
PROGRAMMING

60 LINUX MAGAZINE

Scientific visualisation
with VTK and Tcl

EYECATCHER

As the saying goes, a picture is worth a
thousand words, and with good reason:
visualisation is helpful in understanding

complex correlations. For 2D data there are several
tools available under Linux, such as Gnuplot, Grace
of ScigrAphica. For anyone who needs more, a
suitable free software solution is also available in
the form of the Visualization Tool Kit (VTK). With its
many display variants, VTK produces meaningful 3D
graphics from multi-dimensional measurement data
or calculations.

VTK is not an independent tool like Gnuplot, but
rather a class library that handles both
visualisation and image processing.
This library, written in C++, can also
be used with Tcl, Python and Java and
its vast array of options offers
solutions for any requirements. The
sources are available at
http://public.kitware.com and SuSE
also includes VTK as an RPM. The
demo programs and documentation
files are also recommended.

The library, language bindings
and other files amount to a whopping
800Mb. If your space is limited,
however, you can restrict yourself to
the languages you really need and

Graphical

visualisation of

complex data is no

problem with the

VTK library. This

turns mountains of

multi-dimensional

data into clear

images – and as

Carsten Zerbst

explains, it can

be programmed

using Tcl/Tk

install only a selection of the associated files.
The many demo programs are worth their weight

in gold and you can often solve your own problems
just by looking through them. The VTK book by the
library’s authors is also recommended for anyone
seriously interested in the subject.

VTK originated in the medical science division of
General Electric but has been under Open Source for
many years. Consequently it has a lively user
community with an active mailing list, and Sebastian
Barré has compiled a useful selection of links. Some
of the algorithms contained in VTK are patented,
however: in their FAQ the authors point out that
commercial use may incur license fees.

Another field
Visualisation is based on data from calculations or
measurements available for individual structured
points. In VTK these points are called a dataset. The
topology (arrangement) of these points can take
various forms, depending on the methods used for
the measurements or calculations. Finite element
method calculations normally use an unstructured
mesh, while computer tomographs measure points
on a fixed grid. Figure 1 shows some of the common
variants. Data exists for each of these structured
points, these can be scalar values (such as
temperature, density), vector values (displacement,
flow speeds) or tensors (tension). Visualisation is
much more than just the representation of forms.

While CAD systems simply need to represent the
geometry, things are more complicated when
visualising measurements. Here, the aim is to render a
mass of data in a suitable format through the use of
various techniques. This means that the character of
the data will sometimes have to be changed
completely in order to achieve a comprehensible
result. We will try to clarify this with the help of some
examples.

The magnification function (also referred to as
amplitude frequency) of a simple oscillator depending
on harmonisation and absorption (Figure 2) is a pretty
simple task for VTK. Here an area is mounted and
coloured in according to the formula.

Figure 1: Possible topologies of structured points.
Each point relates to one or more measurement
values that apply to this location

Issue 16 • 2002

PROGRAMMING

61LINUX MAGAZINEIssue 16 • 2002

Off the straight and narrow
The Bumpy Hill course from the Tux Racer game is a
bit more demanding. It is based on a bitmap with a
height profile, which provides height information for
every point of the landscape. In the first step the
profile is represented as a grid (Figure 3). This grid
contains 80,000 rectangles, far too many to handle
easily. This is a common visualisation problem, the
original volume of the data is simply too large. In
Figure 4 the number of elements has been reduced
significantly, although the visual appearance remains
much the same, thanks to intelligent decimation
techniques.

In our last example Figure 5 shows a human skull.
This is based on a file with density values from a

computer tomograph. Using the marching cubes
method, a surface consisting of triangles is calculated
from these. The surface covers the points whose
density corresponds to that of bones. This changes
the topology of the data fundamentally: the
structured (3D) density value grid is turned into an
area consisting of polygons.

The toolbox
To be able to keep track of all these conversions and
renderings VTK splits them into separate steps, with
each step implementing its own object. The idea
behind this is a flow of data from source to
rendering. The individual objects modify this stream
of data until the dataset (measurement values) finally

Tcl update
Another two months have passed in Tcl
land. The current release 8.3 fixed some
errors in the Mac port and then 8.3.4
came out at the end of October. Apple is
supporting Jim Ingham in a native port of
Tk to Mac OS X; the result is going to be
available in 8.4. Although the developers
are adding more and more functionality to
8.4 they seem to be lacking the will to
finally release it.

Aside from a lot of background work,
the Tcl Core Team (TCT) has decided to
integrate two new widgets: a frame with
label by Peter Spjuth and a paned window
by Eric Melski. Both widgets will be
contained in Tcl/Tk 8.4. Although the new
version is entirely useable by now, it is
officially still in its alpha stage. Thanks to
CVS access at SourceForge, the wait for
the next edition has lost some of its horror,
but a crowd-pleaser in form of the
completion of 8.4 would be even better.

Away from those little steps another

decision is much more important: TIP (Tcl
Improvement Proposal) number 50 has
been signed off by the TCT. This is the
proposal to deliver the OO extension [incr
Tcl] together with the core release. That
makes classes and inheritance available as
part of the normal Tcl distribution from Tcl
8.4 (similar to Tk at the moment). A set of
additional widgets, such as calendar, a
progress display and many others, is also
part of [incr Tcl].

Thread extensions are already available
prior to the release of 8.4. Tcl itself has
long been thread-enabled but this was
mainly used from C, in applications with
embedded interpreters. At SourceForge you
can now get extensions, which enable the
script side to use several threads as well.
For Tcl this marks another step away from
its father John Ousterhout, who thinks that
threads are generally a bad idea.

Whatever you think of .NET, the SOAP
protocol is getting more and more support

under Linux as well as elsewhere. TclSOAP
can be used to develop servers and clients
for the SOAP protocol. The extension uses
TclDOM and TclXML and has been written
entirely in Tcl. TclSOAP 1.6 implements
SOAP 1.1 and fulfils the Userland test
suites.

Csaba Nemethi has introduced new
versions of his Tcl extensions. All three
packages have been written in Tcl and can
therefore be used without compiling
independent of platform. The widget
callback and multi entry packages help
with those niggling little user entry
problems. These packages can reduce
possible entries to a particular format
(date, for instance), Ethernet address or
telephone number. The multi column
listbox is a feature that is sadly lacking in
Tk at the moment. It is easily adapted to
your own requirements, be they sorting
functions or special colours, right down to
individual cells.

Figure 2: The magnification function of a
simple oscillator. The colour (and height)
represents the extent to which the
oscillator reacts to a stimulus, depending
on its harmonisation and absorption

Figure 3: The Tux Racer course as a
grid: for each of the 80,000
structured points information
exists on the height of the
landscape at this point

Figure 4: The Tux Racer course, but this
time represented only by a few triangles.
The graphic appears almost as detailed,
although it contains significantly less
information.

Figure 5: The surface of the
skull was calculated from

density values measured with
a computer tomograph.

While the data is provided in
form of a volume grid, the

surface consists of polygons.

PROGRAMMING

62 LINUX MAGAZINE Issue 16 • 2002

turns into the required rendition. It is the vast number
of possible intermediate steps and their interrelations
that make VTK so powerful.

How these VTK objects can be used in Tcl is again
best illustrated using an example. It is based on a file
containing pressure values in high seas. The aim is to
calculate the wave surface and to render it as a
simple image.

As a first step, the measurement values must find
their way into VTK. The data can be read with one of

the various reader classes. Apart from ones for VTK’s
own format these also exist for many other 3D
formats (e.g. 3D Studio, VRML, PLOT3D, BYU, SLC,
STL) as well as for bitmap formats.

The measurement values are normally in the form
of a grid. The location of the wave surface is where
the pressure is 1hPa, only this surface is to be
displayed. This is achieved using the marching cubes
method, which calculates triangular surfaces from
fields of scalar values. Listing 1 shows in detail how
the VTK pipeline is constructed; the result is can be
seen in Figure 6.

From grid to wave
VTK is going to calculate the wave surface from the
raw data contained in the file press03. The
conversion is handled by the object iso, which is of
the type vtkMarchingCubes and which implements
the algorithm of the same name. This object is
allocated the output of the read object reader as
input using the method SetInput. All VTK classes use
this mechanism for implementing the stream of data.

Once the area has been calculated it needs to be
mapped to graphical primitives (for example points,
lines or triangles) for rendering. This is done using
mapper objects, which represent the geometry of the
model. The mapper isoMapper is linked to the output
of the iso object and thus integrated into the data
stream.

Both geometry and colour are then represented by
an actor. To give the whole thing a maritime touch
the area is going to be displayed in sea green. Part of
every actor is a property object for colours and
ambience. This object can be returned using the
method GetProperty, and is to be stored by our
example program in the isoProp variable. The method
SetColor then sets the colour as requested, while the
SetAmbience method changes the lighting
characteristics.

There are still two steps missing from the pipeline
before we get to rendering: a window which brings
the graph to the screen and before that an object
that calculates what is to be rendered. Calculation is
handled by the render class, and an object from this
class is linked to the actors. Here, the procedure is
slightly different from before: instead of linking input
and output, the AddActor method tells the renderer
which actor to render.

VTK, windows and Tk
Now we just need the output window. VTK
recognises several window classes, in this case we are
using vtkRenderWindow. You can also zoom in on or
out of graphs and turn or move them within the
window using the vtkRenderWindowInteractor
object.

Apart from vtkRenderWindow there is also a
vtkTkRenderWidget. This behaves like a normal Tk

Info
VTK sources http://public.kitware.com
Manual ftp://public.kitware.com/pub/vtk/nightly/vtkMan.tar.gz
S. BarrÈ http://www.barre.nom.fr/vtk/links.html
VTK pipeline http://brighton.ncsa.uiuc.edu/prajlich/vtkPipeline/
TclSOAP http://tclsoap.sourceforge.net/
Csaba Nemethi http://www.nemethi.de
Thread Extension http://sourceforge.net/projects/tcl/
John Ousterhout http://home.pacbell.net/ouster/threads.ppt
Will Schroeder, Ken Martin and Bill Lorensen –

The Visualization Toolkit (Prentice Hall, 1997)

01 #!/bin/sh
02 # \
03 exec vtk “$0” “$@”
04
05 # read in data
06 vtkStructuredPointsReader reader
07 reader SetFileName “press03”
08 reader SetScalarsName “pressure”
09
10 # create surface for values U
of 1.0
11 vtkMarchingCubes iso
12 iso SetInput [reader GetOutput]
13 iso SetValue 0 1.0
14
15 # map model to graphical U
primitives
16 vtkPolyDataMapper isoMapper
17 isoMapper SetInput [iso U
GetOutput]
18 isoMapper ScalarVisibilityOff
19
20 # the actor
21 vtkActor isoActor
22 isoActor SetMapper isoMapper

23
24 # colour surface seagreen
25 set isoProp [isoActor U
GetProperty]
26 # X11 colour sea_green_light
27 $isoProp SetColor 0.1255 U
0.6980 0.6667
28 $isoProp SetAmbient 0.4
29
30 # create renderer and window
31 vtkRenderer ren1
32 ren1 AddActor isoActor
33 ren1 SetBackground 1 1 1
34
35 vtkRenderWindow renWin
36 renWin SetSize 600 480
37 renWin AddRenderer ren1
38
39 vtkRenderWindowInteractor iren
40 iren SetRenderWindow renWin
41
42 # start representation
43 renWin Render

Figure 6: Example
output: pressure

distribution in high
seas. The image
shows the wave
surface, which is

situated where the
pressure is at 1hPa.

Listing 1: Pressure distribution

widget; it allows you to construct the entire surface
with Tk and to use 3D visualisation as a sort of 3D
canvas. A good example for the integration of Tk and
VTK is Decimator, a utility for displaying 3D formats
like BYU, STL and Wavefront (Figure 7).

Now that the entire pipeline from file to window
has been linked, renWinRender starts the data flow.
Instead of a confusing mass of data we are presented
with the desired image.

The vtkPipeline utility can prove very useful: it
represents the pipeline structure graphically and
provides a good insight into its interdependencies
and processes (Figure 8). The reader transfers the raw
data via the connection vtkTemp0 to the iso object.
This is the object selected for rendering in our
program – consequently the right half of the window
shows the name of its class (i.e. vtkMarchingCubes)
and its properties.

Conclusion
Once you have familiarised yourself with its pipeline
structure and its many options VTK offers a pretty
quick route to producing images. In combination with
Tcl, visualisation programs can be created quickly, and
with user-friendly interfaces to boot, thanks to Tk.

The author
Carsten Zerbst works for Atlantec on a specialised PDM-System for
the ship-building industry. Apart from that he devotes his time to the
general application of Tcl/Tk.

Figure 7: Decimator is
a display utility for 3D
formats. It uses Tcl/Tk
for its GUI and VTK for
3D rendering

Figure 8: ctkPipeline
illustrates the data flow of
our example program. On

the left it shows the objects
and their relations, on the

right the objects’ properties

PROGRAMMING

63LINUX MAGAZINEIssue 16 • 2001

Free
issues

of Linux
Magazine!

3
See page 82 to order now or
call us on 01625 850565 and
guarantee you copy today.

You can also place your oder
at www.linux-magazine.co.uk

The essentialmagazine for allLinux users

