focus is applied. This
option implies step-by-step execution mode.

� Hide selectors masks or unmasks the system calls selection list.
This option is useful for dedicatingthe entire window display area to
the trace buffer, once the system calls to trace have been selected.

The following four buttons with pictograms allow the user to trace
operations:

� Step starts the step-by-stepmode, where simulation is automatically
held after each trace is received.

� Release releasesthe simulation by canceling,where applicable,any
previousstep command.This commandis almost the sameas the one
in the Simulation menu, except that it continuesthe trace using the
current selections.

� Hold unconditionally holds the simulation. This commandis identical
to the one in the Simulation menu.

� Mark will insert a separatemark into the traces. This function is
used to mark the separateinformation sectionsobtained during step-
by-step operation.

User Manual 44

CarbonKernel

The Step and Release actions in the API tracer window are the only ones
that can restart the system call trace on the next part of the program
executionthat they trigger, and they must not as such be confusedwith the
functions of the same name that appear in the other ISE graphic contexts.
Restarting the simulation using any other button or menu entry will not
activate the traces during execution.

10.1.1.6Triggering Events Manually

Using the ISE to trigger eventsmanually is controlled by a button for each
event defined with a manual generationsource.An interrupt event causesan
IRQ to be raised on the correspondingnode.From the simulation inspector's
main window, double-click on the manual request icon in our example.
The following sub-window will appear:

Click on this button to trigger the event. In our example, the C
client_raise_manual interrupt service routine will be activated, causing a
request to be generated by the Client node and sent to the Server node.

10.1.1.7Setting Timers

The ISE can automatically hold simulation at certain programmed times. This
can be used to break the simulator execution prior to analyzing the various
systemobjects or taking debug actions. To accessthe timer manager,select
the Timers command from the Simulation menu or choose the icon
from the control bar. The following window is displayed:

� To insert a new time for stopping simulation,click on the icon. A
simulated time selection sub-window is then displayed:

User Manual 45

CarbonKernel

Enter the required time, then validate the operation by choosing the Add
button. The absolute and relative selectorsare used to specify a time-out
calculation from time 0 (absolute) or from the simulated current time
(relative).

� To inhibit a timer without removing it completely, right click on it
and select the Disable commandfrom the context related menu. For
the oppositeresult, select the Enable commandfrom this samemenu
to reactivateit. You can also left click on it and choosethe icon
from the local toolbar.

� To toggle the enabled/disabledstatus of all of the timers using a
single action, choose the icon when no other items are selected
from the list.

� To permanently delete a timer, right click on it, then select the
Remove commandfrom the context related menu. You can also left
click on it and choose the icon from the local toolbar.

� To delete all timers using a single action, choosethe icon when
no other items are selected from the list. You will be asked to
confirm this command.

10.1.2 Using the built-in Debugger

The typical capacitiesof a graphic debuggerhave been extendedto taking into
account the inherently multi-context characteristics(threads,nodes) of a RTOS
simulation tool. All of the debugger functions are synchronized with the
observationand interaction functions already available through the monitor. This
kind of execution therefore offers a mixed simulation control mode using the
debugger and the monitor.

10.1.2.1Starting the Debugger

The simulator is activatedunder the control of the debuggerusing the Load
commandin the Debug menu. In addition, the icon in the toolbar is a
direct alias for this command.While the debugengine is loading, a blinking
indicator showing the "Loading" condition is displayed in the upper right
hand part of the ISE display. At this stage, simulation is not yet active.

After starting the simulator under the joint control of the debuggerand the
monitor, a breakpoint is hit at the entry point of the first node, provided it
has been instrumented.

The Run function handles start-up, without holding up the simulation at
time 0, which means that the simulation starts running as soon as it is
loaded.

After starting the debugger, our example, ibc generates the following
display:

User Manual 46

CarbonKernel

In this mode, a toolbar dedicatedto debuggerfunctions is displayedon the
left of the main widow, under the main toolbar. This is enhanced,at the far
right in the sameplane, by specific source-file managementtasks and by a
set of operatingmode selectors.The generalaspectof this new control field
is as follows:

The available functions are from left to right, respectively :

� Step-over the current source statement.
� Step-into the current source statement.
� Step-out the current routine.
� Release/Continue simulation.
� Hold/Stop simulation.
� Go one level toward the outer stack frame.
� Go one level down to the inner stack frame.
� Edit code breakpoints.
� Edit data watchpoints.
� Display global variables.
� Examine memory.
� Lock focus on current thread.
� Open a secondary debug frame.

Under the joint control mode, accessto system objects via the simulation
inspectoris gained by choosingthe Inspect commandfrom the Simulation
menu or by clicking on the icon in the monitor control bar.

User Manual 47

CarbonKernel

10.1.2.2Using Context Focus

The CarbonKernel debuggeroffers extendedcontrol over simulation. The
Node and Focus selectorsallow specifying a particular application context
to track and visualize.

The Node selector lists known nodes.The Focus selector lists the threads
that are active on the node currently pointed to by the Node selector,
followed by two generic inputs called (network) and (node). The first one
representsthe global context, regardlessof the current node selection.In this
case,the last sourcestatementof applicationcode that was executedwill be
presented,independentlyof its context. The second input representsall the
activity contexts for the selected node, whether synchronous(threads) or
asynchronous(callouts, ISR/DSR). In this position, the last sourcestatement
executed on the specified node will be presented.Finally, a focus on a
specific thread will narrow the application code trace to the code executed
by this thread only.

The combined position of the two Node and Focus selectorsdetermines
the scope of some debugger commands:

� The step-by-step functions (StepInto , StepOut , StepOver) always
work on the current context. For example, a step-by-step command
placed during an active focus on a given thread will only hold the
simulation after this thread has executeda source statement.All of
the other parallel activities will continue to run in the background
until the next time the simulation is stopped.

� The conditions assignedto the breakpoint insertedon-line dependon
the current focus. A breakpoint can be inserted on-line using the
local menu in the source buffer. To accessthis, right click on the
sourcecode buffer, at the statementposition you want a breakpointto
be set.

10.1.2.2.1Changing the Focus

Use Node then Focus selectorsto change the traced context. The ISE
automatically updates the source buffer accordingly.

10.1.2.2.2Asynchronous Code Trace

Use the toggle selector to validate the asynchronouscode trace mode
showing source statementsexecutedon behalf of contexts such as kernel
callouts or ISR/DSR routines. If this function is not selected, only
synchronous thread activity will be traced.

10.1.2.2.3Multiple Context Display

Choose the icon to create a new debug frame. There is virtually no
limit to the number of simultaneouslyaccessibleframes. All of the debug
frames are synchronizedand have their own focus. This enablesobtaining
simultaneousviews of the status of the various activities observedat a
given time.

User Manual 48

CarbonKernel

10.1.2.3Position in the Source Code and Local Actions

The current position in the displayed source code is illustrated by yellow
highlighting or a cursor located in the left hand margin if the use glyph
cursor in source option is active in the project settings.As CarbonKernel
lets the user follow more than one different context at one time, the position
shown is always dependenton the context that is displayedaccordingto the
active focus selection (see above).

At any time, when simulation is suspended,a local menu that is called up
via the right mouse button can be accessed.The actions presentedin this
menu may vary depending on the current simulation context.

10.1.2.3.1Setting a Breakpoint

The Break here action lets the user add a breakpoint at the source
statementlocated under the mousepointer. If the focus is not (network) ,
then a sub-menudisplaysa list of additional conditions for the breakpoint.
It therefore becomes possible to make breakpoint conditional on the
execution of any activity (thread, ISR/DSR, kernel callout) affecting the
node coveredby the focus (if Node "xxx" runs), or on the executionof a
specific thread on this same node (if Thread "xxx" runs). Choosing
unconditionally is the same as validating this breakpoint regardlessof the
context, including all activities on all nodes. The choice becomes
unconditional in relation to the focus. When the focus is (network) , the
breakpoint is always valid, regardless of the executing context.

10.1.2.3.2Editing a Breakpoint

If the sourcestatementthat is presentunder the mousepointer already has
a breakpoint, then the Disable, Enable and Remove actions respectively
let the user disable, re-enable or definitively remove this breakpoint.

10.1.2.3.3Running Until the Mouse Pointer

The Run until function lets the user place a temporary breakpointat the
source statementunder the mouse pointer and then automatically resume
the simulation. This breakpointwill be automaticallydeletedthe next time
the simulation is suspended by the debugger.

10.1.2.3.4Searching for a Character String

The Search string action allows accessto a lexical search function on a
character string in the current source file.

10.1.2.3.5Actions on the Current Selection

If a text selection is active, the charactersting delimited in this way can
be used as the argumentfor a variable or expressioninspection function.
The selectionis madeby double-clicking on any word in the sourcecode.
If the expressionbeing looked for is not currently displayed,it is possible
to enter it into the freeform text field. Possibleactions of the local menu
in the source buffer include:

� Display to display the expression value in the local variables
window.

User Manual 49

CarbonKernel
� Display * to display the result of de-referencingthe expressionvalue

in the local variables window.
� Type of to obtain the type of expression in the source code

programming language syntax.
� Seek to bring the declaration of the variable or the function

proposedas an argument into the source buffer. This action has a
shortcut that is called up by simultaneously pressing the Control key
and the left mouse button, when the pointer is located on the
expression.

� Find to look for the next occurrenceof the argumentin the source
text. The find function automaticallywraps to the start of the source
file when it reaches the end.

10.1.2.4Using Step-by-Step Mode
� Choosethe icon from the debugtoolbar to resumeexecutionfrom

the current statement and enter the routine (StepInto function).
� Choosethe icon from the debugtoolbar to resumeexecutionfrom

the current statement without entering the routine (StepOver
function).

� Choosethe icon from the debugtoolbar to resumeexecutionfrom
the current statement until exiting the active routine (StepOut
function).

10.1.2.5Information on the Current Context

When executionis suspendedunder the control of the debugger,the function
name, file name and source line currently pointed to by the step-by-step
mode cursor are displayed over the source text. This information is
completed where necessaryby the current interrupt masking level (when
applied, i.e. > 0), as well as by the specific mode indicators if this is a
thread. These modes are as follows:

� (lock) indicates that the displayed thread cannot be preempted by
another thread from the same node (i.e. Scheduler lock).

� (rrb) indicatesthat current node is currenly undergoinga round-robin
scheduling for the priority level the displayed thread belongs to.

� (asdi) indicates that asynchronous software signals are currently
inhibited for the displayed thread.

� (boost) indicates that the displayed thread temporarily benefits from
enhanced priority, as part of the priority inheritance protocol.

When these modes are meaningless to the currently simulated RTOS
personality, their respective flags never appear.

10.1.2.6Displaying the Stack

Use the toggle selector to validate or inhibit the display of the call stack
that correspondsto the traced context. Click on a stack level to display the
corresponding source code.

10.1.2.7Local Variables

Use the toggle selector to validate or inhibit the display of the local
variables for the traced context. Right click on the list of variables to

User Manual 50

CarbonKernel

pulldown the local menu to accessthe various additional functions. This
menu is used in exactly the same way as the one defined for the local menu
in the global variables window.

10.1.2.8Displaying Global Variables

The global variables for the application program are accessedusing the
icon in the debugtoolbar. Right click on the window displayed,then use the
Select commandin the local menu to choosethe variables to display. For
our example, the selection sub-window shown below:

Each global variable is instancedas many times as there are nodesdefined
in the configuration. When more than one node is active, each global
variable is suffixed by the ‘@’ character followed by the name of the
instance that it belongs to. This syntax can be reused when manually
entering expressions to display using the Auto-display expression
function (see below).

In our example, two instancesexist for each variable; one for the Client
node, the other for the Server node. Double-click on a variable instanceto
display it. Choosethe Close button to end the selection.A text entry field
left blank and called Auto-display expression lets the user type in an
expression to display.

Any variable or expression that is selected using this function is
automatically recalculatedand graphically refreshedafter each suspensionof
execution. All of the expressionssupportedby the active debuggingengine
(e.g. GDB) are valid in this context, especiallyarithmetical expressions.This
feature is also accessible from the local variables display window.

In our example,enter the next_msg@Client expression,then use ENTER
to validate and see at all times, the selection index value for messageson
the Client node.

User Manual 51

CarbonKernel

10.1.2.9Specifying the Context of a per-node Variable

When a variable has been adaptedby the instrumentorto be instancedfor
multiple node use in a single simulation, it is possible to specify the
reference context that its value will be searched for in a data display
expressionsubmitted to the debugger.The principle involves suffixing the
variable name with the symbolic node name, separatedby the ‘@’ special
character.

For example, ibc_handler@Server indicates the value of the per-node
variable ibc_handler in the Server node context.

If the node namecomprisesblank spacesand/or charactersthat may conflict
with arithmetic operators or others recognized by the debugger, then the
name should be delimited with a set of brackets. For example,
ibc_handler@(A Client Node).

Finally, if the node was obtained by cloning, its specification should be
followed by its instancing rank in relation to the reference node. For
example, ibc_handler@Server(0) indicates the first instance of the node
created by cloning the Server referencenode. The above rule relating to
delimiting the name also applies in this case,with for example the use of
the ibc_handler@(A Client Node(1)) expressionto specify the value of
the ibc_handler variable in the secondclone of the referencenode called
"A Client Node".

10.1.2.10Displaying the Memory and Evaluating Expressions

Use the icon to accessthe memory examiner. The window below is
displayed:

The first frame contains the requestresults display buffer. The intermediate
frame contains a set of format selectors used to check memory display
(hexadecimal,decimal, octal and others). The third frame is used to choose
the expression to be displayed.

Two modes are available in this context: the raw memory display if the
selector in front of the text entry is in the Dump position, and the

User Manual 52

CarbonKernel

expressionevaluationmode if this sameselectoris in the Eval position. The
Dump mode displays the content of the memory, from an addressexpressed
in the next text entry, for a number of consecutivememory words using a
general format specified by the other selectors.The Eval mode will merely
evaluate the expressionshown in the text field. In this case, the format
selector is not operational.

The Eval mode also lets the user change the value of the expression
displayed by allowing it to be placed after the = operator followed by the
new value to assign to it. For example, A= 23 assigns the value 23 to
variable A.

When the examiner'swindow remains open during step-by-step operation,
the expressionnormally displayedin the text entry is re-evaluatedeach time
simulation is stopped.

The Examine button forces the evaluationof the current contentof the text
entry, just like when the RETURN key is pressedin the same field. The
Clear clears the contents of the field.

10.1.2.11Setting Breakpoints
� Pull down the local menu for the source frame by right clicking on

the source statementthat should receive the breakpoint. Chooseone
of the breakpoint conditions proposedby the current focus function.
The possible conditions may make the breakpoint dependenton the
node or thread currently being presented.One mode allows obtaining
an unconditionalshutdownregardlessof the context (equivalentto the
network mode). If the breakpoint requires a condition, use the
breakpoint editor's Set condition function (see below).

� Use the icon to accessthe breakpointmanager.In this mode, only
unconditionalbreakpointsmay be defined. The managerwindow is as
follows:

� To insert a new breakpoint, enter its location in the text field, then
click on the icon. The syntax used to specify localization depends
on the debug engine used. By default, the CarbonKernel ISE uses
the GDB engine. For example, state server.c : 86 to stop the
executionat line 86 of the server.cfile in our example,then validate
this by pressing the ENTER key Or alternatively, state
shm_push_q to stop the executionat the input to the shm_push_q()
function (present in the shm.c file). It is also possible to add a
condition to breakpointtriggering use of the Set condition function
from the local menu.

User Manual 53

CarbonKernel
� To inhibit a breakpointwithout removing it definitively, right click on

it, then select the Disable command from the local menu. To
perform the reverseoperation,select the Enable commandfrom this
samemenu and reactivatethe breakpoint.You can also left click on
the breakpoint, and then choose the icon from the local toolbar.

� To toggle the enabled/disabledstate of all of the breakpointsusing a
single action, choosethe icon when no other elementsare selected
from the list.

� To definitively remove a breakpoint,right click on it, then select the
Remove commandfrom the local menu. You can also left click on
the breakpoint, and then choose the icon from the local toolbar.

� To definitively remove all breakpointsusing a single action choose
the icon when no other elementsare selectedfrom the list. You
will be asked to confirm this action.

10.1.2.12Setting Watchpoints

This function is used to stop the simulation when a variable expression
changes value when the program is under control. To use the data
watchpoint in a comfortable manner,hardwaresupport is required from the
host station, in order to reduce the execution time penalty linked to
controlling the change in value to the submitted expression. When a
watchpoint is first used, the debugger will request confirmation of the
operation to the user if this support proves unefficient at the debug engine
level. If the action is confirmed, then a software emulation function
eventually provided by the debug engine will be used.

The unavailability of hardware support for controlling memory watchpoints
makestheir use unreasonabledue to the extremeslowing effect that software
emulation causesat the debug engine level (e.g. with GDB). In addition,
unavailability is most often due to a lack of support from the debug engine
itself, rather than to any actual lack of hardware functions at the host
processor level.

� Use the icon to accessthe breakpoint manager.From this mode,
only unconditionalbreakpointscan be defined. The managerwindow
is shown below:

� To insert a new watchpoint, enter the chosenexpressionin the text
entry, then click on the icon. It is possible to change this
expression using the Edit function in the local menu.

User Manual 54

CarbonKernel
� To inhibit a watchpoint without removing it definitively, right click

on it, then select the Disable command from the local menu. To
perform the reverseoperation,select the Enable commandfrom this
samemenu and reactivatethe watchpoint. You can also left click on
the watchpoint, and then choose the icon from the local toolbar.

� To toggle the enabled/disabled status of all of the watchpoints using a
single action, choosethe icon when no other elementsare selected
from the list.

� To permanentlyremovea watchpoint,right click on it, then select the
Remove commandfrom the local menu. You can also left click on
the watchpoint, and then choose the icon from the local toolbar.

� To definitively remove all watchpoints using a single action choose
the icon when no other elementsare selectedfrom the list. You
will be asked to confirm this action.

10.1.2.13Controlling Simulation

� Simulation is automatically held at time "0", after general debug
initialization. Select the Release commandfrom the Debug menu to
start execution.This commandhas a double alias in the form of the

icon presentin the debuggercontrol bar and in the monitor that is
displayed on start up. You can use this command to resume
simulation after any kind of break state.To stop the simulation again
and return control of it to the debugger,select the Hold command
from the Debug menu, or click on the icon in the control bar.

� To definitively stop the debuggingand simulation session,select the
Kill command from the Debug menu.

� To restartsimulation, with our without the debugger,use the Restart
command from the Debug or Simulation menus as appropriate.

The simulation control actions accessiblevia the monitor are also available
during a debug session using the debugger.

10.1.2.14Selecting the Source File

The following actions directly affect the contents of the source buffer
displayed by the debugger.

10.1.2.14.1Back to the Current Instruction

Click on the icon to display the current breakpoint, in the source
buffer. This function is useful for returning to the current instruction after
browsing between a number of source files.

10.1.2.14.2Reloading the Current File

Click on the icon to force the system to re-read the file currently in
the source buffer.

10.1.2.14.3Browsing Recent Files

User Manual 55

CarbonKernel

The graphic selector is used to accessthe list of the last eight files
presentedin the sourcebuffer. The other less recent files are also retained
and can be accessedvia the selector'sMore... input when this is available.
In this case, a selection list lets the user browse all already open files.

10.1.2.14.4Loading a New Source file

Choosethe Open... input from the File menu in the main menu bar in
order to accessa file selector.After validating the action, the sourcecode
contained in this file will be presented in the current buffer.

User Manual 56

CarbonKernel

11.Displaying Statistics Graphs
Somesystemobjectscreatedby the simulation modelsexport one (or more) displaysof
their current status to a dedicated plotter, accessible from the ISE monitor. For example,
real-time thread transitions are displayed in state diagram form, presenting every
possiblestate(suspension,delay, active, etc.) over time. Somemodelsmay also propose
a graphic illustration of simulatedinstantaneousprocessorworkload using a curve or a
set of histogramsshowing the distribution of thread statesduring the simulation. The
graphs proposed for display are therefore dependenton the characteristicsof the
simulation models used.

11.1Selecting Graphs

To access the plotter functions, select the Plotter command from the Simulation
menu or click on the icon in the monitor toolbar after starting simulation. The graph
selection screen is displayed:

The selection screen only appearswhen no graphs are currently displayed, otherwise
accessto the graph trace window is gained directly. At any time you can return to the
selector using the Select commandfrom the File menu in the plotter window or by
using the . icon.

As you can see in the previous view, the graphs are listed in hierarchical order, by
graphic type first (Time Curves for the time curves,Compounds for the composite
curves and Histogram s for histograms),then by node assignmentand finally by type
of simulation objects.

All of the curves that exist at this point in the simulation are available on screen.The
selection state for each node is carried via the lower branchesto the graphic objets
themselvesare reached.The selectedcurvesare initially displayed in the order of their
appearance in the list.

Simulation can export new curves throughout its operation, depending on the
performance of the models involved. For example, creating a thread generally causes the
appearanceof a new state diagram that representsit. In this case, the graph selector
will be enriched in real-time.

In our example, choose the Client and Interrupt level curves from the Client
and Server nodes respectively, that show the state of the client thread and the

User Manual 57

CarbonKernel

current server node's interrupt level. After validating this function using OK, the
plotter window is displayed:

11.2Display by Type of Graph

11.2.1 Time Curves

Curves indexed on the simulation time are grouped so that they can be
compared.The time value is assignedto the abscissa,with a sliding left limit
basedon its evolution or the current presentationchoices. We will use xMin ,
xCur and xMax respectively as the minimum, current (i.e. simulation time
reachedprior to the last suspension)and maximum values for this axis in the
rest of this document.Click on the Time Curves tab in the curve tracer to
display this kind of curve.

11.2.2 Composite Curves

A numberof time curvesof the sametype can be assignedtogetherto the same
compositecurve. They retain their separatepropertiesbut appeargrouped when
displayed in the same graphic field.

11.2.3 Histograms

The histograms are grouped under the Histogram s tab in the tracer. The
Y_axis is used to illustrate the values reached by the different distributions
displayed.

11.3Controlling the Simulation

11.3.1 Continuing/Stopping Simulation

The simulation in progresscan be stopped temporarily and restarted from the
plotter, using the and icons respectively in the control bar. These two

User Manual 58

CarbonKernel

functions are identical to the ones that can be found in the debugger and built-in
monitor interfaces.

11.3.2 Setting Breakpoints

Breakpointscan be set on the time curves shown. The transition to one of the
stateschosenfrom a state diagram, or reachinga numerical threshold in a time
graph can therefore trigger an automatic stop to simulation. Control is then
returned to the ISE, which then synchronizesall of the views available on the
breakpoint (updating the status of inspector objects, the code and the variables
displayed by the debugger etc.).

To accessthis function, right click on the title of a time curve to call up the
local control menu for this curve, pulldown the Mode sub-menu, then choose
Breakpoint .

11.3.2.1Breakpoints in a State diagram

Once the Breakpoint function is validated,a list of possiblediagram states
is displayed in a selection sub-window. Check the selector for each status
required. The Close button ends the selection process.

11.3.2.2Breakpoints in a Time Graph

Once the Breakpoint function is validated, a sub-window is displayed for
entering the thresholdvalue. Enter this value, which will stop the simulation
when it is reached.The Close button createsthe breakpoint for the current
threshold value. The Remove button deletes the breakpoint for the displayed
value.

An acceleratedmode for setting breakpoints can be accessedby directly
double-clicking on the chosen part of the curve, representingthe ordinate
value for the status or threshold.

11.3.3 Displaying and Checking Breakpoints

A function lets the user gain a summaryoverview of all of the breakpointsset
on the time curves. This function will also allow disabling or removing these
breakpoints,either individually or curve by curve. Use the Breakpoints option
from the View menu or click on the icon to access this function.

A window like the one below is displayed:

User Manual 59

CarbonKernel

The breakpointsdisplayedare groupedby the curve they belong to. Right click
on a breakpoint value to pulldown the local control sub-menu. The Remove ,
Disable , and Enable choicesrespectivelywill remove,disable or re-enable the
selectedbreakpoints.If you would like to apply theseactions globally to all of
the breakpoints on a given curve, right click on the name of the curve as
displayed in this same window and use the required sub-function.

The Close button closes the breakpoints control sub-window.

11.4Scale Compression

11.4.1 Y Compression

When the initial height of the curves does not allow their completedisplay and
requires the use of the vertical scroll bars, then it is sometimes useful to
vertically compressthese objects. Use the Y-compress function in the View
menu or the icon to reduce the height of theseobjects so that they can be
displayed on a single graphic page. Note that this option is automatically
disabled if too many objects are already compressedfor display. This option is
available for time curves and histograms.

In our example, vertically compressing all the thread states curves would
generate the following display:

User Manual 60

CarbonKernel

Vertically uncompressingthe display, i.e. returning to the previous display scale
is possible using the Y-uncompress function from the View menu or by using
the icon.

11.4.2 X Compression

It is often convenient to be able to display what a curve looks like over the
entire simulation time range. Use the X-compress function from the View
menu or the icon to bring all of the storedpoints from all of the time curves
back to a single graphic page. This operation is performed by applying an
abscissascaling function that changesthe displayedtime/pixel ratio. The left and
right limits of the curve are brought back to 0 and xCur respectively.

Horizontally uncompressingthe display, i.e. returning to the previous display
scale is possibleusing the X-uncompress function from the View menu or by
using the icon.

11.4.3 Zoom In

The zoom in function expandsthe time/pixel scaleby 200%. The left hand limit
(xMin) is retainedas closely as possible,while the display is recalculatedfor all
of the time curves displayed.This function is a gradationof the X compression
function describedpreviously. It is called up by choosingZoom In 200% from
the View menu or using the icon.

11.4.4 Zoom Out

The zoom out function contracts the time/pixel scale by 50%. The right hand
limit (xMax) is changed to match the new scale, while the display is
recalculatedfor all of the time curves displayed.This function is symmetricalto
the zoom in function describedpreviously, but is however applied using a lower
scaling factor. It is called up by choosing Zoom Out 50% from the View
menu or using the icon.

User Manual 61

CarbonKernel

11.5Composite Curves
In order to obtain a single curve made up from the statesof a number of other
compatiblecurves (i.e. curves of the sametype and in the case of state diagrams,
with the samestates),it is possibleto use the "drag & drop" methodbasedon the
time curves title bar. To do this, simply left click on the title bar of one of the
curves to group, then drag the mouseto the title bar of the other curve to group,
whether it is a compositecurve or not, then releasethe left mousebutton. In the
former case, the first curve will be added to the secondcomposite, in the latter
case,the two curveswill form a new composite. In this latter caseonly, the plotter
will prompt the user for the name of the newly created composite curve.

11.6Placing Graphs
Graphs may be arrangedfor display using a simple placing mechanism,triggered
by a "drag & drop" operationperformedon the grab icon provided on eachone.
The graph locatedat the sourceof the move action will be insertedbefore the one
located at the move destination.

11.7Selection and Cross Hairs

11.7.1 Actions on Graph Sections

Some graph analysisactions require expandingor compressinga specific part of
the time curve trace. The graphic selection concept is used to select a precise
areaof application for a changeof scale.To call up this function, right click on
the title of a time curve to call up the local control menu for this curve,
pulldown the Mode sub-menu, then choose Selection .

A sub-window like the one shown below will then be displayed:

The X-View heading in this window lets the user control the time/pixel ratio
(i.e. the abscissa)over the current selection. The Y-View heading is used to
control the field shown by the ordinates.

In parallel with the window display, a selection rectangle is shown on the
selectedcurve. Bring this rectangle over the graphic portion that you wish to
assignto the selection.To do this, left click on the point that representsthe top
left corner of the rectangle,then drag the pointer to the lower right corner,while
holding the mouse button down. The selection made is determined by the
rectangle formed when the left mouse button is released.You can rework an
existing selection by holding down the CONTROL key while performing the
operation using the left mouse button.

User Manual 62

CarbonKernel

During this operation,the current limits of your selectionare displayedin real-
time in the control window, showing both the abscissaand ordinate values.You
can change these limits manually using the data entry fields provided.

In the X-View heading,From and To respectivelycontrol the xMin and xMax
valuesdisplayed.Time/Pixel is the display ratio betweena graphic pixel and its
time correspondence.

In the Y-View heading, the system will display the limits-states for a state
diagram, or the minimum and maximum values in ordinates,for a time graph. In
the former case,only those statespresentbetweenthe two limits (inclusive) will
be displayed.In the secondcase,only those points betweenthe minimum value
and the maximum value (inclusive) will be displayed.

Apply the new display parametersby clicking on the Apply button. To revert to
the previous state, use the Revert button.

There is a quick way to accessthe selectionfunction, by simultaneouslypressing
the left mousebutton and the SHIFTkey while directly selectingthe target curve.
Once the selectionhas beenmade, right click on the chosencurve, then validate
X-Apply or Y-Apply respectively to change the scale or the corresponding
limits.

11.7.2 Using the Cross Hairs

Left click on a point on a time curve or a histogramto see its coordinates.The
coordinateswill be displayedat the top of the selectedcurve. The crosshairs let
you move along this curve while holding down the left mouse button, for a real-
time display of the corresponding coordinates.

11.8Other Local Functions
The graphs shown all have a local menu that lets the user access a set of
individual functions. To access this menu, right click on the title of the graph.

11.8.1 Local Time Curve Functions

11.8.1.1Seeking the Next Point

The Seek sub-function in a curve's local menu lets the user seek the next
or the previous point received from the simulation by looking forward
(Forward input) or backward (Backward input) within the current view.
This function is useful when looking for the next or the previous transition
in a state diagram. The minimum limit xMin is moved to bring the point
found onto the display. If no point is found, an audible beep will sound,
indicating that the seek action has failed to find anything.

11.8.1.2Advanced Settings

Simple time graphs (i.e. time curves excluding state diagrams) have an
additional setting feature that can be accessedfrom the Advanced sub-
function in their local menu. The advancedsettings sub-window looks like
this:

User Manual 63

CarbonKernel

The Smoothing parameteris a smoothing constant applied to the graph
along its horizontal scale. It is expressed as a simulated time value.

Selecting the Y-adjust parameterwill automatically adjust the maximum
ordinates limit according to the points received from the simulator. If not,
the limit will not be readjustedto match the maximum value receivedfrom
the simulator.

Choose OK to validate the changesmade to the settings, or Cancel to
cancel the operation.

11.8.2 Local Histogram Functions

11.8.2.1Display Mode

The histogramdisplay mode can be controlled by the Display sub-function.
The Density option specifiesthe probability density, the Repartition option
specifies the repartition function. By default, the probability density is
applied.

11.8.2.2Representation Type

The histogram representationtype can be controlled by the View sub-
function. The Absolute option specifies the absolute mode, the Relative
option specifies the relative mode. By default, the relative mode is applied.

11.8.2.3Advanced Settings

All histograms have a additional settings that are accessed by the
Advanced sub-function from the local menu. The advancedsettings sub-
window looks like this:

Selectingthe Stretched parameterwill extendthe histogramtrace surfaceto
cover all of the drawing surface available along the horizontal axis.
Otherwise,a default horizontal size is given to the graph, which may vary
depending on the distribution presented.

X-min and X-max respectively are the simulated time minimum and
maximum values used to represent the distribution.

User Manual 64

CarbonKernel

11.8.2.4Updating

Unlike time curves, histograms are not updated in real-time during
simulation. Updating should be triggered on demand using the Update
function in the View menu or using the icon.

11.8.3 Common Functions

11.8.3.1Changing Colors

The color usedto draw the graphsmay be changedusing the selectorthat is
accessed via the Color sub-function in the local menu for these graphs.

11.8.3.2PostScript Printing

Time curves and histogramscan be printed out in PostScript format, either
to a file or directly to the chosenprinting peripheral.From the graph'slocal
menu, use the Print sub-function to access the Print sub-window. The
following window is displayed:

Choosethe destination,To printer for a direct print out to a printer, To
file to route the print out to a file. In the latter case, the filename text entry
next to the selector must be filled-in. For a direct print out, the current
Print command settings in the simulation configuration parametersare
used. These settings are accessiblefrom the Tools page in the Settings
window in the ISE Project menu.

Horizontal curve compressionis applied by default, so as to present the
entire simulated time range in the PostScript trace. You may disable this
option by choosing the Uncompressed mode.

A global print commandfor all of the graphs presenton the current page
(time curves or histograms)can be called up from the Print commandin
the File menu or using the icon.

11.8.3.3Removing the Graph

The Remove sub-function, accessedfrom the local menu for a graph lets
the user remove it from the display, regardlessof its type. It may be
restoredusing the graph selector accessedvia the Select commandin the
File menu or via the icon.

11.9General Options
The plotter offers a number of options that affect its overall performance. These
options are accessible via the Options menu.

User Manual 65

CarbonKernel

11.9.1 Adjusting Abscissas

The X-adjust mode is used to chooseautomaticreadjustmentof the xMin and
xMax limits when plotting the time curves, depending on the minimum and
maximum values received from the simulator. This allows retaining only one
active graphic page at any time during the simulation, and thereforeavoids the
need to use the horizontal scroll bar. This mode is disabled by default.

11.9.2 Scroll Lock

The Scroll lock mode indexestime curve horizontal scrolling to mousemotion,
when using the horizontal scroll bar. Otherwise, the display is only refreshed
when the mouse button is released.This mode, when it is enabled,requires a
high trace speed from the host station, due to the numerousdisplay refreshes
that take place. This mode is disabled by default.

11.9.3 Auto-Select Color

The Auto-select color mode lets the tracer choose the colors to assign to
new curves. This mode is initialized by default.

11.9.4 Auto-Save Session

All of the current plotter sessionparameterscan be savedon demandusing the
Save commandfrom the File menu or using the icon. This includes the list
of curves displayed, the composite curves that are active, the position of the
breakpointson the different curves, the advancedconfiguration settings,etc. The
Auto-save session option lets the user choose to automatically run this
command at the end of each session, when the simulator is shut down.

User Manual 66

CarbonKernel

12.Using the Terminal Console
The VRTOS create a system console channel for each node. A graphic application
representing an ASCII terminal is then connected to each channel.

The standard simulator standard input and output streams(i.e. stdin/stdout/stderr)are
automaticallydirected to this terminal, just like they could be in a real situation to the
target console channel.

It is possible to inhibit the redirection of simulator data flows using a commandline
executionmode on the simulator via the -Xn option. Refer to the Command Lines
section that covers the simulator, for further information on this heading.

The CarbonKernel terminal has a dual-function:
� On the one hand it allows interactingwith the simulatedRTOS using its console

channel;the outputs generatedby the user code during executionwill be logged
in the assigneddisplay window and in the sameway charactersenteredfrom the
keyboard in the context of normal terminal operation will be immediately
forwarded to the node they are intended for. Outputs can be exported to an
ASCII file.

� On the other hand it provides the ability to automatically replay keystrokes,to
and from an ASCII file. During recording, all of the charactersenteredare saved
in the file along with the simulated time when they were received by the
VRTOS. During replay, the charactersare extracted from the file, then re-
injected into the simulator, either at exactly the same simulated time or
immediately, dependingon the selectedreplay option. During input file replay,
interactive keyboard keystrokes do however remain valid and are sent to the
simulator.

12.1Recording an Interactive Session

Use the Start recording commandin the Input menu in the terminal window to
trigger the keystroke record mode. A sub-window used to specify the accesspath
to the recording file is then displayed:

User Manual 67

CarbonKernel

After entry, use the ENTER key to validate or click on the OK button.

During this mode, a red sphere is displayed intermittently in the top right of the
terminal display. This mode ends when the Stop recording command from the
Input menu is validated.

12.2Replaying an Interactive Session

Use the Start replay commandfrom the Input menu in the terminal window to
trigger the keyboardkeystrokereplay mode. A sub-window that lets the user enter
the replay access path and the replay mode is then displayed:

The mode selector offers a choice between two types of replay:
� Choosenormal so that the characterscontainedin the file will supply the

simulator input at the exact same simulated time as they were previously
recorded in the file.

� Chooseraw if you would like the charactersto be injected immediately, just
like if they had been received immediately. This mode is perfectly suitable
for replaying an interactive commandsequencewhen matching the simulated
timeframe is unnecessary.

After entry, validate the selection using the ENTER key or click on the OK
button.

During this mode, a green arrow is displayedintermittently in the top right of the
terminal display. This mode ends manually when the Stop replay commandfrom
the Input menu is validated,or automaticallyif all of the file charactershave been
replayed by the simulator.

12.3Manually Creating a Replay File

Here is the descriptionof the file format expectedby the simulator as an input for
the two types of replay modesdescribedpreviously. The files obtainedin this way
can be used as source files for the Start replay function.

12.3.1 Format for Time Based Replay ("normal" mode)
� The first line must start with the "#$@timelog" marker for the rest of the

file to be correctly interpreted.Each subsequentfile line starts with the
simulatedtime of data input (time stampsmust be absoluteand increasing)
including its time unit (usc, msc, sec), ending with the ‘ :’ separator
followed by the character to input, or its ASCII code in octal format
precededby a \ character(e.g. \012 for LF). C languagemeta-characters

User Manual 68

CarbonKernel

are also accepted(e.g. \r\b\f\n...). A line starting with a ‘#’ characteris
consideredto be a comment. Blank lines are allowed and ignored. For
example, the following file fragment provides the insertion sequencefor
the word "CarbonKernel" on the console's input channel, with its time
values expressed in micro-seconds:

$@timelog
186 usc:C
186.1 usc:a
186.92 usc:r
190.5 usc:b
192.301 usc:o
192.302 usc:n
192.700 usc:K
197.2 usc:e
198.78 usc:r
198.79 usc:n
200.1 usc:e
202.8 usc:l

12.3.2 Format for Immediate Replay ("raw" mode)

In this mode, the file may either be compatible with the time based format
describedabove, or contain a successionof charactersthat will be sent without
modification. If the file contains time data, it will simply be ignored when it is
replayed and only those characterslocated after the ‘ :’ delimiter will be sent
without delay to the console'sinput channel.On the contrary, if the file doesnot
have a "# $@timelog" header,the charactersthat it contains will be sent as a
block, including the line feeds as significant characters. In this format, no
commentfield is recognized.Sending the word "CarbonKernel"on the console's
input channelis the sameas simply storing this characterstring in a raw ASCII
format file:

CarbonKernel

12.4Saving Terminal Outputs

Use the Save commandfrom the Output menu in the terminal window to save
the contents of the output buffer in an external ASCII file. The filename entry
procedure is the same as the one used for previous commands.

12.5Deleting the Terminal During Simulation

Use the Quit commandfrom the File menu in the terminal window to force an
end to the terminal application. The consolechannelfor the assignednode will be
closed automatically by the simulator at the same time.

This commandmust be usedwith care as it may causethe failure of the simulated
services that are dependent on the console channel.

User Manual 69

CarbonKernel

13.Command Lines

13.1 ISE Start Options

The CarbonKernel ISE has the following set of start options available:
� -f <project-file>, automatically loads the simulation project designatedby

its accesspath when the ISE is initialized. This option will override the
default behaviour to pre-load the last active project.

� - R <repository>, gives the access path to the ISE's default resources
repository. This value is only used when the ISE is first started in a user
environment to build the initial database.This option will override the
default value set to <private-dir>/ck.rr , where <private-dir> is the name
of the directory createdby the ISE during the very first user session.It is
located in the root of the user's account and is called .ck/<arch> where
arch is the identifier for the current platform architecture.

� -g , forces simulation to start in debugger mode, as soon as the ISE
initialization is finished. Combinedwith the –-f option, this selectionallows
the automatic execution of any simulation project. The –-g option is
mutually exclusive with options -x and -p .

� -x , forces simulation to start in monitor mode, as soon as the ISE
initialization is finished. Combinedwith the –-f option, this selectionallows
the automatic execution of any simulation project. The –-x option is
mutually exclusive with options–-g and -p .

� -p , is an internal option used by the simulator to run a slave monitor
interface when simulation is started from the command line.

� -q , unconditionally shuts down the ISE as soon as simulator execution is
finished. By default, the ISE remains active after the end of a simulation,
except in the case of the slave mode designated by the -p option.

� -u , inhibits reloading of the last ISE's working context, especially its last
open project. By default, the ISE restoresthe last project, along with some
general display characteristicslike the geometryof the graphic window that
it uses.

� -v , sends the ISE version number to the standard output.
� -e <export-file>, usedin combinationwith the -f option allows exporting

the contentof the specifiedproject in ASCII format along with the resources
repository contents attachedto this project. In other words, the ASCII file
obtained will contain all of the information required to rebuild an identical
CarbonKernel working environment.This rebuild action can be performed
using the -f option in the ISE command line or by using the Library
menu input function provided in the same tool. The ISE will automatically
end its execution after exporting.

� -i <import-file>, usedin combinationwith the -f option allows importing
the contentof the specifiedproject in ASCII format along with the resources
repositorycontentsfound in the ASCII file. This operationis symmetricalto
the export function obtained using the -e option. If the project specified
using the -f option does not exist, it is automatically created. If not, its
contents are replaced by the componentsfound in the imported file. The

User Manual 70

CarbonKernel

resourcesrepository is incrementally updated with the missing or modified
elements found in the imported file. The ISE will automatically end its
execution after importing.

13.2Simulator Start Options
Any simulator generated using the standard procedure described in chapter 3
includes the following set of start options:

� -C <config>, specifies the name of the simulated configuration to run.
This option is ignored if –-f (or –-F) is used. In the latter case,the active
configuration name is taken from the project file stated as the argument.

� -R <repository>, specifiesthe accesspath to the resourcesrepository from
which the simulated configuration designated by the -C option will be taken.
This option is ignored if –-f (or –-F) is used. In the latter case,the active
repository is taken from the project file statedas the argument.If no option
sets the accesspath to the resourcesrepository, the <private_dir>/ck.rr file
will be used,where <private_dir> is the directory namecreatedby the ISE
when the very first user sessionis run. It is located in the root of the user's
accountand is called .ck/<arch> where arch is the identifier for the current
system architecture.

� -F <projfile>, initializes the simulator using configurationparametersfound
in the project file stated as the argument,but without attaching the ISE to
the simulation. This mode enablesthe matching of the resourcesrepository
and simulatedconfiguration to be used, ready for running without a graphic
interface.

� - f <projfile>, triggers running the ISE in "slave" mode, allowing graphic
interaction with the simulator. Only the CarbonKernel monitor functions are
available in this mode (i.e. No debug). The argumententeredis the access
path to the project file that must be pre-loaded by the ISE. This file will
also provide the information on the resourcesrepository and the simulated
configuration to be used.

� -X is a sub-option introducer used for setting the simulator's boolean
parameters.This option must be followed by the list of flags to be activated.
For example: -Xhn inhibits the creation of node consoleswhile retaining
the standardsimulator's standardstreamson the original channelsassigned
by the host system. Valid flags include:

� «n», inhibits the redirection of standard simulator's streams to the
console terminal assigned to each node. By default, the standard
streams are redirected to/from the terminal assigned to the active
node.

� «h», eliminates automatic console terminal creation from the nodes
when simulation is started.This option implicitly eliminatesstandard
streamsredirection(refer to the «n» option), except if the simulator is
controlled by the debuggerbuilt-into the ISE. In the latter case, the
standardstreamsare redirectedto the null channel (refer to the «z»
option).

� «z» redirects the standardstreamsto the null channel. This option
has the effect of inhibiting characteracquisitionon the standardinput,
and discards standard and error outputs.

User Manual 71

CarbonKernel
� «w», causes automatic simulation suspension on receiving alert

messages.This option is only active during interactive simulation, in
the presenceof the graphic monitor. By default, a warning does not
suspend the simulation.

� «a», causesautomaticsimulation suspensionon receiving a trace with
the alert attribute set. This option is only active during interactive
simulation, in the presenceof the graphic monitor. By default, a trace
message does not suspend the simulation.

� «l», eliminates checks on code sections run in time-locked mode.
By default, the simulator generatesan alert if such a section exceeds
10,000 source statements,consideringthat a potential error linked to
the absence of a section close may have occured.

� «c» redirects the transmissions made to the console terminal from the
CKPI services used (i.e. ckPutChar(), ckPutString() etc. to the
standardoutput stream.The effect of this flag is to allow the display
of outputs caused by these services if the console terminals are
missing.

� «m» activatesa conservative,but slower, managementmode for the
multi-tasking kernel that is internal to CarbonKernel.Running this
mode is generally imposed for any use of the simulator in
conjunction with a memory profiler that works by instrumenting the
application's binary code.

� «g» inhibits the check performed on the maximum number of alert
messagestolerated prior to aborting the simulation. By default, the
simulation is automatically abandonedafter receiving more than 100
alert messages.

� «b» and «t» are flags for internal use that are not accessibleto the
user.

� -t <time[s,m,u]> , specifies the simulation time limit (simulated time). By
default, the simulation duration is infinite. This option is equivalent to the
ISE's Simulation time parameter that applies to the project.

� -w <time[s,m,u]>, specifies the simulation warm up period before any
statistical measurementsare made. This option is equivalent to the ISE's
Warmup time parameter that applies to the project.

� - s <nsamples>, states the number of statistical samples that will be
collectedby the simulator during the simulation duration. If this parameteris
null, then a single samplewill be collected at the end of the simulation. If
the simulation duration is infinite, no sampling will be performed. In all
cases,the statistical sampleswill be taken periodically at a frequency that
equals the simulation duration divided by the number of samplesrequired.
By default, only one sample will be taken.

� -d <directory>, changes the simulator's current directory to the one
specified in the parameter prior to execution. By default, the current
directory is retained.

� -l <errlogfile> , specifies the accesspath to the file used to store the
warning messagesgeneratedby the simulator. By default, the messagesare
sent on the simulator's standard error output.

� -v , used along in the commandline, this option sendsthe version number
of the CarbonKernel's basesystemon the standardoutput. When usedwith

User Manual 72

CarbonKernel

start options, this command will cause the display of type and version
information for the different simulation models that are instanced.

� -z <speed>, controls the host simulation speedusing a factor that runs from
1 to 10. 1 corresponds to the maximum slowing factor.

� -b, -p, -u, -k are reserved internal options.
� -Q is an options prefix that is reservedfor the user code.All of the options

prefixed in this way may be retrievedunchangedusing a service included in
the CKPI interface and will be located in the local argumentsvector. For
example,the occurrenceof the -Qz <file> -Qf parametersin the command
line will be transcriptedto the local argumentsvector in the form of -z
<file> -f . Note that there is in this case, no reason not to reuse option keys
taken from the simulator command line, provided they are maskedby the
-Q prefix.

User Manual 73

Index

A
Add-ins6, 13, 20, 25p.
architecture 8, 18pp, 24, 68p.
autoload21

B
Breakpoints 52, 57p.
BSP 12

C
ckcc 9pp, 13pp
CKPI 9, 37, 70
composite 56p., 60, 64
Compression 59
configuration 10pp, 19pp, 27pp, 31, 33, 35p., 51, 63p., 69

D
DSR 33, 44, 48p.

E
eCos 5, 10, 12, 15, 17, 20pp, 29, 41, 43
event-driven 5, 8, 10
Export 39

F
Focus 38, 44, 48
FROGS5p., 8p., 12p., 20p., 25, 35

G
gcc 10, 14p.

H
Histogram 56p., 62

I
Import 39
inspector 34, 38, 42p., 45, 47, 58
Instrumenter

C/C++ 10
IRQ 33, 45
ISR 33, 44, 48p.

M
Magnets29
main() 17
modules15p., 21, 29

N
netshared 11, 16p.
net-shared 13pp
nid 11, 25

P
performance 6, 10, 56, 64
personality 5, 8p., 12p., 50
PostScript 63
priority inheritance protocol 50

R
recording 65p.
replay 65pp
round-robin 50
RTC 10

S
SDD 9
SDDK 9, 12
Selection 44, 49, 60
selftest 7
SIMEX 8, 10
Smoothing 62
Stack 50
state diagram 56pp, 60pp
static constructors 12

T
Target Warp 10, 41
terminal65pp, 69p.

time charge 5, 14, 16
time-locked 14p., 70
Timers 45

V
virtual RTOS 5, 8pp
VRTOS8, 13, 33, 65

Z
Zoom 60

Realiant Systems CarbonKernel 1.0

ii

