
58 LXF66 MAY 2005 www.linuxformat.co.uk

find out if these new additions are the

result of harmonious exploration – or

acrimonious forks.

That history began in 1984, when

Richard Stallman wrote the first chunk

of GCC, the C front-end. In the same

year the GNU project officially began,

and it’s no surprise that GCC is at the

heart of it: it’s hard to imagine how

you could provide freely modifiable

software without providing a way to

convert the modifications into

executable code.

Three years later, in 1987, Stallman

decided to expand the front-end into

a fully-blown compiler, beginning

GCC’s journey to the version 4.0 we’re

awaiting. Architectural limitations of

this first release series were overcome

in 1992 with the publication of version

2.0, which also added support for C++.

GCC was beginning to be adopted as

the official compiler on several

software platforms (including Linux),

and its 2.7 manifestation received

special praise.

Fork ahead
Through the nineties, GCC

development remained in the firm

hands of the Free Software

Foundation (FSF), which was more

focused on stabilising than on

improving the compiler. As a

consequence, third-party patches

aimed at simplifying the building

process on some architectures or

adding functionalities were very often

N
othing we do with open

source would be possible

without the compiler

collection GCC. It may be

mastered only by an inner

circle of C++ gurus but it

affects us all. It’s GCC that allows your

distributor to build the system you’re

running right now, and every

improvement to it results in shorter

execution times and smaller binaries.

GCC is where the magic takes

place, and that’s why we’re paying

close attention to the major

forthcoming release of GCC 4.0, a

benchmark for the project. Mailing lists

talk of faster optimisation, improved

security and cool hacks. Given GCC’s

chequered history, we were keen to

GCC 4.0 UP CLOSE

The compiler at the heart of open source is heading for a new release. GCC
fan and sometime contributor Biagio Lucini talks to leading developers for
an exclusive preview.

UP CLOSE

LXF66.feat_gcc 58LXF66.feat_gcc 58 15/3/05 4:36:21 pm15/3/05 4:36:21 pm

www.linuxformat.co.uk LXF66 MAY 2005 59

GCC 4.0 UP CLOSE

rejected. But because GCC was still

GPL software, users could choose to

apply the patch set they liked best.

This gave rise to a dangerous spread

of unofficial versions, with the risk that

a serious fork would slow the

development of the official version. To

avoid this, in 1997 some leading GCC

developers breathlessly decided to

fork the project themselves.

This was the birth of EGCS

(pronounced eggs). Among the

declared objectives of EGCS were

improvements in the C++ area and

the addition of Fortran 77 support

(g77). The project was very successful

and many vendors included EGCS side

by side with GCC in their distributions.

Within a few years the superiority

of EGCS over GCC became striking,

leading the FSF to give its official

blessing to the development model at

the root of EGCS in late 1999. EGCS,

which was itself undergoing forks such

as the PGCC project (aimed at building

fast executables on Pentium-class

machines), became GCC 2.95. One of

the differences between the

development process of EGCS and the

previous GCC was that the open

model of EGCS was tailored to make

forks useless, and projects like PGCC

slowly died out, being either

reabsorbed or superseded by EGCS.

Storm in a red hat
Despite that, the story of forks was far

from over. About a year after the

adoption of EGCS as the official GCC,

Intel released the Itanium, a promising

new architecture with the potential to

become a leading platform in the

middle- to high-end server sector. Red

Hat was faced with a problem: it

wanted to provide out-of-the-box

support for the new IA64 architecture;

the official version of GCC at that time

(2.96) did not support the Itanium,

but the upcoming version of the GNU

compiler collection (still in heavy

development) would.

Keen to provide a unified base

system across all supported platforms,

Red Hat made the decision to provide

as its official compiler a heavily

patched version of what should have

become GCC 3.0. By itself this would

not have been a big deal, but it turned

out that that this compiler (which Red

Hat named GCC 2.96 without

permission from the FSF) failed in

building the Linux kernel. Even worse,

the so-called GCC 2.96 was binary

incompatible with both the stable and

the development versions of GCC.

Users assumed the FSF had released

a buggy program that was unable to

compile the kernel and that broke

binary compatibility.

The GCC team reacted promptly,

issuing an official statement in which

they clarified their position on GCC

2.96 and blamed the poor

performance on Red Hat. Even Red

Hat tried to explain its actions and

resolved some of the problems by

providing an alternative compiler

based on EGCS (known as KGCC, a

compiler meant to be used to

recompile the kernel). Alas, the fiasco

was by then irreversible. Red Hat

insisted on this dual compiler

approach (followed closely by other

vendors including Mandrake) for about

a year, until GCC 3.0 was officially

released. That said, Red Hat has been

and still is one of the major

contributors to GCC; today, some of

the leading GCC developers are Red

Hat staff.

Truly open at last
GCC 3.0 was the natural result of the

efforts started with EGCS. The focus

was still on stability, but improvements

were no longer renounced, even if

sometimes they could have broken

compatibility. In fact, GCC 3.0 broke

binary compatibility for C++ code,

since it contained a major

improvement in the form of a new

Application Binary Interface (ABI) for

that language. It took another minor

release for the ABI to stabilise, but the

neat result was a more standards-

compliant and predictable compiler.

Throughout the 3.x series,

developers have continued to improve

and stabilise the set of features

introduced in GCC 3.0. Although most

of the work has centred on C++,

support for the other officially-

included languages (Objective C,
>>

“USERS ASSUMED THAT
THE FSF HAD RELEASED
A BUGGY PROGRAM.”

Because GCC standards are pretty
complicated, they haven’t always been
implemented; particularly in early
versions. Recent releases have been
more standards-compliant, but this
means the old bad code is now breaking
with updates. In fact, version 3.0
showed signs that certain features
would break. The good news is that the
level of breakages in this latest update is
lower than the transition from 3.3 to

3.4. Here are three to look out for:
NEW FORTRAN FRONT-END
Don’t expect all of your code to be
parsed as before.
JAVA ABI Breaks binary compatibility of
Java applications, pretty much as
happened with C++ from 2.95 to 3.0.
VARIABLE TRACKING This new feature
requires the user to upgrade to GDB 6.1.

CODE BREAKERS
Watch out for these GCC breakages

As with many open source projects, you
can obtain GCC via anonymous CVS.
For this, you need CVS installed on your
system. Once you’ve made sure you have
it, open a terminal and perform the
following operations:
mkdir /tmp/gcc
cd /tmp/gcc
export CVS_RSH=ssh
cvs -d :pserver:anoncvs@gcc.gnu.org:/
cvs/gcc -z 9 co -P gcc

This will create a new directory, gcc
inside /tmp/gcc. It’s now time to build the
sources. If you are interested only in the
C, C++ and Fortran front-ends, you can
proceed as follows:
mkdir build
cd build

../gcc/configure --prefix=/opt/gcc --
enable-languages=c,c++,f95
--enable-shared --enable-threads=posix
--disable-checking --enable-long-long
--enable-__cxa_atexit --enable-
clocale=gnu --disable-libunwind-
exception
make bootstrap
and as root:
make install

This will install the compiler in /opt/
gcc. The location has been chosen in
such a way that no conflict is generated
with the existing GCC installation, since
you will need the old GCC for compiling
new kernel modules and so on.

 The last step is to tell the system
where to look for GCC. Type

INSTRUCTIONS FOR THE IMPATIENT
How to set up GCC 4.0 for immediate use

export PATH=/opt/gcc/bin:$PATH
export LD_LIBRARY_PATH=/opt/gcc/lib:/
opt/gcc/libexec:$LD_LIBRARY_PATH
into a terminal and invoke GCC or
equivalent commands.

The command gcc -v should now
contain as the last line of the output
something like ‘gcc version 4.0.0
20050223 (experimental)’, where the
date refers to the CVS version you have
checked out. Remember that those
settings will be lost when you quit the
shell. Of course, you can make
GCC 4.0 your default compiler, but until
your distribution migrates to it this is
highly inadvisable.

LXF66.feat_gcc 59LXF66.feat_gcc 59 15/3/05 4:36:27 pm15/3/05 4:36:27 pm

GCC 4.0 UP CLOSE

60 LXF66 MAY 2005 www.linuxformat.co.uk

>> Fortran 77, Ada and Java) has been

vastly improved. As a result of the the

language-independent infrastructure

being revised, the generated code is

generally faster than the corresponding

2.x executables, and support for more

architectures has been added (there

are few platforms to which GCC 3.x

has not been ported).

Having learned its lesson with

EGCS, GCC now welcomes new ideas –

and the transformed open nature of

the development process is a large

factor in GCC’s success and swift

development. CVS access is restricted

to a few trusted developers and, as

GCC is still the property of the FSF, all

contributors need to sign a copyright

transfer form to donate their code to

the project. But there’s plenty of room

for developers who want to

experiment with new constructs within

the framework of GCC.

Everyone can contribute patches

by sending them to gcc-patches@gcc.
gnu.org. These will be peer reviewed,

and if they’re considered correct,

adherent to GCC coding conventions

and useful to the community, they will

be checked into the main tree.

Patches that require heavy

modification of the architecture

undergo a stricter review process. First,

the main code is forked. Then an

unofficial distribution maintained in the

form of a CVS branch of the main

repository is started, to be periodically

synchronised with mainline. Being

experimental software, the criteria for

code that’s checked into a branch are

less strict than those for mainline

additions. If and when the branch

proves to do useful work without

destabilising the compiler, it will be

merged with mainline. Otherwise it will

have been just an interesting exercise.

Many of GCC’s major projects

began life in one of these branches.

The projects are overseen by the

steering committee, a group of leading

developers who decide what direction

GCC should follow. It includes

developers from different companies

and institutions (such as David

Edelsohn, a K42 researcher at IBM,

Jeff Law of Red Hat and Gerald

Pfeifer, who works on Itanium at

SUSE), with the aim of balancing

different or even opposing needs

within the user community.

Before a new version is released,

its source code undergoes three

different stages. In Stage One the

project is under heavy development

and major modifications can be

accepted. In Stage Two only

stabilisation of the approved features

can be performed. Any major revision

will go to a branch, which will be the

basis for the version following the next

one. At Stage Three the known bugs

are fixed. The final check consists of

analysing the results obtained by

running the compiler on the provided

test suite: there must be no regression

with respect to the previous version

before the compiler can be tagged

with the release number.

The person responsible for this

process is the release manager. Since

version 3.0, the release manager for

GCC has been Mark Mitchell

(see Q&A, right).

High hopes
GCC is now at version 3.4.3, expected

to be the last release in the successful

3.x series before the coming of version

4.0, which is at Stage Three in its

development at the time of writing

(and the chances are that it will be out

by the time you read this).

The big jump in the release

number reflects a major development:

the adoption of a new optimisation

framework that makes use of the

Single Static Assignment (SSA)

transformations. Once the framework

matures, it will provide faster and

better generated code and be the

basis for further optimisation. The

initial SSA implementation is largely

WHAT IS SSA?
A framework for better optimisation.
It will improve your life!

When writing code, it’s common to
reuse names of dummy variables. Take,
for instance, the code snippet:
a = 3;
b = f(a);
a = 4;

The a that appears at line 3 has
nothing to do with the a at lines 1 and
2. What the Single Static Assignment
does is to give a different name to
logically independent variables, so
each newly referenced variable must

C genericiseC trees

C++ trees

Java trees

GENERICC++ genericise

Java genericise

Gimplify GIMPLE
trees RTLGIMPLE

optimiser
GIMPLE

expander

2/ The tree-SSA framework (taken from http://gcc.gnu.org/projects/tree-ssa/).
GCC writers believe it will play a vital role in optimisation advances in future releases.

have a new name. In the SSA
representation, the same code becomes:
a1 = 3;
b1 = f(a1);
a2 = 4;

The scopes of the variables are now
clearly exposed. This representation
offers a powerful tool for analysing
dependencies among different portions
of a program, which is the starting point
for effective optimisations.

LXF66.feat_gcc 60LXF66.feat_gcc 60 15/3/05 4:36:31 pm15/3/05 4:36:31 pm

GCC 4.0 UP CLOSE

just a framework for the future, but

the next few releases of GCC will

include optimisations (tweaks,

basically) based on this initial release.

To understand why the new

optimisation framework will make such

a difference, we have to take a step

backward and talk about compilers in

general. A compiler is a software

program that transforms a text file

written according to well-defined

lexical and syntactical rules specified

by the programming language into

machine executable code. The

compilation process comprises a

parsing part, in which the source is

validated; an optimisation part, in

which the code is restructured for

improving its performance; and a

generation part, in which the

executable is built. Technically, we refer

to them respectively as the front-end,

the middle-end and the back-end.

The three components do not have

to be kept distinct, but if they aren’t, to

support x languages on y different

architectures one would need to write

x times y different compilers. As

readers of Paul Hudson’s LXF series

on compilers will know, the clever way

to reduce the work is to make sure

that the middle-end is logically

separated from the front-end and the

back-end. If the middle-end also

makes use of a representation of the

source code that is not language-

specific, front-ends of different

languages can share it.

In the same way, it’s possible to

interface several back-ends to the

same middle-end. For a compiler that

follows this structure, to support x

languages on y architectures you

would need x + y separate projects

emitting or accepting code according

to the rules dictated by the middle-

end. Fig 2 represents the structure of

such a compiler.

In principle, old versions of GCC

have followed that structure, with the

front-end emitting abstract syntax

trees (ASTs) and the intermediate

language being Register Transfer

Language (RTL). Unfortunately for fans

of smooth compiling, the ASTs

generated by each front-end differ,

and the RTL representation is not well

suited for high-level optimisations.

Each front-end has to know about

optimisations, which – apart from

causing duplication of efforts – means

the quality of the generated code is

dependent on the language and

optimisation processes in the

particular front-end.

What’s the answer? The new tree-

SSA framework, which will offer a

language-independent infrastructure

for optimisations, sitting as it does

between the front-ends and the

RTL (see What Is SSA? box, left).
>>

LXF: How have you been involved in
GCC’s development?
MM: I’ve enjoyed working on compilers and
programming languages for a long time: in
fact, my elementary school computer
teacher was a wonderful woman who was
very interested in programming languages.
So I think I was doomed to like compilers
from about age five!

My biggest role is release manager. I
decide when it’s time to officially release a

MARK MITCHELL: GCC GUARDIAN
As GCC’s release manager, Mark Mitchell has the heavy responsibility of overseeing new additions to the
collection. We ask him if the project is feeling the heat from rival IBM compilers.

“I THINK I WAS DOOMED
TO LIKE COMPILERS FROM
ABOUT THE AGE OF FIVE.”

www.linuxformat.co.uk LXF66 MAY 2005 61

Language 1

Language 2

Language 3

Language 4

Intermediate
language

Front-ends Middle-ends Back-ends

Architecture 1

Architecture 2

2/ An ideal compiler that supports
four languages on two different
architectures.

new version of the compiler. I also help steer
what changes go into the compiler at which
points in the development cycle and I try to
facilitate high-level technical conversations
about the desirability of particular changes.

Historically, I’ve done a lot of development
of the G++ compiler. I still do some of that,
but now I’m working more on other things,
including managing CodeSourcery’s rapid
growth. I can get a lot more done by helping
others than by trying to do it all myself!

LXF: What are the goals of GCC?
MM: It depends a lot on who you ask. One
of the challenges is that the goals of the
various stakeholders are not uniform. Some
people want to see releases very frequently
so that improvements are always available to
people. The distribution vendors want to see
releases that contain the features their
customers need on a schedule that works
for them. Some people want maximum
backwards compatibility with older versions
of the compiler. Some people want strict
conformance with language standards.

It’s a pretty diverse set of goals, and
sometimes the goals are incompatible.

LXF: How is GCC developed?
MM: GCC is developed by a pretty large
team. Most of the major contributors are
now being paid for their efforts, which is
somewhat different from five or ten years
ago. But there’s still a tremendous amount of
volunteer effort as well. I don’t want to name
particular organisations because I’ll probably
leave somebody out, and I don’t want to be
accused of promoting particular interests. In
general, the major contributors are software
development businesses (like CodeSourcery),
GNU/Linux distribution vendors, operating
system vendors and hardware vendors.

The development model has come out of
years of evolution. It’s a balance between
freeform development and a strictly top-
down model. The GCC Steering Committee
sets some high-level policies, but most
technical decisions are being made by the
individual maintainers. There’s a lot of back-
and-forth between the developers to work
out how best to solve problems. We use peer
review to check each other’s work and
decide on designs.

LXF: What can the end user expect from
GCC 4.0?
MM: It’s going to be a bit of smorgasbord.
The reason for the major version number
change [from 3 to 4] is that GCC 4.0 will

contain the tree-SSA infrastructure. There
are some programs that run a lot faster with
GCC 4.0.

I think that GCC 4.1 will demonstrate even
more of an across-the-board win. Frankly,
replacing most all of the optimisers in GCC
with brand-new technology, and having it (a)
work, and (b) not generate worse code is a
huge achievement!

GCC 4.0 also contains a Fortran 95
front-end. It’s not as polished as C or C++ at
this point, but it’s coming along very nicely.
The C++ front-end is substantially faster
when compiling without optimisation. As
always, there is support for more chip
variants, newer versions of operating
systems, and tons of bugfixes.

LXF: Has the availability of the Intel
compilers had any impact on the
development goals of GCC?
MM: I believe that competition is great for
GCC. People say a lot of things, positive and
negative, about the Intel compilers. I’m not
going to do that; I’ve not examined them
closely enough to say for sure. I’m confident
that there exist programs for which those
compilers generate better code, and that will
push GCC to improve as well.

LXF66.feat_gcc 61LXF66.feat_gcc 61 15/3/05 4:36:32 pm15/3/05 4:36:32 pm

GCC 4.0 UP CLOSE

Before code can be converted to

the SSA form, two preliminary steps

are needed, which go under the

names of GENERIC and GIMPLE.

GENERIC was introduced to overcome

a thorny problem: though the middle-

end expects input in the form of a

common intermediate language from

the front-ends, it turns out that there

are inconsistencies between the

intermediate language that each front-

end emits.

To avoid heavy intervention at the

front-ends, GENERIC was written to

translate trees emitted by the front-

ends into a common language. Still,

this is not enough: SSA acts on simple

instructions; hence, lines such as

a = b + c*d;
need to be simplified as follows:

e = c*d;
a = b + e;
so that each assignment operation

consists of the reduction of two

variables by a single operand. This

operation is known as gimplification,

and the step as GIMPLE. The step

which follows consists of a rewriting

using SSA rules. Once the code is in

the SSA form it’s straightforward to

implement some high-level

optimisation procedures before the

code is passed to RTL for further

lower-level optimisations (see Fig 1).

Among the optimisations that have

been implemented are eliminating

unreachable code, constant

propagation and a sketched

autovectorisation. Some of those

optimisations were possible within the

old framework, but the new SSA

scheme generally outperforms it (for

more, see Diego Novillo Q&A, below).

Fortran news
Although tree-SSA is without doubt

the biggest addition to GCC, version

4.0 will have many other

improvements that catch the eye.

Among them, the addition of Fortran

LXF: How did you get involved in GCC?
DN: I am originally from Argentina and came
to Canada in 1993 to do a PhD in Computer
Science at the University of Alberta. I started
getting involved with compilers and ended
up developing techniques for analysing and
optimising concurrent programs.

In 1999 I came into contact with Cygnus
and started working for the GCC team. Until
then I only knew about GCC by name – I
had played with it a little bit during my
research, but not to any serious extent. After
graduation, I relocated to Toronto and kept
working on GCC (now as part of Red Hat,
since [Cygnus was] acquired in late 1999).

LXF: What does it mean in practical terms
to be the maintainer of a branch of GCC?
DN: The work isn’t much different to what
you do on mainline. Perhaps the major
liability is merging changes from mainline
into the branch. It’s a delicate balance you
have to strike – if you merge too often, you

are bound to make the branch too unstable,
particularly if mainline is in Stage 1, ie open
to major changes. If you let too much time
pass between merges, you may spend quite
a few hours fixing merge problems,
particularly if the branch is too active, like
tree-SSA used to be.

Branches are not much different to
mainline In terms of contributions either. First
and foremost, you have to make sure that
everyone contributing to the branch has all
their FSF copyright paperwork in order.

As far as stability goes, branches also
operate in stages. Initially, you allow just
about any change that is reasonable, and as
you are getting ready to merge into mainline
you start clamping down. The tree-SSA
branch was pretty flexible initially, but in the
months prior to the final merge, I would not
allow any patch that broke bootstraps on the
5 or 6 architectures I was testing. Even if the
patch was not at fault, we would remove it
and ask the author to figure it out.

LXF: Can you explain what tree-SSA is?
DN: Basically, it is an overhaul of GCC’s
optimisation infrastructure. With it, we can

now implement optimisations like
vectorisation and software pipelining that
were difficult or impossible to implement on
RTL. It also separates the front-ends from the
back- and middle-ends so that adding new
languages to GCC won’t be nearly impossible
anymore. Before, every front-end had
intimate ties with the back-end and the
internal interfaces were slim or non-existent.

As with any other internal infrastructure
overhaul, these major changes typically
mean little to the user. But in this case, the
two major visible changes will be the
inclusion of Fortran 95 and mudflap [a
technology for checking run-time errors]. The
new optimisations will probably help some
users. For instance, the new scalarisation
capabilities are likely to help C++ code with
lots of short-lived small objects that were
demoted to memory too early in previous
versions of GCC. Also, the autovectorisation
passes may come in handy for some codes.

I don’t expect GCC 4.0 to do the job
across the board, but the new architecture
will certainly help us improve and maintain it
a lot better than before.

LXF: How do you see the future of
tree-SSA and of GCC in general?
DN: GCC is becoming a pretty good
compiler and it’s quickly assimilating modern
optimisation techniques that were previously
only seen in commercial compilers:
vectorisation, for instance. Expect several
sophisticated loop transformations to start
popping up in subsequent versions of GCC.

DIEGO NOVILLO: SSA MAESTRO
Much of the buzz surrounding GCC 4.0 is being generated by the new tree-SSA infrastructure,
which promises fast, language-independent optimisation. Linux Format talks to its creator.

“SOPHISTICATED LOOP
TRANSFORMATIONS WILL
POP UP IN NEW VERSIONS.”

62 LXF66 MAY 2005 www.linuxformat.co.uk

Security-minded readers will be pleased
to hear that GCC 4.0 addresses a
common exploit known as buffer
overflow. This is where an attacker
passes a huge string or number to a sick
program, gaining access to memory areas
and often taking on root privileges.

The answer is to perform sanity checks
for possible buffer overflows in any line
of code – but unfortunately this isn’t
done by default. Version 4.0’s solution

comes in the form of the
-D_FORTIFY_SOURCE switch. When
enabled, sanity checks will be performed
by the compiler, and if there is the
possibility of an overflow, more secure
library functions will be called instead of
the default ones. For this reason, you’ll
need the glibc library (version 2.3.4 or
later) or a patch for it.

One of the biggest advantages of this
method is that the check can be

TIGHTER SECURITY Version 4.0 gives you added protection

performed with no or very little run
time overhead. There are two levels of
fortification: -D_FORTIFY_SOURCE=1 is
the standard, while -D_FORTIFY_
SOURCE=2 gives even more security, at
the expense of possible failures of some
conforming programs. Read more at
http://gcc.gnu.org/ml/gcc-
patches/2004-09/msg02055.html.

We are also
starting to add intermodule optimisations –
optimisations that can work across function
calls and even file boundaries. Explicit
concurrency in the form of OpenMP [a
shared-memory API] or something along
those lines is also likely in the mid- to long
term. Dynamic languages like Java will also
benefit from the new architecture. People
will be able to implement analyses like
escape analysis and devirtualisation.

LXF: Do you plan to work on other
innovative projects for GCC?
DN: I’m very interested in GOMP, an
implementation of OpenMP. In the short
term, I’m working in several propagation
optimisations to help analyses like mudflap
reduce the amount of memory-bound
instrumentation. I’m also interested in
reducing bounds and type checking for Java.

LXF66.feat_gcc 62LXF66.feat_gcc 62 15/3/05 4:36:34 pm15/3/05 4:36:34 pm

www.linuxformat.co.uk LXF66 MAY 2005 63

GCC 4.0 UP CLOSE

>>95 support in the form of gfortran

(short for the GNU Fortran 95 project)

will be welcomed by the many

scientists and engineers who use this

programming language – Fortran has

never been one of GCC’s strong points.

Gfortran (http://gcc.gnu.org/
fortran) is a good example of the

benefits of a more open development

model. It was forked from the original

g95 project (still under heavy

development at http://g95.sf.net)

because the maintainer of g95 liked

to keep very tight control. The

developers of what is now gfortran

argued for tighter integration with GCC

and bet on tree-SSA succeeding when

it was still an experimental project.

Their bravery is about to be rewarded –

like any other GCC subproject, gfortran

is now the property of the FSF (for

more, see Paul Brook Q&A, page 64).

Even at this early stage of

development, gfortran has the

potential to fill the gap between

Fortran and the other languages

supported by GCC, and has been

reckoned mature enough to replace

the ageing g77 front-end, although

there is still some work to be done. In

particular, the compatibility with

Fortran 77 is still far from perfect. For

this reason, Linux distro vendors are

expected to provide a port of g77

alongside the new gfortran.

Symbol clearout
The slow start-up time of essential

software like OpenOffice.org, Mozilla,

KDE and Gnome is a common gripe

among Linux users. With GCC 4.0 this

should be greatly speeded up –

provided that software developers

make use of the new features. The key

is the new GCC visibility patch. This

offers you the possibility of deciding

which ELF symbols should be

exported (ELF is the format of Linux

executables) and which should remain

private. In older software this feature

required a substantial amount of

monkeying to make it work. New

projects are encouraged to use visibility

options right from their inception.

With a careful choice of private

symbols, the loading time of a library

can be sharply reduced. It also gives

the added benefits of up to 20%

reduction in the size of executables,

better scope for the optimiser to

improve the code and reduced

likelihood of symbol crashing. The

advantage of using the visibility

features should be pondered on a

case-by-case basis; however, any large

C++ library making heavy use of

templates is expected to benefit

considerably from them. That said, it is

for C++ programs only – KDE and

OpenOffice.org are already taking

advantage of this, but Gnome – being

C-based – has not and will not.

Among other improvements in

version 4.0, we’re excited by the

(promised) much faster C++ parser,

the new ABI for Java and the

implementation of some mathematical

functions on the IA32 and x86-64

architectures as inline intrinsics, for the

benefit of number crunchers. A

complete list of all the features of GCC

4.0 can be found at http://gcc.gnu.
org/gcc-4.0/changes.html.

More speed
Of course, everyone wants a fast

compiler and everyone expects a new

release of a compiler to be faster than

the previous one. However, there is no

universal consent about the meaning

of the word ‘faster’. Maintainers of

large software repositories for which

speed is not critical would prefer a

compiler that focuses on improving

the compilation time, while people

who deal with performance-critical

software would rather benefit from

shorter execution times (especially if

they are buying CPU time, which is

fairly likely among number crunchers).

Whatever your background, we’re

sure that you want benchmarks for

GCC 4.0, and we are not going to

disappoint you. However, the usual

caveat that the only benchmark that

should really matter to you is the one

based on your code still applies. We

should also point out that CVS

versions of the compiler are very

different from stable versions, even if

they have the same release number,

so you should take the benchmark

results as a very rough estimate, with

the understanding that the stable

FFT

SOR

MC

MML

LU

Com

0 250 500 750 1,000

3/ Floating-point performance of GCC 3.4.3, GCC 4.0 and ICC 8.1 as
measured by the benchmark suite SciMark2, which was developed at the
US National Institute of Standards and Technology to compare processing
speeds of programs written in both C and Java.

Co
m

p
ut

at
io

na
l k

er
ne

ls

Mflops

Mflops = Floating point operations

 per second, in millions

FFT = Fast Fourier Transformation

SOR = Jacobi SOR

MC = Monte Carlo integration

MML = Sparce matrix multiply

LU = LU factorisation

Com = Composite scoreK
EY

GCC 3.4.3
GCC 4.0

ICC 8.1

LXF66.feat_gcc 63LXF66.feat_gcc 63 15/3/05 4:36:38 pm15/3/05 4:36:38 pm

GCC 4.0 UP CLOSE

LXF: How long have you been working
on GCC?
PB: I’ve been involved with GCC since I left
university in 2002, and have been working
for CodeSourcery on GCC for just over a year.
I’m joint maintainer of the GCC ARM back-
end and Fortran front-end, and spend most
of my time working on these.

LXF: Why do you believe that GCC must
support Fortran 95?
PB: Fortran is still quite widely used for
computationally-intensive numerical
simulations, particularly in academic
institutions. It is quite common for new code
to be written in Fortran 95, then combined
with legacy Fortran 77 libraries.

Support for Fortran 95 is essential if GCC
is to remain a viable alternative in this area.
GCC’s free availability and portability to a
large number of hardware and OS platforms
make it particularly attractive for a user
wanting to develop an application on a local
workstation, then migrate it to a high-
performance cluster.

LXF: How did you get the idea of adding
F95 support to GCC?
PB: My final year project at university
involved modifying a fluid simulation code
written in Fortran 95. I was frustrated by the
lack of a free Fortran 95 compiler, which
meant I was restricted to working on a few
university machines.

After finishing university I joined the g95
project. At that time g95 could parse most
Fortran 95 source, but had no real code
generation capabilities. Like most recent
university graduates I had quite a bit of spare
time, so wrote the code to glue g95 and
GCC together.

PAUL BROOK: FORTRAN VISIONARY
Together with Steven Bosscher, Paul Brook made it his mission to
have a Fortran 95 front-end as a part of the official GCC distribution.
We asked Paul where the project’s at today.

 version will be no worse than the

experimental one.

The same applies to gfortran,

which at the moment runs at about

half the speed of the Intel Fortran

Compiler version 8.1 in our self-

developed Fortran 90 benchmark

suite (we could not compare directly

with GCC 3.4, since Fortran 90/95

support is a new feature of GCC 4.0).

With all this in mind, we tested the

performance of the code generated

by GCC 4.0 CVS with the SciMark2

benchmark suite (http://math.nist.
gov/scimark2), designed for gauging

the speed of floating-point operations,

and did the same with GCC 3.4.3 and

the Intel C Compiler release version

8.1. For the GNU compilers we used

the optimisation flags

‘gcc -O3 -funroll-loops -D__

NO_MATH_INLINES -ffast-

math -march=opteron -

mfpmath=sse,387 -ftree-

vectorize -onestep -fomit-

frame-pointer -finline-

functions -static’

except for the -ftree_vectorize

option, which is specific to tree-SSA

(other tree-SSA optimisation options

are automatically activated by the -O3

switch). For ICC we used:

‘-O3 -tpp7 -xW -ipo -align -

Zp16 -static’.

Without the static option, which would

have hidden the features we were

interested in. The compilation time on

4.0 was on average about 10% slower

than on 3.4.3, and the size of the

executable was about 2% larger. The

generated code was then executed on

a dual AMD Opteron 244 processor

machine with 4GB of RAM. Measured

performances are plotted in Fig 3 (for

details about the various tests, refer to

the home page of the benchmarks).

GCC 4.0 overperforms its

predecessor in most tests, often by a

wide margin. Even more excitingly,

GCC 4.0 now runs neck and neck with

the Intel compiler, and outperforms it

by a significant margin in at least two

tests. Still, at the moment a tedious

optimisation bug (a wrong move of

floating-point variables through integer

registers) affects the performance of

GCC 4.0. As this bug will be fixed

before the official release, expect the

official version to perform much better

than in our tests. We don’t expect you

to have a dual Opteron on your desks,

so we repeated the tests on a Pentium

IV 1.7 GHz with 768 MB of RAM, which

threw up roughly the same results.

The tests confirmed our hopes that

GCC 4.0 will be a great release. But

the GCC developers have no time to

bask in the glory, since they are

already working on new features and

additions. GCC still lags behind

commercial competitors in the high-

performance computing market, and

we expect this gap to be filled pretty

soon. The GOMP project (http://gcc.
gnu.org/projects/gomp), aimed at

providing support for the powerful

OpenMP parallel instruction extensions,

is an initial step in that direction. LXF

64 LXF66 MAY 2005 www.linuxformat.co.uk

LXF: Why did you decide to fork g95?
PB: The original g95 author likes to keep
very tight control of the project, ensuring
that all code meets his personal standards
and ways of doing things. We felt that it
was important to have a more open
development environment, and to work
more closely with the rest of the GCC
community. Our initial goal was to integrate
gfortran into the main GCC CVS repository,
making it part of official GCC releases.

LXF: Is there any cooperation among
the two Fortran implementations of
GCC? For instance, are you exchanging
code for the libraries?
PB: No, not much. In practice the two
projects have diverged sufficiently that
most changes do not transfer easily.
There has also been some difficulty
obtaining up-to-date versions of the g95
source code.

LXF: What needs to be done to
consider the implementation complete?
PB: Gfortran should still be considered
beta quality. Most Fortran 95 language
features have been implemented, and
some large applications (eg the SPEC
CPU2000 benchmarks) can be
successfully compiled. However, there are
still many bugs, and many of the language
extensions supported by g77 aren’t yet
implemented.

I’ll consider gfortran done when the few
remaining corners of Fortran 95, and most
of the extensions supported by g77, are
working. GCC 4.0 will be the first GCC
release to include gfortran. We expect that
by then gfortran will be usable for many
purposes, though it may not be suitable as
a production compiler or as a direct
replacement for g77.

LXF: Do you have any idea of how
gfortran compares in terms of
performance with commercial
implementations such as Intel’s?
PB: For Fortran 77 code gfortran should
generate code that is at least as good as
g77, and comparable to many commercial
compilers. For some complex Fortran 95
code we generate code that is significantly
slower than commercial compilers. Most of
the work on gfortran is concerned with
correct implementation of missing features:
there’s a lot of work left to do to improve
performance. Having said that, gfortran
uses the same optimisers as GCC and
G++, so any improvements to these will
benefit gfortran. GCC 4.0 will contain many
new optimisations, like autovectorisation.
These should help close the gap between
gfortran and commercial compilers.

>>

Thanks to Vladimir Marakov, Paolo
Bonzini, Uros Bizjak and especially
Richard Guenther for discussing
optimisation flags in GCC 4.0.

ACKNOWLEDGEMENTS

LXF66.feat_gcc 64LXF66.feat_gcc 64 15/3/05 4:36:40 pm15/3/05 4:36:40 pm

