
FEATURE

38 LINUX MAGAZINE Issue 16 • 2002

CRYPTOGRAPHY
Protection from prying eyes

BEWARE THE
EYES OF MARCH

If you consider your data to be sensitive – i.e.
something that you may not want other
people to view – then you need to

think about encrypting it. A
cryptosystem is a way of
disguising a message so
that only the intended
recipients can view the
true data. Only those in the
know will be able to identify
the false nose and wig and
decrypt the message beneath.

Can you rely on encrypted text?
No matter how securely you encrypt your messages
there is no absolute guarantee that no one, other
than your intended recipient, will get to the
information they contain. With a little brute force,
enough processing power and a lot of time, anything
is crackable. All you need to know is the encryption
algorithm. Once someone gets hold of the encrypted
text they can find the guarded text through the
lengthy procedure of trying every possible key.

Back in the early ‘70s, it was agreed that a strong
cryptographic algorithm was needed. Development
started on DES – the data encryption standard –
which uses an algorithm called Lucifer. DES has a
staggering 2^56 (about 10^17) possible keys. In the
mid ‘70s this was sufficient to thwart all but the most
dedicated government agencies. As processing power
has increased however, so has the strength of brute
force attacks, so the need for more key combinations
is always growing. Given enough time all keys can be
found but information usually has a finite useful life
and so encryption only has to withstand the length of
time that the information remains useful.

As all the information can be considered a string of
numbers (ASCII symbols are just numbers) modern
ciphers use mathematical functions to encrypt data. If
the same key value is used to both encrypt and decrypt,
then it is known as a symmetrical cryptosystem.

One example of a symmetrical cryptosystem is
ROT13. Here we let A=1, B=2, all the way to Z=26.

You may have

something that you

don’t want every Tom,

Dick or Sarah

knowing about, so

encrypt it. John

Southern shows us

how

To encrypt we just move each letter along 13
characters. HELLO WORLD becomes URYYBJBEYQ.

Performing the ROT13 process again
return us to the original message.

Many IRC systems include this
as a quick method of disguising
a message, until the recipient
wants to pull the mask off. It’s a

good way to stop someone
stumbling across the punch line of

a joke or the spoiler to a film, for
example.

Asymmetrical cryptosystems are much more secure,
and therefore useful. These use mathematical
functions that require two keys, which are not the
same. Some ciphers work on a block of data, say one
byte, with operations such as addition, transposition
and multiplication, then move onto the next. A
product cipher performs several block ciphers on each
block. Feistel ciphers work on half of the cipher text
then swap them round before performing on the
next section. Lucifer happens to be a Feistel cipher.

Triple DES works on 64-bit blocks of data using 56-
bit keys three times. This gives rise to the public-
private key system. By using an asymmetric key
system one key will encrypt while the other decrypts
and vice versa. If you publish your public key then
encrypt a message with your private key. Everyone
can decrypt it (with your public key) and they know
that only you could have encrypted it. This way you
can also prove who you are. Similarly, they can
encrypt a message to you, which only you can read.
One form of this is the RSA (Patent 4405829). To test
how strong this cipher is, RSA Data Securities Inc.
post a series of numbers each month, and a cash
prize is awarded to the first person to break down
the factoring numbers.

Remember: the security and secrecy of your data
not only lies with the power of the encryption
algorithm, you must also bear in mind the security of
your machine. As such, you should be thinking about
your system security in general. Basically, we
recommend PGP and GPG, as we don’t know of any

Public and private:
public/private key
encryption is based on the
use of two keys. The
public key is freely
distributable and can be
sent in emails, cut and
paste, or saved to floppy
disk and handed out; and
is used, in part, to encrypt
messages that only you
will be able to decrypt.
The other key is the
private key, which should
remain secret and should
not be spread. This key
should only be available to
the keyholder. Someone
sending you an encrypted
message will use your
public key and their
private key.

FEATURE

39LINUX MAGAZINEIssue 16 • 2002

cracks in the system.
Encrypted data might be more than trivial to crack

but other means can be used to attack your security
and piece of mind. Some time back, a Trojan horse
was found, which rooted about in systems searching
for secret PGP keys and FTPd them away to some
ne’er do well! The quality and integrity of your
password obviously play as important a role.

How to encrypt under Linux
The two most frequently used means of encrypting
files on Linux are using GPG (GNU PrivacyGuard,
which is based on PGP – Pretty Good Privacy – but
without the patent issues) and RIPEM. In this article
we’ll concentrate on GPG, which is shipped with all
of the main distributions of Linux

First you need to generate two keys, public and
private.

Generate your key

gpg ––gen-key

Here you are asked for the type of algorithm you
wish to use. Lets use the default DSA/ElGamal,
because it’s not restricted by patents.

Next you are asked for a key length. The minimum
is 768 and the DSA minimum is 1024, but lets think
about this for a moment. The decision lies between
choosing security and the amount of time you want
to spend on encrypting messages. The greater the key
length the less likely your message will be cracked
open. We will run with the default of 1024-bits.

We are now asked for details such as our name,
email address and a comment. Finally, we now need
to enter a pass phrase to help generate our keys.
You’ll need to make this something you can
remember so that you can decrypt your files, but not
something that can be easily guessed.

Before starting to generate your keys, GPG will get
some random numbers from the system, so working
with lots of windows helps to generate randomness.

Getting and using your keys
In order to have your key in a form that you can
conveniently use, you’ll need to export the key to a file:

gpg ––export –ao public-key

The –a switch will produce your key in 7-bit ASCII, so
it’s easier on the eye, while the o switch sends it to
the file ‘public-key’ so that we have something to
handle.

When you receive someone else’s key, you need to
put this on your keyring. This is done with

gpg ––import public-key

Key distribution
To make use of your public key, other people need to
have a copy of it. This can be done by attaching the
file in emails or by sending it on floppy disks. You can
even use servers like http://www.keyserver.net/, which
enables you to post your keys for other people to
search for and pick up.

There is a problem of trust with this however. Who
is to say that someone with evil intent won’t give away
public keys pretending to be you? The way around this
is to use key signing. Your public key can be signed by
other people who have verified it really is you, and
who have been verified themselves. In practice you
meet someone at a keysigning party for a quiet drink
and exchange keys on floppies. Now their friends can
accept your key because your friend says yes that really
is you. In this way, a Web of trust builds up.

Locking the door
Now that we have our keys, and the public key of
the person we want to send something encrypted to,
we run with the command:

gpg –e –r LinuxMag test.txt

To be safe we had better sign the file as well

gpg –s data_file

gpg –d test.txt.gpg

will decrypt.
There are gui front-ends to help you through all of

this (see http://freshmeat.net/projects/) but they are
often not needed. The real trick is to set up your
email client to automatically encrypt whenever you
want – see the KMail screenshot for an example.

KMail ready to be
configured with
your newly created
GPG keys

Info
GPG HOWTO http://www.dewinter.com/gnupg_howto/english/

GPGMiniHowto-1.html
Public key server http://www.keyserver.net/en/

