
has its defined use, and most developers
stick to these uses.

You may have already put XUL into
one of these conceptual boxes. In this
series we have already looked at exam-
ples of XUL scripts such as the Mozilla
Amazon Browser, and these scripts seem
to crank Mozilla into a full web applica-
tion mode. These examples demonstrate
that the technologies revolve almost
entirely around XUL for creating the
interface. It is therefore fairly reasonable
to put XUL into a conceptual box where
it is used for the interface, Javascript is
used for interaction, and other technolo-
gies don’t really get a look in.

Despite the applicability of this con-
cept to some applications, it certainly

doesn’t hold true for all applications.
Javascript has no native support for
retrieving information from a MySQL da-
tabase. How would you get the data from
the database into your XUL interface? In
a situation like this we would need to
resort to a special XPCOM Mozilla object
or use another language that has this
kind of support.

Another example of integrating XUL
with other technologies occurs if you
want to integrate XUL elements into your
website. What if we wanted to have a
special box that displays stock informa-
tion dynamically? This stock information
box is an ideal use for something such as
XUL, but we would need to integrate it
seamlessly into our website, where

HTML and CSS are the
orders of the day.

In its current form,
XUL can be used virtu-
ally anywhere and with
virtually any technol-
ogy. There is some
support within Mozilla
to help you to perform
this kind of integration,
but in some cases you
need to know a few

In the last few issues of Linux Maga-
zine, we have been exploring the
different ways to build interfaces in

XUL. In this last part of the series, we
will integrate XUL with web content by
adding an XUL interface to a web page in
the form of a special menu bar. This
menu bar will use the same widget set as
Mozilla, and it will use the theme and
look and feel of the browser. The effect
will that of a special toolbar, such as the
Google and Yahoo toolbars, but the user
will not need to install it specially; it will
just load when the user accesses the
website.

XUL & the Rest of the Toolbox
With many computer innovations, devel-
opers and users put technologies in
boxes and discriminate how they should
be used. PHP is a good example –
although you can certainly use
Javascript, ASP and other technologies
in PHP pages, the majority of developers
seem to stick to PHP and PHP-related
technologies.

PHP is a server side scripting lan-
guage; Javascript is a client side scripting
language; and HTML is a language for
marking up content. Each technology

There is certainly a lot packed under

the hood of the Mozilla browser. In

this article, we will use XUL to create

a fine web page menu. Along the way

you’ll learn about eXtensible Binding

Language (XBL) and how you can use

XBL to enhance the power of your

XUL creations. JONO BACON

Web menus with XUL and XBL

Finishing Touches

68 November 2004 www.linux-magazine.com

Mozilla XUL: Web MenusPROGRAMMING

Figure 1: Our simple webpage before we XULify it.

tricks and tips to work around some of
XUL’s inbuilt limitations.

XUL within a website
With the increasing shift of people mov-
ing over to Mozilla from Internet
Explorer and other browsers, XUL is
becoming viable as a technology that
can be used within general web content.
Although some web purists may disagree
that any specific technology is good for
the web, XUL can be used in cases where
you are confident that a majority of your
users are using Mozilla or where you can
offer some content for Mozilla users and
content for non-Mozilla users.

Although you could create content
specifically for Mozilla users, it is dis-
couraged for the same reason content
specifically intended for Internet
Explorer users is discouraged. Only cre-
ate Mozilla-specific content if you know
Mozilla is used, or if you can create a
suitable alternative.

We are going to explore integrating
XUL with web content by adding a XUL
interface to a web page in the form of a
special menu bar for the web site. Not
only will this menu bar use the same
widget set as Mozilla, but it will use the
theme and look and feel of the browser.
This can give the same kind of effect of a
special toolbar such as the Google and
Yahoo toolbars, but users will not need
to install it specifically; it will just load
when they access the website.

As I mentioned earlier, this article will
explore the task of integrating XUL with
web content by adding a XUL menu bar
to a web page. This kind of use of XUL is
called a Remote Application. XUL code
can theoretically run from a local
machine (where you load the page from
your hard disk directly with File->Open
File) or from a remote web server, where
you access the page via a URL such as
http://www.thissite.com/.

The geographical location of the page
does not dictate whether an application
is remote – if you are running Apache
on your local computer and you access
the XUL page via a URL, the application
is still remote. The key difference is that
a remote application is served to you by
a web server, whereas a local application
is loaded directly in the browser.

Local and remote XUL applications
also differ in terms of functionality.

Remote applications have a more limited
set of functionality due to potential secu-
rity risks. An example of this is that a
remote application cannot write to a
filesystem on the web server. You can get
around these limitations by adjusting the
configuration of how Mozilla works, but
this workaround simply reduces your
security and is not suggested in produc-
tion environments. We are going to focus
instead on perfectly acceptable uses of a
remote XUL application – clicking on a
menu to go to another part of the web-
site.

Creating the code
To add a menu bar to a web page we will
need a web page to begin with. You
should now all sit back and bask in the
glory that is our web page shown in Fig-
ure 1. The code below creates this page
and you should add it to xulpage.html:

This is the main content of our web
page. Although it should really be quite
interesting, it is actually rather boring.
Just to spice things up, we will add a list:

One
Two
Three

Great stuff. I bet you are impressed with
that!

To make our page look interesting, we
have also created a style sheet in the file
stylesheet.css. Add this code to the file:

01 body, html {
02 margin: 0;
03 background: #FFF;
04 color: #000;
05 }
06
07 #top
08 {
09 font: verdana, arial;
10 font-size: 40px;
11 font-weight: bold;
12 text-transform: uppercase;
13 letter-spacing: 0.3em;
14 padding: 20px;
15 background: #EACBCB;
16 }
17
18 #content
19 {

20 padding: 20px;
21 border: solid thick black;
22 }

With our simple web page ready, we will
now add some XUL and discuss how it
works. The first step is to actually create
the XUL we want to add to our web
page. We will add this to a file called
menu.xml. Although some of the code
will be familiar to you, we will be using
some special features in Mozilla to bind
functionality in chunks of code that can
be called from within our HTML. We will
go through each line of code to discuss
how this all works.

The first two lines state that we are are
using XML and specify that the style-
sheet being used is with the Chrome
registry that is part of Mozilla. This spe-
cial registry deals with how interfaces
can be created and how they look:

<?xml version="1.0"?>

<?xml-stylesheet href="chrome:U
//global/skin/" U

type="text/css"?>

Although XUL is a core technology
within the Mozilla suite, there are actu-
ally a number of other related

69www.linux-magazine.com November 2004

PROGRAMMINGMozilla XUL: Web Menus

01 <!DOCTYPE HTML PUBLIC "-
//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/lo
ose.dtd">

02
03 <html><head>
04 <title>XUL::Web</title><link

rel="stylesheet"
05 href="http://localhost/temp/

stylesheet.css" type="text/
css"><link rel="icon"

06
href="http://mozilla.org/image
s/mozilla-16.png" type="image/
png"></head>

07
08 <body>
09
10 <div id="top">
11 XUL Is Cool
12 </div>
13 <div id="content">

Figure 1 web page

tag but an XBL tag, as shown in the fol-
lowing example

<bindings id="ourmenu"
xmlns=U
"http://www.mozilla.org/xbl"
xmlns:html="http://www.w3.orgU
/1999/xhtml"
xmlns:xul=U
"http://www.mozilla.org/U
keymaster/gatekeeper/U
there.is.only.xul">

We will now create a specific binding
that refers to a specific XUL layout that
we can use. We use the id attribute to
create a name for our XUL layout. We
will use this value to refer to our XUL
layout in our HTML code later:

<binding id="ourmenu">
<content>

We now need to begin
creating our actual
menu bar. To do this, we
will create the fairly
common menubar, me-
nu, menupopup, menu-
item structure we have
covered in previous
issues.

Here is the code to
create a menubar with
two menus and a series
of menu options. You
will see here that we are
prefixing each of the
tags with xul to indicate
that these tags are not

from the XBL namespace but from the
XUL namespace:

You may have noticed that each
<xul:menuitem> has a value attribute
that contains a URL. The reason for this
is that we want each option in the menu
to go to a particular page on the website.
Just adding the URL to the value
attribute will not do this itself, but we
will be using a special loadPage(event)
function that is referred to on the first
line (the <xul:menubar> tag). We will
define this function later in the file, but
all you need to remember is that when
an option is selected, the loadPage
(event) function will be used.

Finally, we will close off the remaining
tags:

</content>
</binding>

</bindings>

Although we have not created our load-
Page(event) function, we can still test
our snazzy XUL interface. Before we do
this we need to do the all-important job
of actually loading the XUL code, or
more specifically our XBL binding that
contains the XUL code, into our HTML
page. Remember that we can use XBL
bindings via CSS and the DOM, and we
will use CSS for our page.

Right at the top of our xulpage.html
file, add the following code after the
<body> tag (and as such before our top
<div> tag):

<div style="-moz-binding: U

url('menu.xml#ourmenu');"></div>
</div>

technologies that can be used
with XUL to allow applica-
tions to be developed. One of
these technologies is called
the eXtensible Binding Lan-
guage (XBL).

The purpose of XBL is to
simply allow you to create a
chunk of functionality and
bind it to other content via
CSS or the DOM. This gives
you the ability to create
defined sets of functionality
that can be called from your
other code – this is not too dis-
similar to the concept of
functions, but within the
XUL/XBL architecture. It should be
noted that this is not the same as a func-
tion, but its concept is very similar.

To create some of these bindings, we
first need to indicate that we are using
bindings inside this file. We do this by
specifying a <bindings> tag and indi-
cating that we are using an XBL
namespace. A namespace allows you to
define which tags are part of particular
technology. If you had a XUL tag called
<menu> and you had another technol-
ogy that used a <menu> tag, there
would be no way of determining which
<menu> tag you wanted to use.

To resolve this you typically prefix the
tag with the technology that you are
using (as we will do later for our XUL
tags). The xmlns attribute in the <bind-
ings> tag below indicates that the tags
inside this file are within the XBL specifi-
cation. <bindings> itself is not a XUL

70 November 2004 www.linux-magazine.com

Mozilla XUL: Web MenusPROGRAMMING

Figure 2: Our XUL menu bar added to the page.

01 <xul:menubar
oncommand="loadPage(event);">

02 <xul:menu
label="Features">

03 <xul:menupopup>
04 <xul:menuitem

label="Introducing XUL"
value="http://localhost/temp/i
ntro.html" />

05 <xul:menuitem
label="Why XUL?"
value="http://localhost/temp/w
hy.html" />

06 <xul:menuitem
label="Creating a script"
value="http://localhost/temp/c
reatescript.html" />

07 </xul:menupopup>
08 </xul:menu>
09 <xul:menu

label="Help">
10 <xul:menupopup>
11 <xul:menuitem

label="General Help"
value="http://localhost/temp/g
eneralhelp.html" />

12 <xul:menuitem
label="Help Index"
value="http://localhost/temp/i
ndex.html" />

13 </xul:menupopup>
14 </xul:menu>
15 </xul:menubar>

The Menu Bar

This code creates a <div> area and
uses the HTML ‘style’ attribute to apply
a CSS to the tag. This CSS uses the -moz-
binding element that is specific to
Mozilla, indicating where an XBL bind-
ing file is located and which binding you
want to use. The common CSS url() syn-
tax is used to specify where the file is
and what it is called (remember, if you
don’t specify a path, it is assumed the
file is in the same directory as the style
sheet – or in our case the HTML, as we
are using an inline style here).

We then use #ourmenu to indicate that
we want to use the ourmenu binding
from inside that file. This shows how
you can have a number of bindings from
within the same file.

Now, when you access xulpage.html in
your browser, you should see something
similar to Figure 2.

Creating Functionality
Our XUL is looking great at the top of our
web page, but it is not much use if we
can’t make it do anything interesting. We
now need to define the loadPage func-
tion that we discussed earlier and add
some Javascript to make it work. To do
this, we can use the <implementation>
block that XBL provides to flesh out our
code. We first need to actually create the
block. Create the block after the </con-
tent> tag and before the </binding>
tag:

<implementation>

We now need to define loadPage. To do
this we use the <method> tag. Func-
tions and methods are different terms
that describe the same basic concept. We
use the name attribute to name our
method:

<method name="loadPage">

When we referenced loadPage earlier,
notice that there was a single parameter
called 'event' (loadPage(event)). We
need to define each parameter in this
implementation block separately:

<parameter name="para"/>

We are now ready to create some code to
define what loadPage actually does. We
first need to create a <body> block to
put this code in:

<body>

We now write some Javascript that will
extract the contents of the 'value'
attribute by using the getAttribute DOM
method and put the resulting value into
a variable called url. Note how we refer
to parameter name (para) as the object
we are getting the value from – this is
how we get the right URL from
whichever menu item was clicked. We

then use document.location to make the
web browser jump to that page:

var url = para.originalTargetU
.getAttribute('value');
document.location = url;

Finally, we need to close off all of our
remaining tags:

</body>
</method>
</implementation>

Although it seems our work is complete,
the final piece of code we need to add is
a handler that will tie together our
oncommand event where we reference
loadPage(event) in the XUL code with
our XBL binding. You need to add this
code immediately after the previous
implementation:

<handlers>
<handler event="command" actionU
="loadPage(event);"/>
</handlers>

Conclusion
This article showed how to use XBL as a
middle ground to connect XUL and
HTML. This example not only demon-
strates how you can use XUL for
practical purposes such as providing a
site wide menu bar, but it also shows
how XBL can be useful for defining
chunks of XUL-based functionality and
their associated Javascript implementa-
tions. With a few tricks, you can bridge
together HTML, XBL, XUL, CSS, and
Javascript in new and interesting ways.■

71www.linux-magazine.com November 2004

PROGRAMMINGMozilla XUL: Web Menus

[1] The main Mozilla website:
http://www.mozilla.org/

[2] XULPlanet: http://www.xulplanet.com/

[3] XUL Programmers reference
http://www.mozilla.org/xpfe/xulref/
XUL_Reference.html

[4] XBL Reference: http://www.mozilla.org/
projects/xbl/xbl.html

[5] XPCOM Information: http://www.mozilla.
org/projects/xpcom/

[6] Mozilla Amazon Browser:
http://mab.mozdev.org/

[7] Mozilla XUL based games:
http://games.mozdev.org/

INFO

One of the major problems with XUL at the
moment is that there is little support for
accessing external services such as
MySQL/PostgreSQL databases and bringing
this external data into your interfaces. One
option is to create an XPCOM object that
does this work for you, and some work is
going into creating objects that can do this.
Although a solution, this is rather complex
and it requires you to learn yet another API
and programming platform to get your job
done. Another option is to use PHP.
One point to bear in mind when using PHP
with XUL is that PHP is obviously a server
side technology and XUL is client side.With
this in mind you don’t want to throttle your
web server too hard with dynamic requests
in XUL. If you do feel you have a reasonable
use for PHP in your scripts, you can use it by
simply changing the header type of the
content.You will need to put your XUL into a
.php file so it is processed by the PHP sub-

system, and then you can specify in the
HTTPD header that the type of content is of
the type application/vnd.mozilla.xul+xml
(which is XUL).To do this, add the following
code at the top of the XUL file:

<?php

header("Content-type: U

application/vnd.mozilla.U
xul+xml");

?>

Within your XUL code you can now use PHP
code within the normal PHP <?php and ?>
blocks. An example of this could include
going through a PHP while loop to bring data
out of a database and populate a XUL list
box.You can then roll in Javascript to dynam-
ically deal with this data on the client side.
Adding in this PHP support really brings a
wealth of potential to XUL, Javascript and
XBL on the client and the server.

Using PHP with XUL

