ePiX Tutorial
Andrew D. Hwang

ahwang@mathcs.holycross.edu
Version 0.8.1, June 6, 2002

1 Introduction

ePiX is a KTEX pre-processor that creates mathematically accurate (mostly
2-dimensional) plots and figures using easy-to-learn syntax. The user inter-
face is superficially that of IXTEX itself: You prepare a short input file and
“run ePiX” on this file, which produces a text file that is included into a
ETEX document. Because the output is plain text, the output can be edited
manually if necessary. However, for most visual tweaking it is easier and
safer to change the source and re-run ePiX.
There are several reasons to use ePiX.

e Ease of use: ePiX was written by a mathematician for mathematicians.
Figure objects are specified by simple, mnemonic commands, as in
KTEX. The learning curve is gentle: Using only built-in primitives, you
can duplicate almost everything xfig can do, and do many things xfig
cannot.

e Quality of output: ePiX creates publication-quality, mathematically
accurate figures whose appearance matches that of KTgX. Paragraph-
mode KTEX typography may be put in an ePiX figure as easily as in
an ordinary BETEX document; this is one of the strongest advantages
of ePiX over plain PostScript, and indeed one of ePiX’s distinguishing
features.

e Economy of storage and transmission: ePiX output is native KTEX,
and is generally 50-70% smaller than comparable Postscript. Some
source files (vector fields, for example) can be considerably less than 1%
the size of their output, making ePiX a potentially non-trivial form of
compression for documents containing many complicated figures.

e Flexibility: In ePiX, you refer almost exclusively to Cartesian coor-
dinates, letting the software handle conversion to KTEX picture coor-
dinates. Resizing a printed figure or its Cartesian bounding box is

a matter of changing a couple of numbers and re-running ePiX; you
needn’t re-calculate or re-type the IXTEX coordinates of all your pic-
ture objects. ePiX’s mechanism for placement of text in a figure is
easy, accurate, and robust under changes of scale.

e Power: ePiX retains the power of C as a programming language; vari-
ables, loops, and recursion can be used to draw complicated plots and
figures with just a few lines of input. Objects’ locations can be specified
in terms of variables, allowing you to rearrange or otherwise modify a
figure by changing a few numbers. You can plot finite sums of functions
(e.g., Taylor and Fourier polynomials), generate successive “snapshots”
of a figure as parameters vary, or create stereoscopic pairs, for example.

o It is Free Software, in the senses laid out by the Free Software Foun-
dation: You are granted the right to use the program for whatever
purpose, and to inspect, modify, and re-distribute the source code, so
long as you do not restrict the rights of others to do the same. In short,
the license is similar to the terms under which theorems are published,
rather than the way commercial software is distributed. ePiX also hap-
pens to be free (no-cost) software.

A graphical interface is not planned, because it is impossible to achieve
the same accuracy as with an input file, and because graphical menus do not
encourage logical structuring of a figure. Output files, by contrast, may be
previewed with any dvi-capable previewer.

Comparison with Existing Programs

There are already programs for drawing figures that can be included in XTEX
documents; why write another one? The short answer is that the author
was unable to find a utility that is Free (in the sense of Free Software),
mathematically accurate, easy to use, and sufficiently capable. It is difficult
to explain the rationale in detail without critiquing existing software by name.
Nothing in this section is meant to disparage the good work of others, but
only to explain why the author felt the need to write ePiX.

xfig, while a fast and convenient way of drawing simple figures, is anal-
ogous to a WYSIWYG word processor, in the same way ePiX is analogous
to KTEX. While the immediate results are often pleasing, it is difficult to
achieve mathematical accuracy, and even more difficult to edit an existing

figure. Similar remarks are true for other programs, such as TeXpict and
sketch, whose user interfaces are graphical menus.

Large, commercial packages such as Maple and Mathematica produce
mathematically accurate output, but are not Free (nor very affordable for an
individual), and are therefore (in the author’s view) contrary to the academic
ethic. There are many smaller reasons to be unhappy with such programs.
They are also, arguably, overkill for ePiX’s intended purposes.

gnuplot might seem a natural choice, but despite its name, gnuplot is
not Free Software. In addition, the author found the documentation dense,
the learning curve steep (likely an indictment of the author’s patience rather
than of gnuplot), and the output less than perfect. Packages such as picTeX
and pstricks can do many useful things, but do not plot functions.

Finally, the author found a number of “toy” programs scattered on the
web, but none were powerful, flexible, or easy to compile (much less use),
and none produced publication-quality output.

System Requirements

In contrast to the previous section, which might be titled, “Why to use
ePiX”, this section might be called, “Why not to use ePiX”, depending on
your operating system and available software.

Running ePiX requires, in decreasing order of importance, a C/C++ com-
piler, GNU bash or a similarly functional shell (“command line”) or scripting
language, and an operating system that supports output redirection. For
creating ePiX input files, a text editor (such as emacs or vim) that facili-
tates formatting C code is extremely useful. To incorporate ePiX figures in
a document and preview the result, you will of course need KTEX itself—
particularly the epic and eepic packages, but also the pstricks and/or
color packages for color output—and a dvi or Postscript previewer. These
components are standard GNU! software, and should also be available on
most Unix mainframes. If not, speak to your sysadmin.

Typographical Conventions

Shell commands, file names, and other text literals are in typewriter font.
Inside an ePiX source file, commands must be typed exactly as shown, in-

L4GNU’s Not Unix”, an operating system usually distributed with the Linux kernel.

cluding (or omitting!) final semicolons and "double quotes".

Installing ePiX

ePiX is distributed as source code. The latest version of ePiX can be down-
loaded from

http://mathcs.holycross.edu/ ahwang/current/ePiX.html
Unpack the gzip-ed tar file

tar -zxvf epix_src.tar.gz

or, if your tar doesn’t know about decompression,

gunzip epix_src.tar.gz
tar -xvf epix_src.tar

cd to the source directory, which is named epix-0.8.x for some small inte-
ger x. The README file contains detailed installation instructions. If you're
impatient, the short of it is

make test
[make contrib]
make install
make clean

Respectively, these steps build the epix library and run a test compile on
the included sample files; optionally build extra packages (see below); install
the library, header file, and two shell scripts; and revert the source directory
to its original state. The only optional package at present was kindly con-
tributed by Svend Daugaard Pedersen, and supplies extensions for enhanced
Cartesian coordinate systems, and for hatching planar regions. His package is
documented separately, in the contrib/ subdirectory of the source package.

By default, ePiX installs in subdirectories of /usr/local; if you do not
have root access, see the README for information on personal installation and
POST-INSTALL for instructions on setting your PATH variable so your shell can
find ePiX.

ePiX is not a stand-alone program, but consists of a C/C++ library and
a shell script, and therefore requires a compiler for normal use. The GNU
compilers (gcc/g++) and C library are strongly preferred, both because they

4

are used to develop ePiX, and because they implement many mathematical
features not specified by ANST C.

Your life with ePiX will be difficult (in the Japanese sense) unless the
GNU shell bash is available on your system or you hack the scripts. If you
have no idea what this means, don’t worry; most Unices have bash installed.
If you port ePiX to another operating environment, please send the author
copies of your scripts for future inclusion. =

2 Getting Started

An ePiX source file is a short C program. Even if you speak C, you may want
to skim this section quickly, as it explains the basic format of an input file.
This section assumes you know nothing of C, but that you do know IKXTEX.

Coordinates and Dimensions

As a mathematician, you generally want to depict a specific portion of the
Cartesian plane, and may want to control the aspect ratio of the figure,
for reasons including aesthetics and mathematical accuracy. In the IXTEX
picture environment, locations are specified in terms of the current IXTEX
unitlength, measured from the lower left corner of the KITEX picture box.
There are at least three unfortunate consequences of this design. First, the
position of each object must be computed by hand in a coordinate system
that usually has little to do with the figure. Second, while a figure can be
scaled easily by changing the unitlength, it is impossible to change the
aspect ratio of a figure without manually changing the positions of each
object. Third, raw scaling can easily break a figure, because text does not
scale. Thus even changing the size of a E'TEX figure can be non-trivial. ePiX
circumvents these problems; this is discussed at more length in Section 3.

In order to draw a figure in ePiX, you must provide the following pieces
of information: the unitlength in the figure, the size of the printed figure in
picture coordinates, and the Cartesian coordinates of the figure’s bounding
box. ePiX performs the following affine scaling automatically:

(hsizev Usize)

(wmax: ymax)
ePiX
e
(wmin; ymin) (0, 0)
Cartesian bounding box ETEX picture box

Changing the size, aspect ratio, or bounding box of a figure is therefore
trivial, and if the figure is well-designed it will scale attractively. Objects
may extend outside the bounding box, but you generally have better control
over figures that exactly fill their bounding box. The entire figure may be
offset, as in the BTEX picture environment; if unspecified the offset is zero.
In contrast to IXTEX, positive offsets in ePiX shift the figure up and right.

2.1 A Simple Figure and C Tutorial

Suppose we want to depict a rectangle inscribed in the upper unit half-disk,
say for an area maximization problem. The figure will contain coordinate
axes, the semi-circle, the inscribed rectangle, and labels. The first step is to
decide on the bounding box. In this example, [—1,1] x [0, 1] is a reasonable
choice. If the figure is to have true aspect ratio, the width will be twice the
height. Next we decide the true size of the figure (as mentioned already, it
is easy to change this later). A width of 2.5 in is reasonable, and the aspect
ratio forces the height to be 1.25 in.

The input file is shown in Figure 1. The format should be partially self-
explanatory, but a line-by-line explanation is given below. A few things may
not be self-explanatory: The first line of input, delimited by “/*” and “x/”,
is a comment. (A comment begun with /* may span several lines, but ends
at the next occurrance of */. You should take care when commenting a large
portion of an existing file, lest the new comment be terminated prematurely
by an existing comment.) A single-line comment, analogous to a TEX line
beginning with %, begins with “//”. ePiX manipulates points and vectors
using an ordered pair data structure; the construct P(a,b) creates the or-
dered pair (a,b). Finally, variables in C must have a declared type, such as
int (integer), double (double-precision float), or char (character).

When ePiX is run on this source file and the output is included in a KTEX
document, the result is as depicted in Figure 2.

The include line ensures that standard commands will be available to
ePiX when the file is compiled. Every ePiX file must contain this line. The
double quotes are single characters, not pairs of single quotes. For the most

/* semicirc.c -- A rectangle inscribed in a semi-circle */
#include "epix.h"
double w = 0.6;

main ()

{
unitlength("1in");
bounding box(P(-1, 0), P(1, 1));
picture(P(2.5, 1.25));
offset(P(0,0.125));

begin() ;

line(P(x_min, 0), P(x_max, 0));
line(P(0, y_min), P(0, y_max));

ellipse_top(P(0,0), P(1,1));
boldrect(P(-w,0), P(w, sqrt(l-w*w)));

label(P(0.5, sqrt(0.75)), P(2,4), "$y=\\sqrt{1-x"2}$");
h_axis_labels(P(x_min,0), P(x_max,0), x_size, P(-12, -12));

end() ;

Figure 1: The source file for Figure 2.

part, C is not picky about spaces and blank lines in a file, but it is very
sensitive to punctuation. Most lines in a C program end with a semicolon.
The include line is a rare exception.

The next non-blank line is an assignment statement. In this example, w
denotes the half-width of the inscribed rectangle. The final appearance of the
figure can be adjusted by changing w. Using variables highlights the logical
structure of the figure, which is especially valuable when the figure contains
many objects whose positions are mathematically related. Generally, vari-
ables are similar to XTEX macros; if a constant appears repeatedly in a single
figure, it should probably be a variable. Multiple variable assignments may
be placed on a single line, separated by commas, or may be put on separate

y:m

-1 0 1
Figure 2: A rectangle inscribed in the upper half disk.

lines. It is a good idea to group together logically related assignment state-
ments, and to use blank lines and spaces as needed to make the file easy to
read.

The include line, variable assignments, and function definitions (none in
this example) constitute the preamble. The action begins with the function
call to main. The rest of the input file, the body, consists of ePiX commands.

The first four lines of the body assign values to several variables that
determine the size and positioning of the figure. You are discouraged from
accessing these variables directly, but their names are:

x_min X_max y_min y_max
h_size v_size h_offset v_offset
pic_size pic_unit

2 all of these variables are

Other than pic_unit, which is of type char,
doubles.

The begin() ; line prints some commentary and a ETEX picture head in
the output file; everything between begin() ; and end () ; generates a picture
object.

Picture object commands are mnemonic. The 1ine commands draw the
horizontal and vertical axes. The endpoints of the axes are specified in terms
of the Cartesian bounding box of the figure; if the bounding box is changed,
the axes will adjust automatically. The ellipse_top command draws the
top half of an ellipse, centered at (0,0), with radius (1,1). Remember that
the construct P(a,b) creates the ordered pair (a,b). The boldrect com-

2To be accurate, it’s a “pointer” to char. You can use ePiX without ever knowing what
this remark means.

mand draws a boldface rectangle, with opposite corners given in terms of the
variable w.

Finally, there are two commands that print labels in the figure. The
first causes output of a K'IEX command to be placed at the Cartesian loca-
tion (3, LE), offset right by 2pt and up by 4pt. In the final figure, the label
reads “y = /1 — x2”, and is placed using the ETEX basepoint of the entire
formula. In ePiX, the correct way to position a label is to specify the “coarse”
location in Cartesian coordinates, then to fine tune the location visually with
the label offset. Label offsets are always specified in true points, because font
sizes are given in points and do not change with scaling. The label command

h_axis_labels(P(x_min,0), P(x_max,0), x_size, P(-12, -12));
generates horizontal-axis labels. The first label is at (—1,0), the last is
at (1,0), and there are 2 + 1 labels, namely one at each integer point. The
final pair is the label offset; the labels will be shifted left by 12pt (which
roughly centers them) and down 12pt (which prints them below the horizon-
tal axis). ePiX generates the label values automatically.

There are a few important features (of both C and ePiX) illustrated by
this input file.

e Label commands (and no others) have an offset option; all other objects
are placed using Cartesian coordinates.

e In a label command, the label itself is generated by a string enclosed
by double quotes. Aside from backslashes, the material between the
quotes is printed verbatim to the output file; to get a backslash in the
output, you must put a double backslash in the input.

e Global variables must be declared either in the preamble, or in main
before anything else. Variables that are constant should be defined
in the preamble; variables that depend on function values (such as
sqrt(3)/2) or on other variables (e.g., 4*x_size) must be defined
inside main.?

e C knows several mathematical functions (sqrt, log, sin, and so forth)
by the same names as IXTEX. However, C requires a * to denote mul-
tiplication, and does not recognize the caret as notation for exponen-

3To declare a variable is to tell the compiler the variable’s name and type, but not to
assign a value; the latter is to define the variable. A variable must be declared exactly
once, but can be defined several times.

tiation. To get powers of a variable, you must either specify explicit
multiplication, as in w*w, or must use C’s exponentiation function, as
in pow(w,2). The latter sensibly handles arbitrary floating-point bases
and exponents.

e Almost all ePiX objects can be drawn in any of four styles: plain,
dashed, dotted, and bold. The naming convention is that the “plain”
object has a root name (such as rect), and the other styles are gotten
by prefixing (e.g., dashrect, dotrect, boldrect).

ePiX provides about two dozen graphics primitives, including lines, ar-
rows, triangles and rectangles, whole and half ellipses, circular arcs and ar-
rows, quadratic and cubic splines, Cartesian and polar coordinate grids, axes
with tick marks, and various types of point marker. These are descriptively
named, and are invoked as in the example above. A detailed list and descrip-
tion is given in Section 3.

If you have the pstcol (or color) package for XTEX, you can create basic
color figures by delimiting portions of the input file with (say) red(); and
end_red () ; Colors available in this way are red, blue, green, magenta, cyan,
and yellow. ePiX allows generation of essentially arbitrary colors. Detailed
instructions on creating and previewing color files are given in Section 2.2.

Plotting Functions

ePiX has several commands for creating plots of user-specified functions.
Suppose we wish to graph the sin function on the interval [—3, 3], emphasizing
that while not invertible, it is invertible on the interval [—7/2, 7/2]. Because
the sin function is provided in C, we need not define it. Our input file might
look like Figure 3. The resulting KTEX output is Figure 4.

The figure is 300pt wide and 100pt high, and uses the constant M_PI_2.
The axis-generating commands are new, but the syntax is easily divined; note
that their positions (and the number of tick marks) are specified completely
in terms of the bounding box. This works well as long as the bounding box
has integer coordinates. The plot commands are of primary interest:

plot(sin, x_min, -x0, 30);

draws a plot of the sin function between x_min and —7 /2, using 31 data
points. The other plot lines are similar.

10

/* sine.c -- The graph y = sin x on [-3,3] */
#include "epix.h"
double x0 = M_PI_2; // \pi/2 to 20 decimals
main ()
{

unitlength("1pt");

picture(P(300, 100));

bounding_box(P(-3, -1), P(3,1));

begin();

h_axis(P(x_min, 0), P(x_max, 0), x_size);
v_axis(P(0, y_min), P(0, y_max), y_size);

plot(sin, x_min, -x0, 30);
plot(sin, x0, x_max, 30);

dashline(P(x0,0), P(x0, sin(x0)));

label(P(x0, 0), P(-3, -12), "$\\frac{\\pi}{2}$");
h_axis_masklabels(P(x_min,0), P(x_max,0), x_size, P(-14,-12));

boldplot(sin, -x0, x0, 60);

end();

Figure 3: The source file for Figure 4.

11

\

\

\
\ . . . L |
-3 —2 -1 0 1 5 2 3

Figure 4: Plotting the sin function with ePiX.

An ePiX figure is built in layers, with later parts of the file set atop
earlier parts. Generally you needn’t pay much attention to the order in
which objects appear in a source file, but in the sin graph example there are
two opaque layers whose occlusion of lower layers is deliberate. First, the axis
labels are “masked”, meaning they are set atop opaque white rectangles; this
is done to prevent the graph from colliding with the label at —3. Second, the
bold portion of the graph passes over the mask at the origin. Consequently,
the plain sin graph, then the axis labels, then the bold sin graph must appear
in order in the source file. Layering tends to be more of an issue with color
figures, since it is more apparent which of two curves passes over the other
when their colors are different. Generally, masked axis labels should come
last in a file, since the purpose of masking is to make the labels legible.

The number of points in a function plot should be as small as possible
without compromising quality, an aesthetic decision. I¥TEX reads in all the
points in a path before typesetting anything, and is likely to run out of
memory if the path contains more than about 700 points. There may be
other limits on the total number of points a previewer is able to display.

ePiX provides plotting commands that do clipped, polar, or parametric
plotting, draw slope or vector fields, or plot solutions to systems of ODEs,
but they all operate similarly to plot: You provide the function(s) to be
plotted, a range of values over which to plot, and the number of sample
points.

Eventually, you will want to define your own functions for plotting. This is
described in Section 3. Function (and variable) names may consist of letters,
numerals, and underscores, and may not begin with a numeral. Names are
case sensitive; the convention is to use lower-case names, but you need not

12

do so. It’s a good idea to use descriptive, relatively short names that are
logically related to what they stand for. If the compiler complains that a
function (or variable) is “multiply defined”, it means the name has been
previously declared.

2.2 Running ePiX

The zeroth step in using ePiX is to have a TEX document, say sample.tex,
that requires a mathematically accurate figure. If you use IXTgX2e, your file
should begin

\documentclass[12pt]{article}
\usepackage{amsmath,latexsym,epic,eepic}

The epic and eepic packages are the relevant ones here. If you plan to
create color figures, you will also need pstcol or color, which are part of
modern KTEX2e. If you are using plain KIEX, your file will start

\documentstyle[12pt,epic,eepic]l{article}
and color is not available. Somewhere in sample.tex is the figure itself:

\begin{figure} [hbt]

\begin{center}

\input{tutorial-plot.eepic}

\caption{Plotting the sin function with \ePiX.}
\label{fig:example-plot}

\end{center}

\end{figure}

Before you run IXTEX, you need a file named tutorial-plot.eepic in the
current directory. This is where ePiX comes in. If you have created an input
file called sine.c, as directed in Section 2.1, and if ePiX is correctly installed,
then you type

epix sine.c tutorial-plot.eepic

After a short interval, during which some reassuring messages will be printed
on the screen, you will get the prompt back and the .eepic file will be there.
That’s all there is to it. You may leave off the file extensions, and may even
omit the name of the output file if you want it to be the same as the name
of the input (sine.eepic in this example).

To process the IXTEX file, either run IXTEX as usual, or do

13

laps sample

which runs IXTEX on sample.tex, then uses dvips to convert the dvi to the
Postscript file sample.ps. This is a convenient option if your document in-
cludes color figures. laps (for “IKTEX to Postscript”) is a shell script included
with ePiX.

ePiX comes with a sample document containing side-by-side comparison
of over a dozen source files and their output. Section 3 is a complete descrip-
tion of ePiX’s features, and Section 5 describes troubleshooting. Good luck,
and happy drawing!

3 Advanced Features

The introduction of Section 2.1 does not describe all of ePiX’s features, even
ones that you may use frequently. You may also find that you need to know
more of C, either to understand why a source file isn’t compiling, or to achieve
effects using more of the power of C. Further, if the installation does not go
smoothly, you will need to know how ePiX is implemented in order to get
it working. Finally, you may be curious, or a better programmer than the
author, and may have improvements to make. This section describes all of
ePiX’s features, some of the design rationale, and the implementation.

3.1 ePiX, and the epic and eepic Styles

The ETEX epic and eepic styles define commands \path, \dashline, and
\dottedline, that take a list of ordered pairs as argument and print the
corresponding connect-the-dots path (or dashed/dotted path). These com-
mands are used in a IXTEX picture environment just like any KXIEX object.
Computers are good at generating lists of numbers. In ePiX, you write some
lines such as

/* Comment: The squaring function */
double f(double t) {
return t*t;

}

/* Graph f for t in [-1,1] using 20 steps */
plot(f, -1, 1, 20);

14

When ePiX is run, the plot command writes the following ePiX stanza to
the output file:

%% plot:

\path(0,50) (5,40.5) (10,32) (15,24.5) (20,18) (25,12.5) (30,8)
(35,4.5) (40,2) (45,0.5) (50,0) (565,0.5) (60,2) (65,4.5) (70,8)
(75,12.5)(80,18) (85,24.5) (90,32) (95,40.5) (100,50)

yAA

The actual numbers depend on the Cartesian bounding box, and on h_size
and v_size, the IXTEX dimensions of the figure; in this example, ePiX has
generated a parabola that fits into a IXIEX picture 100 units wide and 50 high.

The .eepic file written by ePiX is human-readable (even formatted and
commented), and it may be instructive to look at the output of a short figure.
You may edit the output file by hand if necessary, though it is safer (and
usually easier) to change the source file and re-run ePiX. Note that ePiX will
overwrite an existing .eepic file if so directed. In summary, ePiX is a IXTEX
pre-processor; it turns a human-friendly picture description into a marked-up
list of numbers for BKTEX.

An ePiX figure is layered: Objects are drawn over objects that come
earlier in the file. Most ePiX objects are transparent, but when using color
it is noticeable whether a blue curve goes over or under a magenta one (say).
There are only a few ePiX commands that explicitly cover objects under
them, but in a complicated figure even the implicit “masking” effect bears
consideration. Among the commands that do cover previous layers are the
masklabel commands, which draw an opaque white rectangle under labels,
and circ, which draws a white-filled circle 4 true pt in diameter.

3.2 Coordinates and Dimensions

ETEX requires you to specify a unitlength, the picture size, and an offset,
which determines the picture coordinates of the lower-left corner. Picture
objects’ locations are specified to KTEX in picture coordinates. When com-
posing a mathematical figure, however, it is generally easier to use Cartesian
coordinates. Letting software handle this conversion not only frees you from
worrying about (non-portable) picture coordinates, but also makes it easy to
change the size of the figure, and to place the figure exactly where TEX has
left space for it. If you’ve ever had to change the unit length of a figure (for

15

example, because you are American and your coauthor is not), only to have
the picture become horribly ugly, overlap the surrounding text, or otherwise
break the document, you’ll understand why automatic coordinate conversion
is a useful feature.

There is one situation where Cartesian coordinates are not adequate,
namely when you are doing visual editing to place a text label in a figure.
A label’s size is independent of both picture coordinates and Cartesian co-
ordinates, so if you use either to position a label, changing the scale or the
Cartesian bounding box will probably break the positioning. However, true
coordinates (measured on the page) are no good, either, because the size
and/or scale of the picture may change with further editing. ePiX circum-
vents this difficulty by allowing labels to be placed in Cartesian coordinates,
but to be offset in true coordinates. For instance, the labels on a coordinate
axis need to be positioned at the proper location in the Cartesian plane,
but because KIEX uses the basepoint to position a box, the raw Cartesian
coordinates are likely to mis-position the labels. If you fine-tune the labels’
positions in Cartesian coordinates, however, the picture will break if the scale
is changed. Using both Cartesian and true coordinates allows you to position
labels easily so that they are placed correctly if the \unitlength is changed,
or even if the Cartesian bounding box is changed.

Aside from labels, all positions in an ePiX file are specified in Cartesian
coordinates. ePiX asks KTEX to set aside a box of size h_sizexv_size,
then does affine scaling on the rectangle [x_min, x_max]Xx[y_min, y_max]
to get an exact fit. You can still force objects to go outside the bounding
box, by giving them Cartesian coordinates outside the box. Positive offsets
in ePiX shift the picture up and right (the opposite of KTEX picture offsets).
ePiX’s output is accurate to 10 **unitlength.

3.3 More about C

An ePiX input file is really source code for a C program that writes an .eepic
file as output. If you do not speak C, the main things to remember (principally
differences between KTEX and C syntaxes) are:

1. Comments, which may span several lines, are delimited by the strings
/* and */. One-line comments, similar to BTEX comments, are begun
with // (analogous to the TEX %) and end with the next newline. A
//-style comment may appear within a multiline comment, but a /* */

16

comment may not; the C compiler will mistake the first */ it encounters
as the end of the current multiline comment.

. Every statement and function call must end with a semicolon. If you
omit a semicolon, the compiler will give you a cryptic error message
(such as ‘parse error at line N’ if the semicolon is missing on the last
non-blank line before line N).

Lines that begin with #include or #define are C pre-processor direc-
tives, and do not end with a semicolon.

. As in KTEX, the backslash \ is an escape character in C. To print a \
from C, you must use \\, as in

/* Put label $y=\sin x$ at (2,1) */

/* Note single ~ backslash in output */
label(P(2,1), P(0,0), "$y=\\sin x$");

/% Double backslash ~~ in source */

. Variables in C must have a declared type, such as int (integer), double
(double-precision floating point), or char (string of characters), and
should be defined in the preamble or at the beginning of main. (Vari-
ables local to a function must be defined at the beginning of the func-
tion.) Variable and function names may contain letters (including un-
derscore) and digits, are case sensitive, and must begin with a letter.

. C requires explicit use of * to denote multiplication; simple juxtaposi-
tion is not enough. C does not support the use of ~ for exponentiation,
e.g., t~2 is invalid. Instead, you must use t*t or pow(t,2).

. The following words are reserved in C, and may not be used as function
or variable names:

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

17

In addition, ePiX reserves the following variables:

X_min X_max y_min y_max
h_size v_size h_offset v_offset
X_size y_size pic_size pic_unit

C is case-sensitive, so capitalized variants are valid (but discouraged).

The aspect ratio of the figure is controlled by adjusting the TEX size of
the figure and its Cartesian bounding box. The following length units may
be used: cm, in, mm, pc, and pt. (One pica equals 12 pt.) Font-dependent
units em and ex, and “exotic” units (Didot points, Ciceros, etc.) are not
recognized. See lengths.cc to add support for other length units.

Aside from #include and #define statements, and variable declarations,
the preamble consists of function definitions, for plotting functions you have
specified. Functions may not be defined inside other functions; in particular,
all definitions of user-specified functions must come in the preamble, before
the call to main.

C knows the following functions of one variable by name:

sqrt sin sinh asin
ceil cos cosh acos
floor tan tanh atan
exp log log10 fabs (abs val)

The inverse trig functions are principle branches. In addition, pow(x,y)
returns z¥ when real, and atan2(y,x) returns Arg(z + iy), the principle
branch of arg. C knows many constants to 20 decimal places (such as M_PI,
M_PI_2, and M_E for 7, /2, and e respectively; there are over a dozen in
all). ePiX defines a few additional functions, such as recip (the reciprocal,
defined to be 0 at 0) and cb (for “Charlie Brown”), the period-2 extension of
the absolute value function on [—1, 1]. If you use certain functions frequently,
add them to functions.cc and recompile ePiX.

The GNU C library defines many other functions, including inverse hy-
perbolic functions, log and exp with base 2, 10, or arbitrary b, the error and
gamma functions, and Bessel functions of first and second kind.

You may use known functions in subsequent definitions. Functions of two
(or more) variables are defined in direct analogy to functions of one variable:

double f(double t)
{

18

return txtxlog(t*t); // t~2 \1n(t~2)

}
double g(double s, double t)
{
return exp(2*s)*cosh(sin(M_PIxt));
}

3.4 More Advanced Uses of C

Because C is a programming language, ePiX figures can be specified using
variables, loops, and recursion, to depict lots of interesting effects. This
section presents a few ideas by example. The sample files contain other
examples.

Piecewise-Defined Functions

The syntax for defining a function such as f = max(sin, cos) is:

double f(double t)
{
if (cos(t) <= sin(t))
return sin(t);
else
return cos(t);

}

If there are more than two formulas in the definition, use an else if con-
struction, as in

double max_10_f (double x)
{
if (fabs(f(x)) < 10) // If(x)| < 10
return f(x);
else if (£(x)>0)
return 10;
else
return -10;

19

This truncates f at the lines y = £10. (The function f must be defined
separately.)

Finite Sums and Other Algorithms

Function definitions in C may be as simple as an algebraic formula, or as
complicated as an arbitrary finite “rule”. Sums of finite series are achieved

9
with the following sort of definition, which defines fourier9(t) = - sin kt:
k=1
double fourier9(double t)
{
int k; // summation index
double y=0; // running total of the sum

/* Run from k=1 to 9; increment k at each step */
for (k=1; k < 10; ++k)

// Add (1/k)sin(kt) to the running total
y += (1.0/k)*sin(k*t) ;

return y,

}

The Weierstrass non-differentiable function sample file is an example.

Generally, a function definition may be specified by an arbitrary algo-
rithm; see the definitions of gcd, sup, and inf in functions.cc for more
examples. Of course, numerical error can become an issue if the algorithm
is complicated.

Parametrized Figures and Animation Frames

As already mentioned, variables may be used to clarify the logical structure
of a figure. The way the inscribed rectangle figure was implemented makes
it easy to change the width of the rectangle. When a figure is complicated,
judicious use of variables makes the figure flexible. The sample file depicting
upper rectangles for the sin function is an example; to change the number of
rectangles, one need change only a single number in the preamble. To change

20

the integrand to a different increasing function also requires just one change
in the preamble. (Labels’ text must still be changed individually.)

If a figure depends suitably upon a collection of parameters, then a loop
can be used to draw the entire figure for multiple values of the parameters,
yielding successive “snapshots” of the figure as time progresses.* In the
sample files is a simple example, the cycloids traced by a rolling wheel.
Other possibilities are to solve a planar ODE for varying lengths of time
(illustrating the flow), or to plot solutions of a (1 4 1)-dimensional PDE (for
example, to depict heat flow or wave motion).

3.5 Summary of ePiX Objects

After the begin line, an ePiX file consists of a sequence of style declarations
(for color and boldface plots) and commands that draw the following kinds
of objects:

e Polygons

— Lines
— Triangles
— Rectangles parallel to coordinate axes

— Arrows
e Coordinate axes and decorations

— Axes with tick marks

— Axis labels

— Cartesian and polar coordinate grids
— Empty and filled circles

— Otbher labels (arbitrary text)

e Curve primitives

— Ellipses and half ellipses

— Circular arcs and arrows, hyperbolic lines

4IATEX provides no direct way to animate frames, but the author has used a toy zeotrope
together with ePiX-generated figures to depict animated mechanical configurations.

21

— Quadratic splines
— Cubic splines

— Simple knot diagram primitives
e Plots of user-defined functions

— Ordinary graph plots

— Adaptive plots

— Parametric and polar plots

— Truncated graph and parametric plots
— Space curves

— Planar mesh plots

— Plots of numerical data from files
e Calculus operations on user-defined functions

— Derivative plots

— Tangent field plots (along a parametrized path)
— Definite integral plots

— Slope fields

— Vector fields

— Solution curves to planar ODEs

4 Reference Manual

In addition to the ordinary (plain) style, all curve primitives and plots can be
drawn in dashed, dotted, or bold styles, by prepending dash, dot, or bold to
the object’s name. Dotted and dashed graphs may look better when plotted
adaptively. Bold dashed/dotted plots are obtained by constructions such as

bold() ;
dashline(P(0,0), P(2,1));
end_bold();

All input coordinates are Cartesian, and are of type double.

22

Pair manipulation (pairs.cc)

The ePiX function P turns a pair of doubles into a <pair> (an ordered
pair data structure). ePiX treats pairs as complex numbers for arithmetic
purposes; standard C-like constructions may be used with pairs.

e Pair creation, angles in radians:

polar(r, theta); cis(t);

polar(1.0, t), cis(t), and P(cos(t),sin(t)) are equivalent. ePiX
recognizes the standard basis e_1 and e_2.

e Arithmetic and incrementation (p and q are pairs, k is double):

P+4, P - q, kxp, p*q, p/q;
P+=q,P-=q, p*k, p*=q; p/=q;

When forming symbolic expressions involving pairs, scalars (doubles)
must be collected together at left, vectors (pairs) at right. If results
of an arithmetic expression are unexpected, use parentheses to force a
particular association.

ePiX provides the Euclidean dot product (think of Dirac’s bra-ket no-
tation), the componentwise product, and a 1/4-turn counterclockwise:

(a,b) I (x,y) = ax+by
(a,b)&(x,y) = (ax,by)
J(a,b) = (-b,a)

For example, P(a,b)&e_2 = P(0,b).

Typographical commands (output.cc)

e Assignment of variables

bounding_box(P(x_min, y_min), P(x_max, y_max));
picture(P(h_size, v_size));
offset (P(h_offset, v_offset));

23

unitlength("1ipt");
begin();

In an actual file, numbers are used, but the variables listed above are
assigned values when these functions are called. offset is zero by de-
fault, hence optional. In unitlength the quoted argument is a floating
point number followed by a two-letter KTEX length. begin sets the
variables x_size and y_size, the width and height of the bounding
box.

Line style:

Entire sections of a figure may be drawn with KTEX thicklines by
delimiting the corresponding portion of the input file with bold() ; and
end_bold(); An arrow inside a bold environment is not the same as
a boldarrow, but plot-type objects behave as expected in their bold
versions.

Color:

ePiX provides color output via the pstcol or color packages, and
can generate essentially arbitrary colors, using either the subtractive
red-green-blue model (rgb, better for displaying) or the additive cyan-
magenta-yellow-black model (cmyk, better for printing). An rgb color
is determined by three floating-point densities between 0 (no color)
and 1 (full saturation). Red, green, and blue are, respectively:

rgb(1,0,0); rgb(0,1,0); rgb(0,0,1);

A cmyk color is similarly specified by four floats. Densities outside the
range [0, 1] are “clipped”. ePiX truncates color densities to 2 decimal
places; if you need finer control, modify the functions rgb and cmyk
in outputs.cc.

These color specifiers are declarations, and remain in force until su-
perceded. The scope of a color declaration is ended with a call to
black(); The six “elementary” colors can be called and ended by
name, e.g., red(); and end_red();

Colors will not appear if the file is previewed in xdvi, but will appear
if you use laps to process your KIEX files, then view the Postscript
with (say) gv.

24

e Perspective figures:
viewpoint (viewptl, viewpt2, viewpt3);
V(xl, x2, x3);

ePiX does orthogonal perspective drawing. The viewpoint of a fig-
ure is a vector onto whose orthogonal complement certain plot ob-
jects are projected. The overall scale of viewpoint is immaterial, e.g.,
(1,2,-1) and (2,4, —2) are identical, while (—1, —2, 1) reverses the ori-
entation of the figure. If viewpoint is not parallel to the z axis, then
the z axis is drawn vertically; otherwise the figure is drawn in “stan-
dard” Cartesian form, regardless of a3. By default, viewpoint is the
zero vector, hence optional. The viewpoint may be changed anywhere
in a source file. Using red and cyan together with slightly different
viewpoints can be used to give a 3D-glasses effect.

The function V produces a pair from an ordered triple. In polygons,
arrows, splines, and ellipses, and in positioning labels, objects’ location
may be specified in terms of triples. There is a separate function for
3-d curve plotting, see below.

Polygons (objects.cc)
e The line joining (a,b) to (c,d):
line(P(a,b), P(c,d));
e The triangle with vertices (a, b), (¢, d), and (e, f):
triangle(P(a,b), P(c,d), P(e,f));
e Coordinate rectangle with opposite corners (a,b) and (c, d):

rect(P(a,b), P(c,d));

Either pair of opposite vertices specifies the rectangle.

e Gray-filled rectangle (unaffected by color declarations), without or with
boundary:

swatch(P(a,b), P(c,d));
boldswatch(P(a,b), P(c,d));

25

Coordinate axes and decorations (objects.cc)

e Axes with tick marks

h_axis(P(a,b), P(c,d), n);

Draws an axis between (a,b) and (¢, d) with n + 1 evenly-spaced tick
marks appropriate for a horizontal axis. If the bounding box has integer
sides, then the command

h_axis(P(x_min, 0), P(x_max, 0), x_size);

draws a horizontal axis the width of the figure with tick marks spaced
one Cartesian unit apart.

v_axis(P(a,b), P(c,d), n);

Same, but with tick marks appropriate for a vertical axis.

e Cartesian grid

grid(P(a,b), P(c,d), nl, n2);
Draws an nl1 by n2 grid in the coordinate rectangle with opposite ver-
tices (a, b) and (c, d).
e Polar grid

polar_grid(r, nl, n2);

Draws a polar grid of radius r with nl rings and n2 sectors.

e S. D. Pedersen’s contrib/ package contains a number of routines for
enhanced Cartesian graphs. See contrib/doc in the source for docu-
mentation.

e Point markers o . . oo

spot(P(a,b)); dot(P(a,b)); ddot(P(a,b));
circ(P(a,b)); ring(P(a,b), r);

spot, dot, and ddot are black; circ is white filled, cannot be colored,

and masks what is underneath. A ring has diameter r true pt, can be

colored, and is transparent. circ is useful for denoting the end of an

open interval. ePiX also provides a marker function, whose syntax is
marker(P(a,b), <MARKER TYPE>);

26

© CIRC ® SPOT O RING - DOT - DDOT
+ PLUS © 0OPLUS X TIMES & O0TIMES

¢ DIAMOND A UP v DOWN = BOX - BBOX
Table 1: ePiX’s marker types.

These marker types are also available when plotting data from a file,
see dataplot below. Markers of type SPOT, DOT, and DDOT cannot be
colored; this is a ETEX issue.

Arrows and darts

arrow(P(a,b), P(c,d)); dart(P(a,b), P(c,d));

Draws an arrow from (a,) to (c¢,d) whose head is 3 true pt wide and
8.25 true pt long. If the true distance from (a,b) to (c,d) is less than
8.25 pt, only the arrowhead is drawn, with its base at (a,b). A dart is
similar, but the head has half the linear dimensions. Dart and arrow
dimensions are #defined in globals.h, and may only be changed at
compile time.

Axis labels

h_axis_labels(P(a,b), P(c,d), n, P(u,v));
v_axis_labels(P(a,b), P(c,d), n, P(u,v));
h_axis_masklabels(P(a,b), P(c,d), n, P(u,v));
v_axis_masklabels(P(a,b), P(c,d), n, P(u,v));

h_axis_labels puts (n+1) evenly-spaced labels on the segment joining
(a,b) and (c,d). (Usually b = d, but this is not necessary.) The “mask”
version draws an opaque white rectangle under the label text, and
requires the strcol or color package. The labels are automatically
generated to match their horizontal location. The pair P(u,v) gives
the offset in true pt. For example,

h_axis_labels(P(x_min,0), P(x_max,0), 8, P(-4,-12));

divides the x axis into 8 subintervals, generates labels accordingly, and
places them in Cartesian coordinates, but shifted left by 4 pt and down

27

by 12 pt. The “v” versions are analogous, but for a vertical axis.

e Other labels
label(P(a,b), P(u,v), "<text string>");
masklabel(P(a,b), P(u,v), "<text string>");

Prints <text string> with reference point at the Cartesian point (a, b),
offset in true points by (u,v). The “mask” version puts an opaque
white rectangle under the label text, and requires the pstcol or color
package. To get a \ in output, there must be a \\ in the string. For
example, the call

label(P(4,2), P(0,0), "$\\sigma=\\phi(\\tau)$");
prints the line
\put (360,180) {$\sigma=\phi (\tau) $}

in the output file. (The put location depends on user-supplied dimen-
sions.)

Curve primitives (curves.cc)

e Ellipses and half ellipses

ellipse(P(a,b), P(u,v));
native_ellipse(P(a,b), P(u,v));
ellipse_top/bottom/left/right(P(a,b), P(u,v));

Plots the (half) ellipse centered at (a,b) with radius (u,v), and with
axes parallel to the coordinate axes. The “native” version uses an
eepic macro, resulting in a shorter output file, and is available in plain
only.

Right half ellipse, rotated counterclockwise by 6 degrees.
ellipse_half(P(a,b), P(u,v), theta);

e (Circular arcs

Circular arc of center (a,b) and radius r, subtending the angle (coun-
terclockwise, in radians) from 6; to 6.

arc(P(a,b), r, thetal, theta2);
arc_arrow(P(a,b), r, thetal, theta2);

28

If 0, is smaller, the arc goes clockwise. The arrowhead goes at 65. If
an arc_arrow is too short, nothing is drawn.

Hyperbolic line in upper half-plane. No output if b < 0 or d < 0.
hyperbolic_line(P(a,b), P(c,d));

Hyperbolic line in unit disk. No output if either endpoint is outside
the unit circle.

disk_line(P(a,b), P(c,d));
e Quadratic and cubic splines with specified control points

quad_spline(P(x1,y1), P(x2,y2), P(x3,y3));
cubic_spline(P(x1,y1), P(x2,y2), P(x3,y3), P(x4,y4));

e Simple knot diagram primitives (plain and bold only, shown with bound-
ing boxes below)

p_twist(P(a,b), P(c,d));
n_twist(P(a,b), P(c,d));
twists(P(a,b), P(c,d), n);

M (3,0)

boldtwists(P(0,1), P(3,0), -5);
Non-standard functions (functions.cc)

e Common functions with isolated discontinuities: sgn (signum), recip
(reciprocal, defined to be 0 at 0), sinx (sinz/x with discontinuity re-
moved)

e The “Charlie Brown” function, cb, namely the period-2 extension of
absolute value on the interval [—1, 1].

29

e Integer-valued functions abs and gcd.

e Non-printing utility functions: sup(f, a, b); inf(f, a, b);

Numerical approximation of max/min value of f on [a, b].

Plotting (plots.cc)

Functions must be defined in the preamble, before main, or in a separately
compiled file, as in functions.cc. See the samples files for practical advice
on usage.

e Ordinary graph plots

plot(f, t_min, t_max, n);

Plots the graph of f for input values between the limits, using n + 1
points equally spaced in the domain. (t_min and t_max are doubles, n
is an int)

e Adaptive plotting

adplot(f, t_min, t_max, n);

Same as plot, but attempts to space data points equidistantly along the
graph. Good for dashed and dotted potting of differentiable functions
whose derivative has large absolute value on small intervals, but is much
slower than plot, and the output is not always more attractive.

e Parametric plots

plot(f, g, t_min, t_max, n);

Parametric plot of (f(t), g(t)), with n + 1 points. For backward com-
patibility, paramplot may also be used.

e Polar plots

polarplot(f, t_min, t_max, n);

Polar plot of r = f(¢) for ¢t €[t_min,t_max], with n+1 points. Angles
are measured in revolutions; [0, 1] is a full turn.

30

e Truncated plots
clipplot(f, t_min, t_max, n);
clipplot(f, g, t_min, t_max, n);
Same as plot, but clips the plot to lie inside the bounding box
[x_min,x_max] X [y_min,y_max].
Clipping is not currently supported in polar plots, but would be an

easy feature to add.

e 2-D Mesh Plotting
multiploti(f1, f2, P(a,b), P(c,d), Net(nl, n2), num_pts);

If f; and f> are functions of two variables, then (f1, f2) determines a
mapping of the rectangle [a, ¢| X [b, d] to the plane. multiplot1 divides
this rectangle into an n; x ngy grid, then plots the images of the vertical
segments (first variable held constant) using num_pts points per curve.
multiplot2 does the analogous plot when the second variable is held
constant. In conjunction, these plot routines depict the image of the
gridded rectangle under the stated mapping.

e Perspective plots

plot(f1, f2, £3, t_min, t_max, n);

Draws an orthogonal perspective plot of (fi(t), f2(t), f3(t)), with n+1
points. If viewpoint is not set, plot simply drops the third coordinate.
See other notes on perspective drawing above. The alternative name
plot3d may be used for backward compatibility.

e Data plotting from a file

The format for a data file is two floating-point numbers per line; com-
ment lines begin with a %, and improperly formatted lines are ignored.

data_plot("filename", STYLE);

Reads data in the named file and plots the corresponding points. In ad-
dition to the marker styles listed in Table 1 above, STYLE may be PATH,
which connects the dots in the named file in the order they appear.

31

e Derivatives

plot_deriv(f, a, b, n);

Plots the derivative f’ for ¢ € [a, b], computed as a symmetric Newton
quotient
ft+dt) — f(t—dt) b—a

dt = ,
2dt 2 x n * ITERATIONS

with ITERATIONS equal to 1000 by default.

e Tangent fields

tan_field(f1, f2, t_min, t_max, n);

Plots n + 1 tangent vectors to the corresponding parametric curve.
Because tangents are rendered at true length, in total they form a
rough piecewise-linear approximation of the curve, especially if n is
large. The curve itself is not plotted.

e Integrals

plot_int(f, a, b, n);

Plots the definite integral [f(t)dt for x € [a,b]. Uses the trapezoid
rule for computing a running sum; the step size is determined by the
constant ITERATIONS.

e Vector fields (plain and bold only)

slope_field(f1, f2, P(a,b), P(c,d), nl, n2);
dart_field(f1, f2, P(a,b), P(c,d), nl, n2);
vector_field(f1, f2, P(a,b), P(c,d), nl, n2);

Graphs the slope field (fixed length, no arrows), dart field (fixed length,
small arrowheads) or vector field (true length, arrows) F' = (f1, f2) on
the specified rectangle, with (n; + 1) X (ny + 1) sample mesh. Slope
lines and darts are guaranteed not to overlap, while vectors are drawn
at true length.

e Solutions of planar ODEs
ode_plot(f1i, f2, P(a,b), t_max, n);

32

Uses Euler’s method to solve a system of ODEs starting at (a,b), at-
tempting to follow the solution for time ¢, in (n+ 1) steps. The plot
terminates if it leaves the bounding box.

Arcane features (arcana.cc)

e Planar linear transformations

std_F(P(a1l,bl), P(a2,b2)); draws the image of the unit square
under the linear transformation corresponding to the matrix whose
columns are (a1, b;) and (a9, bo). The parallelogram contains the image
of the “standard F”:
0 -1
R

m

e Profiles of surfaces of revolution
plot_profile(f, a, b, n);

Not intended for general use, but documented anyway. Suffice it to say
that a “profile” plot solves a certain differential equation and plots the
solution. If f is a quadratic polynomial, the resulting curve will be the
profile of a surface of revolution of constant Gaussian curvature.

e Recursively-generated piecewise-linear fractal curves

Consider a path made up of equal-length segments that can point at
any angle of the form 27k/n, for 0 < k < n, like spokes on a wheel.
The path is specified by a finite sequence of integers, taken modulo n.
For example, if n = 6, then the sequence 0,1, —1,0 corresponds to the
ASCII path _/_. ePiX’s fractal generation routine starts with such

33

a “seed” then recursively (up to a specified depth D) replaces each
segment with a scaled and rotated copy of the seed. The seed above
generates the Koch fractal, for instance.

fractal(P(a,b), P(c,d), D, seed);
seed is declared in the preamble as (e.g.)

const int seed[] = {6, 4, 0, 1, -1, 0};

The first entry (here 6) is the number of “spokes” n, the second (4) is
the number of terms in the seed, and the remaining entries are the seed
proper. The final path joins (a, b) to (¢, d). The number of segments in
the final path grows exponentially in the depth, so depths larger than
5 or 6 are not likely to work: TEX may crash, or the machine may
even run out of memory, depending on the length of the seed. At large
depth, the output will probably suffer from round-off error even if the
figure renders.

Figure 5: The fractal generated by {4,8,0,1,0,3,3,0,1,0}

5 Troubleshooting

Installation

Three files comprise ePiX: a shell script (epix), a header file (epix.h), and a
compiled library (1ibepix.a). The utility script laps is part of the distribu-
tion, but independent from ePiX proper. These components are placed into
standard locations where they can find each other. The likeliest problems
with ePiX are that some component (usually epix itself) cannot find the
other pieces, or that the shell cannot find epix.

Installation Problems

Public installation (in /usr/local) is the default. Unpack the tar file, then
cd to the source directory (epix-0.8.x) and do

34

make test
make install

(the latter as root). The instructions for private installation (in $HOME)
are almost identical; you need only change one line in the Makefile and
one line in the shell script epix, and follow the directions in POST-INSTALL.
The directory in which you install ePiX is denoted $INSTALL. After make
install, you will have the following files:

$INSTALL/bin/epix $INSTALL/include/epix.h
$INSTALL/bin/laps $INSTALL/1ib/libepix.a

Command not found In order to use ePiX, the directory $INSTALL/bin
must be in your PATH (see POST-INSTALL); type
echo $PATH
to see your PATH. If the directory $INSTALL/bin/ is not in your path, please
read POST-INSTALL or ask someone knowledgeable at your site for help; the
procedure varies depending on what shell you use. In any case, you will need
to modify your shell’s configuration file.

If you get a “g++: command not found” error, do

which g++

to see which compiler your system uses. In the shell script epix, modify the
“compiler” line accordingly.

Bad substitution Another likely cause of trouble is that bash is not the
default shell on your system. (This is mostly a problem for Unix users; GNU
systems almost uniformly use bash as the default.) Do

1s -1 /bin/sh

to find your system’s default shell. If this is not /bin/bash (or something
equivalent), you have a bit more work to do. First do

which bash

to find the path to bash, then modify the top line of each of the shell scripts,
replacing #!/bin/sh with the path to bash on your system.

35

Permission denied This is very unlikely, but conceivable. For each com-
ponent of the program, do a long listing, e.g.

1s -1 $INSTALL/bin/epix

and so forth. The header and library must be readable, and the shell scripts
and directories must be readable and executable. From the install directory,
do

chmod 0755 bin include 1lib bin/epix bin/laps
chmod 0644 include/epix.h 1lib/libepix.a

If you have installed ePiX in your home directory, use 0700 and 0600 instead.

If you still cannot get ePiX to run, please send email to the author, briefly
describing the errors you are getting, the type of system you are on, and so
forth.

5.2 HKETgX Errors

There are a few things that can cause KIEX to stop with an error mes-
sage when reading an .eepic file written by ePiX. The most common is
the appearance of nan (not a number) where BTEX expects a number. This
generally indicates division by zero or bad exponentiation.

When a number is very small, ePiX may write it in exponential notation.
If this happens, KTEX will pause with an error message when it tries to read,
e.g., 1.4142135e-14. This bug in ePiX has been addressed; please send the
author a bug report if you encounter this behavior. You can manually edit
the .eepic file, replacing underflows with 0. In this eventuality, it’s wise to
rename the edited file, lest ePiX overwrite your changes the next time you
run it.

Overflow errors are possible if a point has coordinates larger than 2'9;
make sure you’re not trying to plot the graph of a pole or something similar.

Occasionally ePiX will not generate any data points after it starts a path;
this may signify a variable whose value is not what you expect (particularly
in a loop), a badly defined function, or a bug in ePiX. If you cannot resolve
the problem, and have narrowed down the issue to a small input file, please
send the author a copy of the file and an explanation of the problem.

ETEX has limited memory, and cannot plot arbitrarily many points. Make
sure you did not accidentally append a digit to the number of points to be
plotted; 500 data points should be fine, but 5000 will almost surely cause
problems. If necessary, a long list of data points in a path can be broken into

36

groups of a few hundred (see fractal, in arcana.cc), but even so KTEX will
eventually overflow. Don’t expect to render a bitmap as an array of colored
boxes in KTEX. &

One of the benefits of .eepic files is that they’re plain text. ePiX com-
ments its output, which should assist you in debugging. Each object or plot
command in the input file generates a stanza in the output file that has a
label saying which function wrote the stanza.

If a run of ePiX is taking unusually long (more than a few seconds), it’s
a good idea to kill the process by typing ctrl-C and to inspect the output
for signs of an infinite loop. There is output size checking, but conceivably
some infinite loop will be missed. On a fast PC, ePiX can easily write 15 MB
of data per second, which will quickly fill up your disk and possibly damage
other files. Do not run ePiX as root for normal usage!

6 Feedback and Political Blurb

Feedback about this program (bug reports, requests for features, etc.) is
welcome. If you find ePiX useful, please tell your colleagues about it.
Academics in general, and mathematicians in particular, depend on Free
software in their work. A good case can be made that proprietary software is
contrary to the academic ethic. Issues of access aside, if one does not know
what exactly went into a program, then one cannot fully trust the results that
come out, any more than one can trust (for purposes of scientific publication)
results of a commercial testing lab. Access to the source code is not all that
is required, though. To promote the dissemination of information, access to
software should be free in the four senses laid out in the GNU General Public
License authored by the Free Software Foundation:
e To run a program for any purpose
e To study how the program works, and adapt it to your needs
e To redistribute copies of the program
e To improve the program, and release your improvements to the public, so
that the whole community benefits
Just as theorems are not licensed, I believe that software we use in our
academic work should not be licensed. Releasing software under a standard
commercial license agreement is (to me) the equivalent of publishing the
statement of a theorem, while keeping the proof secret, and charging people
for each citation of the theorem. Releasing source code alone, without giving

37

users the freedom to modify it for their own needs, is analogous to publishing
a proof, but forbidding readers from using the ideas of the proof in their own
work.

The ultimate purpose of software is to allow us to be productive and
creative. I hope that this modest program is, in conjunction with the much
larger efforts of others (especially Donald Knuth, and the many people who
have contributed to the authorship of KTEX and its many packages), useful
to you in your mathematical work.

Please visit the Free Software Foundation, at http://www.fsf.org, to
learn more about Free Software and how you can contribute to its develop-
ment and adoption.

Andrew D. Hwang <ahwang@mathcs.holycross.edu>
Current version: 0.8.x (see CHANGELOG for details)
Last Change: June 6, 2002

38

