
FEATURE

18 LINUX MAGAZINE Issue 16 • 2002

The POV-Ray raytracing utility

PERSISTENCE
OF VISION

POV-Ray (Persistence Of Vision Raytracer) is one
of the many utilities that you may have on your
system without even realising it was there. As

such, you may have never got to play around with it,
missing out on the chance to while away the hours
with nothing more than idle tinkering, a bona fide
pursuit if ever there was one.

Raytracing
For the uninitiated, POV-Ray is a raytracing tool.
Raytracing is a method that enables you to create
stunning graphic images, be they abstract, geometric
or photo-realistic. This will take a little time to learn,
as it calls upon your imagination and requires a little
patience.

The first step in the road to creating your graphical
masterpiece is to “describe” what you want to depict
in your picture. This description comes in the form of
a programming language, or uses an interactive
modelling system, like a CAD package. Either way,
you’ll need to specify what objects are in your
imaginary world, what shape they are, where they
are, what colour and texture they have and where
the light sources are to illuminate them. Having done
all of this, you feed it into your ray tracer then sit
back and wait, which is a necessary evil, as the
rendering can take some time. 

Without having some idea of how the images are
built up in a raytracing description file, you won’t be
able to fully appreciate what is going on under the

Should you have an

evening, weekend, or

a whole year to fill,

then you might just

find raytracing a

worthy pursuit. 

Colin Murphy 

finds out why

hood, so we will leave the CAD package-like
development systems to one side and ‘play’ in text
mode for the moment.

POV-Ray is freely available for download. If you
want the complete Linux distribution of POV-Ray
3.1g, including X Window and SVGAlib ELF binaries,
documentation, sample scenes, and include files,
download the povlinux.tgz file, which is 1.5Mb.

cd /usr/local/
tar -xzvf /download directory/povlinux.tgz

read the README.linux file and if all is well

povray31/install

will call up the installation script. Using this method, I
found that a ‘povray’ executable wasn’t created, but I
did get x-povray and s-povray – you might like to set
up a symbolic link to whichever you will use on your
system. I will just refer to the executable I use.

There are two documents you should read to make
most use out of POV-Ray: the README mentioned
above and povuser.txt, which will also be in /usr/ local/
povray31/ if that’s where you uncompressed the files
to. This second text file contains a beginners’ tutorial,
a complete reference to the Scene Description
Language, which you will use to code your efforts,
and other information. This file is also available from
the POV-Ray site in other formats, including HTML,
which might make it more useful to some.

Create those images
To get you started, we’ll run through some basic
examples. In the /scenes/ directory you’ll find some
.pov files, which we’ll use as our examples to take a
look at. The command

x-povray +i
/usr/local/lib/povray31/scenes/incdemo/shapes2
+o /home/LinuxMag/shapes.png+W800 +H600 +D0 

will produce the output shown in Figure 1. The +i
and +o switches define the input and output files;

Figure 1: POV-Ray example
image shape2. Well, we all have

to start somewhere. On a
450MHz machine this took 15

seconds to render



FEATURE

19LINUX MAGAZINEIssue 16 • 2002

the +W and +H define the resolution of the output
file. The +D0 switch is a must for beginners, as it
allows for some instant gratification that POV-Ray is
doing something by printing a version of what it has
rendered so far in an X window. This no doubt takes
up valuable processor cycles, but while you’re playing
with POV-Ray it can only help.

Some code
This has come from a file less than a page long and
we will run through just some of example lines in
that code.

The camera section defines how the objects in the
file are viewed:

camera {
location <10, 10, -20>
look_at <2, 0, 0>
}

Briefly, location <10, 10, -20> places the camera up
ten units, ten units to the right and back twenty units
from the centre of the raytracing universe (which is at
<0,0,0>). By default +z is into the screen and -z is
back out of the screen.

Also, look_at <0,0,1.5> rotates the camera to
point at those coordinates. The look_at point should
be the centre of attention of our image.

light_source {<0, 1000, -1000> colour
LightGray}

The vector in the light_source statement specifies the
location of the light set to some extreme values to
make the shadows obvious. The light source is a tiny
invisible point that emits light. It has no physical
shape, so no texture is needed. There are two light
sources referred to in the code listing.

The remaining lines describe the construction of
the objects in the image using Constructive Solid
Geometry. POV-Ray allows us to construct complex
solids by combining primitive shapes in a number of

different ways. Full details of how this works can be
found in the povuser documentation.

Experimentation really is the order of the day. You
should tinker with the parameters in your favourite
text editor and render a new image from your code.
Code can be built up very quickly – the image shown
in Figure 2 is only another 500bytes longer than the
original example, which is almost an effort worthy of
printing and mounting.

Graphical user interfaces.
Working from the command line might be a little off-
putting for some people, particularly for those that
like a friendly environment. There are plenty of GUI
interfaces for POV-Ray available, and you should be
able to find one that works on your desktop.

Povfront is one such front-end. It’s designed to
run under any flavour of Unix using GTK and glib
libraries, it’s POSIX compliant and has been
successfully tested on Linux Red Hat 5.2/6.0/6.1
and Mandrake 6.0/6.1. It aims to provide an easy
way to launch pov rendering with a graphical
interface, which provides all the available options –
even the script only ones. The only requirement is
that you have the GTK+ (1.2 version) or later
libraries installed. 

Support
There is a very active user base for POV-Ray and
raytracing in general. There are plenty of sites on the
Web offering tutorials and other documentation, as
well as people’s own efforts in creating objects and
textures for you to use in your work – there are even
competitions to enter. Take a look at Figure 5 to see
what you can achieve with some open source
software and three day to render in!

Info
POV-Ray homepage http://www.povray.org/
Povfront http://perso.club-

internet.fr/clovis1/

Figure 2: A more complex picture in only 500 more
bytes, which only took another minute to render

Figure 3: A much more
complex example of
rendering, which
includes reflections

Figure 4: Povfront will
allow you easy access
to all the switches you
can use in PovRay, and
then some


