
www.linuxformat.co.uk96 LXF67 JUNE 2005

TUTORIAL PHP

WEB PROGRAMMING

PHP Add a spell-checker
Paul Hudson’s threat to replace Rebecca with a very small shell script finally comes true.

Long-time readers of this magazine will know that
spelling is not our forte. In fact, you would be forgiven
for thinking that our production monkeys have spent

the last few months on strike over a raise in their peanut
rations, as typos that even OpenOffice.org could have spotted
have flown into print. However, we remain a cut above the rest:
we rarely say “w00t!”, we do try to avoid “Micro$oft”, and to
the best of my knowledge we have never said anything was

“the suXX0rs” no matter how negative a review was.
This month we shall examine the ways in which PHP can

help proof – and correct – written English on your site. If you
found last month’s tutorial on validating visitors mathematically
challenging, this month is going to be a curve ball to the other
hemisphere of your brain as we investigate how phonetics
actually have a valuable part to play outside of the classroom.

Spill chucking
Early adopters of mobile phone SMS messages developed
their own method of chatting, primarily designed to minimise
the amount of thumb use it took to write “see you later”. So –
much to the disgust of English prescriptivists everywhere – “c u
l8r” was born. However, to the mystification of all, this trend
reversed on the internet: the same message encoded in
messageboard-speak is “OMG LOL! CU L8R! WTF?!” That,
admittedly, is beyond correction by even the most advanced
computer system; however, correcting errors like spelling Red
Hat with two Ts, using percieve rather than perceive and
missing out letters entirely is within our grasp.

You will need to recompile PHP to add in spell-checking
support. To do this, add --with-pspell to your configure line.

You will also need GNU Aspell installed for your language
(including development libraries), as this is the back-end
system that PHP uses.

When you have recompiled, run php –m and make sure
pspell is in the list of compiled-in modules. With that over with,
we can try our first pspell script using two functions:
pspell_new(), and pspell_suggest(). The first creates a new
pspell-processing resource for a given language, and the
second uses that resource to check for a word, like this:
<?php
 $spell = pspell_new(“en”);
 if (pspell_check($spell, “orange”)) {
 echo “Word spelt correctly!\n”;
 } else {
 echo “Bad spelling, sorry!\n”;
 }
?>

If English is not your primary language, change the “en” to
your language code, eg “es” for Spanish, “de” for German, or

“no” for Norwegian. The return value from pspell_new() is
stored in $spell, because it’s needed for the first parameter of
pspell_check(). The second parameter to pspell_check() is
the word you want to check, in this case “orange”. You need to
pass in the language to check each time you call
pspell_check(), which is a chore if you are only using one
language, but makes scripts like this easier:
<?php
 $english = pspell_new(“en”);
 $deutsch = pspell_new(“de”);
 $word = “alles”;

LXF67.tut_php 96LXF67.tut_php 96 11/4/05 6:51:36 pm11/4/05 6:51:36 pm

www.linuxformat.co.uk LXF67 JUNE 2005 97

TUTORIAL PHP

 if (pspell_check($english, $word)) {
 echo “Word is in English!”;
 } else {
 if (pspell_check($deutsch, $word)) {
 echo “Word is in German\n”;
 } else {
 echo “Is it Welsh?”;
 }
 }
?>

Just telling a user they made a spelling mistake is useless,
unless they happen to be one of those weird people who keep
a dictionary by their PC. What we should be doing is finding
suggestions for them, a task accomplished with the
pspell_suggest() function. This takes the same parameters as
pspell_check() and returns an array of words that matches the
word passed in. So, we can take our script and modify it to
provide suggestions for our word, like this:
<?php
 $spell = pspell_new(“en”);
 $word = “naranja”
 if (pspell_check($spell, $word)) {
 echo “Word spelt correctly!\n”;
 } else {
 $suggestions = pspell_suggest($spell, $word);
 if (count($suggestions)) {
 echo “Did you mean…\n”;
 foreach($suggestions as $suggestion) {
 echo “ $suggestion\n”;
 }
 } else {
 echo “Bad spelling, sorry!\n”;
 }
 }
?>

That script snags the return from pspell_suggest(), then
iterates over the array in a foreach loop, printing out the
suggestions as it goes. This works well, but it’s still fairly useless
because it only checks one word. Ideally we want it to check a
whole sentence at a time, which means we need to break it up
into words by exploding the string into an array wherever
spaces occur.
<?php
 $spell = pspell_new(“en”);
 $sentence = “The rain in Spain fallls manily on the
Spaniards.”;
 $words = explode(“ “, $sentence);
 foreach($words as $word) {
 if (pspell_check($spell, $word)) {
 echo “Word spelt correctly!\n”;
 } else {
 $suggestions = pspell_suggest($spell, $word);
 if (count($suggestions)) {
 echo “Did you mean…\n”;
 foreach($suggestions as $suggestion) {
 echo “ $suggestion\n”;
 }
 } else {
 echo “Bad spelling, sorry!\n”;
 }
 }
 }
?>

There are still some problems with that code – namely that
our sentence is split by spaces, which will leave ‘Spaniards’ with
a full stop at the end. This full stop is considered to be part of

the word for pspell_check(), which means it will fail the test.
Try writing your own script to strip punctuation out, keeping in
mind that if someone types with dashes in a line – like this
writer frequently does – those dashes will appear as words by
themselves and should not be checked.

Hooked on phonics
Leaving spell checks alone for now (we’ll come back to them
later), PHP has several ways to help you analyse the contents of
a string by the letters it contains, rather than the usual functions
strlen() and friends. The most important of these are
similar_text(), which is a simple letter-matching algorithm for
comparing strings, and metaphone(), which is a more complex
system for calculating the sound that a string makes when
it’s pronounced.

The similar_text() function is easier to grasp, so we shall
start there. This takes a minimum of two parameters (the string
to compare), and returns the number of letters that are the
same in both strings. The algorithm behind similar_text() is
smart enough to handle differences between individual letters,
for example:
<?php
 echo similar_text(“hyperbolic”, “parabolic”);
?>

Running this will output 7: it matches the ‘p’, ‘r’, and ‘bolic’ in
the words. However,
<?php
 echo similar_text(“rhypebolic”, “parabolic”);
?>
will only return 6, because the letters of ‘hyperbolic’ are not in
the correct order.

There is an optional third parameter to similar_text() that
stores a percentage of the difference between the two words.
This percentage is usually very long, so take care to round it
before printing it out, like this:
<?php
 $diffchars = similar_text(“hyperbolic”, “parabolic”,
$diffpercent);
 $diffpercent = round($diffpercent, 2);
 echo “There were $diffchars different characters, making
$diffpercent% difference.\n”;
?>

The metaphone() function uses a basic understanding of
English pronunciation to approximate how a word sounds when
spoken, then encapsulates that in a string. This allows you to
distinguish between words that have different spellings but the

>>

WTF!?!

LOL!!

OMG!!?

LXF67.tut_php 97LXF67.tut_php 97 11/4/05 6:51:39 pm11/4/05 6:51:39 pm

www.linuxformat.co.uk98 LXF67 JUNE 2005

TUTORIAL PHP

>> same sounds, eg:
<?php
 $pair = metaphone(“pair”);
 $pear = metaphone(“pear”);
 $pare = metaphone(“pare”);
 $bare = metaphone(“bare”);
 $bear = metaphone(“bear”);
 $editor = metaphone(“procrastination”);
 echo “Pair: $pair\nPear: $pear\nPare: $pare\nBare: $bare\
nBear: $bear\nEditor: $editor\n”;
?>

That script will output the following:
Pair: PR
Pear: PR
Pare: PR
Bare: BR
Bear: BR
Editor: PRKRSTNXN

Without simplifying the system too much, you should at
least be able to see that it essentially ignores vowels – if you
look up the metaphone value of peer you will see it is also PR,
like pair, pear, and pare. This actually works in our favour. For
example, the most common Google search term in 2003 and
2004 was ‘Britney Spears’. But there were many more searches
by people who were peculiarly inept at spelling the name of
their object of obsession. Fortunately, Google was able to figure
out what they meant even if their typing was way off, and the
metaphone system lets us emulate the same in our scripts.

Here is an example script that demonstrates the
metaphone() function handling various ways of spelling Ms
Spears’ name:
<?php
 $b1 = metaphone(“britnney speers”);
 $b2 = metaphone(“britteny spiers”);
 $b3 = metaphone(“britney spears”);
 $b4 = metaphone(“briteney spires”);
 echo “B1: $b1\nB2: $b2\nB3: $b3\nB4: $b4\n”;
?>

When run, you will see that each of those strings generates
the same metaphone: BRTNSPRS.

Getting the right use for the metaphone function takes time
and consideration, but when used properly it can be a great

way of providing some surprising insight into user input.
Compared with pspell_suggest(), which works its way
character by character through a list of possible matches like a
machine would, metaphone() looks at the text from a different
angle, and one that is much more natural to people.

For the last trick…
Having covered spell-checking and text similarity matching, we
can now produce a script that accepts a line of text from users,
spell-checks it, offers suggestions and ranks the suggestions
according to their similarity to the source word. The most
attractive way to do this is with HTML, using the drop-down
boxes to show alternatives wherever a word has not been
recognised. The first implementation of this script is based on
the last pspell example, and mixes in calls to similar_text():
<HTML>
<HEAD>
<TITLE>The Amazing Spellchecking PHP Script</TITLE>
</HEAD>
<BODY>
<FORM METHOD=”POST” ACTION=”67final.php”>
<?php
 /// COMMENT ONE
 $_POST[‘input’] = “How much woud would a wodchuck
chuk if a woodchuck culd chuck wood”;
 if (isset($_POST[‘input’])) {
 $sentence = trim($_POST[‘input’]);
 if (!$sentence) {
 echo “You must supply a sentence!\n”;
 exit;
 }
 $spell = pspell_new(“en”);
 $words = explode(“ “, $sentence);
foreach($words as $word) {
 if (pspell_check($spell, $word)) {
 echo “$word “;
 } else {
 $suggestions = pspell_suggest($spell, $word);
 if (count($suggestions)) {
 echo “<select>”;
 foreach($suggestions as $suggestion) {
 /// COMMENT TWO
 similar_text($word, $suggestion, $similarity);
 $similarity = round($similarity, 2);
 echo “<option>$suggestion ($similarity%)</
option>”;
 }
echo “</select> “;
 } else {
 /// COMMENT THREE
 echo “$word “;
 }
 }
 }
 }
?>

<input type=”text” name=”input” />
<input type=”submit” value=”Check” />
</form>
</body>
</html>

There are three lines starting with /// COMMENT in there.
The first inserts a specific line of text into the $_POST array to
simulate user input. This isn’t necessary, but means that for
the purposes of this article we have a set piece of text to work

“This new
metaphone means I need

to be extra careful with my
pronunciation!”

LXF67.tut_php 98LXF67.tut_php 98 11/4/05 6:51:41 pm11/4/05 6:51:41 pm

LXF67 JUNE 2005 99

TUTORIAL PHP

NEXT
MONTH
Still not upgraded to PHP 5?
You’d better get your skates
on, because PHP 5.1 is almost
here! We’ll show you around.

with. The second comment marks where the suggestion
similarity is calculated and printed out in HTML. The last
comment shows where unmatched words are printed out,
which means that any strange word (perhaps someone’s name,
or a place?) gets treated as if it were spelled correctly.

Fig 1 shows how the output from this page looks. Our test
sentence is ‘How much woud would a wodchuck chuk if a
woodchuck culd chuck wood’ – full of juicy typos. This first
script comes up with ‘How much would would a woodchuck
Chuck if a woodchuck could chuck wood’. If you look at the
screenshot, the reason for the lack of quality is apparent:
pspell_suggest() has not sorted the suggestions by their
similarity to the original word, which is why ‘Chuck’ (66.67%
match) appears higher than ‘chuck’ (88.89% match).

The solution is to create an array of all the matches, then
sort it by the similarity with the word, like this:
$suggestions = pspell_suggest($spell, $word);
if (count($suggestions)) {
 echo “<select>”;
 $similarities = array();
 foreach($suggestions as $suggestion) {
 /// COMMENT TWO
 similar_text($word, $suggestion, $similarity);
 $similarity = round($similarity, 2);
 $similarities[$suggestion] = $similarity;
 }
 arsort($similarities);
 foreach($similarities as $suggestion => $similarity) {
 echo “<option>$suggestion ($similarity%)</option>”;
 }
echo “</select> “;

Fig 2 shows the output from this second attempt at the
script. This time the result is actually worse: ‘How much would
would a woodchuck chunk if a woodchuck could chuck wood’. I
think I would rather have ‘Chuck’ than ‘chunk’! However, at
least we now have the matches sorted by their similarity.

The script is consistently getting ‘wood’ and ‘chuck’ wrong
but it isn’t far off – ‘chuck’ is as textually similar to ‘chuk’ as

‘chunk’ is, which means we need to find something else to
differentiate between the two. Of course, if you have been
paying attention so far, you should now be screaming

“metaphone!” at your magazine: ‘chuck’ and ‘chuk’ are
phonetically identical, but ‘chunk’ has a very different sound.
The difference between ‘would’, ‘woud’, and ‘wood’ is very minor,
but because ‘would’ has an l in it, the metaphone algorithm
should flag it up with a slightly different representation.

So, the final change we need to make is to reject outright
any suggestions that are not an exact phonetic match for our
input word, like this:
///COMMENT TWO
if (metaphone($word) != metaphone($suggestion)) continue;

The COMMENT TWO part is there to show you where to
insert the new line. Fig 3 shows the final script in action, with
all the correct words matched.

Punctuation loops
Our spelling script is now fairly complex. Not only can it match
simple typing errors, it can also match spelling errors when
people really have no clue how to spell the word they are
typing. In cases like searches for Britney this will make a big
difference to your users. In Google this kind of spell-prompting
is common: ‘Did you mean Britney Spears?’ Sometimes, if your
query has no matches at all, it will actually rewrite the query
and give you those results, which can be more helpful –
although they are careful to provide a link to the unaltered
results, just in case you really were looking for Britenety Spares.

From here you can extend the script to better handle
punctuation. The easiest way to do this is to split the entire
sentence by spaces, then loop through each word and split
them by punctuation and symbols: ‘,;:”-!?$£%^&*() and others.
These then need to be placed into the right order when
reassembling the sentence. This sounds harder than it is, and if
you give it a try (recommended) you’ll learn a lot.

Whatever you do, keep in mind that some people don’t
want their spelling changed – either because they have a
particular style, or because their country spells things
differently from yours. Including spell-checking on your site
should not be intrusive or annoying, at least not if you plan to
keep your users. Instead, make it optional – perhaps a small
button next to Submit Post on your forum, or a checkbox in
your account preferences.

So, I will leave you with this one thought in mind:
unobtrusive spell-checking is a great addition to your site,
whereas badly done it’s the suXX0rs – w00t! LXF

1/ All spelling errors have suggestions, but
those suggestions have no helpful order.

2/ Each suggestion is now sorted according to
the similiarity with the misspelled word.

3/ Each suggestion now gets checked for
metaphone equality with the original word.

Britney – highly
sought-after,
apparently.

LXF67.tut_php 99LXF67.tut_php 99 11/4/05 6:51:44 pm11/4/05 6:51:44 pm

