
text (such as vi), you are probably going
to want something more, and there are a
number of tools available to help you do
your programming. For all of my web
development, be it HTML, Perl or PHP, I
use Quanta Plus (http://quanta.
sourceforge.net/). In fact, Quanta Plus is
designed for developing in dozens of dif-
ferent programming languages.

One very useful feature is Quanta’s
ability to collapse and expand blocks of
code as needed. For example, while
loops, if-blocks, and functions can be
collapsed so that you have a better
overview of the code. This is enhanced
by Quanta Plus’s ability to highlight your
code in different colors. For example,
light-gray for comments, blue for func-
tions, and black for variables. (See
Figure 1.) The colors are configurable
and depend on the type of code (for
example, HTML is different from PHP).

More than just an editor, Quanta Plus
has many project management features.

For example, files can be edited locally
and then uploaded to your web server
using a number of different protocols,
such as ftp, fish, webdav(s), and many
more. Quanta Plus also keeps track of
which files have been modified, allowing
you to upload just those files that have
been changed. Therefore, you can
develop on a test server and then upload
to a live server when you are sure your
code is ready.

Adding to its advanced development
features, Quanta Plus is integrated with
the Concurrent Versions System (CVS)
through the Cervisia program (which
also works stand-alone). Therefore,
should something go terribly wrong with
the code on your test system, you can
easily revert to a previous version.

Quanta is also highly configurable.
Among other things, Quanta Plus allows
you to create so-called actions. These
can be anything, from special tags and
text blocks, to program output which is

Even before finishing configuring
your website, you may have
already realized the need for you to

develop your own PHP modules. As we
discussed in the previous installment,
there are very simple ways of creating
modules without having to do much
with PHP. However, if you want to pro-
vide modules with even a slight bit of
complexity, you will need to do some
more programming.

Gathering the Right
Ingredients
As I mentioned, if you know Perl, then
moving to PHP is fairly easy (this also
applies to C and similar languages).
Rather than turning this into a PHP tuto-
rial, I am going to assume you already
have a basic foundation in Perl, C, or a
similar language because the code we
are going to talk about is very simple.

Another thing we need to assume is a
basic understanding of SQL. We are not
going to build any complex queries, but
you should at least know some very
basic syntax, such as how queries are
constructed.

One thing we haven’t yet addressed is
the actual editing of code. Although you
could use any editor that saves ASCII

46 November 2004 www.linux-magazine.com

PHPNuke: ModulesKNOW HOW

PHPNuke lets you create a master-

piece or disaster depending on what

tools you use and how you go about

it. Even with the simplest tools and

methods, PHPNuke enables you to

easily create dynamic web sites that

can access text-based data as well as

enterprise databases.

BY JAMES MOHR

Creating a PHPNuke module

Cooking with Nuke

Figure 1: The Quanta Plus Web development environment.

inserted directly into your code. You also
can add any number of toolbars to your
systems, which can include existing
actions as well as those you create your-
self. The toolbars can be also be
exported and imported, allowing every-
one working on a project to have the
same tools.

Getting Ready
Before you begin building your ultimate
module, you need to lay down a firm
foundation. Many of the basic principles
apply to any programming language or
project, such as using self-explanatory
variable names and commenting your
code (something tragically missing from
the PHPNuke code).

Unless you explicitly specify another
file, modules.php will automatically load
the index.php file. A customized file may
be useful in some cases (like very com-
plex modules), but for now, let’s just
work with the default.

Other files, such as images, are
included using the modules.php file.
Therefore, paths need to be defined rela-
tive to the location of modules.php rather
than that of your modules. Typically,
modules.php resides in the root directory
of your server, so you can use an absolute
path (i.e., /images). Even if you put your
images within the module’s directory, you
can still use an absolute path (i.e., /mod-
ules/modulename/images).

Accessing an SQL Database
As we mentioned in the first installment,
one advantage of PHPNuke is its data
abstraction layer, which allows you to
access data from any SQL without need-
ing to write database-specific code. This
feature allows you to use the same code,
no matter what database you are using.

Tables within the Nuke database
always have a prefix that is defined in
the config.php file. The default prefix is
nuke, but I have used other prefixes. In
fact, you need to use a different prefix if
you have multiple Nuke instances on a
single machine. The default table con-
taining all of the user data is thus
nuke_users.

One point of contention is where to
put data that is not part of the standard
PHPNuke database. Some people will tell
you to include it in the same database as
the default PHPNuke tables. This does

make administration a little easier in
some cases.

The other group of people (which
includes myself) says to keep your data
separate from the Nuke tables and create
a separate database. I have over 60 of my
own tables and including them with the
90 or so Nuke tables gets confusing
really fast. By splitting the data like this,
I also avoid potential problems if I ever
need to upgrade PHPNuke or move my
data to another database (i.e., from
MySQL to Oracle).

The disadvantage is that you have to
deal with making the connection to the
database yourself. If the data is stored in
the nuke tables, then the connection is
already made for you through the PHP-
Nuke files. With just a few tables it
might be worth having just a single table
and thus less programming overhead.

If you do this, I would highly recom-
mend that you use a prefix different from
the default. Remember, as we mentioned
in the first installment, when you install
PHPNuke, you define a prefix for the
PHPNuke tables. By default this is
“nuke.” So, I might define my non-Nuke
table with a prefix of “jimmo”. My recipes
table would then be jimmo_recipes.

To avoid turning this into an article on
administering databases, I will go with
the simpler case where all the data is in a
single table. Amazingly enough, we can
access an SQL database with just a few
simple lines. For example, if we wanted
to pull out the name of our first recipe,
we might have something like this:

$sql_a = "SELECT nameU
FROM jimmo_recipes U

WHERE recipe_id='1' ";
$result_a = $db->U

sql_query($sql_a);
$row_a = $db->U

sql_fetchrow($result_a);
print "Recipe name:U

".$row_a[name]."\n";

By replacing the print in the first exam-
ple of the previous article, we would
have a single line showing us the
recipe’s name.

In the first line of our example, we
define the query that we are going to
make. This is then used in the second
line to make the actual query. The
results of that query are not actually

47www.linux-magazine.com November 2004

KNOW HOWPHPNuke: Modules

what is returned. Instead, a pointer is
returned. In the next line, we use the
pointer to fetch a single row (with all of
the fields specified), which is then
returned to the array $row_a.

In the last line, we print out the con-
tents of a single element of the array. In
this case, the name field. Note how we
actually use the name of the field as the
offset into the array and not something
like $row_a[0]. If we had changed the
original query to something like SELECT
name, ingredients..., then we could have
also used something like this $row_
a[ingredients].

To be able to access every row, we
make a very simple modification:

while ($row_a = $db->U
sql_fetchrow($result_a)) {
print "Recipe name:U
".$row_a[name]."\n";

}

Like in other languages, the while state-
ment repeats the specific block for as
long as the statement is true. In this case,
the condition we are checking is whether
we were able to retrieve a new row from
the database. Each time through we print
out the name of the recipe.

Creating an Application
With a couple of simple changes, we can
turn the list of names into hyperlinks,
which lead you to the details of the
respective recipe. There are a couple of
ways of doing this. I think the simplest is
to include all of the functionality within
a single file (i.e., index.php), which is
the case in many of the default modules
(at least the simpler ones). To do this we
wrap the code we have written so far
into a function.

Like functions in other programming
languages, a PHP function is simply a
separate block of code that can be called
from other places, passed values, and
which returns values. So, we might have
a function creating the list of recipes that
looks like this:

function list() {
... body of function ...
}

We would also need a second function to
display the details of the recipe. In order

Within the body of the show_recipe
function, the code we created is very
similar to that in the first example above.
Only the SQL query is different:

$sql_a = "SELECT U

name,ingredients,instructionsU
FROM recipesU
where recipe_id =".$recid;

Here, we are pulling the values name,
ingredients, and instructions from the
one row in the recipes table that matches
the recipe_id. We then load that single
row into an array, as shown above, and
display it.

Displaying the Fields
Displaying the fields basically works the
same way as before. However, now we
want to format it a little. Since the output
is actually interpreted by your browser,
you can include HTML code in the text
your PHP program prints out and format
it any way you want. This might result in
code that looks this:

print "<H1>".$row_a[name].U
"</H1>\n"
print "<H2>Ingredients</H2>\n"
print $row_a[ingredients]."\n";
print "<H2>instructions</H2>\n"
print $row_a[instructions]."\n";

At this point we need to backtrack a lit-
tle. We previously created a list of recipe
names, but we don’t yet have a way to
create the links to access the recipe
details. To do this we simply change the
print statement a little, which gives us
this:

print "<a href=/modules.php?U
name=Recipes&U
op=show&U
recid=".$row_a[recipe_id].">".U
$row_a[name]."
\n";

As you can see, we are calling the mod-
ules.php like we normally would and
passing it the name of the module
(“Recipes” in this case). If we stopped
here, no other variables would be set;
the switch statement would go into the
default case and display the list.

In this case, however, we are setting
the op to “show”, thus sending the pro-
gram into the show_recipe function. Note

that the recipe_id is being pulled from
the database, along with the recipe
name, and these values are simply
inserted at the appropriate location.

Admittedly, we could have done a lot
more formating to both the list and the
output. We could have also created the
query so that it sorted the list of recipes
by the recipe name. However, that goes
into a bit more detail than we can cover
here.

This ease of accessing an SQL data-
base is not limited to reading data. You
can now take this one step further and
create a form that inserts data, for exam-
ple. One of the wonderful things about
PHP is that you do not have to deal with
processing the data passed by forms.
PHP does this for you.

As with the variables in the query
string we discussed above (e.g., the
recipe_id), form variables are immedi-
ately available on the page called by the
action for the form. These can be com-
bined to create an SQL query (using the
INSERT command, of course), which is
then passed to the $db->sql_query func-
tion as we did above for the SELECT. You
could take this one step further and use
the UPDATE command to make changes
to existing rows in your database.

Secure Database Access
At this point we need to sidetrack a little
and talk about security when working
with databases. You might think that if
the only data you are working with is
your recipes, then you don’t have to
worry much about security. Well, with
an insecure system, someone could
make changes to or delete your data
entirely.

To make matters worse, if your own
data is using the same database as the
PHPNuke tables, a user that has access

to know which recipe to display we
would have to pass the recipe id (recipe
name) to the function. Something like
this:

function show_recipe($recid) {
... body of function ...
}

Now, within the function show_recipe,
we can simply use the $recid variable
where we need it, such as including it
with an SQL query. The details of this
function we will get to shortly.

When passing variables like this, I like
to use unique IDs rather than text. It’s
easy enough to automatically add them
to the database and retrieve them later.

Adding the Switch
Next, we need to make use of the switch
statement. As its name implies, it is used
to “switch” the behavior of the program.
In this case, we switch based on the
value of an additional variable in the
query string that tells us which operation
to perform. Doing so might give us
something like this:

switch ($op) {
case "show":
show_recipe($recid);
break;

default:
list();
break;

}

Within the switch block, the case state-
ment directs the flow based on the value
of the given variable (in this case $op). If
the $op variable equals “show”, then the
variable $recid is passed to the function
show_recipe. This then used within the
show_recipe function.

At the bottom we have one block
labeled default. This is used if the value
of $op does not match anything else
(even if it’s empty, which is often the
default case). At the end of each block,
we have a break statement to tell the
program to break out of the switch block.

If we wanted to, we could add any
number of case statements that in turn
call various functions. We can also pass
values to the functions, just as in most
other languages.

48 November 2004 www.linux-magazine.com

PHPNuke: ModulesKNOW HOW

Here are some PHP functions that you
should look at when developing a filter for
input that you are sending into your data-
base:
• addslashes
• stripslashes
• htmlentities
• htmlspecialchars
• striphtml
Details can be found in the PHP Manual at:
http://www.php.net/manual/en/.

PHP Functions

to your data has easier access to the
PHPNuke data. Keep in mind that once
the connection is made, the user may not
need any extra authorization to change
data in the PHPNuke tables once they
have access to your tables.

Even if you separate your data from
the PHPNuke tables, the same principles
apply. You don’t want people to have
free reign of your data. There are a cou-
ple of different things you can do to
increase security.

Most databases have the ability to
restrict access, both to the database and
to individual tables. You can create a
user (within the database) that only has
access to your data, but not the PHP-
Nuke tables. If all the data was in a
single table, you could restrict access so
your user did not have access to the
PHPNuke tables. However, this can get
complicated and confusing very quickly.
I think this is one more reason to split
the data into different databases, despite
the slight programming effort needed to
access each.

When the data is split between differ-
ent databases, you only need to worry
about your own data. You make the con-
nection to your own database and its
database, and you let PHPNuke handle
the PHPNuke tables and data. This
makes it unlikely that you are going to
give inadvertent access to a PHPNuke
table.

However, and this is a big “however,”
the connection to the PHPNuke tables is
still open when your files are loaded.
Thus you need to make sure you are
accessing your tables and not PHPNuke.

SQL Injection
Another thing we need to talk about is
something called “SQL injection.” This is
a trick used by hackers to get an SQL
query to do something more than just
the original query. For example, if you
had a module that displayed the name of
a recipe input by the user, you might
have a query to return all fields for the
specific entry, which might look some-
thing like this:

select * from recipes whereU
recipename = '$userinput';

If the user is clever enough, he or seh
can create a “recipename” that is actu-

ally an additional SQL query and which
is then executed in the same context.

Therefore, you should never explicitly
trust data that is passed to query. This is
especially true if the values in the query
are being read from a form and thus are
input by the user, as in this example.
Even if the user does not know how your
query is created, it is still possible to
input values to change the query.

The simplest way is to check the
variable $userinput for things that do not
belong, such as quotes and even the
word “union”. You might go so far
as to write a whole function that does
more complex checking. This could
include several different PHP functions
that convert the input text to “safer”
values before inserting it into your data-
base. See the sidebar for details.
Additional details about SQL injections
and more information on PHPNuke
security can be found in references [2]
and [3].

In our example above, someone could
theoretically pass the recipe id directly in
the URL (i.e &$recid=42) and manipu-
late the value in such a way as to create
a new SQL query. In this case, it would
be fairly simple to check to see if the
value assigned to the $recid variable
were a number. If not, the program
would simply not issue the query (and
might generate an error message).

Making a House a Home
Being able to access websites in your
native language is almost always an
added reason to continue visiting a par-
ticular web site. The overwhelming
majority of web sites are in English,
which puts a lot of users at a disadvan-
tage.

Most non-English-native computer
users have at least a working knowledge
of English and can move around fairly
easily through the Internet. However, in
general, sites exist either in English or in
that web master’s native language. With
the exception of large commercial sites,
multi-language sites are a rarity.

PHPNuke comes with built-in multi-
language capabilities which can be
configured through the administration
panel and provide support for over 30
languages. In the PHPNuke directory, as
as well as most of the modules, you will
find a language directory that contains a

number of files of the format language.
php. These files contain the translation
for much of the text that is displayed
on each page and are of the form,
define("_CONSTANT","Translation");. For
example, to define what is displayed for
the constant _YES, you might have:

define("_YES","Ano"); -Czech
define("_YES","Ja"); -German
define("_YES","Kyllä"); -Finnish

To include this functionality in your own
module, add a language directory in your
module along with files for the lan-
guages you want to include.

The best thing is to create a complete
file for your default language (as defined
in the administration panel) and then
copy it. This ensures that all the terms
you use are defined. If you leave out a
particular term, you get an error when
the page is loaded for that language,
which obviously detracts from the
usability of your site. ■

49www.linux-magazine.com November 2004

KNOW HOWPHPNuke: Modules

[1] See a PHPNuke system in action with sev-
eral self-made modules and blocks:
http://www.linux-tutorial.info

[2] NukeCops FAQ on SQL Injection:
http://www.nukecops.com/article74.html

[3] Article on SQL Injection from the PHP-
Nuke HOWTO:
http://www.karakas-online.de/EN-Book/
sql-injection-with-php-nuke.html

[4] The PHPNuke Site: www.phpnuke.org
[5] Home of a huge PHPNuke forum and

many other resources:
ftp://www.nukecops.com

[6] As the name implies, this size has a wide
range of fixes for various release, includ-
ing a forum: www.nukefixes.com

[7] A wide range of resources for PHPNuke:
www.nukeresources.com

[8] Security related issues and fixes:
www.nukesecurity.com

INFO

James Mohr is
responsible for the
monitoring of several
datacenters for a
business solutions
provider in Coburg,
Germany. In addition
to running the Linux
Tutorial web site (http://www.linux-
tutorial.info), James is the author of
several books and dozens of articles on
a wide range of topics.

TH
E

AU
TH

O
R

