J(TEMPLATE TOOLKIT

TEMPLAITE
FILE PROCESSING

JIM CHEETHAM

f PROGRAMMING

The Template Toolkit (TT) provides a metalanguage that can be inserted into otherwise
ordinary data files, allowing you to embed data processing instructions.

TT is a collection of Perl modules, and so you will need
to have Perl on your system to use TT. Don’t worry that
you need to understand Perl in order to use TT, though
—the template language has been designed to be
useable by non-Perl hackers, and you can invoke it
simply from the command line.

Scope

TT describes itself as “a fast, flexible, powerful and
extensible template processing system”. [won't dwell
on the speed aspect (TT will save you plenty of time
once you're using it) nor the full extensibility (which is
achieved primarily through the internal use of Perl).
However, flexibility and power are TT's
watchwords. Originally designed for generating
dynamic Web content, TT is applicable to a much
wider range of tasks. For the purposes of examples in

siteheader.tt2
<?xnml version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE htm PUBLIC “-//WB8C//DTD XHTM. 1.0 Transitional // EN’
“DTD/ xht m 1-transitional . dtd">
<htm >
[% DEFAULT
title="TT exanple site”
papercol ="#ffffff”
i nkcol =" #000000"
%
<head>
<title>[%title Y4</title>
</ head>
<body bgcol or="[%papercol %" text="[%inkcol %">

index.html
[% PROCESS si t eheader.tt2 %
<h1>TT Exanpl e website</h1>
<p>\él cone to the exanpl e TT website</p>
<p>Have a | ook at the other site pages, and don't forget to | ook at
the source HTM. code</ p>

<l'i>l nfo about the site
<l'i>Contact information for the
site
<ful >
[% PROCESS sitefooter.tt2 %

58 LINUX MAGAZINE | 132001

this article, I'll be describing a system for quickly
building a set of static Web pages, using the
command line tools tpage and ttree.

Installing Template

The current version of Template Toolkit is 2.02, and it is
available from the main website,
http://www.template-toolkit.org.

For those of you used to Perl, it is also available from
the CPAN archives, http://lwww.cpan.org. Install with
the normal cpan commands:

$ Perl -MCPAN -e shel |
cpan> install Tenplate

The example website

Throughout this article, I will be providing examples
from a simple website. Because I'm keeping the
examples short, the website might look a little
contrived, but | hope you can see the wider
applications of TT.

The site will consist of only a few files; initially we
will meet only index.html (which is the homepage)
about.html which provides some contact details, and
info.html, which provides some more information
about the site.

To go with these files, we'll use a couple of template
files, siteheader.tt2 and sitefooter.tt2. The exact names
of all these files is pretty much unimportant, and the
extension (.tt2, .html) is doubly unimportant. I just tend
to keep using file name extensions like this to help me
organise my files while I'm working on them, and they
are especially useful if you ever find yourself editing
files in a Windows environment.

As the examples build up, more files and templates
will be introduced. The example site, and the code
used to produce it, can be found on
http://tt.gonzul.net

The language

The TT language is embedded into your data files, and
by default the TT commands are identified by [% and

%]. These can, of course, be changed in case they
would cause a conflict with your data —TT is flexible,
after all. Taking the siteheader.tt2 file as our example:

The file is a fragment of HTML code — specifically, it's
the document declaration, header and beginning of
the body of an XHTML file. But don’t worry about that
at the moment, because I'm going to that part of
things in a minute.

The <title> and <body> lines are interesting — they
show what you will probably recognise as normal
HTML lines of code, except that where you would
expect to find text (in the case of <title>) or values
(<body>) you find a TT code reference to a variable.

Earlier on in the snippet there’s a section called
DEFAULT, which introduces values for the variables that
I'm using below. All the variables look like just plain
text — if you want to use real numbers for something
(and potentially do some operations on those
numbers, like addition or subtraction) you can, trusting
the underlying Perl system to Do The Right Thing and
automatically transform from text to numeric, and
back again, according to context.

When this file is processed by TT, everything it finds
between [% and %] will be replaced with the value TT
comes up with at the time. So, with the variable title
setto “TT example site”, the code

<title>[%title %</title>
will become

<title>TT exanpl e code</title>

Notice here that the quote marks (“") used to declare
the value of title have not been kept, nor have the
spaces within the [% title %] section.

Using templates by name

Now, this siteheader.tt2 file isn't very useful on it's own
—it won't produce a valid HTML file, for a start. But |
can include it at the beginning of every “real” HTML
page in my site, by using the PROCESS directive. There
are a couple of other variations on this command,
called INCLUDE and INSERT, but they don't do quite
what | want here. Have a look at the example site’s
homepage, index.html.

Here | have a simple HTML file, but it doesn’t start
with <HTML> or even <BODY>, and therefore isn't
really a suitable homepage. Instead, it hasa TT
directive at the beginning, [% PROCESS siteheader.tt2
%]. Similarly, it doesn’t end with </body></html> as
you might expect, but it does have a TT directive to
process the file sitefooter.tt2.

The PROCESS directive allows you to include
another template into the current file, and it will keep
track of all the variables that you are currently using.
This will become clearer in the next example, but for
the time being let’s just see what happens to our
index.html.

I'll use the tpage command to actually process the

TEMPLATE TOOLKIT

tpage
$ t page</ span> i ndex. ht n
<?xm version="1.0" encodi ng="UTF-8"?>

PROGRAMMING

<! DOCTYPE htmi PUBLIC “-//WBC//DTD XHTM. 1.0 Transi tional //EN’

“DTD/ xht m 1-transitional . dtd">

<htm >

<head>

<title>TT exanple site</title>

</ head>

<body bgcol or="#ffffff" text="#000000">
<h1>TT Exanpl e website</hl>

<p>Wél come to the exanpl e TT website</p>

<p>Have a | ook at the other site pages, and don't forget to | ook at

the source HTM. code</ p>

l nfo about the site</Ii>
Contact information for the

site</|i>

<di v>

<p>Exanpl e site copyright &opy; 2001 Ji m Cheet hanx/ p>

</div>
</ body>
</htn >

files. All tpage does is to read in the file you specify,
and to run it through a Template instance within Perl,
with the results coming out on STDOUT. If you want to
see a practical example of how to use Template from
within a Perl environment, start by having a look at the
internals of tpage — however I'm not going to cover
that aspect of Template Toolkit here.

You can see that above and below the actual HTML
code from index.html, there appears extra HTML code,
that is produced by the siteheader.tt2 and
sitefooter.tt2 files. This code has been inserted into the
output, and in the case of siteheader.tt2, the variable
name references between [% and %] have been
substituted for their values. So we now have simple
way to make sure that all our files have a consistent
header and footer, in just one TT command.

Nowy, if you actually wanted to look at this file in a
Web browser, you'd have to save this output, and put
it somewhere sensible, then ask your browser to read
that file. But don't worry about that just at the
moment, because we haven’t met the extremely useful
ttree command yet.

info.html

[% PROCESS siteheader.tt2 title="Site Information”%

<h1>I nformation about the TT Exanpl e website</h1>

<p>The TT exanpl e website has been produced to illustrate the use of
Tenpl ate Tool kit

when bui | ding static Wb sites.</p>

<p>Have a | ook at the other site pages, and don't forget to | ook at

the source HTM. code</ p>

l ndex</ a> page for the site
Contact information for the

site
<ful >
[% PROCESS sitefooter.tt2 %

132001 LINUX MAGAZINE 59

PROGRAMMING TEMPLATE TOOLKIT

So far our example hasn’t shown any of TT's more
powerful features. PROCESS looks useful enough, but
you probably don’t want to have all of your pages with
the same <title> string, for example. Having multiple
siteheader files would defeat the object of using TT in

Modified Listing

$ t page</ span> i nf 0. ht i

?2xm version="1.0" encodi ng="UTF-8"?>

<I'DOCTYPE htm PUBLIC “-//VWBC//DTD XHTM. 1.0 Transi tional //EN'
“DTD/ xht m 1-transitional . dtd">

<htm >

<head>

<title>Site Information</title>

</ head>

<body bgcol or="#ffffff" text="#000000">

<h1>Information about the TT Exanpl e website</hl>

<p>The TT exanpl e website has been produced to illustrate the use of
Tenpl ate Tool ki t
when bui | ding static Wb sites.</p>

<p>Have a | ook at the other site pages, and don't forget to | ook at
the source HTM. code</ p>

<l'i>l ndex page for the site
<l'i>Contact i nformation for the
site

<[ul >

<di v>

<p>Exanpl e site copyright © 2001 Ji m Cheet hanx/ p>

</div>

</ body>

</htm >

menu.html
[% PROCESS siteheader.tt2 title="Mnu exanmple” %
<h1>Menu exanpl e</ h1>
<p>This is an exanpl e of a list of values, used tw ce by the sane
tenplate
and presented in two different ways</p>
[%nenuitens = [“first”, “second”, “third", “fourth”, “fifth”] %
<tabl e border="1">
<tr><th>Vertical Menu</th><th>Horizontal
Menu</th></tr>
<t r><t d>[% PROCESS menu.tt2 dirn="vertical” %</td>
<t d>[% PROCESS menu.tt2 dirn="horizontal " % </td></tr>
</tabl e>
[% PROCESS sitefooter.tt2 %

menu.tt2
[% DEFAULT
dirn = “hori zontal "
menuitens = [“firstitent, “mddleitent, “lastiteni]
%
[%itenmcount =0 %
[% FOREACH i tem = menui tems %
[%item%
[%itencount = itencount + 1 %
[%IFitenmcount != nenuitens.size %
[%IF dirn =="“horizontal” %

[%ELSE %
,

[%END %
[% END %
[% END %

60 LINUX MAGAZINE | 13 -2001

the first place, so how can we easily ask for variations?
For the answer to this, have a look at the info.html file.

This file is almost identical to index.html, and you
can again see the usefulness of having standard
PROCESS instructions to keep our site pages
consistent. But for this page, we want to have a
different <title>, so in the PROCESS statement where
we call for the siteheader.tt2 template, we have
included the name and value of the title variable.
When this gets processed by tpage, we see the results as
the modified listing.

In this case, the <title> declaration in the code
now reads “Site Information”, instead of the default
“TT example site”. This flexibility in variable
declaration is a big feature for TT. The siteheader.tt2
file does set it's own value for title, but we are able to
override it with the PROCESS line in info.html
because it is defined within a DEFAULT block, which
only sets values for variables if they have not been
already specified elsewhere.

Similarly, it would be easy to alter the values of
papercol and inkcol on a per- page basis, by including
their specifications on the relevant PROCESS lines.

Decisions, decisions...

So far the templates we've been using have been
pretty straight-forward, just setting and using values.
TT starts to get more interesting when you encourage
your templates to make decisions (based on the values
of variables) and produce different output in response.

Let's have a look at a new Web page, menu.html,
which uses the template menu.tt2 to present two
different variations of the same menu — a little
contrived, perhaps, but you will see what I'm
getting at.

I'm also going to introduce you to some looping
control statements, and list variables. It'll sound easier
when you see the examples in the menu.html file:

We've seen most of this before, the two PROCESS
directives at the beginning and end are the same as in
the other HTML files. However, there are a couple of
new things here. The first is the declaration of
menuitems as a list of values, in a syntax that Perl
people will be familiar with, and the second is the use
of a PROCESS directive right in the middle of a table,
twice. Each time menu.tt2 is called we are selecting a
different value for dirn, the variable that determines
how the menu items will be presented. Now for a look
at the menu.tt2 template file:

There are a few familiar directives in this file, so
let's deal with them first. The DEFAULT block at the
beginning allows the template to set values for dirn
and menuitems, in case the calling program did not
specify them. I'm not so sure how useful it is for a
template to provide it's own data, in menuitems. It
might be better for the template to check to see if
menuitems has been specified, and if not, to output
some sort of diagnostic message. It's a matter of
taste, I guess.

Then we set the itemcount variable to be 0. This
variable will be used to keep track of how far through
the list of items we have progressed.

Now we encounter a new directive, FOREACH. This
statement sets up a loop construct, which intends to
step through each value in menuitems in turn, setting
the variable item to whatever the next list item is, each
time. The end of the FOREACH block is indicated by
the [% END %] statement, and I've used indenting to
make it easier for the reader to match up the END
statement with the relevant beginning.

The first thing we do inside the loop is to output the
current list item value. Then we add one to the counter
itemcount. Yes, there are lots of other ways of doing
this job, but let’s stick to the simple methods.

Now we have a decision to make. If we have
reached the last item in the list, we just want to finish.
You haven't yet seen what we do if we're in the middle
of the list, so it may not be entirely clear why we don’t
want to do it at the end of the list, but trust me for the
moment, and read on.

The decision is made by the [% IF statement. It looks
at the conditional, which is the statement “itemcount
I=menuitems.size”, and decides whether it is true or
not. If it is true, in other words, if we are not on the last
item in the list, then we can carry on down to the next
section of code, otherwise the test fails and we END
the IF block.

There is a handy reversal of the IF statement,
known as the UNLESS statement. Sometimes it's
easier to read your template code in a more natural
voice when the test word is the opposite way
round. Template Toolkit (and Perl!) tries to be easy
to use.

So, we've decided that we're not yet at the end of
the list. We'd like to put something between the items
in the list, otherwise they’ll run together on the final
output. For the horizontal list, we'll add justa “,”, and
for the vertical list, we'll add a comma and a line-
break, “,
" (Note that I'm using XHTML
statements here, it's good practice and won't break
existing browsers).

I'll use a simple IF test on the dirn variable, to see if
it is equal to the word “horizontal”. If it is, we'll
output just a comma, and if it isn't, we'll go for the
comma and line-break. Of course, with a test like this
we're not being very thorough - if someone had set
dirn to a value like “sideways” they'd end up with
vertical. You could change the test around to have a
different default, or even allow a situation where you
could output the list with no delimiters when the dirn
is not recognised.

When you get round to running this example, you
might be surprised to see lots and lots of extra, blank
lines in the final output. This is a side effect of the
default behaviour of TT, where it leaves the original file
untouched outside of the [% ...%] blocks. This
includes the line endings after the %] sections, and
can be dealt with - but not with the simple tpage
program. Hold your horses and wait for the ttree
command, coming up next.

TEMPLATE TOOLKIT

ttree listing
$ttree -d destdir -s sourcedir —gnore
“ott2¢”
ttree 2.03 (Tenpl ate Tool kit version 2.00)

Source: ~/ttexanples/tt-websitelsource/
Destination: ~/ttexanples/tt-website/exanple/

PROGRAMMING

I'nclude Path: [./Websrc/tenplates, /usr/local/tenplates/lib]

Ignore: [\b(CVS|RCS)\b, "#, .tt2$]
Copy: [\.png$, \.gif$]
Accept: [*]

+ about . htni

+ index. htm

+info.htn

+ nenu. htn

- menu.tt2

- sitefooter.tt2

- sSiteheader.tt2

- sitemap.tt2

The ttree command

So far I've been running TT by using tpage on one file
at a time, which is fairly awkward and definitely not
easy to keep track of. It is time to move up to the ttree
program, which offers far more flexibility, and by
default will process all of your files correctly.

ttree has a great configuration file, but |
unfortunately don’t have the space here to explain it —
instead, try reading the extensive documentation that
comes with Template Toolkit. When ttree first runs, it
will try to create a suitable config file, in your home
directory by default, and you can go off and edit this to
suit yourself.

However, for our example we don't really need
anything more complex that the default config file. It is
useful to be able to specify the output directory for
ttree to be different from the input directory — but
don’t panic, ttree quite sensibly refuses to let them be
the same. So on the ttree command line we'll specify
the source and destination directories, and we'll also
make sure that it doesn’t process the template files we
have, by asking it to ignore all files ending in “.tt2".
See ttree listing

ttree is your friend. | haven't really been able to do it
justice here, beyond the simplest use, but it is an
excellent way to help you look after your TT source files
and get them built into the right place. It also
understands the modification date stamps on your
source files, and will only process files that have
actually changed, next time you run it. This is best
appreciated when running on under-powered
workstations, which is pretty much what everyone has.

You might remember from above the comments
about tpage allowing what may seem like excessive
blank space to appear in your output files. Well, with
ttree you can request that TT eats up all that blank
space, with a series of options to the command that
look like this:

$ ttree —pre_chonp —post _chonp —trim
(everything el se)

(ignored, matches /.tt2$/)
(ignored, matches /.tt2$/)
(ignored, matches /.tt2$/)
(ignored, matches /.tt2$/)

Links

The example website, found at
http://tt.gonzul.net

Template Toolkit
http:/lmww.template-toolkit.org
Perl

http://www.Perl.org

CPAN

http://www.cpan.org

Summary

This has been a brief overview
of the Template Toolkit's
capabilities, introducing basic
invocation methods and some
simple logic and flow-control
directives. With just these
commands, however, it is
possible to produce some quite
complex static websites
relatively quickly. Many of TT's
more powerful commands are
more suited to dynamic work,
or to invocation from within a
Perl program — which |
definitely encourage you to
explore in the future! m

132001 LINUX MAGAZINE 61

