
www.linuxformat.co.uk58 LXF68 JULY 2005

OPEN SOURCE EVANGELISM

as a community service and as a way

of gaining status within the group.

Few programs were commercial.

Instead, software apps were the result

of hackers working at various academic

institutions, scratching their various

itches and sharing their code with

each other. This model of sharing and

building on one another’s work forms

the philosophical basis of free software

and open source.

In contrast, the early PC boom was

characterised by commercial software

distributed in compiled, binary format

on physical media. Collaborative

technologies like UUCP were not

easily available to PC users; instead of

a community of users who wrote their

own programs and shared the source

code, PC users were mostly restricted

to compiled software distributed via

standard commercial channels, such

as retail outlets and catalogues.

Y
ou use Linux; you

almost certainly use

Firefox; you probably

use Apache, PHP or

Perl or Python,

maybe Gimp and

OpenOffice.org. Stand up

and take a bow: you’ve just

been promoted to the

position of free and open

source software evangelist.

Have you ever been

collared at a party by

someone who has recently

adopted a new diet or

exercise regime – or, even

worse, quit smoking – and

can’t shut up about it? As

they rattle on about the joys

of their new lifestyle, telling

you why you should do the

same, you take guilty slugs

of your beer and notice that,

invisible under your shirt,

the top button of your jeans

is undone.

That’s ineffective

evangelism. After an

encounter like that, the last

thing you want to do is

spring out of bed early the

next morning, ingest a high-fibre,

caffeine-free breakfast and go for a jog.

You probably feel like you should, but

some statistic somewhere undoubtedly

proves what we all know – the things

we should do are often the things least

likely to get done.

Effective evangelism is not a holy

crusade, and it’s not accomplished by

self-righteous tirades about things that

other people should do. Instead, it’s

the process of using your technical

expertise and your experience with

FOSS tools to solve real problems. Pick

the right problems, apply the right

tools, and voilà – your friends, your

clients and your co-workers become

FOSS users. Not because they should

use FOSS, but because FOSS tools

solved their problem and extended the

usefulness of their own systems and of

the services they use.

A history of sharing
In the early days of software

development, most programs were

distributed as source code that users

configured and compiled for

themselves. They were free to alter the

source code to fix bugs or extend the

program’s functionality. The fixes and

enhancements were freely distributed

Professional evangelists Zak Greant and Jennifer Zickerman show you how
to turn friends, colleagues and clients on to free and open source software.

While the commercial distribution

model had financial benefits for the

companies who made software, it

hampered two natural human

tendencies: the desire to organise into

communities, and the desire to

understand how things work. PC users

responded to the first desire by

copying and sharing compiled

programs, and to the second desire by,

wherever possible, tinkering with the

compiled programs so that they could

do more with them.

Software companies responded by

adding security measures to prevent

such copying and tinkering, and the

race was on. One early event in this

race was Bill Gates’s famous

Open Letter to Hobbyists (archived at

http://en.wikipedia.org/wiki/
Open_Letter_to_Hobbyists), in

which he equated copying without

permission to piracy.

When the world wide web emerged,

the internet became easier for PC

users to access. Advances in hardware

– and the sheer number of PC users –

meant a growing number of people

considered their machines both as

tools for running software and as

platforms for writing software. It’s easy

to understand why so many people

consider source-code access to be a

right: if you own your toaster, you’re

allowed to take it apart and investigate

how it works. Why wouldn’t you be

allowed to take your software apart in

the same way?

They were allowed, of course –

they just needed to use a different

kind of software. FOSS enabled a

generation of early PC users to

become software creators. The early

generations of Unix users had had no

choice. There hadn’t been any

precompiled binary software options;

or: EFFECTIVE EVANGELISM FOR GEEKS

ILLU
STRATIO

N
: STU

A
RT H

A
R

R
ISO

N

LXF68.feat_foss 58LXF68.feat_foss 58 12/5/05 10:24:28 am12/5/05 10:24:28 am

www.linuxformat.co.uk LXF68 JULY 2005 59

OPEN SOURCE EVANGELISM

what they needed they created. PC

users did have a choice, and many

thousands chose to become involved

in FOSS projects, where their desires

for community and the freedom to

explore and learn could be met.

What FOSS isn’t
FOSS is not the revolution. It’s not

even a revolution. Nor is it a religion, in

spite of the cargo cults that have

sprung up around it. Even those folks

focused on the ethical aspects of

unhindered access to source code,

such as the Free Software Foundation,

primarily limit their focus to the issues

of software licensing and free speech.

They don’t seek a New World Order.

Presenting FOSS as a revolution

tends to put you firmly in the loony

camp in the eyes of proprietary

software supporters, and with good

reason: revolutions usually either fail

horribly or, if they succeed, have many

unintended negative consequences.

Rather than being a revolution, FOSS

is merely a sane set of responses to a

fundamental change in the information

ecosystem, evolving from a

combination of inexpensive computers,

simple and open standards for data

exchange, widespread computer

literacy and a ubiquitous network.

This emerging infosystem highlights

a key property of information, which is

this: distribution and use don’t reduce

the quantity available for others. It’s

not a ‘rival’ good like most material

commodities (food, clothing, shelter,

and so on). After food is consumed, it

can’t be consumed again. Information,

on the other hand, is never used up; it

can be used by as many people as

can access it. As Thomas Jefferson

wrote: “He who receives an idea from

me receives instruction himself without

lessening mine; as he who lights his

taper at mine, receives light without

darkening me.”

Information (especially of the

software source code variety) has

another interesting property: its value

can increase through sharing. This

concept is fundamental to the purpose

of publishing academic papers – if

someone publishes a paper on the

ecology of mangrove swamps in the

Zambezi delta, and somebody else

uses the paper to further their own

studies of juvenile bull sharks in the

area, the original research is more

valuable than if its knowledge had just

stayed in the heads of the original

authors, or had only limited distribution

among their students. With FOSS, this

process of increasing the value of

information happens at an extreme

rate. Ideas, debates, patches and

distributions can occur within days, and

involve hundreds of people. And the

process is not purely serial, proceeding

from one person to the next. Instead,

many people can contribute value to

the same idea at the same time.

>>

“THE BEST METHOD FOR
EVANGELISING WITHIN AN
ORGANISATION IS TO
SOLVE A REAL PROBLEM.”

The Cathedral and the Bazaar
by Eric Raymond
www.catb.org/~esr/writings/
cathedral-bazaar
The Creative Commons
Free, open and permissive licences.
http://creativecommons.org
The Electronic Frontier Foundation
US digital civil liberties group.
http://eff.org
First Monday
Peer-reviewed journal of the internet.
www.firstmonday.dk/issues/index.html
Free as in Freedom by Richard Stallman
www.oreilly.com/openbook/freedom
The Free Software Foundation:
 USA www.fsf.org
 Europe www.fsfeurope.org
 India http://fsf.org.in

The Open Source Initiative
http://opensource.org
The Semasiology of Open Source
by Robert M. Lefkowitz
www.itconversations.com/shows/
detail169.html
The Software Freedom Law Center
Law office that deals exclusively with
FOSS-related legal issues.
www.softwarefreedom.org
Wikipedia entries on free software
(http://en.wikipedia.org/wiki/
Free_software)
and open-source software (http://
en.wikipedia.org/wiki/Open_source)
The Tipping Point
by Malcolm Gladwell (Abacus)
Describes the mechanics of epidemics
and other mass phenomena.

RESOURCES FOR EVANGELISTS

How, then, can you take these

ideas and begin to convert those

around you to Linux? At its simplest,

FOSS evangelism is about one user

and one application. Think about

Firefox. Its usability benefits are so

overwhelming compared with Internet

Explorer that people only continue to

use IE either because they must (due

to company policy, say) or because

they don’t know about Firefox.

So tell them. Focus on the issues

that matter to them. If you’re

discussing Firefox with a web designer,

for instance, show them the Web

Developer extension (www.
chrispederick.com/work/firefox/
webdeveloper), which provides

embedded tools for developing and

debugging CSS and HTML. Remember

that people are primarily interested in

features and cost; development

methodology, philosophy and licensing

are secondary issues.

Mini-evangelism
Simple evangelism – one user, one

application – might not change the

world, but remember that FOSS

adoption is a process, and an

exponential one, at that. Success with

one user and one application leads to

more users and more applications, as

users come to realise that FOSS

applications are viable replacements.

Even a small migration from

Microsoft Office to OpenOffice.org can

save a company tens of thousands of

dollars in licensing fees.

Successful evangelism requires

foresight to minimise the inevitable loss

of productivity during the switch. Even

when migrating one user to one new

Zak Greant is a technical evangelist,
author and programmer whose deep
love of free software and open source is
turning him into a penguin. He works at
eZ publish, where he gets to work on
evangelism, licensing and other cool
things. Jennifer Zickerman launched her
career in IT when she became, by
default, sysadmin of a brand-new Novell
network. She is senior technical writer
at Sxip Identity Corp.

ABOUT THE AUTHORS

LXF68.feat_foss 59LXF68.feat_foss 59 12/5/05 10:24:30 am12/5/05 10:24:30 am

www.linuxformat.co.uk60 LXF68 JULY 2005

OPEN SOURCE EVANGELISM

>> application, it’s the evangelist’s

responsibility to ease the transition as

much as possible. A bumpy transition

will reflect badly on FOSS (regardless

of the fact that switching applications

always incurs a productivity drop,

whether the switch is to a commercial

or a FOSS application). Similarly, a

smooth transition will reflect well on

FOSS, and make users more open to

expanding their FOSS use.

Mega-evangelism
Evangelising and implementing free

and open source software within a

business is inevitably more complicated

than migrating a single user to a single

FOSS application. Many users will

usually be affected, interactions

between components in the

organisation’s infrastructure often need

to be altered, processes (rather than

mere tasks) may need to be changed

to support the new application.

Similarly, the risk of implementing

FOSS within an organisation is

greater. More people need to support

(or at least accept) the project in order

for it to succeed, the cost of

temporary productivity losses is

magnified, and the investment in

making the switch is greater.

Happily, to balance these risks, the

pay-off of evangelism within an

organisation is greater – not only in

terms of the number of users who are

exposed to FOSS technologies, but in

the benefits that accrue to the

organisation by adopting FOSS

components and a FOSS strategy.

Successful FOSS evangelism and

adoption within a business largely

depends on three strategies: fixing the

right problem, gaining the interest and

support of people who will be

affected by the change, and adhering

to established FOSS procedures

and protocols.

Advocating FOSS for its own sake

wins few converts. The same principle

applies whether converting a single

user or a thousand users: people –

The rule is: no surprises. Everyone

affected by the project should know

about it. Communication is a

fundamental feature of FOSS

advocacy. People are much more likely

to support a FOSS initiative if they

understand its purpose, its

implementation time-frame and the

way it will affect them.

This doesn’t meant that you should

blab to everyone about the great

FOSS solution you’re going to build for

Problem X before you’ve cleared it

with the decision-maker responsible

for Problem X. It’s more likely that

you’ll put together a proposal (and

maybe even a prototype or demo), get

the decision-maker’s approval to

continue, then start discussing and

demonstrating the FOSS solution to

the people affected by the problem.

If your proposal is not approved,

be gracious – and then go looking for

a new problem. Graciousness in defeat

will increase the likelihood that a

future proposal to solve a different

problem with FOSS technology will be

accepted. Your tenacity will keep

FOSS on the organisation’s agenda.

Code for coders
Most FOSS development projects

share certain principles. These

principles have evolved over the

course of many years and many

development projects, in response to

the challenges of building software

with a team of distributed volunteers.

Some of these principles are explicit,

such as a licensing agreement. Others

are implicit, and have been adopted to

ensure that the community of

developers and users functions

efficiently, ethically and harmoniously.

As a FOSS advocate, you’re an

ambassador for these principles, as

they’re the premise on which

FOSS development is predicated.

These principles are not limited to free

and open-source software

development culture, though – they’re

a set of values and ethics that benefit

the members of many kinds of

communities. Here are those rules

to follow:

∆ Be open Once you’ve won support

for Linux, make sure your project is

visible as it evolves, especially when it

reaches the point of affecting other

systems. Openness is one of the core

values of FOSS, for many reasons: it’s

inclusive rather than exclusive; it

encourages others to look at your stuff

and offer suggestions and comments;

it helps people to prepare for

implementation; and it encourages

people to get involved.

∆ Scratch what itches Work on real

problems. FOSS communities tend to

attribute the greatest value to people

who work on bugs and enhancements

that affect lots of users, rather than

building arcane features that may only

be of use to the programmer himself.

And, most important, if it ain’t broke,

don’t fix it. If it’s not a problem, it’s not

a candidate for a FOSS solution.

“NO ONE LIKES FANATICS –
THEY TEND TO RUIN
OTHERWISE FUN PARTIES.”

LINUX SUPPORT
DOES EXIST!
In the early days, people avoided
FOSS because it lacked the support
they were used to from proprietary
systems. Now, however, there are
thousands of FOSS vendors who
provide quality-assured distros and
commercial support. Be a good
evangelist by letting them know
what’s out there.

Databases
IBPhoenix (Firebird)
www.ibphoenix.com
MySQL http://mysql.com
PostgreSQL http://pgsql.com
Sleepycat http://sleepycat.com
SRA http://osb.sra.co.jp

Linux
Mandriva http://mandriva.com
Red Hat http://redhat.com
SUSE www.suse.com
Ubuntu http://ubuntu.com

Programming languages
ActiveState (Perl, Python, Tcl)
http://activestate.com
Stonehenge (Perl)
www.stonehenge.com
Zend (PHP) http://zend.com

Miscellaneous
Covalent (Apache) www.covalent.net
Open Source Development Methods
Collabnet http://collab.net
Sendmail www.sendmail.org

especially people within organisations –

are interested in features and cost.

Therefore, your best chance for

introducing your employer to FOSS is

to suggest they use it to solve a real

problem that has some of the

following characteristics:

∆ Familiar Choose a problem that

lies within the scope of your skills and

knowledge. Stray too far from what

you know and you risk failure.

∆ Small Small problems are easier

and faster to solve than big problems.

They also help you build the skills and

experience required to solve larger

problems. A successful FOSS

implementation, even for a small

project, builds confidence in FOSS and

is acknowledged by the people who

make choices about FOSS adoption.

∆ Low budget Projects that are

being crippled by high software-

licensing costs are excellent

candidates for rescue. Often an

organisation has only a few licences

for a commercial product that could,

in fact, be used by many users. If a

project’s bottleneck is access to a

commercial application, replacing

that application with an equivalent

FOSS product is an excellent

advocacy project.

∆ Low risk Avoid risky situations,

such as modifying core systems,

touching late projects or working on

politically sensitive issues. The

pathology of the project will be

inherited by the FOSS implementation

solutions among and beyond the users

directly involved in the project.

∆ Tangible Look for problems that

are well known. There’s little benefit to

solving a problem that isn’t causing

anyone significant pain, or, frankly, isn’t

causing pain that for the people who

make choices about FOSS adoption.

∆ Failing Contrary to the advice

above, if a project is doomed but

could be saved with FOSS, it might be

a candidate. Ensure, however, that the

failure is acknowledged by the key

stakeholders – get it in writing.

Otherwise, the failure of the project

could be blamed on FOSS, rather than

the project’s own dysfunction.

Once you have a solid candidate

for a FOSS implementation, get other

people involved. Depending on the

nature of the project and the

organisation, the process of buy-in

might be formal or informal, done in

stages or done with all ‘stakeholders’

at the same time.

LXF68.feat_foss Sec1:60LXF68.feat_foss Sec1:60 12/5/05 10:24:31 am12/5/05 10:24:31 am

www.linuxformat.co.uk LXF68 JULY 2005 61

OPEN SOURCE EVANGELISM

∆ Postel’s Law “Be conservative in

what you do, be liberal in what you

accept from others.” Generally, Postel’s

Law (http://en.wikipedia.org/wiki/Jon_

Postel) is used to describe applications

or components that are fault-tolerant

regarding input, but exact and well-

formed regarding output. Robust

implementation of specifications, most

notably on the internet, often follow

this law. In the context of FOSS

evangelism, this epigram can also

express the way that you and your

FOSS project should interact with

other people and systems.

So, don’t blindly advocate FOSS –

provide people with a broad

perspective on the ramifications of the

solutions you propose. And be a

responsible representative of FOSS.

No belittling other software.

∆ Release early, release often

Don’t lock yourself in a broom closet

for ten months while you architect the

über-solution that will fix all the

problems and also make toast.

It’s better to break big problems

into a series of small problems. Then

solve a small problem, show the

solution to the people who care, get

their input, solve another small

problem. Rinse, lather, repeat. This

builds your knowledge of the problem

space, and tends to engage more

people as they witness the gradual

creation of the über-solution.

∆ Don’t break the build Never

break working systems. It will damage

your personal credibility and, by

extension, the credibility of FOSS. If

you need to overhaul a working

system, always try to model and test

on a private system first. Then, before

altering the live system, make sure the

people who use it are aware of the

change and the inherent risks. Make

sure you can revert to the original

system if things go badly wrong, and

make sure that any data stored while

trying the new system is migrated back

to the old system.

We’d like to add one more

‘principle’: don’t be a jerk. FOSS

evangelism is both a technical project

and an interpersonal project. You’ll

have to win hearts as well as minds if

you are to succeed. Don’t discount

others’ questions and concerns but,

conversely, don’t let others denigrate

your project merely because it is based

on FOSS technology. Challenge

spurious assumptions, regardless of

their source. For example, assertions

that all Microsoft software is low-quality

are just as incorrect as assertions that

all FOSS users are anarchists.

Extreme prejudice
You’ll need plenty of energy to bat

away the prejudices and myths many

people hold about FOSS. Here are the

most common misconceptions that

you should be ready to fight.

MYTH 1 FOSS is communism
The ‘People’s Republic of PHP’ has yet

to issue passports or make a bid to

host the Olympics. A diversity of

political opinion occurs in FOSS

communities, as in every other

community. And, as in every other

community, the fringes get the most

attention. FOSS itself is not political.

MYTH 2 If I use FOSS, I will have
to give my software away for free
Untrue. There are many open source

licences, covering many uses. None of

them requires you to give your software

away. One class of licence – strong

‘copyleft’ licences like the GNU Public

License – have strong requirements

about sharing your work, but these

requirements only come into effect if

you distribute your software. If it’s used

privately or within the bounds of a

single legal entity (such as a company),

you are not required to give it away.

MYTH 3 FOSS isn’t popular
FOSS (such as the Apache web server

and the PHP and Perl programming

languages) and open standards (like

TCP/IP and HTML) form the backbone

of the internet. These are not marginal

technologies. For example, as of April

2005, Apache was powering about

69% of all web servers. Internet users

rely on FOSS every day in their web

travels; most don’t even realise it.

MYTH 4 FOSS is insecure
The comparative security of FOSS

versus proprietary applications and

operating systems is the most hotly

contested aspect of FOSS, especially

regarding Linux. There’s no room here

to untangle the myriad studies,

arguments, claims, misinformation

campaigns and flame wars. Regardless,

access to the source allows security

problems to be found more easily by

any skilled person who invests the

effort. Also, the modular design of

most FOSS projects makes individual

components less risky to patch, as they

are more loosely coupled both with

other components and with the

operating system itself.

MYTH 5 FOSS is just for hobbyists
Software giants like HP, IBM, Oracle

and Novell are major supporters of the

Linux operating system and have

developed broad open-source

strategies. Even Sun, with its competing,

proprietary Solaris operating system,

has adopted a Linux strategy and has

started distributing Solaris under a

FOSS licence. Apple based the

HP www.hp.com/linux and http://opensource.hp.com
IBM www.ibm.com/linux and www.ibm.com/developerworks/opensource
Novell www.novell.com/linux and http://forge.novell.com/
Oracle www.oracle.com/linux and www.oracle.com/technology/tech/opensource
Sun www.sunsource.net, www.sun.com/software/linux and www.opensolaris.org

INSIDE THE TENT
Where to find out how the big vendors are facing up to Linux

Mac OS X on the FreeBSD operating

system and has licensed the core of

the OS under a FOSS licence (http://
developer.apple.com/darwin). See

Inside The Tent box, above.

FOSS evangelism goes beyond

implementing FOSS solutions for

computing problems experienced by

users and organisations. Remember

earlier when we said that FOSS is not

a religion? Well, this is the part

where it starts to get religious – or at

least philosophical.

Possibly the most interesting

aspect of FOSS is that it exists at all.

Circumstances unique to our current

technological era, coupled with the

wealth and education enjoyed by

people in the rich world, have created

new scope for collaborative creation.

This is worthy of discussion and

research beyond the practical bounds

of FOSS implementation. As an

evangelist, try to talk over the pros and

cons of FOSS in many different

settings. Have conversations with

academics, non-technical users,

developers who rely on proprietary

tool stacks, and your dad. Find out

what they think; this will benefit not

only your FOSS advocacy, but also

your broader understanding of the

FOSS phenomenon.

Most of all, relax and enjoy the ride.

No one likes fanatics – they tend to

ruin otherwise fun parties. FOSS thrives

because it is flexible, open and inclusive.

Don’t become inflexible, closed and

exclusive as you work to promote it. LXF

LXF68.feat_foss Sec1:61LXF68.feat_foss Sec1:61 12/5/05 10:24:32 am12/5/05 10:24:32 am

