
CarbonKernel

CarbonKernel
Real-time Operating System Simulator

Version 1.4

Native Programming
Interface

October 2001

CKPI 1

CarbonKernel

Table of Contents

1CARBONKERNEL PROGRAMMING INTERFACE 3

1.1CONCEPTS AND FEATURES 3
1.1.1Monitoring specific memory accesses 3
1.1.2Message ports 3
1.1.3Dataports 4
1.1.4Control panels and magnets 4
1.1.5Synchronization objects 5
1.1.6Virtual terminals 5
1.1.7Time management5
1.1.8Interrupt management 6
1.1.9Device I/O simulation 6
1.1.10Information services 7
1.1.11Simulation control7

2THE MAGNET INTERFACE 70

2.1WHAT’ IS A MAGNET ? 70
2.2USING T CL/TK FOR MAGNETS 70
2.3HOSTING A MAGNET 70
2.4NAMING CONVENTION 70

CKPI 2

CarbonKernel

1 CarbonKernel Programming Interface
This chapterdescribesthe CarbonKernel ProgrammingInterface (aka CKPI) which is
part of CarbonKernel, the real-time operating system simulator. The CKPI is an
interface which exports a comprehensive set of services implemented by the
CarbonKernel's virtual RTOS for use by SDDK modules,FROGS native modelsand
applications.

1.1 Concepts and features

1.1.1 Monitoring specific memory accesses

The CKPI exports four services, namely
ckGetMemPortByte(),ckGetMemPortWord(), ckGetMemPortDword() and
ckGetMemPortQword(), which you can invoke to obtain a chunk of access-monitored
memory. When the application reads/writesfrom/to this memory, the simulation kernel
schedulesthe invocation of a user-definedhandler in the applicationcode. This handler
is always fired on behalf of the same context (thread/isr/dsr/callout)which causedthe
trigger.

Thoseservicesare implementedthrough the virtual memory managementservicesof the
host system.Restrictive accessprotectionsare set to the returnedmemory object, thus
making the host operating system send an exception to the simulator when the
application refers to it. The simulation kernel then traps the exception,and injects this
event in the normal scheduling process.

1.1.2 Message ports

Message ports are access points to a global event bus managed by the VRTOS.
Reading and writing from/to messageports is the simplest way to exchangebulks of
unformatted binary data betweensimulation threads. It should be noted that message
ports are not intendedto replace the standard data exchangeservicesimplementedby
the RTOS model; instead, they provide to simulated real-time threads a convenient
mean for exchangingmessageswith the outer world. For instance,physical read/write
routines from a simulateddevice driver can connect to data sourcesor sinks managed
by native simulation models using message ports.

Messageports are namedusing an arbitrary long C string identifier. A logical broadcast
communicationpath is establishedbetweenall ports bound to the same port identifier
over the event bus. When data is written to a port, it can be receivedby listenersof
any other ports sharing the same identifier than the sender's.

CKPI 3

portAportA

portB portB

CarbonKernel

Message ports are used internally by the simulation kernel to connect the ISE's
animated magnets to their correspondingdata sourceswithin the simulator. Message
ports also underlies the CarbonKernel's dataport feature allowing C/C++ variables to
automatically broadcast their new value upon change.

1.1.3 Dataports

Dataportsare C/C++ variables whose contentsare automatically broadcastthrough an
associatedmessageport upon change.This is a powerful feature allowing simulation
threadsto monitor variable updateevents.Dataport variablesmust be data vectors, i.e.
you may not define a netshared dataport variable.

The variable is automatically bound to its message port during the simulator
initialization phase. The name of the associated message port is composed as follows:

/<variableName>@<nodeName>

where the first member is the exact name of the variable, and the second is the
currently initialized node's name. The messageport managementroutines are dataport-
aware, and automatically complete the node specification of the port identifier if it
starts with the dataportmarker ‘/’, and no ‘@’ delimiter is found in this identifier. In
such a case, the running node's name is appended to the port identifier.

A variable of this kind must be specifically declaredwith the dataport qualifier in the
C/C++ source file. For instance, the following fragment defines a broadcastinteger
variable whose value is monitored from a dedicated sub-routine:

dataport int WatchMe = 1;

void updateWatchCount ()

{
 /* the new value of “WatchMe” is broadcast

through the message port named /WatchMe@<nodeName>
right after the following statement… */

 WatchMe++;
}

void monitorWatchCount ()

{
 ckhandle_t port;
 int watchCount;
 ck clock _t stime;

 if (ckBindPort ("/WatchMe",0,&port) < 0)
oops();

 for (;;)
{
ckReadPort (port,watchCount,CK_INFINITE,&stime);
printf(“WatchMe's new value since %f usc is:

%d\n”,stime,watchCount);
}

}

Dataportsare first choice candidatesfor use with ISE's graphicalmagnetsyou just need
to configure an animatedmagnet to listen to the dataport identifier of your choice to
have a graphical monitoring of the associated variable state.

CKPI 4

CarbonKernel

1.1.4 Control panels and magnets

Control panels are graphical windows managedby the ISE displaying magnets. A
magnet is a graphical widget displaying the value of a simulation variable. Thus, the
current value and/or state exported by the variable can be monitored graphically, and
may be changed interactively by the user provided the magnet allows this operation.

New magnetscan be written in Tcl and integratedto the ISE provided that they follow
the proper interface convention. This interface is documentedin the chapter “Writing
animated magnets.

A magnetis logically bound to a messageport to send and/or receivedata to/from the
application. Becausedataports are specializedmessageports broadcastingthe contents
of variables, they are first choice candidatesfor exposurein magnets.But almost any
basic messageports can be connectedto a magnet, provided that both sides (i.e. the
application and the magnet code in Tcl) agree upon the format of the exchanged data.

Data are exchangedas Tcl lists between the simulation kernel and the magnet code
written in Tcl. The simulation kernel is responsiblefor converting the contentsof a
binary object (e.g. An integer variable or a struct) to a Tcl list representationfor the
purposeof exporting the value to the magnethostedby the ISE, and conversely,from
a Tcl list to a binary form when the magnet requeststhe simulation to change the
object's value.

A control panel is aimed at gathering a set of related magnets in a single display
window. There is virtually no limit to the numberof magnetswhich can be attachedto
a given panel. Likewise, you may define as many control panels as you need, and
attach them on a per-node basis using the CarbonKernel librarian.

1.1.5 Synchronization objects

The CKPI provides the following set of synchronizationobjects one may use to write
reusable simulation components:

spin locks allow inter-node and intra-node locking of critical sections,
enforcing “busy waiting of threads pending for a unique resource.

mutexesare dedicatedto serialize executionof threadspertaining to the same
node in critical sections. The CKPI mutexes support the priority
inheritance protocol to prevent the priority inversion phenomenon.

condition variables provide a convenientmean to synchronizethreadsfrom a
given node with event signaling.

A specific service, namely ckPendSynch(), can be used to synchronizeRTOS threads
with internal events available from the FROGS/SIMEX layer. For instance,a RTOS
thread can pend on a SIMEX queueor semaphoreusing this service.This is especially
useful in implementing FROGS native simulation models providing extendedservices
to the application.

1.1.6 Virtual terminals

The VRTOS supports console i/o from multiple concurrent instances of a GUI
applicationemulatinga virtual ASCII-based terminal. A set of dedicatedservicesallows
simulation threads to read from and write to them.

The GUI application presentingthe terminal interface acceptsreplay files to execute
automated input session with or without simulation time awareness.

CKPI 5

CarbonKernel

1.1.7 Time management

Time managementservicesexist that give (read-only) accessto the global simulation
clock, and to individual RTC values on a per-node basis. The global simulation clock
is always expressedin absolute time and allows fractional values (of micro-seconds),
the RTC values are expressedin ticks, whose duration (in absolutetime) dependson
the individual node configuration.

A pair of services, namely ckLockTime() and ckUnlockTime(), allowing to suspend
then resumethe global simulation clock can be used to executesome portion of the
application code at no time charge. However, due to their impact on the overall
simulation process, these calls should be used with extreme care.

1.1.8 Interrupt management

The CKPI interfaceprovidesmeansto create,destroy,raise, mask or unmasksimulated
interrupts. Interrupt masking can be done individually for a given interrupt object, or
globally for a specific interrupt level.

Event–generationlaws applied to interrupt sources can be programmatically defined
and/or changed.

Interrupt objects can also be graphically defined by the ISE's librarian tool during the
simulation configuration phase.

An interrupt object has three major properties:
� A vector number, which is an integer value ranging from 0 to 255

(inclusive).
� A level, which is an integer value which may range from 1 to the

maximum interrupt level allowed by the simulated RTOS personality.
� An interrupt service routine, which is a C routine the VRTOS will call

each time the interrupt is taken. Interrupts of equal or lower level are
masked during a given ISR execution.

� A deferredservice routine, which is a C routine the VRTOS will call
each time the interrupt service routine defers the interrupt handling to
it. The simulation kernel does not mask interrupts before starting
DSRs.

It can happenthat multiple interrupt eventsare scheduledat the samesimulation time
(i.e. FROGS/SIMEX's clock time). In such a case, interrupts with higher levels are
prioritary. If two interrupt objects have the same level, the one with the lowest vector
is prioritary. If both interrupt objectshave identical levels and vectors,FIFO ordering is
applied.

An RTOS model usually installs a real-time clock timer on each emerging node (e.g.
The CarbonKernel's eCos model does it when constructingan eCos node). In such a
case,a handle to the RTC interrupt can be fetched by searchingfor the object named
"SystemTimer" using the ckGetObjectHandle() service. However, setting the parameter
which specifies the number of timer ticks per second to zero in the node's
configuration window should prevent this installation.

1.1.9 Device I/O simulation

CarbonKernel gives you the ability to createsimulateddevice drivers using the SDDK
interface. These drivers can in turn establisha dialog with FROGS native simulation
models, so as to simulate hardware peripherals for instance.

CKPI 6

CarbonKernel

The main goal of a simulateddevice driver is to implement the simulation counter-part
of a "real" driver accessing "real" hardware for the application, by providing a
normalizedway of sendingand receiving data to/from a pseudo-devicefaking the real
hardware during the simulation process.

The reasonsyou may want to use SDDK drivers in your simulation environmentcan
be:

� ensuring your system exports a clean and seamlessinterface betweenthe mere
applicationcode and the low-level code, facilitating the final migration from the
simulation host to the real target environment.

� porting target-based driver code to the simulation environment.
� applying test harness to your code, such as filter modules you can use to

dynamically monitor and/or perturbate the data stream between the simulated
hardware and the application.

For all these reasonsyou need to accessall driver servicesthrough a concise, well-
defined and generic interface. The CKPI implements this interface between the
application and the drivers, which is based on services from the VRTOS kernel.

1.1.10 Information services

A comprehensiveset of routinesare provided by the CKPI to passthe user information
back concerning the current context and publicly accessibleobjects defined by the
simulation kernel.

The simulator deals with simulation objects it creates,schedulesand destroysduring its
lifetime. Each major programmaticconcept is representedby a simulation object class,
such as interrupts, message ports, threads and so on.

Simulation objects are dually namedresources.A characterstring is usually passedby
the user or otherwise defined by the simulation kernel at creation and standsfor the
object's external name. The simulation kernel additionally maintains an internal 32bits
unique opaquehandle for each simulation object. This handle is globally unique at the
whole simulation level (i.e. unique across node boundaries). ckGetObjectHandle() can be
used to retrieve an object's handle from its external name. Conversely,
ckGetObjectName() retrieves an object's external name from its internal handle.

Finally, simulation objects can be tagged for the purposeof discriminating them. You
may use ckSetTag() and ckGetTag() routines to manipulate object tags.

1.1.11 Simulation control

Miscellaneousservices are available to control the simulation as a whole, such as
suspendingthen resumingit, emitting traces,changing the host simulation speedor the
node's perceived processingspeed (i.e. Target Warp factor), or hooking user-defined
handlers on pre-defined simulation events.

CKPI 7

CarbonKernel

ckSuspendSimulation - – suspend simulation

SYNOPSIS

#include <ck/scontrol.h>

void ckSuspendSimulation ()

DESCRIPTION

ckSuspendSimulation() immediately suspends the simulation process, transferring
control to the ISE. This service has no effect if the ISE is not active.

RETURN VALUES

None.

SEE ALSO

ckResumeSimulation()

CKPI 8

CarbonKernel

ckResumeSimulation - resume simulation

SYNOPSIS

#include <ck/scontrol.h>

void ckResumeSimulation ()

DESCRIPTION

ckResumeSimulation() resumes the simulation process immediately. The simulation
thread which was executing when the process was suspendedregains control. This
service has no effect if the ISE is not active, or if the simulation was not suspended.

RETURN VALUES

None.

SEE ALSO

ckSuspendSimulation()

CKPI 9

CarbonKernel

ckFinishSimulation - terminate simulation

SYNOPSIS

#include <ck/scontrol.h>

void ckFinishSimulation (int xcode)

DESCRIPTION

ckFinishSimulation() terminates the simulation process, returning xcode to the
environment.The ISE takes control over the simulator before it exits, allowing post-
mortem inspection of the simulation objects. If the ISE is not active, the simulator exits
immediately with the specified return code.

RETURN VALUES

None.

CKPI 10

CarbonKernel

ckWarning - send a warning message

SYNOPSIS

#include <ck/scontrol.h>

void ckWarning (const char *format, …)

DESCRIPTION

ckWarning() formats then emits a warning messageto the simulation manager.If the
ISE is active, this messageis automatically logged in the "Error Log" window.
Otherwise, it is written to the simulator's standarderror stream. format is a format
string conforming to the printf(3) specifications.An appropriatevariable argument list
should follow this parameter.

RETURN VALUES

None.

SEE ALSO

ckFatal()

CKPI 11

CarbonKernel

ckFatal - abort simulation

SYNOPSIS

#include <ck/scontrol.h>

void ckFatal (const char *format, …)

DESCRIPTION

ckFatal() formats then emits an abort messageto the simulation manager.If the ISE is
active, this message is automatically logged in the "Error Log" window. Otherwise, it is
written to the simulator'sstandarderror stream.format is a format string conforming to
the printf(3) specifications. An appropriate variable argument list should follow this
parameter.

The simulation processis aborted and the simulator exits with a non-zero error code
after the message is displayed.

RETURN VALUES

None.

SEE ALSO

ckWarning()

CKPI 12

CarbonKernel

ckTrace - send a trace message

SYNOPSIS

#include <ck/scontrol.h>

void ckTrace (int flags, const char *format, …)

DESCRIPTION

ckTrace() formats then emits a trace messageto the trace manager.If the ISE is active,
this messageis automatically logged in the "Trace" window. Otherwise,it is written to
the simulator'sstandarderror stream,only if the CK_TRACE_ALERT flag is set in the
flags parameter.Otherwise, non-displayedmessagesare simply discarded.format is a
format string conforming to the printf(3) specifications. An appropriate variable
argument list should follow this parameter.

This serviceaddsuser-definedtrace messagesto the regular information emitted by the
pre-defined trace points. All of these messagesare logged in the "Trace" window of
the ISE.

The flags parameter gives the message attribute. It can take one of the following values
:

CK_TRACE_ALERT, causesthe messageto be displayedusing a special alert
backgroundcolor in the "Trace" window if the ISE is active. It may also
cause the simulation to stop if the «Break on trace alerts» option is
active. The default alert color is red.

CK_TRACE_HIGHLIGHT causesthe messageto be highlighted using a special
backgroundcolor in the "Trace" window if the ISE is active. The default
color is yellow.

CK_TRACE_NORMAL causesthe messageto be displayed with no special
attribute.

The special background color used to display CK_TRACE_ALERT and
CK_TRACE_HIGHLIGHT messagescan be specified by adding one of the following
values to the attribute mask, whether CK_TRACE_RED, CK_TRACE_YELLOW,
CK_TRACE_BLUE or CK_TRACE_GREEN. These bits are ignored for
CK_TRACE_NORMAL messages.

RETURN VALUES

None.

SEE ALSO

ckWarning()

CKPI 13

CarbonKernel

ckLockTime/ckUnlockTime - time-locked code section

SYNOPSIS

#include <ck/ clock .h>

unsigned ckLockTime ()

unsigned ckUnlockTime ()

DESCRIPTION

ckLockTime() prevents the simulation clock from being charged for the execution of
the subsequentinstructions, until ckLockTime() reverts the effect of this service. This
means the simulation clock value will not change while ckLockTime() is in effect.

A lock count is maintained by these primitives, ensuring the section exists until
ckUnlockTime() is called the same number of times ckLockTime() was invoked.

The macros CK_LOCK_TIME() and CK_UNLOCK_TIME() are aliases to these

RETURN VALUES

The new locking level is returned.

CKPI 14

CarbonKernel

ckTick - RTC tick announce

SYNOPSIS

#include <ck/ clock .h>

void ckTick ()

DESCRIPTION

ckTick() announcesa new clock tick to the simulator. When the RTOS model doesnot
provide a standardentry point for this kind of service,ckTick() can be called on behalf
of an interrupt context to inform the VRTOS of such event. When a RTOS model
configuresa tick timer internally, it is expectedto provide an appropriatetick handler,
which will call in turn the proper VRTOS service to announcethe outstandingclock
tick. In such a case, there is no need for calling ckTick() from the application code.

The outstanding tick is charged to the running node's real-time clock.

ckTick() must always be called on behalf of an interrupt context (i.e. ISR or DSR),
otherwise, a fatal error is raised.

RETURN VALUES

None.

EXAMPLE
int timerIsr (ckvector_t vector, void *cookie)
{

ckTick (); /* Signal real-time clock tick */
return CK_ISR_HANDLED;

}

void installTimer (void)
{

ckhandle_t handle;
/* Create a timer interrupt object */
ckCreateIntr ("Timer",0,1,timerIsr,NULL,NULL,&handle);
/* Make the timer tick each 10th of a second */
ckProgramIntr (handle,CK_INTR_PERIODICAL,"100 msc");

}

CKPI 15

CarbonKernel

ckGetTime - get simulation clock value

SYNOPSIS

#include <ck/ clock .h>

ck clock _t ckGetTime ()

DESCRIPTION

ckGetTime() returns the current value of the simulation clock maintained by the
underlying event-drivensimulator (i.e. FROGS/SIMEX). This clock is distinct from the
real-time clock each node maintains.This is the absolutepoint in time reachedby the
simulation engine.

RETURN VALUES

A floating-point value representingthe simulated time elapsed since the simulation
kernel was started. This value is expressed in micro-seconds.

SEE ALSO

ckGetTicks()

EXAMPLE
{
 ck clock _t now = ckGetTime ();
 printf("ABSOLUTE TIME: %.3f usc\n",now);
}

CKPI 16

CarbonKernel

ckGetTicks - get node's clock value

SYNOPSIS

#include <ck/ clock .h>

ckticks_t ckGetTicks ()

DESCRIPTION

ckGetTicks() returns the count of elapsedticks for the running node. A new tick is
usually announcedto the VRTOS by the software handler of a periodical interrupt
generated by an event source.

Concurrent nodes may have distinct tick values, dependingon their respective RTC
configuration (i.e. the number of ticks per second may be different among nodes).

RETURN VALUES

A (long-)long integer value is returned to the caller representingthe total number of
elapsed ticks since the running node was started.

SEE ALSO

ckTick(), ckGetTime()

EXAMPLE
{
 ckticks_t now = ckGetTicks ();
 printf("ELAPSED TICKS: %llu real-time ticks\n",now);
}

CKPI 17

CarbonKernel

ckPendSynch - low-level synchronizationwith SIMEX

SYNOPSIS

#include <ck/ksynch.h>

int ckPendSynch (ckopaque_t synch, ckticks_t timeout)

DESCRIPTION

ckPendSynch() blocks the calling RTOS thread until the FROGS/SIMEX
synchronizationobject identified by synch is signaled.This object's class must extend
the SIMEX's SxSynchro superclass.Such synchronizationobject is usually defined by a
FROGS native simulation model running concurrently to the simulated RTOS
personality.

A watchdog can be set to unblock the calling RTOS thread using the timeout
parameterif the object is not signaledwithin the alloted amountof time. Its value is a
number of ticks to wait before the requestis aborted.The tick duration is defined by
the running node. If timeout is zero, the calling RTOS thread waits indefinitely.

This service is useful to FROGS add-ins for making CarbonKernel's RTOS threads
wait for a condition they manage internally.

If synch is null, no object is monitored but the watchdogis started.The RTOS thread
will resume execution after the timeout has elapsed. Consequently, the thread is
unconditionally and indefinitely suspended if both synch and timeout are null.

RETURN VALUES

ckPendSynch() returns 0 is the object was signaledwithin the alloted time. Otherwise,
-1 is returned and errno is set to indicate the error.

ERRORS

ETIMEDOUT the timeout has elapsedbefore the synchronizationobject is
signaled.

SEE ALSO

ckDelay()

CKPI 18

CarbonKernel

ckDelay - delay a RTOS thread

SYNOPTIQUE

#include <ck/ksynch.h>

void ckDelay (ckticks_t timeout)

DESCRIPTION

ckDelay() blocks the calling RTOS thread for the specified number of ticks given by
timeout. The thread is resumed after the timeout expires.

The tick duration is defined by the running node. If timeout is zero, the thread waits
indefinitely.

RETURN VALUES

None.

SEE ALSO

ckPendSynch()

CKPI 19

CarbonKernel

ckPoll, ckSelect - synchronous i/o multiplexing

SYNOPSIS

#include <ck/ksynch.h>

int ckPoll (fd_set *readyset);

int ckSelect (fd_set *waitset, struct timeval *tv);

DESCRIPTION

ckSelect() examinesa set of file descriptorswhoseaddressis passedin waitset, to see
if some of its descriptorsare ready for reading. The total width of the set as defined
by the host implementation of the fd_set type is checked.

CkSelect() is a service enabler to the select(2) system call for use on behalf of a
RTOS thread.However, only the read condition on file descriptorscan be checkedby
this service.The standardmacrosFD_SET(), FD_CLR(), FD_ISSET() and FD_ZERO()
should be used to manipulate the set.

ckPoll() immediately returns to its caller after the set of ready descriptorsis updated,
whether there are some or not.

ckSelect() immediately returns to its caller if some of the specified descriptors are
ready on entry. Otherwise, one of the following actions is taken:

� if tv is NULL, the calling RTOS thread is suspendeduntil data become
available for reading on some descriptors. In this case, the simulation kernel
checks the descriptorsperiodically, according to the best trade-off betweenthe
CPU cost involved in probing the descriptors and the responsivenessof the
application. Although this behaviour is not deterministic, the implementation
ensuresthat the calling RTOS thread will be resumeda reasonablyshort time
after some data are available on the descriptors.

� if tv points to a valid timeval structure,and the fields tv_sec and tv_usec are
zero, ckSelect() behaves exactely like ckPoll().

� if tv points to a valid timeval structure,and tv_sec and/or tv_usec are non-zero,
the entire simulation processis blocked until data are available for reading on
some descriptors.In this case, tv is interpretedas a host-based time value (i.e.
"newtonian" time), and not as a simulated time value.

COMMENTS

The simulation engine underlying CarbonKernel implements a multi-tasking kernel
using co-routines, each of them having their own execution stack and running in a
pseudo-parallelschedule.Whilst this characteristicgives a desirable control over the
simulation clock and allows the simulation events to be repeatableand accurateacross
sessions,it has the following drawback: simulation threadscannot call blocking host-
basedservices,unless having all other simulation threadshung during the wait is not
an issue.

ckSelect() has beendesignedto circumvent this problem, by blocking the calling thread
at the VRTOS level, until it is resumed after an i/o polling routine periodically fired by
the SIMEX thread scheduler detects the expected condition on the descriptors.A
thread blocked by a call to ckSelect() has the ckselect status in the inspector's display.

CKPI 20

CarbonKernel

ckSelect() should be used to manage the input channel a RTOS thread may have
established with an external process.

RETURN VALUES

On success,ckPoll() and ckSelect() updatethe set with the value of a sub-set defining
the readable descriptors, and return a positive integer indicating the number of
descriptors in the set.

Zero indicates that the time limit referred to by tv expired.

EXAMPLE
void probeThread (int s)
{
 fd_set waitset;

 FD_ZERO(&waitset);
 /* "s" could be a socket connected to a GUI frontend */
 FD_SET(s,&waitset);

 for (;;)
{
if (ckSelect (&waitset,NULL) <= 0)
 oops("failed to select() socket");

/* Now we can process the available message on "s" */
...
}

}

CKPI 21

CarbonKernel

ckCreateIntr - create an interrupt object

SYNOPSIS

#include <ck/intr.h>

int ckCreateIntr (const char *name, ckvector_t vector,
cklevel_t level, ckisr_t *isr, ckdsr_t *dsr, void *cookie,
ckhandle_t *handlep);

DESCRIPTION

This service creates a new interrupt object on the current node. The interrupt object can
be given an externalname, or remain anonymousto the ckGetObjectHandle() service if
NULL is passed.A valid vector ranging from 0 to 255 (inclusive) and interrupt level
ranging from 1 to the node's limit (inclusive) should be passedto define the object's
priority.

For a given scheduling time, interrupt prioritization is done as follows:
� If two (or more) interrupts sharethe samelevel, lower the vector, prioritary the

interrupt.
� Two (or more) interrupts having the samevector and priority level are fired in

FIFO creation order.

COMMENTS

CarbonKernel's VRTOS uses a split interrupt model. Interrupt handlersare actually a
pair of functions, one of which (the interrupt service routine, or ISR) is executed
immediately and runs with the interrupts from the sameor lower levels disabled.Since
less prioritary interrupts are disabled for the duration of the ISR, the ISR should be
very brief.

After the ISR exits, but before the VRTOS starts the reschedulingprocedure,a deferred
service routine (DSR) can be invoked, if the ISR requestedthis chaining by using a
specific return code. The DSR then executes with scheduling disabled, but with
interrupts enabled,so that further invocations of the same DSR can be queued.The
DSR can't use any system calls that might put its underlying thread to sleep.

When the interrupt is taken, the isr is called with the current vector number and the
cookie value. The interrupt service routine should return a statusto its caller, indicating
whether its associated deferred service routine should be chained. Returning
CK_ISR_CALL_DSR causesthe dsr to be invoked after the last pending ISR has
returned,and before the VRTOS starts the reschedulingprocedure.Otherwise,returning
CK_ISR_HANDLED prevents the DSR from being called for the current interrupt. As a
result of this, dsr can be passedas NULL if no DSR is associatedto the interrupt,
otherwisea valid DSR addressshould be passed.At the opposite,a valid isr must be
passed to service the interrupt.

If the interrupt sourceis "bursty", it may be acceptablefor severalservicesof a given
interrupt and appropriatecalls to its ISR to occur before a requestedDSR has been
executed.The VRTOS maintainscounts for postedDSRs, and in such a casethe DSR
will eventuallybe called once for the burst with a count value that tells it how many
ISRs requested that the DSR be called.

CKPI 22

CarbonKernel

The DSR is passedthree arguments,namely the current vector number, the count of
DSR triggers from the bottom-half ISR, and the caller's cookie.

RETURN VALUES

Zero is returned on success,and handlep points to the new interrupt object handle.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS

The ckCreateIntr() service fails if:

EINVAL vector is not a value in the range [0-255] inclusive.

EINVAL level is not in the range [1-maxlvl] inclusive, where maxlvl is specific to
the current RTOS personality. Its value can be retrieved by a call to the ckGetConf()
service with a name parameter of _CK_NODE_MAX_ILVL.

SEE ALSO

ckDestroyIntr()

EXAMPLE
int theIsr (ckvector_t vector, void *cookie)
{

ckWarning ("Interrupt caught on vector %u\n",vector);
return CK_ISR_HANDLED;

}
...
{

ckhandle_t handle;
/* Create an interrupt object */
ckCreateIntr ("MyIntr",0,7,theIsr,NULL,NULL,&handle);
/* Program the interrupt at 192.7 milli-seconds */
ckProgramIntr (handle,CK_INTR_TIMER,"192.7 msc");

}

CKPI 23

CarbonKernel

ckDestroyIntr - destroy an interrupt object

SYNOPSIS

#include <ck/intr.h>

int ckDestroyIntr (ckhandle_t handle);

DESCRIPTION

This service destroysan interrupt object which must exists on the current node. Any
event sourceassociatedto this object is automaticallyremoved.The destroyedinterrupt
must belong to the running node.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckDestroyIntr() service fails if:

ESRCH handle does not refer to a valid interrupt object defined on the current
node.

SEE ALSO

ckCreateIntr()

CKPI 24

CarbonKernel

ckRaiseIntr - raise an interrupt

SYNOPSIS

#include <ck/intr.h>

void ckRaiseIntr (cknid_t nid, ckvector_t vector, cklevel_t
level, ckisr_t *isr, void *cookie)

DESCRIPTION

ckRaiseIntr() schedulesan interrupt of priority level to occur immediately on the node
identified by nid. isr is the addressof an interrupt service routine which is going to
be called to service this event. There can't be any DSR attachedto this kind of one-
shot interrupt. Hence, CK_ISR_HANDLED should be returned by the ISR.

The current node can be designated by the special node identifier CK_CURRENT_NID.

The service routine is executedon behalf of a regular interrupt context, just as if it
were triggered by an automatic event source. The VRTOS passesthe current vector
number and the cookie as the ISR's parameters.

RETURN VALUES

None.

SEE ALSO

ckMaskIntr(), ckGetIntrLevel(), ckGetContext(), ckControlIntr()

EXAMPLE
int theIsr (ckvector_t vector, void *cookie)
{

/* This is a level #1 interrupt on vector #0 */
return CK_ISR_HANDLED;

}
...
{

/* Call theIsr() on behalf of an interrupt context */
ckRaiseIntr (CK_CURRENT_NID,0,1,theIsr,NULL);

 ...

 /* ckRaiseIntr () behaves identically to: */
ckhandle_t handle;
ckCreateIntr ("MyIntr",0,1,theIsr,NULL,NULL,&handle);
ckControlIntr (handle,CK_INTR_RAISE);
ckDestroyIntr (handle);

}

CKPI 25

CarbonKernel

ckControlIntr - apply command to an interrupt

SYNOPSIS

#include <ck/intr.h>

int ckControlIntr (ckhandle_t handle, ckintrop_t cmd);

DESCRIPTION

This serviceappliesa commandto an interrupt object identified by handle, which may
belong to any node. The command is specified by cmd which may take one of the
following values:

CK_INTR_MASK individually masks the designatedinterrupt. The associatedISR
will not be called until it is explicitely unmasked.

CK_INTR_UNMASK reverts the effect of an individual interrupt masking.

CK_INTR_RAISE schedules the designated interrupt for immediate activation.

CK_INTR_GET_LEVEL returns the level of the interrupt object.

CK_INTR_GET_VECTOR returns the vector of the interrupt object.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckControlIntr() service fails if:

ESRCH handle does not refer to a valid interrupt object.

EINVAL cmd is not a valid command word.

SEE ALSO

ckCreateIntr(), ckRaiseIntr()

EXAMPLE
{

ckhandle_t handle;

/* Fetch the handle of the “uartIntr” object, then
 raise this interrupt by hand */

if (! ckGetObjectHandle (CK_CURRENT_NID,
CK_INTR_OBJECT,
"uartIntr",
&handle))

ckControlIntr (handle,CK_INTR_RAISE);
}

CKPI 26

CarbonKernel

ckProgramIntr - program an interrupt

SYNOPSIS

#include <ck/intr.h>

int ckProgramIntr (ckhandle_t handle, ckintrlaw_t law, const
char *param);

DESCRIPTION

This serviceattachesan event sourceto the interrupt object identified by handle. Each
event generatedby the source according to a given generation law will raise the
associated interrupt automatically.

An event source law and its parameter must be passed to the routine. The law
parameter may take one of the following values:

CK_INTR_PERIODICAL causesa periodical event source to be attachedto the
interrupt object. The parameterstring describesthe activation time frame and the

CK_INTR_EXPONENTIAL causesan exponential event source to be attachedto
the interrupt object. The parameterstring describesthe activation time frame and
the mean.

CK_INTR_UNIFORM causesa uniform event sourceto be attachedto the interrupt
object. The parameter string describes the activation time frame and the
numerical bounds.

CK_INTR_FILE causesa filed event source to be attachedto the interrupt object.
The parameterstring gives the path of the file containing the event dates.The
path can contain environmentvariableswhich will be expandedwhen the source
is created.

CK_INTR_TIMER causesa one-shot timer event to be attachedto the interrupt
object. The parameter string gives the absolute event date.

CK_INTR_NULL detachesthe current sourcefrom the interrupt object. If no event
source was attached to the interrupt, this action has no effect.

Re-programmingan interrupt object is a valid operation.The previous event source is
simply discarded before the new one is attached to the interrupt object.

Interrupt generation support is built on top of CarbonKernel's event sources. This
interface's programming syntax is identical to the one described for the ISE's
programmed event sources.

The expected format of the parameter string depends on the generation law. The
following formats are recognized:

Law Parameter syntax

CK_INTR_PERIODICAL [tmin-tmax/]period

CK_INTR_EXPONENTIAL [tmin-tmax/]mean

CK_INTR_UNIFORM [tmin-tmax/]dmin-dmax

CK_INTR_FILE source file

CK_INTR_TIMER absolute time

CK_INTR_NULL n/a

CKPI 27

CarbonKernel

Numerical laws:

Event sourcescontrolled by numerical generationlaws (e.g. periodical, exponentialor
uniform) have an activation time frame during which the eventscan be triggered. The
source is automatically activated by the simulation kernel when the minimum time
bound is reached,then shut after the maximum time bound. No events are generated
outside this time frame.

If no activation time frame is given in the parameterstring, an infinite time frame
starting immediately is assumed.Otherwise, the time bounds can be specified using
floating-point values, possibly suffixed with a time unit which may be usc (micro-
seconds),msc (milli-seconds) or sec (seconds).A unit name can be shortenedto its
initial letter. If no unit is given, micro-secondsare assumed.If the time unit used for
the maximum time bound is not specified, the sameunit applied to the minimum time
bound is assumed.

Bounds are joined by a dash character(-), and separatedfrom other information using
a slash, a colon or a comma. The following special cases are supported:

Time frame specification Means…

tmin/… tmin-infinite/…

-tmax/… 0-tmax/…

tmin-/… tmin-infinite/…

-/… 0-infinite/…

File law:

A file sourcereadsthe contentsof a text file to get the time-table it should follow to
generate the events appropriately. Each line should be whether an event date, a
comment, or an empty line. Lines which cannot be parsed are ignored.

The very firt line of the file must start with the following special marker, identifying a
time log file: « # $@timelog».

A line starting with a pound sign is a comment. Empty lines are silently ignored.

Other non-empty lines are processedaccordingto the samerules as a time bound of a
numerical law. Event dates must be specified in ascendingorder, preposteroustime
values will be ignored.

Timer specification:

A timer sourceparametershould specify a single event date. Its syntax is identical to a
time bound of a numerical law.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckProgramIntr() service fails if:

CKPI 28

CarbonKernel

ESRCH handle does not refer to a valid interrupt object.

EINVAL law is not a valid generation law.

EINVAL an error occured while parsing param.

SEE ALSO

ckControlIntr(), ckRaiseIntr()

EXAMPLE
int diehardInterruptHandler (ckvector_t vector, void *cookie)
{

/* we should probably do some nasty things here */
return CK_ISR_HANDLED;

}
...
{

/* Build our diehard interrupt */
ckhandle_t handle;
ckCreateIntr ("diehardIntr",0,5,diehardInterrupt,NULL,NULL,&handle);
/* Plan for this interrupt to shake our code a bit ;o) */
ckProgramIntr (handle,CK_INTR_EXPONENTIAL,"10s-35s,55u");

}

CKPI 29

CarbonKernel

ckMaskIntr - mask interrupt s

SYNOPSIS

#include <ck/intr.h>

cklevel_t ckMaskIntr (cklevel_t level)

DESCRIPTION

ckMaskIntr() masks all interrupts whose priorities are lower or equal to level.

CK_MASK_ALL can be passedto lock out all interrupts. If 0 is passed,interrupts
global masking will be cleared.

It should be noted that globally unmasking an interrupt level does not revalidate
interrupts individually masked using the ckControlIntr(CK_INTR_MASK) command.

RETURN VALUES

This service returns the previous masking level. 0 means "not masked".

SEE ALSO

ckRaiseIntr()

EXAMPLE
{

cklevel_t oldLevel = ckMaskIntr (CK_MASK_ALL);
/* This section is un interrupt ible */
...
/* Exit the section */
ckMaskIntr (oldLevel);

}

CKPI 30

CarbonKernel

ckGetMemPortByte, ckGetMemPortWord,
ckGetMemPortDword, ckGetMemPortQword - create
memory ports

SYNOPSIS

#include <ck/memport.h>

caddr_t ckGetMemPortByte (int mode, ckmphandler_t *handler,
void *cookie);

caddr_t ckGetMemPortWord (int mode, ckmphandler_t *handler,
void *cookie);

caddr_t ckGetMemPortDword (int mode, ckmphandler_t *handler,
void *cookie);

caddr_t ckGetMemPortQword (int mode, ckmphandler_t *handler,
void *cookie);

DESCRIPTION

Theseservicesreturn chunks of memory with special accessprotection causinga user-
defined handler to be called each time their contents are read and/or written. The
length of the memory area is respectively 1, 2, 4 or 8 bytes dependingon whether
ckGetMemPortByte(), ckGetMemPortWord(), ckGetMemPortDword() or
ckGetMemPortQword() is invoked.

The accessmode triggering the handler invocation is defined by the parametermode,
which may take the following values:

CK_MEMPORT_WRITE causes the handler to be called upon write access.

CK_MEMPORT_READ causes the handler to be called upon read/write access.

The handler is always executedon behalf of the simulation threadwhich has performed
the monitored access.The current accessmode, the chunk memory addressand the
opaque cookie are respectively passedas the first and last parameterto the handler.
The accessmode passedto the handler is forced to CK_MEMPORT_READ by the
current implementation.

RETURN VALUES

The address of a memory chunk with special access protection is returned to the caller.

EXAMPLE
u_long *memMap;

#define MEMMAP_SET_BIT0() (*memMap |= 1)
#define MEMMAP_SET_BIT1() (*memMap |= 2)
#define MEMMAP_SET_BIT2() (*memMap |= 4)

void portWriteHandler(int mode, caddr_t addr, void *cookie)
{

const char *name = (const char *)cookie; /* i.e. "psr" */
ckWarning ("memory port %s accessed -- start addr = %p",name,addr);

}

{

CKPI 31

CarbonKernel

/* Get a 32bits memory port */
 memMap = (u_long *)

ckGetMemPortDword (CK_MEMPORT_WRITE,portWriteHandler,"psr");
...

 /* Set bit #2 from memory map */
 MEMMAP_SET_BIT2();
 /* ...portWriteHandler() should be running now... */
}

CKPI 32

CarbonKernel

ckOpenTerminal - open a new virtual console

SYNOPSIS

#include <ck/ terminal .h>

int ckOpenTerminal (const char *title, ckhandle_t *handlep);

DESCRIPTION

This service starts a new virtual terminal for the current node. This terminal shall be
used to send and/or receive characters through the appropriate services. A
CarbonKernel virtual terminal is an external GUI application connected to the
simulator through a TCP/IP channel. The maximum numbers of active terminals is
virtually unlimited.

The title parameteris passedto the window manageras the new window's title. If
NULL is passed, a default title string will be picked.

The handle of the new terminal is returned at handlep.

CarbonKernel starts an initial virtual console for each emerging node, unless it has
been told not to do so (i.e. -Xh startup flag). Wheneverthis consoleis closed for the
current node, the next virtual terminal createdby this servicewill be consideredas this
node's new console.

RETURN VALUES

Zero is returnedon success,and handlep points to the new terminal handle.Otherwise,
-1 is returned and errno is set to indicate the error.

ERRORS

The ckOpenTerminal() service fails if:

ENXIO The simulation kernel has failed to spawn and/or connect to the virtual
terminal application.

SEE ALSO

ckCloseTerminal(), ckPutString(), ckGetChar(), ckPutChar(), ckWaitChar().

CKPI 33

CarbonKernel

ckCloseTerminal - close a virtual terminal

SYNOPSIS

#include <ck/ terminal .h>

int ckCloseTerminal (ckhandle_t handle);

DESCRIPTION

This service closes the connection with a virtual terminal, making it exit gracefully.
handle refers to a terminal instance previously opened by the ckOpenTerminal() service,
or to the current node's virtual console if CK_NODE_CONSOLE is passed.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckCloseTerminal() service fails if:

ESRCH handle does not refer to an active terminal.

SEE ALSO

ckOpenTerminal(), ckPutString(), ckGetChar(), ckPutChar(), ckWaitChar().

CKPI 34

CarbonKernel

ckGetChar, ckWaitChar - read from a virtual

SYNOPSIS

#include <ck/ terminal .h>

int ckGetChar (ckhandle_t handle, ckticks_t timeout);

int ckWaitChar (ckhandle_t handle, int c, ckticks_ timeout);

DESCRIPTION

ckGetChar() blocks the calling RTOS thread until a character is available from the
virtual terminal identified by handle. ckWaitChar() waits until the specific characterc
is received. The call is directed to the current node's virtual console if handle equals to
CK_NODE_CONSOLE.

A watchdog can be set using the timeout parameterto unblock the calling RTOS
thread if the characteris not receivedwithin the alloted amount of time. Its value is a
numberof ticks to wait before the requestis aborted.The tick value is defined by the
running node. If timeout is zero, the calling RTOS thread waits indefinitely.

RETURN VALUES

The received ASCII keycode is returned on success.Otherwise, -1 is returned and
errno is set to indicate the error.

ERRORS

These services fail if:

ESRCH handle does not refer to an active terminal.

EPIPE the connection was lost with the terminal during the wait.

ETIMEDOUT the timeout has elapsed.

SEE ALSO

ckOpenTerminal(), ckCloseTerminal(), ckPutString(), ckPutChar().

CKPI 35

CarbonKernel

ckPutChar, ckPutString, ckPutFormat - write to a virtual
terminal

SYNOPSIS

#include <ck/ terminal .h>

int ckPutChar (ckhandle_t handle, int c);

int ckPutString (ckhandle_t handle, const char *s, int n);

int ckPutFormat (ckhandle_t handle, const char *format, ...);

DESCRIPTION

ckPutChar() writes the character c to the virtual terminal identified by handle.
ckPutString() emits n charactersfrom the string starting at s. If n is negative, a null
(unwritten) characteris expected to end the string. ckPutFormat() writes a formatted
representationof its arguments according to the format string which should be
conformant with the printf(3) specifications.

The call is directed to the current node's virtual console if handle equals to
CK_NODE_CONSOLE.If this consoleis closed, the output is simply discardedunless
the –-Xc flag has been passedto the simulator, in which case the output goes to the
standard output stream.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The services fail if:

ESRCH handle does not refer to an active terminal.

SEE ALSO

ckOpenTerminal(), ckCloseTerminal(), ckPutChar(), ckWaitChar().

CKPI 36

CarbonKernel

ckGetNid - get current node's identifier

SYNOPSIS

#include <ck/context.h>

cknid_t ckGetNid (void);

DESCRIPTION

This service returns the global identifier of the running node. A -fixed- distinct
identifier is assignedby the simulation kernel to eachemergingnode at startup.The 0-
basednumericalvalue of this identifier dependson the initialization order of the nodes.
The first node declared in the initialization list for the architecturegets id #0, the
second gets id #1 and so on. Cloned nodes take consecutive identifiers after the
original instance.

RETURN VALUES

The current node's identifier is returned to the caller.

ERRORS

None.

CKPI 37

CarbonKernel

ckGetStdStream - get original STDIO streams

SYNOPSIS

#include <ck/context.h>

FILE * ckGetStdStream (int fildes);

DESCRIPTION

This service returns a copy of the original STDIO streamspassedto the simulator by
the host environment as they were set before they are redirected to the virtual
console(s) during the initialization process. fildes should be used to specify which
stream is requested among 0 (stdin), 1 (stdout) or 2 (stderr).

CK_STDIN, CK_STDOUT and CK_STDERR are macros respectively defined as
ckGetStdStream(0), ckGetStdStream(1), et ckGetStdStream(2).

RETURN VALUES

A pointer to a copy of the original STDIO streamis returned on success.Otherwise,
NULL is returned and errno is set to indicate the error.

ERRORS

This service fails if:

EINVAL fildes is not in the range [0-2] (inclusive).

EXAMPLE
{

FILE *out = ckGetStdStream (1);
fprintf(out,"Writing to the shell's output stream...\n");
/* Same as */
fprintf(CK_STDOUT,"Writing to the shell's output stream...\n");

}

CKPI 38

CarbonKernel

ckGetErrnoAddr - get per-thread errno variable

SYNOPSIS

#include <ck/context.h>

int * ckGetErrnoAddr ();

DESCRIPTION

This service returns the address of the errno variable for the current simulation thread.

The CKPI header files define errno as a macro whose value is *ckGetErrnoAddr().

RETURN VALUES

A pointer to the errno variable for the current simulation thread.

ERRORS

None.

CKPI 39

CarbonKernel

ckGetArgs - get user-defined argument vector

SYNOPSIS

#include <ck/context.h>

const char *const * ckGetArgs (int *argcp);

DESCRIPTION

This service returns a vector built from the user-defined arguments passed to the
simulator through the -Q prefix option. The integer at argcp will be overwritten by the
number of elements stored into the vector on return. The information obtained from this
service can be parsed using the standard getopt(3) routine.

The -Q option allows user-defined arguments to be passedto the application code
through the standardoption parsing engine implementedby the simulation kernel. The
argument to the –-Q option is identified as a user-defined option, opaque to the
simulator. This is the best way to prevent polluting the CarbonKernel's standard
option namespaceand to avoid raising conflicts with next versions of the simulation
kernel.

RETURN VALUES

The address of the user-defined argument vector is returned by value. argcp is
overwritten by the number of elements stored into the vector.

ERRORS

None.

EXAMPLE
#include <stdio.h>
#include <getopt.h>

void parseLocalOptions ()
{
 const char *const *argv;
 int argc, c;

 /* First of all, grab local options passed on the
 command line using the -Q prefix... */

 argv = ckGetArgs (&argc);

 /* Then, parse them using getopt(3)... */

 while ((c = getopt(argc,argv,"d:t")) != EOF)
{

switch (c)
 {
 case 'd': /* Write debug to log file */

debugMode = 1;
debugFileName = optarg;
break;

CKPI 40

CarbonKernel

 case 't': /* Toggle test mode */

testMode = 1;
break;

...
 }
}

}

CKPI 41

CarbonKernel

ckGetIntrLevel - get current interrupt level

SYNOPSIS

#include <ck/context.h>

cklevel_t ckGetIntrLevel ()

DESCRIPTION

This service is useful for interrupt service routines to obtain the current interrupt level.

RETURN VALUES

The current interrupt level is returned.A value of zero meansthe current simulation
thread is a RTOS thread, a DSR, or a callout (i.e. the caller is running outside any
interrupt service routine).

ERRORS

None.

SEE ALSO

ckRaiseIntr(), ckGetContext()

CKPI 42

CarbonKernel

ckGetContext - get current execution context

SYNOPSIS

#include <ck/context.h>

ckcontext_t ckGetContext (ckhandle_t *handlep)

DESCRIPTION

This service returns the type and identification of the current simulation thread to the
caller. If handlep is non-null, the CarbonKernel's handle to the thread is written to
this address.

RETURN VALUES

The type of the current simulation thread is returned by value. A simulation thread
always belong to one of the following types:

CK_INIT_CONTEXT is returned if the caller is running on behalf of a node's
warm initialization context, standing for the simulatedRTOS' start-up phase.At
this point, the scheduling has not started yet.

CK_THREAD_CONTEXT is returnedif the caller is running on behalf of a RTOS
thread (i.e. A real-time thread as defined by the RTOS model). The
CarbonKernel's handle to the thread is written to handlep.

CK_ISR_CONTEXT is returned if the caller is running on behalf of an interrupt
service routine. The associatedinterrupt object handle is written to handlep.
ckGetIntrLevel() can be used to obtain the current interrupt level.

CK_DSR_CONTEXT is returned if the caller is running on behalf of a deferred
service routine. The associated interrupt object handle is written to handlep.

CK_CALLOUT_CONTEXT is returned if the caller is running on behalf of a
callout procedure.The information written to handlep remains private to the
simulation kernel.

CK_ASR_CONTEXT is returned if the caller is running on behalf of an
asynchronousserviceroutine. The information written to handlep remainsprivate
to the simulation kernel.

It should be noted that some RTOS models may have no support for DSRs, callout
procedures or asynchronous service routines.

ERRORS

None.

SEE ALSO

ckRaiseIntr(), ckGetIntrLevel()

EXAMPLE
{
 ckhandle_t handle;

 switch (ckGetContext (&handle))

CKPI 43

CarbonKernel

{
case CK_INIT_CONTEXT:

 printf("Initialization - scheduling not started yet.\n");
 break;

case CK_THREAD_CONTEXT:

 printf("On behalf of thread %s.\n",
 ckGetObjectName (handle));

 break;

case CK_CALLOUT_CONTEXT:

 printf("In RTOS callout handler.\n");
 break;

case CK_ISR_CONTEXT:

 printf("In ISR %s, level=%d\n",
 ckGetObjectName (handle),
 ckGetIntrLevel ());

 break;

case CK_DSR_CONTEXT:

 printf("In DSR %s\n",
 ckGetObjectName (handle));

 break;

case CK_ASR_CONTEXT:

 printf("In asynchronous service routine.\n");
 break;
}

}

CKPI 44

CarbonKernel

ckDecodeTimeBounds - parse a time specification string

SYNOPSIS

#include <ck/context.h>

int ckDecodeTimeBounds (const char *s, ck clock _t range[2],
cktimeval_t params[2])

DESCRIPTION

This service parsesthe null-terminated string s as a time specification conforming to
the event source programming format.

The decodedtime boundsare respectivelywritten to range[0] and range[1]. Up to two
additional parameters can be evaluated and written to params[0] and params[1].

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckDecodeTimeBounds() service fails if:

EINVAL a syntax error was found while parsing the string.

EXAMPLE
{
 ck clock _t range[2];
 cktimeval_t params[2];

 ckDecodeTimeBounds ("137.68u-155m/10u",range,params);
 printf("Time frame: %.2f usec => %.2f usec, step by %.2f usec\n",

 range[0],range[1],params[0]);

 ckDecodeTimeBounds ("-1s,10 msc - 15 msc",range,params);
 printf("Time frame: 0 => %.2f usec, window [%.2f,%.2f] usecs\n",

 range[1],params[0],params[1]);
}

CKPI 45

CarbonKernel

ckGetObjectHandle - get a simulation object's handle

SYNOPSIS

#include <ck/context.h>

int ckGetObjectHandle (cknid_t nid, ckobjtype_t type, const
char *name, ckhandle_t *handlep);

DESCRIPTION

Simulation objects which can be accessedfrom the CKPI are uniquely identified by a
32bits handle. This kind of identifier is global to the simulation system and can be
used each time an object's handle is required by a simulation service. An object may
also have an external string-basedidentifier, which can be set by configuration (i.e.
using the ISE's librarian) when instantiating some simulation objects, or
programmatically(i.e. by using the name parameterof object creationservicesfrom the
CKPI).

ckGetObjectHandle() attemptsto find a simulation object and returns its handle to the
caller. The object is searchedinto the internal tables of the node whose identifier is
specified by nid. A value of CK_CURRENT_NID makes the current node's internal
tablessearchedfor the object. name specifiesthe externalnameof the object, as given
by the user. type tells which kind of simulation object is searchedfor, among the
following choices:

CK_NODE_OBJECTcausesthis service to searchfor a node. If name is NULL,
the handle of the node whose identifier is nid is returned. If name is a valid
characterstring and nid refers to the current node, the handle of the node from
the simulation network whose name exactely matches the argument is returned.

CK_THREAD_OBJECT causes this service to search for a real-time thread.

CK_INTR_OBJECT causes this service to search for an interrupt object.

CK_MSGPORT_OBJECT causes this service to search for a message port.

CK_MUTEX_OBJECT causesthis service to search for a mutex object obtained
from a call to the ckCreateMutex() service.

CK_CV_OBJECT causesthis service to search for a condition variable obtained
from a call to the ckCreateCv() service.

CK_PANEL_OBJECT causesthis service to search for a panel instance created
using the ISE's librarian.

RETURN VALUES

A pointer to the first characterof the object's name is returnedon success.Otherwise,
NULL is returned and errno is set to indicate the error.

ERRORS

This service fails if:

EINVAL nid is not a valid node identifier.

EINVAL type is illegal.

ESRCH the object cannot be found.

CKPI 46

CarbonKernel

SEE ALSO

ckGetObjectName(), ckGetObjectTag()

EXAMPLE
{
 ckhandle_t handle;

 if (! ckGetObjectHandle (CK_CURRENT_NID,
 CK_INTR_OBJECT,
 "uartInterruptObject",
 &handle))

 /* Raise a simulated UART interrupt NOW! */
 ckControlIntr (handle,CK_INTR_RAISE);

}

CKPI 47

CarbonKernel

ckGetObjectName - get a simulation object's name

SYNOPSIS

#include <ck/context.h>

const char * ckGetObjectName (ckhandle_t handle);

DESCRIPTION

Each simulation object whose handle is passedfrom the simulation kernel back to the
user carries a name. Such name can be retrieved through this service as a null-
terminated character string. The object may belong to any node.

It may occur that NULL is returned for a valid but unnamedobject. In such a case,
the errno variable is also cleared to distinguish this situation from an error condition.

RETURN VALUES

A pointer to the first characterof the object's name is returnedon success.Otherwise,
NULL is returned and errno is set to indicate the error.

ERRORS

This service fails if:

ESRCH handle does not refer to an existing object.

SEE ALSO

ckGetObjectHandle(), ckGetObjectTag()

CKPI 48

CarbonKernel

ckGetConf - get configuration parameter value

SYNOPSIS

#include <ck/context.h>

int ckGetConf (ckcfname_t name, ckcfval_t *u);

DESCRIPTION

This service provides a method for an application to determinethe current value of a
configuration parameteror option. For node-basedparameters,the correspondingvalue
indexed on name is searched in the configuration of the currently active node.

The returned value is written to the proper field of the union u, according the the
value's data type.

name should be one of the following:

CK_SIMULATOR_NODES The number of instantiatednodes is written to
u->ival .

CK_NODE_MAGIC A magic cookie uniquely identifying the
current node's type (usually common to every
nodessimulating the sameRTOS) is written to
u->ival .CK_NODE_CLOCKFREQ The number of ticks per secondas configured
for the current node'sreal-time clock is written
to u->fpval .

CK_NODE_WARP The current node's warp factor's value is
written to u->fpval .

CK_NODE_MAX_ILVL The maximum interrupt level for the node is
written to u->ival .

RETURN VALUES

Zero is returned on success,and the proper field of the union is updated with the
parameter'svalue. Otherwise, -1 is returned, no field of the union is changed,and
errno is set to indicate the error.

ERRORS

This service fails if:

EINVAL the name argument is invalid.

CKPI 49

CarbonKernel

ckSetObjectTag - tag a simulation object

SYNOPSIS

#include <ck/context.h>

int ckSetObjectTag (ckhandle_t handle, ckobjtag_t tag);

DESCRIPTION

Each simulation object whose handle is passedfrom the simulation kernel back to the
user carries a tag. Such tag can be set for further retrievial through this service.Each
new object is assigned a null (invalid) tag after creation.

The application can use this tag to group related simulation objects. The designated
object may belong to any node.

RETURN VALUES

The new tag overridesthe previous one in the object’s storage,and zero is returnedon
success.Otherwise,no changeis performed,-1 is returnedand errno is set to indicate
the error.

ERRORS

This service fails if:

ESRCH handle does not refer to an existing object.

EINVAL tag is null, which stands for the invalid tag value.

SEE ALSO

ckGetObjectTag(), ckGetObjectName()

EXAMPLE
void tagCurrentThread (ckobjtag_t tag)
{
 ckhandle_t handle;

 if (ckGetContext (&handle) != CK_THREAD_CONTEXT)
 oops("not running on behalf of a real-time thread ?!");

 ckSetObjectTag (handle,tag);
}
...
#define DAEMON_THREAD_MAGIC 0xfebbc045
#define JOINABLE_THREAD_MAGIC 0xcbc744b2

{
 tagCurrentThread(DAEMON_THREAD_MAGIC);
}

CKPI 50

CarbonKernel

ckGetObjectTag - retrieve a simulation object's tag

SYNOPSIS

#include <ck/context.h>

ckobjtag_t ckGetObjectTag (ckhandle_t handle);

DESCRIPTION

This service returns the tag currently assignedto the simulation object identified by
handle. The designated object may belong to any node.

RETURN VALUES

A non-null tag value is returned if the object exists and was previously tagged.
Otherwise, zero is returned. If the object does not exist, errno is set to indicate the
error. If the object exists but with no tag assigned yet, errno is cleared.

ERRORS

This service fails if:

ESRCH handle does not refer to an existing object.

SEE ALSO

ckSetObjectTag()

CKPI 51

CarbonKernel

ckInitSpinLock , ckGetSpinLock, ckTrySpinLock ,
ckRelSpinLock - manage spin locks

SYNOPSIS

#include <ck/ksynch.h>

void ckInitSpinLock (rtspinlock_t *spinlock);

void ckGetSpinLock (rtspinlock_t *spinlock);

int ckTrySpinLock (rtspinlock_t *spinlock);

void ckRelSpinLock (rtspinlock_t *spinlock);

DESCRIPTION

Spin locks are basic synchronization objects preventing multiple threads from
simultaneouslyexecutingcritical sectionsof code which accessshareddata. Spin locks
can be used to synchronizethreadsfrom different nodes.A thread waiting for a spin
lock to become available busy waits” for the current owner to releaseit. The thread
owning a spin lock cannot be preemptedby any other thread from any node, until it
releasesthe lock. This object should be used to enforce serializedexecutionof threads
over short critical sections. A spin lock must be initialized before it is used.

Initialization is performed by the ckInitSpinLock() routine. A pointer to an
abstract data type ckspinlock_t must be passedto this routine. This data
addresswill further identify the spin lock to other related routines. Be sure
to declare the spin lock in netsharedmemory if you plan to enforce inter-
node synchronization with it. You can initialize a spin lock inline, by
affecting the special value CK_SPINLOCK_INITVAL to it.

Locking is performedby the ckGetSpinLock() routine. The calling context must
be a synchronousthread (i.e. not an ISR, DSR or callout), otherwisea fatal
error is raised. On successful return, the caller owns the lock and may
safely enter the critical section. The reschedulingprocedureis momentarily
locked on the current node until the spin lock is released.CkTrySpinLock()
is similar to ckGetSpinLock(), except that if the spin lock is currently
owned by anotherthread, the call returns immediately with an error, instead
of blocking the calling thread.

Unlocking is performedby the ckRelSpinLock() routine. The owner of the spin
lock calls this routine to releasethe lock when it exits the critical section. If
there are threadswaiting for the lock, the accessis immediately granted to
one of them. Otherwise,the reschedulingprocedureis reactivated.The order
in which multiple threads pend for a given spin lock is unpredictable.

RETURN VALUES

Most spin lock managementroutines have no return value, except ckTrySpinLock()
which returnsa zero statusif the lock has beensuccessfullygrantedto the caller, non-
zero otherwise.

ERRORS

CKPI 52

CarbonKernel

These routines may cause fatal simulation errors if the calling context is invalid.
Unexpectedresults (usually memory corruption and/or exception)occur if the spin lock
address is invalid.

SEE ALSO

mutexes, condition variables

EXAMPLE
/* We need inter-node synchronization, so the spin lock
 must be "netshared" */

netshared ckspinlock_t spinlock = CK_SPINLOCK_INITVAL;

void nodeExclusiveInit ()
{
 ckGetSpinLock (&spinlock);

 /* This section can't be traversed by more than one
 simulation thread from a single node at a time... */
 ...
 ckRelSpinLock (&spinlock);
}

CKPI 53

CarbonKernel

ckCreateMutex, ckLockMutex, ckTryMutex , ckUnlockMutex,
ckDestroyMutex - manage mutexes

SYNOPSIS

#include <ck/ksynch.h>

int ckCreateMutex (const char *name, ckhandle_t *handlep);

int ckLockMutex (ckhandle_t handle);

int ckTryMutex (ckhandle_t handle);

int ckUnlockMutex (ckhandle_t handle);

int ckDestroyMutex (ckhandle_t handle);

DESCRIPTION

Mutexes are synchronizationobjects preventing multiple threads from simultaneously
executingcritical sectionsof code accessingshareddata. Unlike spin locks, mutexesare
named objects that are local to the current node. A thread waiting for a mutex to
becomeavailable is blocked until the current owner releasesit. Becausethis object has
ownership, only the thread which acquired a mutex may release it. The simulation
kernel implementsthe priority inheritance protocol for CKPI mutexesto prevent thread
priority inversion. A mutex must be initialized before it can be used.

Creation is performed by the ckCreateMutex() routine. A symbolic name can
be given to the new mutex; on success,its handle is written to the memory
pointed to by handlep. This handle will further identify the mutex to other
related routines.

Locking is performed by the ckLockMutex() routine. The calling context must
be a synchronousthread (i.e. not an ISR, DSR or callout), otherwisea fatal
error is raised. On successfulreturn, the caller owns the mutex and may
safely enter the critical section. ckTryMutex () is similar to ckLockMutex(),
except that if the mutex is currently owned by another thread, the call
immediately returns with an error, instead of blocking the calling thread.

Unlocking is performed by the ckUnlockMutex() routine. The owner of the
mutex should call this routine to releasethe lock when it exits the critical
section. If there are threadswaiting for the lock, the accessis immediately
granted to the one having the highest priority.

Deletion is obtainedby a call to the ckDestroyMutex() routine. Threadswaiting
for the mutex when it is destroyedare unblockedand ckLockMutex() returns
with an error code. After this call, the mutex no longer exists in the
simulation kernel.

RETURN VALUES

Mutex managementroutinesreturn 0 on success.Otherwise,-1 is returnedand errno is
set to indicate the error.

ERRORS

Theseroutines may causefatal simulation errors if the calling context is invalid, or an
attempt by a thread to re-lock a mutex it currently owns is made.

CKPI 54

CarbonKernel

ckLockMutex(), ckTryMutex(), ckUnlockMutex() and ckDestroyMutex() fail if:

ESRCH the handle argument does not identify an existing mutex on the
current node.

ckLockMutex() also fails if:

EIDRM the mutex was destroyedby another thread while the caller was
pending on it.

ckTryMutex() also fails if:

EBUSY the mutex is currently owned by another thread.

ckUnlockMutex() also fails if:

EINVAL the mutex was not owned by the calling thread.

SEE ALSO

spin locks, condition variables

EXAMPLE
void initSched (struct scheduler *sched)
{
 ckCreateMutex ("schedMutex",&sched->mutex);
 initSlot(&sched->sharedSlot);
 initSlot(&sched->privateSlot);
}

void synchSched (struct scheduler *sched)
{
 ckLockMutex (&sched->mutex);

 /* This section can't be traversed by more than a
 single thread at a time... */

 synchSlot(&sched->sharedSlot,&sched->privateSlot);

 ckUnlockMutex (&sched->mutex);
}

CKPI 55

CarbonKernel

ckCreateCv, ckWaitCv, ckSignalCv, ckBroadcastCv,
ckDestroyCv - manage condition variables

SYNOPSIS

#include <ck/ksynch.h>

int ckCreateCv (const char *name, ckhandle_t *cvhp);

int ckWaitCv (ckhandle_t cvh, ckhandle_t mutexh, ckticks_t
timeout);

int ckSignalCv (ckhandle_t cvh);

int ckBroadcastCv (ckhandle_t cvh);

int ckDestroyCv (ckhandle_t cvh);

DESCRIPTION

Condition variables are thread synchronizationobjects. Like mutexes, they are named
objects that are local to the current node. A condition variable is used in association
with a mutex which ensuresthat a condition can be checkedatomically and the thread
can wait for such condition without missing either a changeor a signal that a change
occured. A condition variable must be initialized before it is used.

Creation is performed by the ckCreateCv() routine. A symbolic name can be
given to the new condition variable; on success,its handle is written to the
memory pointed to by cvhp. This handle will further identify the condition
variable to other related routines.

Waiting for the condition is achievedby the ckWaitCv() routine. The calling
context must be a synchronousthread (i.e. not an ISR, DSR or callout),
otherwisea fatal error is raised. The mutex must be acquiredby the caller
before ckWaitCv() is entered.This mutex is releasedand the thread is put
to sleep atomically, ensuring that no other thread can signal the condition
until the caller is blocked. The mutex is re-locked by the routine before it
returns to its caller. A watchdog can be set to limit the time the thread is
allowed to wait for the condition using the timeout parameter.This value is
a number of clock ticks elapsed on the current node. A value of
CK_INFINITE for timeout allows the threadto wait indefinitely. A value of
CK_NONBLOCK makes the call return with an error status immediately.

Signaling the condition variable is performed using the ckSignalCv() routine.
This routine unblocks one thread. All threads blocked on a condition
variable can be unblocked by calling ckBroadcastCv() on this object. The
mutex must be acquired by the caller before ckSignalCv() or
ckBroadcastCv() are issued.

Deletion is obtainedby a call to the ckDestroyCv() routine. Threadswaiting for
the condition variable when it is destroyedare unblocked and ckWaitCv()
returns with an error code. After this call, the condition variable no longer
exists in the simulation kernel.

RETURN VALUES

Condition variable managementroutines return 0 on success.Otherwise,-1 is returned
and errno is set to indicate the error.

CKPI 56

CarbonKernel

ERRORS

These routines may cause fatal simulation errors if the calling context is invalid.

ckWaitCv(), ckSignalCv(), ckBroadcastCv() and ckDestroyCv() fail if:

ESRCH the cvh argumentdoes not identify an existing condition variable
on the current node.

ckWaitCv() also fails if:

ESRCH the mutexh argumentdoes not identify an existing mutex on the
current node.

EINVAL the mutex referred to by mutexh was not owned by the calling
thread.

EIDRM the condition variable or the mutex was destroyed by another
thread while the caller was waiting for the condition to be signalled.

ETIMEDOUT the condition was not signalled within the allotted amount of time.

EAGAIN timeout was given the CK_NONBLOCK value.

SEE ALSO

spin locks, mutexes

EXAMPLE
void initSched (struct scheduler *sched)
{
 ckCreateMutex ("schedMutex",&sched->mutex);
 ckCreateCv ("schedCv",&sched->cv);
 sched->idle = 0;
}

void idleSched (struct scheduler *sched)
{
 ckLockMutex (&sched->mutex);
 sched->idle = 1;
 /* Allow all waiters to receive this signal */
 ckCvBroadcast(&sched->cv);
 ckUnlockMutex (&sched->mutex);
}

void waitSched (struct scheduler *sched, ckticks_t timeout)
{
 int rc = 0;

 ckLockMutex (&sched->mutex);

 while (!sched->idle && !rc)
/* Wait for somebody to call idleSched() */
rc = ckCvWait(&sched->cv,&sched->mutex,timeout);

 if (rc < 0)
{
if (errno == ETIMEDOUT)
 {
 /* Timed out */

CKPI 57

CarbonKernel

 }
else
 oops("failed waiting for IDLE event ?!");
}

 /* Not idle anymore until we call idleSched() */
 sched->idle = 0;

 ckUnlockMutex (&sched->mutex);
}

CKPI 58

CarbonKernel

ckBindPort , ckReadPort, ckWritePort , ckSelectPort -
manage message ports

SYNOPSIS

#include <ck/msgport.h>

int ckBindPort (const char *name, int flags, ckhandle_t
*handlep);

int ckSelect Port (ckhandle_t *set, int nsel, ckticks_t timeout,
ckhandle_t *handlep);

ckWritePort (ckhandle_t handle, expr);

ckReadPort (ckhandle_t handle, expr, ckticks_t timeout,
ck clock _t *stime);

DESCRIPTION

Messageports are accesspoints to the internal event bus managedby the simulation
kernel. The applicationcan read and/or write to messageports (after they are bound) in
order to passeventsand exchangebulks of unformattedbinary data betweensimulation
threads.

Messageports are namedusing an arbitrary long C string identifier. A logical broadcast
communicationpath is establishedbetweenall ports bound to the sameport identifier.
When data is written to a port, it can be received by listeners of any other ports
sharing the same identifier than the sender's.

Servicesallowing to read/write from/to messageports needadditional information which
is automatically generatedby the application instrumenter(e.g. ckcc for C/C++). This
means that portions of code accessing messageports must be processed by the
CarbonKernel instrumenter.

Becausethis service is instrumenter-aided,you do neither need to passthe addressnor
the size of the data to send or receive: you just pass a variable expressionwhose
address must be computable; this means that you cannot emit literal constantson a
messageport, but rather a variable which has been initialized with the constant'svalue.
Any C/C++ data type can be passed,including aggregatetypes, such as structures,
unions or arrays.The instrumenterwill determinethe sourcedata type and its size, and
collect the necessaryinformation to give to the simulation kernel when reading/writing
the port.

Binding is performedby the ckBindPort() routine. The name argumentuniquely
identifies the broadcast communication path. If flags equals to
CK_MSGPORT_SHARED,the communication path will span over node
boundaries,allowing data to be exchangedbetween threads from different
nodes.Otherwise,0 should be passed.On success,the port handle is written
to the memory pointed to by handlep. This handle will further identify the
bound message port to other related routines.

Writing data is achieved by inserting ckWritePort() statements in the
application code. ckWritePort() is a macro-definition which expands
appropriatelyto emit additional information concerningthe data to be sent
when processedby the instrumenter. This macro has 2 parameters: the
port's handle to write to, and the variable expression which should be

CKPI 59

CarbonKernel

emitted through the port. The submittedexpressionis always sent by value,
not by address.

Reading data is achieved by inserting ckReadPort() statements in the
application code. ckReadPort() is a macro-definition which expands
appropriately to emit additional information concerning the data to be
received when processed by the instrumenter. This macro has four
parameters: the port's handle to listen to, the variable expression which
should receive the data, a timeout parameter,and a pointer to a timestamp
variable. The timeout parametercan be set to limit the time the thread is
allowed to wait for input data. Its value is a number of clock ticks elapsed
on the current node. A value of CK_INFINITE for timeout allows the
thread to wait indefinitely. A value of CK_NONBLOCK makes the
statementreturn with an error statusif no data is immediatelyavailable.The
stime parameteris a pointer to a variable which will receive the exact time
the messagewas sent. stime can be NULL if this information is of no
interest to the caller. The calling context must be a synchronousthread (i.e.
not an ISR, DSR or callout) unless timeout equals to CK_NONBLOCK,
otherwise a fatal error is raised.

Multiplexing input from multiple messageports can be done by calling the
ckSelectPort() routine. This routine blocks the calling thread until an
incoming messagearrives on a messageport which is a member of the
input set. set is the start addressof an array of nsel messageport handles
which should be monitored for input. A timeout parameter can be
configured to prevent the calling thread from blocking indefinitely. Its value
is a number of clock ticks elapsed on the current node. A value of
CK_INFINITE for timeout allows the threadto wait indefinitely. A value of
CK_NONBLOCK makes the call return with an error status if no data is
immediately available on any port from the input set. On success, the handle
of the port having available input is copied to the memory pointed to by
handlep. Like ckReadPort(), the calling context must be a synchronous
thread.

RETURN VALUES

Almost all message port management routines return zero on success, except
ckWritePort() which returns the number of identified recipientsof the messageit sent.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS

These routines may cause fatal simulation errors if the calling context is invalid.

ckSelectPort(), ckWritePort() and ckReadPort() fail if:

ESRCH the handle argument(or one of the handlesfrom the input set for
ckSelectPort()) doesnot identify an existing messageport on the current node. Message
ports bound using the CK_MSGPORT_SHARED flag are known from all nodes.

EINVAL the expression is NULL.

ckReadPort() and ckSelectPort() also fail if:

ETIMEDOUT no data was available for input within the alloted amount of time.

SEE ALSO

CKPI 60

CarbonKernel

dataports, magnets

EXAMPLE
dataport int counter;

void logUpdates (FILE *logfp)
{
 ck clock _t updateTime;
 ckhandle_t handle;
 int _counter;

 /* A dataport is a message port receiving variable updates
 (the preceeding '/' means " dataport counter variable") */
 ckBindPort ("/counter",0,&handle);

 for (;;)
{
/* Each time "counter" is updated, we will unblock from
 ckReadPort () with "_counter" holding the new value */
ckReadPort (handle,_counter,CK_INFINITE,&updateTime);
fprintf(logfp,"at %.3f: counter value = %d\n",updateTime,_counter);
}

}

CKPI 61

CarbonKernel

ckSetHostSpeed - set host simulation speed

SYNOPSIS

#include <ck/scontrol.h>

int ckSetHostSpeed (unsigned speed)

DESCRIPTION

This service sets the host simulation speed,the sameway the speedselector from the
ISE does. Lower values slow down the simulation process.

A value of 0 is equivalentto calling the ckSuspendSimulation() servicewhich suspends
the simulation, unless the application is not bound to the ISE.

The maximum value of 10 tells the simulator to run at full speed.This is the initial
default value.

COMMENTS

The host-relatedsimulation speedshould not be confusedwith the Target Warp factor
which controls the perceived velocity of a given simulated node.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

EINVAL speed is not in the range [0-10] inclusive.

SEE ALSO

ckSuspendSimulation()

CKPI 62

CarbonKernel

ckSetTargetWarp - set current node velocity

SYNOPSIS

#include <ck/scontrol.h>

int ckSetTargetWarp (double warp)

DESCRIPTION

The Target Warp factor is a floating-point value ranging from 0 to 10, whose setting
affects the perceivedprocessingspeedof a simulatednode, independentlyof the other
nodes'.The higher the Target Warp factor, the shorter the time quantum chargedper
source statement executed on behalf on the running node. The time quantum is
computedin microsecondsfrom the Target Warp factor by the following formula: 1 /
exp(factor). For instance,a node configuredwith a Warp factor of 3.7 will be charged
for 1 / exp(3.7) = 0.02472, that is to say 24.72 (simulated) nanosecondsfor each
source statement.

In other words, raising a node's Warp value causesits virtual processorto go faster.
Conversely, lowering this value slows down the current node's processing speed.

COMMENTS

The Target Warp factor should not be confusedwith the host simulation speedwhich
controls the actual simulation process speed from the host system's standpoint.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

EINVAL warp is not in the range [0-10] inclusive.

CKPI 63

CarbonKernel

ckSpawn - spawn an external command

SYNOPSIS

#include <ck/scontrol.h>

int ckSpawn(const char *cmd, const char *argv[])

DESCRIPTION

This service executesthe external command cmd with argumentsargv. Argv is an
argument vector which must be null-terminated. CkSpawn() does not wait for the
command to exit before returning to the caller.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

EACCES cmd cannotbe started.The commandpath or the argumentvector
may be invalid.

CKPI 64

CarbonKernel

ckSetHandler - set simulation event handler

SYNOPSIS

#include <ck/scontrol.h>

ckhandler_t ckSetHandler (ckevtype_t event, ckhandler_t
handler)

DESCRIPTION

This service allows the application code to get informed of significant eventsoccuring
in the simulation system.The handler routine will be called eachtime an event of the
designatedkind occurs. Passinga null handler removesany current handling of the
specified event.

The handler is passeda pointer to a ckeventinfo_tstruct. This aggregatecontains the
event code, and a union which contents gives additional information on the current
event. This struct has the following layout:

typedef struct _ckeventinfo {

 ckevtype_t event;

 union {
struct {

 ckhandle_t target;
 ckhandle_t originator;

} tasking;
 } u;

} ckeventinfo_t;

The event parameter can take one of the following values:

CK_TCREATE_EVENT is called whenever a new thread is created.The tasking
part of the union is updated,with tasking.targetbeing the handle of the new
thread, and tasking.originator being the handle of its creator.

CK_TSWITCH_EVENT is called whenevera threadswitch occurs.The tasking part
of the union is updated,with tasking.targetbeing the handle of the incoming
thread, and tasking.originator being the handle of the outgoing one.

CK_TDELETE_EVENT is called whenever a new thread is created.The tasking
part of the union is updated, with tasking.target being the handle of the
destroyed thread, and tasking.originator being the handle of its destructor.

Whenever the originator is the idle thread, a null handle is passed.

RETURN VALUES

The previous handler set for the specified event is returnedon success,which may be
NULL if no previous handler was installed. In the latter case, errno is also cleared.
Otherwise, NULL is always returned and errno is set to indicate the error.

ERRORS

EINVAL event is illegal.

CKPI 65

CarbonKernel

EXAMPLE
void threadSwitchHook (void *cookie)
{
 ckeventinfo_t *evinfo = (ckeventinfo_t *)cookie;

 printf("THREAD SWITCH: IN %s, OUT %s\n",
 ckGetObjectName (evinfo->u.tasking.target),
 ckGetObjectName (evinfo->u.tasking.originator));

}
...
{
 ckhandler_t oldHandler;
 /* Attach a handler on the "thread switch" internal event */
 oldHandler = ckSetHandler (CK_TSWITCH_EVENT,threadSwitchHook);
}

CKPI 66

CarbonKernel

ckControlPanel - apply command to a panel object

SYNOPSIS

#include <ck/panel.h>

int ckControlPanel (ckhandle_t handle, ckpanelop_t cmd);

DESCRIPTION

This service applies a command to a panel object identified by handle, which may
belong to any node. The appropriate handle should be retrieved by the
ckGetObjectHandle() service.Some requestsmay be transparentlyrouted to the ISE for
the action to take place.The commandis specifiedby cmd which may take one of the
following values:

CK_PANEL_OPENcausesthe designatedpanel display window to pop up. If the
ISE is not active, or the panel is already displayed, this command has no effect.

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckControlPanel() service fails if:

ESRCH handle does not refer to a valid panel object.

EINVAL cmd is not a valid command word.

SEE ALSO

ckGetObjectHandle()

EXAMPLE
{
 ckhandle_t handle;

 if (! ckGetObjectHandle (CK_CURRENT_NID,
 CK_PANEL_OBJECT,
 "lcdPanel",
 &handle))

/* Make the ISE display the LCD panel */
ckControlPanel (handle,CK_PANEL_OPEN);

}

CKPI 67

CarbonKernel

ckSetTestExpr – attach a test expression to a dataport

SYNOPSIS

#include <ck/ dataport .h>

int ckSetTestExpr (caddr_t datap, const char *expr, ckhandler_t
handler, void *cookie);

DESCRIPTION

This serviceensuresa handler is called wheneveran assertionis true after a dataport
variable's value has changed.The handler is passedthe opaque cookie as its single
argument.datap is the pointer to the monitoreddataport variable, which will causethe
test expression to be evaluated each time its value is changed by the application.

The handler always executeson behalf of the context changing the dataport variable's
value.

A single test expressioncan be attachedto a dataport variable at any time. Calling
ckSetTestExpr() more than once for a single dataportvariable only retains the last test
expression. The dataport variable address is not restricted to the current node context.

Syntax:

The syntax of the test expressionsupports simple arithmetic and relational operators
betweenconstantand/or variable terms. Bracketedexpressionsaffecting the evaluation
order are supported. The following tokens may appear in expressions:

Signed integer values and high-precision (double) floating-point literal values

Boolean constants true and false

Arithmetic operators *, /, + and -

Relational operators <, <=, >, >=, ==, !=

Logical operators &&, ||

Specialvariable #T standingfor the current simulation clock value (i.e. sameresult
as calling ckGetTime()).

Special variable #D standing for the dataport variable itself. If the variable is an
aggregate(i.e. a struct or union), standardC referencesusing the dot operator
can be used to access its members. However, array subscripts are not supported.

Evaluation:

The expressionis evaluated from left to right, with no special operator precedence.
Sub-expressions should be bracketed in order to get a different evaluation order.

Values from the special variables are fetched dynamically at the time the containing
expression is evaluated.

The result of the evaluation is converted (if needed) to a boolean value. A truth
outcome causes the handler to be fired immediately. Otherwise, the execution
continues.

A simple way of obtaining unconditional handler execution upon each variable update
is to set expr to constant true”.

CKPI 68

CarbonKernel

RETURN VALUES

Zero is returnedon success.Otherwise,-1 is returnedand errno is set to indicate the
error.

ERRORS

The ckSetTestExpr() service fails if:

ESRCH datap is not the address of a dataport variable.

EINVAL an error occured while parsing expr.

EXAMPLE
dataport int collisions;

void handleUnstableNetwork (void *cookie)

{
 ckFatal ("TOO MANY COLLISIONS (> 1500): %d\n",collisions);
}
...
{
 /* Install a test expression on the collision number */
 ckSetTestExpr (&collisions,"#D > 1500",handleUnstableNetwork,NULL);
}

CKPI 69

CarbonKernel

2 The Magnet Interface
This chapterdescribesthe interface beetweenthe CarbonKernel panelsand Tcl scripts
implementing magnets.How to create a panel and add magnetsto a panel is beyond
the scope of this discussion.Pleaserefer to the CarbonKernel user manual for this
purpose.

2.1 What’is a magnet ?

A magnet is a graphical object which can be connected to the simulation via a
dataport, a messageport, or a simulated device driver, to display a simulation
variable'scontent.Thus, the current value and/or stateof the variable can be monitored
graphically, and may be changed interactively.

A magnetis logically bound to a messageport to send and/or receivedata to/from the
application. Becausedataports are specializedmessageports exporting the contentsof
programmingvariables, they are first choice candidatesfor exposurein magnets.But
almost any basic messageports can be connectedto a graphical magnet,provided that
both sides (i.e. the application and the magnet code in Tcl) agreeupon the format of
the exchanged data.

Data are exchangedas Tcl lists between the simulation kernel and the magnet code
written in Tcl. The simulation kernel is responsiblefor converting the contentsof a
binary object (e.g. a programmingvariable) to a Tcl list representationfor the purpose
of sendingthe value to the magnethostedby the ISE, and conversely,from a Tcl list
to a binary form when the magnetrequeststhe simulation kernel to changethe object's
value.

2.2 Using Tcl/Tk for magnets

A magnetis implementedusing the Tcl/Tk scripting language,and can also use the Tix
extension.A magnet can be a simple text field, or a complex graphic object, using
multiple Tk/Tcl objects and/or bitmaps, such as a LCD display or a keypad.

Tcl (Tool CommandLanguage)is a popular open source scripting language.Tcl and
the Tk (Tool Kit) GUI extension enable developers to quickly and easily create
applications that are both powerful and easy to extend.

Tix (Tk InterfaceeXtension)is an extensiveset of mega-widgets,designedto speedup
development of Tk-based applications.

2.3 Hosting a magnet

A magnetis hostedin a display window managedby the ISE called a “panel” (see
the CarbonKernel user manual). A panel is basically a Tk canvas,and acts as a
magnet manager: it draws the magnet'sdecoration and is also in charge of the
dragging and resizing operations. It also keeps track of connections beetween
magnets and data sources, and notifies the appropriate magnet of incoming
messages.

To implement a magnet,a script must define a set of mandatoryTcl procedures.
Those proceduresare described later in this document, and are mainly used to
identify and draw the given magnet.

CKPI 70

CarbonKernel

2.4 Naming convention
The prefix used to composethe canonicalTcl procedurenamesmust be the same
as the containing script file name, i.e. a magnet called“flashyMagnet”mustexport
canonical procedures prefixed with “flashyMagnet:”, defined in a file called
“flashyMagnet.tcl”. We strongly suggest making the prefix end with the word
"Magnet" to reduce the odds of naming conflicts with other unrelated procedures.

CKPI 71

CarbonKernel

Magnet:describe

SYNOPSIS

proc PREFIX:describe{}

DESCRIPTION

This Tcl procedure is called by the panel manager to get the initial information
describing the magnet.This is the first procedurecalled for a given magnet after the
panel managerhas detectedits presencethrough the entry of its implementationscript
file, in the standard directory reserved to the ISE's magnets.

This procedure is mandatory.

RETURN VALUES

describe should return a three-elementsTcl list containing the icon name, the tooltip,
and a Tcl list of flags, such as { icon tooltip { flags } }.

An icon, in any format Tk/Tix can handle, should be present in the CarbonKernel
icon repository. The icon size should be 20x20 pixels. This icon will appear in the
panel's toolbar. Clicking on it will start the creation procedure for this magnet.

The tooltip string will be displayed each time the mouse enters the magnet's icon area.

The currently supported flags are:
� noresize indicates a fixed size for the magnet, and no resize handle will be

drawn by the panel manager.This is generally used with magnets made of
bitmaps (which cannot be resized that way).

� customizable indicates that the magnet provides a customization popup menu.
The panel managerchecks for this flag to determine whether a “Customize”
item should appear in the popup menu bound to the right mouse button. The
customizeFill procedure is called whenever the user selects this menu entry.

The flags list may be empty, in which casethe magnetis by default resizableand not
customizable.

SEE ALSO

customizeFill, customizeApply

EXAMPLE
proc button Magnet:describe {} {
 return { button.gif "A Button Magnet" {noresize customizable} }
}

CKPI 72

CarbonKernel

Magnet:new

SYNOPSIS

proc PREFIX:new {tag triggercmd private}

DESCRIPTION

This Tcl procedureis called by the panel managerto create a new graphical instance
of the magnet. This may be a really new magnet the user has just created, or a
previously saved magnet which gets displayed after its hosting panel is re-opened.

The tag parameterspecifiesa unique tag which should be used by the magnetcode to
mark its componentsinside the canvas(using for example the “ -tag $tag” option to
the “create” commandof any Tcl canvasobject). This tag should identify all parts of a
magnet.

A magnetcan sendeventsto the simulation object it is bound to. The messageto send
should be appendedto the contentsof the triggercmd argumentbefore evaluating the
resulting command. This parameter may be null if running in editing mode.

The set of private information the magnet previously returned by its getprivate
procedure is passed back into the private parameter. At first creation time, this
parameter contains an empty list.

This procedure is mandatory.

RETURN VALUES

None.

SEE ALSO

getprivate

EXAMPLE
proc button Magnet:new {tag triggercmd private} {

 # Use this array to store per-magnet info.
 global buttonMagnetInfo

 # We used to save the image name in our private area
 set imagefile [lindex $private 0]

 if {$imagefile == {}} {
 # First creation, use a default value
 set imagefile bdisplay.gif
 }

 # Update the per-magnet info. indexed on $tag
 set buttonMagnetInfo($tag,triggercmd) $triggercmd
 set buttonMagnetInfo($tag,imagefile) $imagefile
 set buttonMagnetInfo($tag,image) [tix getimage $imagefile]
}

CKPI 73

CarbonKernel

Magnet:draw

SYNOPSIS

proc PREFIX:draw {canvas tag rect}

DESCRIPTION

This Tcl procedureis called by the panel managerwhenever it needs the magnet to
redraw itself. canvas is the Tk window name of the hosting canvas the magnet is
supposedto draw on. The panel manager draws the magnet's decoration (title bar,
name,borders)before entering this procedure.At exit, it draws the resizehandle if the
magnet is resizeable.

A unique tag refering to the magnetis passedto the procedure,and should be usedby
the magnetcode to mark its componentsinside the canvasusing the -tag option to the
create commandof the Tcl canvasobject. This will be used by the panel managerfor
operating on the magnet as a whole.

Finally, the client area of the magnet inside the canvasis passedin rect, which is a
Tcl list containing four elements:leftmost-x coordinate, topmost-y coordinate,height,
and width (all expressedin pixels). The magnet can draw anywhere inside this
rectangulararea. If the magnet cannot draw itself in the given client area (such as
magnetsusing larger or smaller bitmaps), it can ignore the rect parameter,and return
its actual size. The returnedvalue should be a Tcl list specifying the actual height and
width of the magnet.In casethe magnetneedsa specific client size, the panel manager
redraws the decoration, so that it fits around the magnet.

This procedure is mandatory.

RETURN VALUES

If the magnet can scale itself inside the given client area, it should return an empty Tcl
list. Otherwise, a Tcl list containing its actual height and width should be returned.

EXAMPLE
proc button Magnet:draw {canvas tag rect} {

 global buttonMagnetInfo

 # fetch the magnet's bitmap width and height
 # we saved in the per-magnet information array.
 set imagewidth $buttonMagnetInfo($tag,imagewidth)
 set imageheight $buttonMagnetInfo($tag,imageheight)

 $canvas create image 0 0 \
-image $buttonMagnetInfo($tag,image) \
-anchor nw \
-tags $tag

 # force a specific size
 return [list $imageheight $imagewidth]
}

CKPI 74

CarbonKernel

Magnet:getprivate

SYNOPSIS

proc PREFIX:getprivate{canvas tag}

DESCRIPTION

This Tcl procedure is called by the panel manager to get the magnet's private
information before its status is written to disk. This information will be saved along
with the other magnet's properties, and passedback to the magnet when the new
procedure is called.

Private information can be used to hold the magnet's local settings, such as color
names, bitmap filename, and so on.

The Tk window nameof the hosting canvas and the magnet'sunique tag is passedto
the procedure.

This procedure is mandatory.

RETURN VALUES

A Tcl list of private information. The content of this list will be saved to disk, and
passed back to the new procedure when called to reinstate the same magnet.

SEE ALSO

new

EXAMPLE
proc button Magnet:getprivate {canvas tag} {

 global buttonMagnetInfo

 return [list \
$buttonMagnetInfo($tag,imagefile) \
$buttonMagnetInfo($tag,switchmode)]

}

CKPI 75

CarbonKernel

Magnet:update

SYNOPSIS

proc PREFIX:update {canvas tag rect value {flags {}}}

DESCRIPTION

This Tcl procedureis called by the panel managerwhenever an update messagehas
been received on the associatedmessageport. The magnet should update its display
according to the new value. canvas is the Tk window name of the hosting canvas.

The magnet'sunique tag is passedalong with its client area in the canvas.The client
areadefined by rect is a four-elementTcl list which respectivelycontainsthe leftmost-
x corrdinate, the topmost-y coordinate, the height, and the width of the magnet (all
expressed in pixels). The magnet code can draw anywhere inside this rectangular area.

A - possibly empty - set of flags describing the internal object's state is passed.

The currently supported flags are:
� ro indicates that the magnet cannot write back to the object. Otherwise, the

sourcedata emitted by the simulator is assumedto be overwritable,and thus can
be overwritten as a result of the proper trigger command.

This procedure is optional.

RETURN VALUES

None.

EXAMPLE
proc button Magnet:update {canvas tag rect value {flags {}}} {

 global buttonMagnetInfo

 # save the last received value in our private info.
 set buttonMagnetInfo($tag,value) $value

 # update the display to exhibit the received value.
 button Magnet:draw Image $canvas $tag $rect
}

CKPI 76

CarbonKernel

Magnet:delete

SYNOPSIS

proc PREFIX:delete{canvas tag}

DESCRIPTION

This Tcl procedure is called whenever the magnet should remove itself from the
canvas, usually as a consequenceof a user request for deletion. canvas is the Tk
window name of the hosting canvas. tag is the magnet's unique tag.

The magnet'slocal information is of no use anymoreafter this procedurehas returned,
and should be discarded from the Tcl module's variables when applicable.

This procedureis optional. If it is not defined, the panel manageracts as if an empty
delete procedure was defined and returned true.

RETURN VALUES

This procedure should return “true” if the operation was successful, “false” otherwise.

EXAMPLE
proc button Magnet:delete {canvas tag} {

 global buttonMagnetInfo

 # destroy the bitmap we put on the canvas
 $canvas delete magnetimage
 # destroy some sub-object we have created
 destroy $canvas.subc$tag

 return true
}

CKPI 77

CarbonKernel

Magnet:popdown

SYNOPSIS

proc PREFIX:popdown{canvas tag menu mode name}

DESCRIPTION

This Tcl procedure is called whenever a popdown menu (bound to the right mouse
button) is about to be displayedby the panel managerfor this magnet.The magnet is
given the ability to add some commands to the next-to-be-displayed menu.

canvas is the Tk window name of the hosting canvas. tag is the magnet's unique tag.

The Tk menu object about to be displayedalready contains the general entries set by
the panel manager.

A mode parametertells which state the manageris currently in, whetheredit if we are
currently off-line, of run if the magnets are bound to a running simulator.

name is the user-defined name of the magnet.

This procedure is optional.

CAUTION: This procedureis not to be confusedwith the graphical customizationof
the magnet.A set of proceduresis dedicatedto the customization,while the intent of
this one is to provide a way to add very specific user-defined menu actions.

RETURN VALUES

None.

SEE ALSO

customizeFill, customizeApply

CKPI 78

CarbonKernel

Magnet:customizeFill

SYNOPSIS

proc PREFIX:customizeFill {tag dlgf}

DESCRIPTION

This Tcl procedure is called by the panel managerwhenever the user requires the
magnetcustomizationfrom the popdown menu (bound to the right mousebutton) over
this magnet. This procedure should build the dialog box that will permit its
customization.

The magnet'sunique tag and the hosting Tk frame object are passedto the procedure.
The frame should be the parent object the dialog items are put on.

The panel manager automatically adds three buttons to the dialog box after this
procedure has returned:

� Ok applies all modifications to the magnet, and closes the dialog box;
� Apply applies all modifications to the magnet, but leaves the dialog box open;
� Cancel closes the dialog box without applying any modification.

This procedure is mandatory if the customizableflag was returned by the describe
procedure, and ignored otherwise.

RETURN VALUES

None.

SEE ALSO

describe, popdown, customizeApply

EXAMPLE
proc button Magnet:customizeFill {tag lbf} {

 global buttonMagnetInfo tkbridge_prefixdir

 tixComboBox $lbf.images -label "Image:" \
-variable buttonMagnetInfo($tag,tmpImagefile) \
-options {
 label.width 7
 label.anchor e
}

 foreach file \
 [glob -nocomplain -- $tkbridge_prefixdir/share/ck/images/bt*] {

 set fname string range $file \
 [expr 1 + [string last "/" $file]] \
 [expr [string last "." $file] - 1]]

if {$fname != {}} {
 $lbf.images insert end $fname
}

 }
 set buttonMagnetInfo($tag,tmpImagefile) \
 $buttonMagnetInfo($tag,imagefile)

CKPI 79

CarbonKernel

 pack $lbf.images -expand yes -fill both -padx 8 -pady 3 -side top
}

CKPI 80

CarbonKernel

Magnet:customizeApply

SYNOPSIS

proc PREFIX:customizeApply{tag dlgf}

DESCRIPTION

This Tcl procedureis called by the panel managerwheneverthe user selectsthe Ok or
Apply buttons from the customizationdialog box. The magnet should modify itself
according to the new customized values.

The magnet's unique tag and the hosting Tk frame object are passed to the procedure.

This procedure is mandatory if the customizableflag was retruned by the describe
procedure, and ignored otherwise.

RETURN VALUES

None.

SEE ALSO

describe, popdown, customizeFill

EXAMPLE
proc button Magnet:customizeApply {tag lbf} {

 global buttonMagnetInfo

 set buttonMagnetInfo($tag,imagefile) \
 $buttonMagnetInfo($tag,tmpImagefile)
 set buttonMagnetInfo($tag,image) \
 [tix getimage $buttonMagnetInfo($tag,imagefile)]
}

CKPI 81

CarbonKernel

Index

C
ckBindPort 4, 59, 61
ckBroadcastCv 56p.
ckCloseTerminal 33pp
ckControlIntr 25p., 29p., 47
ckControlPanel 67
ckCreateCv 46, 56p.
ckCreateIntr 15, 22pp, 29
ckCreateMutex 46, 54p., 57
ckDecodeTimeBounds 45
ckDelay18p.
ckDestroyCv 56p.
ckDestroyIntr 23pp
ckDestroyMutex54
ckFatal 11p., 69
ckFinishSimulation 10
ckGetArgs 40
ckGetChar 33pp
ckGetConf 23, 49
ckGetContext 25, 42p., 50
ckGetErrnoAddr39
ckGetIntrLevel 25, 42pp
ckGetMemPortByte 3, 31
ckGetMemPortDword 3, 31p.
ckGetMemPortQword 3, 31
ckGetMemPortWord 3, 31
ckGetNid 37
ckGetObjectHandle 6p., 22, 26, 46pp, 67
ckGetObjectName 7, 44, 47p., 50, 66
ckGetObjectTag47p., 50p.
ckGetSpinLock 52p.
ckGetStdStream38
ckGetTicks 16p.
ckGetTime 16p., 68
ckInitSpinLock 52
ckLockMutex 54p., 57
ckLockTime 6, 14
ckMaskIntr 25, 30
ckOpenTerminal33pp
ckPendSynch 5, 18p.
ckPoll 20p.
ckProgramIntr 15, 23, 27pp
ckPutChar 33pp
ckPutFormat 36
ckPutString 33pp
ckRaiseIntr 25p., 29p., 42p.
ckReadPort 4, 59pp
ckRelSpinLock 52p.
ckResumeSimulation 8p.
ckSelect20p., 59p.
ckSelectPort 59p.
ckSetHandler 65p.
ckSetHostSpeed62
ckSetObjectTag50p.
ckSetTargetWarp 63
ckSetTestExpr 68p.
ckSignalCv 56p.
ckSpawn 64
ckSuspendSimulation 8p., 62
ckTick 15, 17
ckTrace13
ckTryMutex 54p.

CKPI 82

