
prompt. To send the task into the back-
ground type bg (for “background”):

$ bg
[1]+ find . -name bla
> /tmp/list &

This output displays both the job ID and
the complete process name, followed by
the ampersand character. And it shows
you that the process is now running in
the background. 

If you have more than one stopped job
running in the shell, the bg needs details
on the process you want to run in the
background. By default bg moves the
process with the highest job ID to the
background. 

You can again use the jobs command
to check the job IDs. Then add a per-
cent sign and the job ID to the bg
command:

$ jobs
[1]- Stopped find .
-name blub > /tmp/list
[2]+ Stopped find .
-name bla > /tmp/list
$ bg %2
[2]+ find . -name bla
>/tmp/list &

Back to the Foreground
The fg (“foreground”) command restores
a background job to the foreground.
Again, the command needs to know
which job you mean, for example:

fg %2

Restoring a job to the foreground means
tying up the shell while the foreground
process completes. A shell prompt tells
you when this is the case:

$
[3]- Done sleep 5

Shortcuts
Bash surprises even experienced users
with neat shortcuts and variables that
make the administrator’s life so much
easier. 

For example, the exclamation mark
can be used as a variable to represent the
process ID of the last background
process to be launched. 

The following commands first display
the process ID in addition to the job ID
(jobs -l), and then run the echo command
to display the process ID for the last
background process to be launched ($!):

$ sleep 100 &
$ jobs -l
[1]+ 1057 Stopped sleep 1000
[2] 1058 Running sleep 1000 &
[3]- 1066 Running sleep 100 &
$ echo $!
1066

You can put this information to good use
to interrupt the last process. We do not
need the fg command (the command
would need the job ID) and [Ctrl-Z] this
time because we will be using the kill
command instead. 

In the previous issue of “Command
Line”, we looked at screen, a tool that
gives you multiple virtual consoles in

a single terminal window. If you do not
have screen, and the number of consoles
you can launch is limited, it makes sense
to know how you can launch a program
as a background task, interrupt a
program, send a program into the back-
ground, or restore a program to the
foreground. Read on to discover how you
can keep control over your jobs.

Into the Background
Let’s imagine a situation where a com-
mand you have launched is taking a
while to complete. You sit there twid-
dling your thumbs while the terminal
waits for the program to complete. And
you cannot enter any other commands
while you are waiting. 

It makes sense to move the process to
the background when you are launching
it. To do this, just add an ampersand (&)
to the command, for example:

$ find . -name bla > /tmp/list &
[1] 664

This command displays a few messages
about the process you launched and then
immediately restores the prompt. The
message includes the job ID in angled
brackets, followed by the PID (Process
IDentifier). The PID is unique through-
out the system, whereas the job ID is a
consecutive number assigned by the
shell. 

The jobs command tells you which
jobs are running in the current shell:

$ jobs
[1]+ Stopped find .
-name bla > /tmp/list

If you forget to add an ampersand when
launching a time-consuming command,
and you have the task running in the
foreground, you may become very impa-
tient and wish to work on something
else. In this situation, the commands to
send this task into the background are
quite simple in the Bash shell. 

First, press [Ctrl-Z] to interrupt the
task. The output of the [Ctrl-Z] com-
mand tells you the job ID and the name
of the command you just interrupted
before the shell again displays the

84 November 2004 www.linux-magazine.com

The right commands make child’s play of job control in the shell, allowing you

to launch commands in the background, interrupt processes, monitor multiple

jobs, and restore specific jobs to the foreground. BY HEIKE JURZIK

Job control in the shell

Nice Job

Although GUIs such as KDE or GNOME are
useful for various tasks, if you intend to get
the most out of your Linux machine, you will
need to revert to the good old command
line from time to time. Apart from that, you
will probably be confronted with various
scenarios where some working knowledge
will be extremely useful in finding your way
through the command line jungle.

Command Line

Command LineLINUX USER



85www.linux-magazine.com November 2004

LINUX USERCommand Line

kill can do more than just
shoot processes down in
flames; in fact, it can send
them all kinds of signals. For
an overview, type kill -l (or
read the manpage man 7 sig-
nal). In this case, we will be
using the -STOP signal:

$ kill -STOP $!
$ jobs -l
[1]- 1057 Stopped

sleep 1000
[2] 1058 Running

sleep 1000 &
[3]+ 1066 Stopped

(signal)
sleep 100 &

Shy Guy
The nohup command gives
processes the ability to con-
tinue running when you quit
the shell. To unhitch the
process from the shell, type
nohup, plus the command
name, and add an ampersand
to send the process to the
background. The following
output

$ nohup sleep 1000 &
[1] 1116 nohup:
appending output to
`nohup.out'

tells you that the process will
go on running even if you
type exit or press [Ctrl-D] to
quit the shell. Later on, you
can check the nohup.out file
to see what the program did
while you were away.

The nice command assigns
processes a specific priority –
this is useful if you have a
program running in the back-
ground and do not want to
risk losing control over the
system load. Non-privileged
users are only permitted to
assign lower priorities to their
own tasks.

Processes are assigned a
nice value of 0 by default,
where -20 is the highest, and
19 the lowest priority. The
nice command is followed by
the priority and the com-
mand, as follows:

nice -10 find . U

-name bla > /tmp/list

If you then call the ps com-
mand to view the process
status, you will notice that
the find call has been
“niced”:

$ ps auxwww
[...]
huhn 1200 0.2 0.6
1520 404 pts/7 RN+
23:02 0:00 find . -
name bla [...]

The top command gives you
an even better way of discov-
ering a program’s nice level.
The top program lists
processes, and sorts them by
CPU usage. The fourth col-
umn, the one with the NI
heading, tells you the nice
level (Figure 1). ■

Figure 1: The “top” command also tells you a program’s “nice” level.


