
PROGRAMMING BLENDER SCRIPTING

62 LINUX MAGAZINE 3 · 2000

In versions greater than 1.67 and with the C-Key extensions

the well-known animation package Blender allows users to

explicitly manipulate 3D objects and their attributes. The

script language it uses to do this, Python, is popular on

every platform and very easy to learn. In this article we will

make a start writing Blender scripts with Python.

For the time being, the Python
extensions are not available in
the freeware version of

Blender. This means that without a C-Key you
cannot try out the examples provided. However,
with Blender 2.0 (the Blender games development
system), there is a certain dynamism about Python
which could help those who do not yet own a C-
Key to feel that acquiring one would be worthwhile.

First steps

We do not intend to describe in detail the structure
and implementation of Python in this article. At the
Python home page you will find a complete user
manual on Python, which you do not have to read
through right now. Python is actually very simple
and you could probably learn it standing on your
head. However, we must define some key concepts.
As the term ”object” is used both in Blender and in
Python, we intend to describe a specific Python
object as ”PyObject” in the rest of the article.
However, just to immediately confuse you again, an
object in Blender can also be a PyObject – in fact, as
soon as you address a Blender object using Python.
But, a PyObject can also be a material or a light
source in Blender and is not simply a variable or a
data record. The best thing to do is to take a look at
how we manipulate Blender objects. And the best
way to do this is to start the Blender in a window
(not full-screen) from the shell:

blender -p 0 200 640 480

This way you can still view the shell window
displaying the current stdout and stderr of the
Blender Python module. Now call up the text editor
in Blender using [Shift+F11] and select ”Add New”
in the menu panel. Now you are ready to start
writing. Try out the famous Hello program,
somewhat extended:

Everything after the "#" is a comment
a = 1
print a
print "hello"
a = a + 1
print a

Now run the script using [Alt+P]. Good, that was
easy. However, we can establish straight away that
”a” is a PyObject, and one of the simplest at that:
an integer value (int). You can use:

print type(a)

to establish what type of PyObject it is the output in
the shell: <type ‘int’>. Make a small change to the
script by setting ”a = 1.0” instead of ”a = 1”.
Check again what type a is. Aha!

Now we take the surface which is usually
presented first when we start Blender. Its
default name is Plane (OB:Plane) and it is
controlled using the EditButtons menu [F9] (see
Figure 1). Please note: the relevant Polygon
object (Mesh) is also called Plane. However, we
are only addressing its entity (i.e. the Blender
object itself) and therefore always use the OB
name.

Writing Blender scripts in Python

SNAKE
CHARMER

MARTIN STRUBEL

062blender .qxd 20.10.2000 11:48 Uhr Seite 62

Enter the following script and run it using
[Alt+P]:

import Blender
obj = Blender.Object.Get("Plane")
obj.LocX = obj.LocX + 0.5
obj.RotZ = obj.RotZ + 0.2
Blender.Redraw()

Something happened! You can print out the co-
ordinates using print if you want to check them.

And now a brief explanation. The function
Blender.Object.Get() waits for the name of the
Blender object as an argument and delivers the
pointer to the data record (for C hackers: in the
same way as struct) for the PyObject concerned as a
return value. Thus we have specifically allocated a
PyObject to the Blender object: if we change the
attributes of the PyObject obj, the attributes of the
Blender object change in the same way. However,
this function is not installed in Python – clever
readers have already guessed – it is located in the
module called Blender which must first be imported.

Blender.Redraw() allows the objects to be
redrawn (so that you can also see the effect
immediately). Of course, this is not necessary when
you compute an animation.

Obj.LocX is – quite obviously – the X co-ordinate
of the plane (strictly speaking of the purple centre
point) and obj.RotZ the angle of rotation around the
Z axis, where the unit is radians (a circle – i.e. 360
degrees – corresponds to 2*Pi or around 6.28). We
will look at how to query Pi as a variable later.

That was the basics, but we will also show you a
few tricks so that you can check out all the Python
functions in Blender.

Hierarchical society

As you can guess, Python has a similar type of class
hierarchy to C++ or Java. The dir function provides
you with a list of strings which contain the names of
the class members (or methods) of the argument.
Try out another script (”ADD NEW” in the menu):

import Blender
print dir(Blender)

Your output will be something like:

[‘Camera’, ‘Const’, ‘Get’, ‘Lamp’, ‘MateriaU
l’, ‘NMesh’, ‘Object’,
‘Redraw’, ‘World’, ‘__doc__’, ‘__name__’, ‘bU
ylink’, ‘link’].

Now try to move further down the hierarchy, for
example using:

print dir(Blender.Object)

Everything alright? In principle, you can scout
out new functions yourself (which you will probably
receive with each new version of Blender). The most

important functions are those shown in the
following form:

Blender.<class>.Get("<Name>")

For <class> you can use almost anything you
obtained above with dir: Camera, Lamp, Material,
Object and World. As a return value you always
receive a data record object, the type of which
corresponds to the class (and, accordingly, its
attributes depend on it too). The aforementioned
term ”method” always stands for a function which
is applied to a specific PyObject, e.g. one of the
standard methods is the function to attach a
PyObject to a list (the method list.append).

Blender.Get() is also a method. But what is a
list? If you do not enter anything as an argument for
Blender.Object.Get(), you will not receive the data
record of an object as a return value but a whole list
of all the objects. For example:

import Blender
obj = Blender.Object.Get()
print obj
print len(obj)

delivers the following output:

[[Object Camera at: <0.000000, -8.128851U
, 0.000000>],
[Object Plane at: <4.500000, 0.000000, 0.U
000000>]].

List elements can be addressed in the same way as
arrays in C: the X co-ordinate of the object plane
can therefore be queried or changed using
obj[1].LocX in this instance. The number of
elements in the list can be established using len(). In
this case print len(obj) produces the result ”2”.

Now, of course, we ask what else can be
manipulated apart from the co-ordinates. Answer:
almost all the attributes which can be controlled
using the IPO curve. Simply switch to the IPO editor
[Shift+F6] and view the attribute names on the
right-hand side (see Figure 2).
We want to show you a few examples (see Table 1).

As the last example once again illustrates, the
data blocks retrieved using the different functions are

PROGRAMMINGBLENDER SCRIPTING

3 · 2000 LINUX MAGAZINE 63

[top]
Figure 1: The EditButtons menu [F9]

[left]
Figure 2: The IPO window

Table 1: Blender scripting with Python
cam = Blender.Camera.Get(”Camera”)
x = cam.Lens

x = ”focal distance” of the
camera lens

cat = Blender.Object.Get(”cat”)
cat.SizeZ = cat.SizeZ / 10

Poor cat (no comment)
mat = Blender.Material.Get(”Blue mat”)
mat.B = 0.0
mat.R = 1.0

We have coloured the blue
mat red…

la = Blender.Lamp.Get(”Lamp”)
la.Energ = la.Energ - 0.1
ob = Blender.Object.Get(”Lamp”)
print ”co-ordinates:”, ob.loc

We want to dim the light a
little – but notice: la and ob are
not the same!

062blender .qxd 20.10.2000 11:49 Uhr Seite 63

not the same. Try to establish the data type (as above
with print type). If we select the lamp and switch to
the EditButtons menu [F9], we see Figure 3:

The variables la and ob have been used in the
example above to give you the gist. la is a PyObject
for the data record of the lamp parameters and ob
the parent object for this data – the lamp entity with
the name ”Lamp”. We already know that an object
in Blender defines position, rotation, size etc., and
refers to a data structure of the corresponding
object type (Lamp, Mesh, Surface, Camera, etc.). In
the relevant PyObject this happens via the pointer
ob.data. Again you must note the data type shown
by ob.data. In the example above with the lamp,
ob.data points to la of type Lamp. We could
therefore write the above example differently:

ob = Blender.Object.Get("Lamp")
la = ob.data
la.Energ = la.Energ - 0.1

What is the point in saving the parameters
separately like this? Those of you who have clashed
with Blender’s object hierarchy will certainly know
the difference between ”linked copies” and normal
”copies” (single user copy). An object can share its
parameters with several other objects in other
positions, i.e. if I change these parameters, all the
partner’s parameters change in the same way.

Therefore, you can duplicate ten lamps ”linked”
(using [ALT-D]) and use la.Energ to change their
brightness at the same time. To do this, you enter
the ”LA:” name at Blender.Lamp.Get(). However, if I
simply wish to change the position of the individual
lamps, I use ob.loc and have to enter the ”OB:”
name at Blender.Object.Get(). And now we should
schedule a coffee break before things become too
confusing.

Before we go for coffee, though, I would just
like to add one thing. Those of you who (with
selected lamp) switch to the IPO window and click
on the lamp icon will find more attributes of the
PyObject la of type ”Lamp”. And those of you who
wish to view this whole object hierarchy can do so
in the OO window using [Shift-F9].

Complex images

Now it gets serious. The great thing about scripts is
that you can program complex animations quite
easily instead of having to enter them laboriously by
hand as IPO curves. The attributes of an object can
depend on the attributes of an object animated
using an IPO curve or directly according to time. We

have already seen an example of the first case; now
need to access a time variable. We get this in the
form of the ”frame number” using:

time = Blender.Get(Blender.Const.BP_CURTIME)

The inquisitive reader who immediately tries out

print dir(Blender.Const)

finds yet another variable BP_CURFRAME. The
difference between this and BP_CURTIME is that
Blender.Get() provides an integer value (indicating
the currently rendered ”frame”). In contrast, the
time values are not necessarily integer values, e.g.
where half images (in PAL format) are rendered, or
rendering involves ”Motion Blur”.

Note: It is usually a good idea to deduct 1.0 from
the time variable so that the animation begins with
time = 0.0. Now it would be good if the script were
retrieved automatically whenever an object was
moved or whenever a new frame was rendered. It’s
all possible! Select the object concerned and switch
to the ScriptLink menu (see Figure 4)

On the right-hand side are the scene script links:
click on ”New” and enter the name of the script in
the text field (in the example taumel.py). This is
retrieved each time the frame is changed. On the
left-hand side are more link options. Depending on
which type of object was selected you will see the
symbols for object, material, lamp, world etc., in the
menu panel. However, we will not go into more
detail about these link types just now.

Let’s try it out. Let’s make a virtual lamp sway
around and flicker a little. We want to do this using
Scene-Link. We begin by adding a lamp using ”ADD
NEW->Lamp”. However, we have only one light
source. We want to see the lamp properly and so we
add another ”Plane”, delete three vertices from it in
EditMode and move the one vertex to the position
of the lamp, which we make the parent of the vertex
so that it moves with the lamp too. As material we
set a red halo. Our script can be seen in Listing 1.

In conclusion, the script is linked to the scene
via the ScriptLink menu so that it is retrieved when
the animation is played (Alt+A) and during
rendering, as described above. A small snapshot,
rendered using Motion Blur, can be seen in Figure 5:

A little bit of math and
a little bit of chance
Without any further explanation, we have imported
the math module. It contains the functions of the
standard C library, as you will see if you use print

Figure 3: The EditButtons menu [F9]

PROGRAMMING BLENDER SCRIPTING

64 LINUX MAGAZINE 3 · 2000

Figure 4: The ScriptLink menu

062blender .qxd 20.10.2000 11:49 Uhr Seite 64

dir(math). Here we also find the value of Pi
promised earlier: math.pi. We used the statement:

from math import *

so that we do not always have to type in the
module prefix math. The math module functions
used to calculate the circular movement or the sway
in the orbit are sin() and cos(), best known in the
context of trigonometry. In addition, we would like
to have a greater element of chance. For this there
is an extra module by the name of whrandom in the
standard Python directory (under Linux usually
/usr/lib/python1.5 or /usr/local/lib/python1.5.)
However, the environment variable $PYTHONPATH
is not set everywhere and so the standard system
path may not be found. Using import sys, the
system path can be replaced with the assignment

sys.path = [‘/usr/lib/python1.5’,’...’, ...]

(or extended with sys.path.append()) ? or,
alternatively, via the environment variable
$PYTHONPATH. The random function
whrandom.random() always provides a floating
decimal point value between 0.0 and 1.0. You can
read everything else from the script or simply try it
out in the example file.

A few pearls of wisdom

We can really do something with the methods
described. However, things become very interesting
– but more time-consuming – as soon as we begin
to simulate functions which are no longer as easily
predictable but depend on the position of other
objects (e.g. collisions, chaotic functions etc.) This is
a topic for another time.

Empties are very useful for establishing the
starting position of an object. You can also use
these as a kind of Slider without having to enter
variables in the script. If you wish to simulate
cannon fire, for example, you can stipulate the
starting position and firing direction of the canon
ball using two Empties.

The fact that variables and modules are not
deleted after the script is retrieved but are always
available in the memory – and globally too – is very
important. Therefore, if script A sets a variable,
script B can read it again. Of course, this can be very
useful, but it can also be somewhat confusing at
times. When experimenting with scripts, you should
test your script to establish whether it is foolproof
by saving the work, restarting Blender, reloading the
file and running the script again.

There are still a few things we haven’t discussed
yet. Since version 1.69 we have been able to
manipulate or query the vertex data of a mesh and
the original text co-ordinates directly. This is
particularly interesting for the export and import of
models (e.g. for Quake2 etc.). It also enables you to
generate complex objects easily – Lindenmayer
systems or genetic algorithms used to create plant-

like objects and trees come to mind. In addition,
modules can be developed in C which can be
loaded quite easily as dynamic libraries (like the
Blender plug-ins) using import <module>. So
anyone who still thought that Python was too slow
as an interpreter language has hopefully been
convinced otherwise.

The rapid development of Blender allows us to
dream. In future versions there will be built-in
collision detection, and work is under way on
extensions allowing users to use the Blender GUI
from Python. There are likely to be more new
features by the time you read this. Therefore, stay
on the ball and allow yourself to be surprised. ■

Info

Python home page:
http://www.python.org/
Brief Python
documentation on Blender:
http://www.blender.nl/comple
te/index.html
Blender
http://www.blender.nl/shop:

■

PROGRAMMINGBLENDER SCRIPTING

3 · 2000 LINUX MAGAZINE 65

Figure 5:
The sway script in action

Listing 1: The dance of the lamps
sway.py by ms, 11.1999

from Blender import *
from math import *
import whrandom

Number of frames for "once around" -
the higher the number, the more slowly thU
e lamp sways
speed = 100
pi2 = pi * 2

lamp = Object.Get("Lamp")
box = Object.Get("Box")

t = Get(Const.BP_CURTIME) - 1.0 # Start aU
t 0.0

Make the lamp sway, taking into consideratU
ion the size of the
box - change the size of the
box in order to test it and press Alt-A again

the radius of the orbit should oscillate soU
mewhat
r = box.SizeX* (0.7 + 0.1 * sin(10* t * pi2 /U
speed))

lamp.LocX = r * cos(t * pi2 / speed)
lamp.LocY = r * sin(t * pi2 / speed)

Make the lamp flicker:
lampdata = Lamp.Get("Lamp")
r = whrandom.random()
lampdata.Energ = 1.0 + 0.5 * r

Also make the halo size flicker:
mat = Material.Get(”Halo”)
mat.HaSize = 0.10 * (1.0 + 0.5 * r)

062blender .qxd 20.10.2000 11:49 Uhr Seite 65

