
jEdit 3.2 User’s Guide

jEdit 3.2 User’s Guide
Copyright © 1998, 2001 by Slava Pestov
Copyright © 2001 by John Gellene

Legal Notice

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no

“Invariant Sections”, “Front-Cover Texts” or “Back-Cover Texts”, each as defined in the license. A copy of the license

can be found in the fileCOPYING.DOC.txt included with jEdit.

Table of Contents
I. Using jEdit ..11

1. Starting jEdit..12
1.1. Conventions..12
1.2. Platform-Independent Instructions..12
1.3. Starting jEdit on Windows..13
1.4. Command Line Usage...14

2. jEdit Basics..17
2.1. Buffers...17
2.2. Views...17

2.2.1. Window Docking...18
2.2.2. The Status Bar..18

2.3. The Text Area..19
2.4. Command Repetition..20

3. Working With Files..21
3.1. Creating New Files...21
3.2. Opening Files..21
3.3. Saving Files...21

3.3.1. Autosave and Crash Recovery...22
3.3.2. Backups..22

3.4. Line Separators...23
3.5. Character Encodings...23

3.5.1. Commonly Used Encodings..24
3.6. The File System Browser..25
3.7. Reloading Files...28
3.8. Multi-Threaded I/O...28
3.9. Printing Files...29
3.10. Closing Files and Exiting jEdit...29

4. Editing Text..31
4.1. Moving The Caret...31
4.2. Selecting Text..31

4.2.1. Rectangular Selection..31

3

4.2.2. Multiple Selection..32
4.3. Inserting and Deleting Text...33
4.4. Undo and Redo...34
4.5. Working With Words..35
4.6. Working With Lines..35
4.7. Working With Paragraphs...36
4.8. Scrolling..37
4.9. Transferring Text...37

4.9.1. Quick Copy..38
4.9.2. The System Clipboard..38
4.9.3. General Register Commands...39

4.10. Markers...40
4.11. Search and Replace...41

4.11.1. Searching For Text...41
4.11.2. Replacing Text...42
4.11.3. HyperSearch...43
4.11.4. Multiple File Search...44
4.11.5. The Search Bar...44

5. Editing Source Code..46
5.1. Edit Modes..46

5.1.1. Mode Selection..46
5.1.2. Syntax Highlighting...46

5.2. Abbreviations..47
5.2.1. Positional Parameters...47

5.3. Bracket Matching..48
5.4. Tabbing and Indentation...49

5.4.1. Soft Tabs..49
5.4.2. Automatic Indent...50

5.5. Commenting Out Code...51
5.6. Folding..52

5.6.1. Narrowing..53
6. Customizing jEdit..54

6.1. The Buffer Options Dialog Box..54
6.2. Buffer-Local Properties...54

4

6.3. The Global Options Dialog Box...56
6.4. The jEdit Settings Directory...59

7. Using Macros...61
7.1. Recording Macros...61
7.2. Running Macros..62
7.3. How jEdit Organizes Macros..62

8. Installing and Using Plugins..65
8.1. The Plugin Manager..65
8.2. Installing Plugins..65
8.3. Updating Plugins...66

A. Keyboard Shortcuts...68
B. The Activity Log...75
C. History Text Fields..76
D. Glob Patterns...77
E. Regular Expressions..79
F. Macros Included With jEdit...82

F.1. File Management Macros...82
F.2. Text Macros...82
F.3. Java Code Macros...84
F.4. Search Macros...86

F.4.1. The Find_Occurrence Macro Group..87
F.5. Macros for Listing Properties...88
F.6. Miscellaneous Macros..89

G. jEditLauncher for Windows..93
G.1. Introduction..93
G.2. Starting jEdit..93
G.3. The Context Menu Handler..94
G.4. Uninstalling jEdit and jEditLauncher..95
G.5. The jEditLauncher Interface..96
G.6. Scripting Examples..97
G.7. Legal Notice...99

II. Writing Edit Modes ..101

9. Writing Edit Modes..102

5

9.1. An XML Primer..102
9.2. The Preamble and MODE tag...103
9.3. The PROPS Tag..103
9.4. The RULES Tag..105

9.4.1. The TERMINATE Rule...106
9.4.2. The WHITESPACE Rule...108
9.4.3. The SPAN Rule..108
9.4.4. The EOL_SPAN Rule..110
9.4.5. The MARK_PREVIOUS Rule..110
9.4.6. The MARK_FOLLOWING Rule..111
9.4.7. The SEQ Rule..111
9.4.8. The KEYWORDS Rule...112
9.4.9. Token Types...112

10. Installing Edit Modes...114

III. Writing Macros ...116

11. Introducing BeanShell...117
11.1. Single Execution Macros..117

12. A Few Simple Macros...119
12.1. The Mandatory First Example..119
12.2. Helpful Methods in the Macros Class...121
12.3. Now For Something Useful..124

13. A Dialog-Based Macro..128
13.1. Use of the Macro...128
13.2. Listing of the Macro..128
13.3. Analysis of the Macro...131

13.3.1. Import Statements..132
13.3.2. Create the Dialog...132
13.3.3. Create the Text Fields..133
13.3.4. Create the Buttons..134
13.3.5. Register the Action Listeners...135
13.3.6. Make the Dialog Visible..136
13.3.7. The Action Listener...136
13.3.8. Get the User’s Input...137

6

13.3.9. Call jEdit Methods to Manipulate Text..137
13.3.10. The Main Routine..139

14. Macro Tips and Techniques...140
14.1. Getting Input for a Macro...140

14.1.1. Getting a Single Line of Text...140
14.1.2. Getting Multiple Data Items..141
14.1.3. Selecting Input From a List..144
14.1.4. Using a Single Keypress as Input..145

14.2. Startup Scripts...147
14.3. Running Scripts from the Command Line..148
14.4. Advanced BeanShell Techniques..150

14.4.1. BeanShell’s Convenience Syntax...150
14.4.2. Special BeanShell Keywords...151
14.4.3. Implementing Interfaces..151
14.4.4. BeanShell Commands..152

14.5. Debugging Macros..152
14.5.1. Identifying Exceptions...152
14.5.2. Using the Activity Log as a Tracing Tool..153

IV. Writing Plugins ..155

15. Introducing the Plugin API..156
16. jEdit as a Plugin Host...158

16.1. Loading Plugins..158
16.1.1. The JARClassLoader...158
16.1.2. Starting the Plugin...159

16.2. The User Interface of a Plugin..161
16.2.1. The Role of the View Object..161
16.2.2. The DockableWindowManager and the EditBus.............................161
16.2.3. Message Routing and Dockable Window Creation.........................162

17. The jEdit Plugin API..164
17.1. Plugin Core Classes..164

17.1.1. Class EditPlugin...164
17.1.2. Class EBPlugin..165

17.2. Interface DockableWindow..167

7

17.3. Plugin Option Pane Classes..168
17.3.1. Class AbstractOptionPane...168
17.3.2. Class OptionGroup...169

17.4. Other Plugin Resources...170
17.4.1. The Action Catalog..170
17.4.2. Plugin Properties..172
17.4.3. Plugin Documentation...174

18. Writing a Plugin...176
18.1. QuickNotepad: An Example Plugin..176
18.2. Writing a Plugin Core Class...177

18.2.1. Choosing a Base Class...177
18.2.2. Implementing Base Class Methods..178

18.2.2.1. General Considerations...178
18.2.2.2. Example Plugin Core Class..179

18.2.3. Resources for the Plugin Core Class..181
18.2.3.1. Actions..181
18.2.3.2. Action Labels and Menu Items...183

18.3. Implementing a Dockable Window Class...184
18.3.1. Using a Single Window Class..184
18.3.2. An Action Interface..185
18.3.3. A Lightweight Dockable Window Class..186

18.4. The Plugin’s Visible Window...187
18.4.1. Class QuickNotepad...187
18.4.2. Class QuickNotepadToolBar...191

18.5. Designing an Option Pane..192
18.6. Creating Other Plugin Resources..195
18.7. Compiling the Plugin..197

V. jEdit API Reference ..200

19. BeanShell Commands..201
19.1. Output Commands..201
19.2. File Management Commands...201
19.3. Component Commands...202
19.4. Resource Management Commands...203

8

19.5. Script Execution Commands...203
19.6. BeanShell Object Management Commands...204
19.7. Other Commands..205

20. General jEdit Classes...207
20.1. Class jEdit...207
20.2. Class View...210
20.3. Class Registers..211
20.4. Interface Registers.Register..212
20.5. Class DockableWindowManager..213
20.6. Class JEditTextArea..213

20.6.1. Class Selection...214
20.6.2. Selection methods in JEditTextArea..215

20.6.2.1. Adding and removing selections...215
20.6.2.2. Getting and setting selected text...217
20.6.2.3. Other selection methods..218

20.6.3. Other methods in JEditTextArea..218
20.6.3.1. Editing caret methods...218
20.6.3.2. Methods for scrolling the text area.......................................220
20.6.3.3. Methods for calculating editing positions.............................221
20.6.3.4. Other methods for retrieving text..221
20.6.3.5. Methods for deleting text..221
20.6.3.6. Methods for modifying text..222
20.6.3.7. Methods for creating comments..223
20.6.3.8. Methods for getting buffer statistics.....................................223

20.7. Class Buffer..224
20.7.1. File attribute methods..224
20.7.2. Editing attribute methods...224
20.7.3. Editing action methods..225

20.7.3.1. General editing methods...226
20.7.3.2. Marker methods..227
20.7.3.3. Folding methods..228
20.7.3.4. Virtual and physical line indices...229

20.8. Class Macros...229
20.9. Class SearchAndReplace..230

9

20.10. Class GUIUtilities...233
20.11. Class TextUtilities...234
20.12. Class MiscUtilities..235
20.13. Class BeanShell..236

21. EditBus Classes..238
21.1. Class EditBus..238
21.2. Interface EBComponent..238
21.3. Class EBMessage..239
21.4. Class BufferUpdate...239
21.5. Class CreateDockableWindow..240
21.6. Class EditorExiting...241
21.7. Class EditorExitRequested..241
21.8. Class EditorStarted..241
21.9. Class EditPaneUpdate...241
21.10. Class MacrosChanged...242
21.11. Class PropertiesChanged..242
21.12. Class SearchSettingsChanged...242
21.13. Class VFSUpdate..242
21.14. Class ViewUpdate...243

10

I. Using jEdit
This part of the user’s guide covers jEdit’s text editing commands, along with basic usage of
macros and plugins.

This part of the user’s guide was written by Slava Pestov <slava@jedit.org >.

Chapter 1. Starting jEdit

1.1. Conventions
Several conventions are used throughout the manual. They will be described here.

When a menu item selection is being described, the top level menu is listed first, followed by
successive levels of submenus, finally followed by the menu item itself. All menu
components are separated by greater-than symbols (“>”). For example,
View>Scrolling>Scroll to Current Line refers to theScroll to Current Line command
contained in theScrolling submenu of theView menu.

As with many other applications, menu items that end with ellipsis (...) display dialog boxes
or windows when invoked.

Many jEdit commands can be also be invoked using keystrokes. This speeds up editing by
letting you keep your hands on the keyboard. Not all commands with keyboard shortcuts are
accessible with one key stroke; for example, the keyboard shortcut forScroll to Current
Line is Control -E Control -J. That is, you must first pressControl -E, followed by
Control -J.

MacOS

When running on MacOS, the primary modifier key isCommand, notControl . If you
are a Mac user, mentally substituteCommandwhenever you seeControl in this
guide.

1.2. Platform-Independent Instructions
Exactly how jEdit is started depends on the operating system; on Unix systems, usually you
would run the “jedit” command at the command line, or select jEdit from a menu; on
Windows, you might use the jEditLauncher package, which is documented in Section 1.3.

12

Chapter 1. Starting jEdit

If jEdit is started while another copy is already running, control is transferred to the running
copy, and a second instance is not loaded. This saves time and memory if jEdit is started
multiple times. Communication between instances of jEdit is implemented using TCP/IP
sockets; the initial instance is known as theserver, and subsequent invocations areclients.

If the -background command line switch is specified, jEdit will continue running and
waiting for client requests even after all editor windows are closed. The advantage of
background mode is that you can open and close jEdit any number of times, only having to
wait for it to start the first time. The downside of background mode is that jEdit will
continue to consume memory when no windows are open.

For more information about command line switches that control the server feature, see
Section 1.4.

Unlike other applications, jEdit automatically loads any files that were open last time in was
used, so you can get back to work immediately, without having to find the files you are
working on first. This feature can be disabled in theLoading and Saving pane of the
Utilities>Global Options dialog box; see Section 6.3.

The edit server and security

Not only does the server pick a random TCP port number on startup, it also requires
that clients provide anauthorization key; a randomly-generated number only
accessable to processes running on the local machine. So not only will “bad guys”
have to guess a 64-bit integer, they will need to get it right on the first try; the edit
server shuts itself off upon receiving an invalid packet.

In environments that demand absolute security, the edit server can be disabled by
specifying the-noservercommand line switch.

1.3. Starting jEdit on Windows
On Windows, jEdit comes withjEditLauncher- an optional package of components that
make it easy to start jEdit, manage its command line settings, and launch files and macro

13

Chapter 1. Starting jEdit

scripts.

The jEditLauncher package provides three shortcuts for running jEdit: one in the desktop’s
Start menu, a entry in the Programs menu, and a second shortcut on your desktop. Any of
these may be deleted or moved without affecting jEdit’s operation. To launch jEdit, simply
select one of these shortcuts as you would for any Windows application.

The jEditLauncher package includes a utility for changing the command line parameters that
are stored with jEditLauncher and used everytime it runs jEdit. You can change the Java
interpreter used to launch jEdit, the amount of heap memory, the working directory and
other command line parameters. To make these changes, selectSet jEdit Parameters from
the jEdit group in the Programs menu, or runjedit /p from a command line that has
jEdit’s installation directory in its search path. A dialog will appear that allows you to
change and save a new set of command line parameters.

The package also add menu items to the context or “right-click” menu displayed by the
Windows shell when you click on a file item in the desktop window, a Windows Explorer
window or a standard file selection dialog. The menu entries allow you to open selected files
in jEdit, starting the aplication if necessary. It will also allow you to open all files in a
directory with a given extension with a single menu selection. If a BeanShell macro script
with a .bsh extension is selected, the menu includes the option of running that script within
jEdit. If you have the JDiff plugin installed with jEdit, you can also select two files and have
jEdit compare them in a side-by-side graphical display.

For a more detailed description of all features found in the jEditLauncher package, see
Appendix G.

1.4. Command Line Usage
On operating systems that support a command line, jEdit can be passed various arguments to
control its behavior.

When opening files from the command line, a line number or marker to position the caret on
can be specified like so:

$ jedit MyApplet.java +line:10

14

Chapter 1. Starting jEdit

$ jedit thesis.tex +marker:c

A number of options can also be specified to control several obscure features. They are
listed in the following table.

If you are using jEditLauncher to start jEdit on Windows, only file names and marker and
line number specifications can be specified on the command line; other parameters must be
set as described in Section G.2.

Option Description

-background Runs jEdit in background mode. In background mode, the edit
server will continue listening for client connections even after all
views are closed. See Chapter 1.

-norestore jEdit will not attempt to restore previously open files on startup.
This feature can also be set permanently in theLoading and
Saving pane of the Utilities>Global Options dialog box; see
Section 6.3.

-run=script Runs the specified BeanShell script. There can only be one of these
parameters on the command line. See Section 14.3 for details.

-server Stores the server port info in the file namedserver inside the

settings directory.

-server=name Stores the server port info in the file namedname. File
names for this parameter are relative to the
settings directory.

-noserver Does not attempt to connect to a running edit server, and does not
start one either. For information about the edit server, see Chapter
1.

-settings=dir Loads and saves the user-specific settings from the directory
nameddir, instead of the default
user.home/.jedit. dir will be created if it does not

exist. Has no effect when connecting to another

instance via the edit server.

15

Chapter 1. Starting jEdit

Option Description

-nosettings Starts jEdit without loading user-specific settings. See Section 6.4.

-nostartupscripts Causes jEdit to not run any startup scripts. See Section 14.2. Has
no effect when connecting to another instance via the edit server.

-usage Shows a brief command line usage message without starting jEdit.
This message is also shown if an invalid switch was specified.

-version Shows the version number without starting jEdit.

- - Specifies the end of the command line switches. Further
parameters are treated as file names, even if they begin with a dash.
Can be used to open files whose names start with a dash, and so on.

16

Chapter 2. jEdit Basics

2.1. Buffers
Several files can be opened and edited at once. Each open file is referred to as abuffer. The
combo box above the text area selects the buffer to edit. Different emblems are displayed
next to buffer names in the list, depending the buffer’s state; a red disk is shown for buffers
with unsaved changes, a lock is shown for read-only buffers, and a spark is shown for new
buffers which don’t yet exist on disk.

In addition to the buffer combo box, various commands can also be used to select the buffer
to edit.

View>Go to Previous Buffer (keyboard shortcut:Control -Page Up) switches to the
previous buffer in the list.

View>Go to Next Buffer (keyboard shortcut:Control -Page Down) switches to the next
buffer in the list.

View>Go to Recent Buffer (keyboard shortcut:Control -‘) switches to the buffer that was
being edited prior to the current one.

2.2. Views
Each editor window is known as aview. It is possible to have multiple views open at once,
and each view can be split into multiple panes.

View>New View creates a new view.

View>Close View closes the current view. If only one view is open, closing it will exit
jEdit, unless background mode is on; see Chapter 1 for information about starting jEdit in
background mode.

View>Splitting>Split Horizontally (shortcut:Control -2) splits the view into two text areas,
above each other.

17

Chapter 2. jEdit Basics

View>Splitting>Split Vertically (shortcut:Control -3) splits the view into two text areas,
next to each other.

View>Splitting>Unsplit (shortcut:Control -1) removes all but the current text area from the
view.

When a view is split, editing commands operate on the text area that has keyboard focus. To
give a text area keyboard focus, click in it with the mouse, or use the following commands.

View>Splitting>Go to Previous Text Area (shortcut:Alt -Page Up) shifts keyboard focus
to the previous text area.

View>Splitting>Go to Next Text Area (shortcut:Alt -Page Down) shifts keyboard focus to
the next text area.

Clicking the text area with the right mouse button displays a popup menu. Both this menu
and the tool bar at the top of the view offer quick mouse-based access to frequently-used
commands. The contents of the tool bar and right-click menu can be changed in the
Utilities>Global Options dialog box.

2.2.1. Window Docking
The file system browser, HyperSearch results window, and many plugin windows can
optionally be docked into the view. This can be configured in theDocking pane of the
Utilities>Global Options dialog box; see Section 6.3. Note that changes made in this option
pane will not take effect immediately; you must restart jEdit or open a new view first.

When windows are docked into the view, the commands in theView>Docking menu
(shortcuts:Control -E 1, 2, 3, 4) can be used to show or hide the top, bottom, left and right
docking areas, respectively. Double-clicking on the borders of docking areas has the same
effect.

2.2.2. The Status Bar
A status barat the bottom of the view displays the following information, from left to right:

• The line number containing the caret

18

Chapter 2. jEdit Basics

• The column position of the caret, with the leftmost column being 1.

If the line contains tabs, thefile position (where a hard tab is counted as one column) is
shown first, followed by thescreenposition (where each tab counts for the number of
columns until the next tab stop).

• Prompts displayed by commands such as those dealing with registers and markers (see
Section 4.9 and Section 4.10)

• The current buffer’s edit mode. Clicking this displays theUtilities>Buffer Options
dialog box. See Section 5.1 and Section 6.1.

• The current buffer’s character encoding. Clicking this displays theUtilities>Buffer
Options dialog box. See Section 3.5 and Section 6.1.

• If multiple selection is enabled, the textmulti is shown in black, otherwise it will be
grayed out. Clicking her or pressingControl -\ turns multiple selection on and off. See
Section 4.2.2.

• If overwrite mode is enabled, the textover is shown in black, otherwise it will be
grayed out. Clicking here or pressingInsert turns overwrite mode on and off. See
Section 4.3.

• If portions of the buffer are invisible due to folding, the textfold is shown in black,
otherwise it will be grayed out. See Section 5.6.

• If input/output operations are in progress, a small disk icon and progress bars for each
running operation are displayed. Clicking here will display theUtilities>I/O Progress
Monitor dialog box. See Section 3.8.

2.3. The Text Area
Text editing takes place in the text area. It behaves in a similar manner to many Windows
and MacOS editors; the few unique features will be described in this section.

The text area will automatically scroll up or down if the caret is moved closer than three
lines to the first or last visible line. This feature is calledelectric scrollingand can be

19

Chapter 2. jEdit Basics

disabled in theText Area pane of theUtilities>Global Options dialog box; see Section 6.3.

To aid in locating the caret, the current line is drawn with a different background color. To
make it clear which lines end with white space, end of line markers are drawn at the end of
each line. Both these features can be disabled in theText Area pane of theUtilities>Global
Options dialog box.

The strip on the left of the text area is called agutter. The gutter displays marker and register
locations; it will also display line numbers if theView>Line Numbers (shortcut:Control -E
Control -T) command is invoked.

2.4. Command Repetition
To repeat a command any number of times, invokeUtilities>Repeat Next Command
(shortcut:Control -Enter) and enter the desired repeat count, followed by the command to
repeat (either a keystroke or menu item selection). For example, “Control -Enter 1 4
Control -D” will delete 14 lines, and “Control -Enter 8 #” will insert “########” in the
buffer.

If you specify a repeat count greater than 20, a confirmation dialog box will be displayed,
asking if you really want to perform the action. This prevents you from hanging jEdit by
executing a command too many times.

20

Chapter 3. Working With Files

3.1. Creating New Files
File>New File (shortcut:Control -N) opens a new untitled buffer. When it is saved, a file
will be created on disk. Another way to create a new file is to specify a non-existent file
name when starting jEdit from your operating system’s command line.

3.2. Opening Files
File>Open File (shortcut:Control -O) displays a file selector dialog box and loads the
specified file into a new buffer. Multiple files can be opened at once by holding down
Control while clicking on them in the file system browser.

File>Insert File displays a file selector dialog box and inserts the specified file into the
current buffer.

TheFile>Current Directory menu lists all files in the current buffer’s directory.

TheFile>Recent Files menu lists recent files. When a recent file is opened, the caret is
automatically moved to its previous location in that file. The number of recent files to
remember can be changed and caret position saving can be disabled in theGeneral pane of
theUtilities>Global Options dialog box; see Section 6.3.

Files that you do not have write access to are opened in read-only mode, and editing will not
be permitted.

GZipped Files

jEdit supports transparent editing of GZipped files; files with the.gz extension are
automatically decompressed before loading, and compressed when saving.

21

Chapter 3. Working With Files

3.3. Saving Files
Changed made to a buffer do not affect the file on disk until the buffer issaved.

File>Save (shortcut:Control -S) saves the current buffer to disk.

File>Save All Buffers (shortcut:Control -E Control -S) saves all open buffers to disk,
asking for confirmation first.

File>Save As saves the buffer to a different specified file on disk. The buffer is then
renamed, and subsequent saves also save to the specified file.

File>Save a Copy As saves the buffer to a different specified file on disk, but doesn’t
rename the buffer, and doesn’t clear the “modified” flag.

3.3.1. Autosave and Crash Recovery
The autosave feature protects your work from computer crashes and such. Every 30 seconds,
all buffers with unsaved changes are written out to their respective file names, enclosed in
hash (“#”) characters. For example,program.c will be autosaved to#program.c# .

Saving a buffer using one of the commands in the previous section automatically deletes the
autosave file, so they will only ever be visible in the unlikely event of a jEdit (or operating
system) crash.

If an autosave file is found while a buffer is being loaded, jEdit will offer to recover the
autosaved data.

The autosave feature can be configured in theLoading and Saving pane of the
Utilities>Global Options dialog box; see Section 6.3.

3.3.2. Backups
The backup feature can be used to roll back to the previous version of a file after changes
were made. When a buffer is saved for the first time after being opened, its original contents
are “backed up” under a different file name.

22

Chapter 3. Working With Files

The default behavior is to back up the original contents to the buffer’s file name suffixed
with a tilde (“~”). For example,paper.tex will be backed up topaper.tex~ .

The backup feature can also be configured to do any of the following:

• Save numbered backups, namedfilename ~number ~

• Add a prefix to the backed-up file name

• Adds a suffix, other than “~”, to the backed-up file name

• Backups can optionally be saved in a specified backup directory, instead of the
directory of the original file. This can reduce clutter

The above features can be configured in theLoading and Saving pane of the
Utilities>Global Options dialog box; see Section 6.3.

3.4. Line Separators
The three major operating systems use different conventions to mark line endings in text
files. The MacOS uses Carriage-Return characters (\r in Java-speak) for that purpose. Unix
uses Newline characters (\n). Windows uses both (\r\n). jEdit can read and write files in all
three formats.

When loading a file, the line separator used within is automatically detected, and will be
used when saving a file back to disk. The line separator used when saving the current buffer
can be changed in theUtilities>Buffer Options dialog box; see Section 6.1.

By default, new files are saved with your operating system’s native line separator. This can
be changed in theLoading and Saving pane of theUtilities>Global Options dialog box;
see Section 6.3. Note that changing this setting has no effect on existing files.

3.5. Character Encodings
Internally, Java programs like jEdit store text as a stream of 16-bit numerical values, with

23

Chapter 3. Working With Files

each value a character in the Unicode character set. Unicode is a standardized character set
that can represent characters in almost all human languages.

Unfortunately, most other computer programs use far less flexible methods of storing text;
therefore, if jEdit loaded and saved all files as raw Unicode, it would be useless.

To get around this, jEdit converts Unicode text to other character encodings and vice versa
when loading and saving files. jEdit can use any encoding supported by the Java platform.

The default encoding, used to load and save files for which no other encoding is specified,
can be set in theLoading and Saving pane of theUtilities>Global Options dialog box;
see Section 6.3. The setting is presented as an editable combo box; the combo box contains a
few of the more frequently used encodings, but the Java platform defines practically
hundreds more you can use.

Unfortunately, there is no programmical way to obtain a list of all supported encodings, and
the set is constantly changing with each Java version. So to play it safe, jEdit has a few
pre-defined defaults, but allows you to use any other supported encoding, assuming you
know its name.

Unless you change the default encoding, jEdit will use your operating system’s native
encoding;MacRomanon the MacOS,Cp1252 on Windows, and8859_1 on Unix.

TheFile>Open With Encoding lets you open a file with an encoding other than the default.
The menu contains a set of items, one for each common encoding, along withSystem
Default andjEdit Default commands. Invoking a menu item displays the usual file dialog
box, and opens the selected file with the chosen encoding.

TheOpen With Other Encoding command in the same menu lets you enter an arbitriary
encoding name, assuming it is supported by your Java implementation.

Once a file has been opened, the encoding to use when saving it can be set in the
Utilities>Buffer Options dialog box.

The current buffer’s encoding is shown in the status bar. If a file is opened without an
explicit encoding specified, jEdit will use the encoding last used when working with that
file, if the file is in the recent file list. Otherwise, the default encoding will be used.

24

Chapter 3. Working With Files

3.5.1. Commonly Used Encodings
The most frequently-used character encoding is ASCII, or “American Standard Code for
Information Interchange”. ASCII encodes Latin letters used in English, in addition to
numbers and a range of punctuation characters. The ASCII character set consists of 127
characters only, and it is unsuitable for anything but English text (and other file types which
only use English characters, like most program source). jEdit will load and save files as 7-bit
ASCII if the ASCII encoding is used.

Because ASCII is unsuitable for international use, most operating systems use an 8-bit
extension of ASCII, with the first 127 characters remaining the same, and the rest used to
encode accents, ulmauts, and various less frequently used typographical marks.
Unfortunately, the three major operating systems all extend ASCII in a different way. Files
written by Macintosh programs can be read using theMacRomanencoding; Windows text
files are usually stored asCp1252. In the Unix world, the8859_1 (otherwise known as
Latin1) character encoding has found widespread usage.

Windows users are accustomized to dealing with files in a wide range of character sets,
known ascode pages. Java supports a large number of code pages; the encoding name
consists of the text “Cp”, followed by a number.

Raw Unicode files are quite rare, but can be read and written with theUnicode encoding.
One reason raw Unicode has not found widespread usage for storing files on disk is that
each character takes up 16 bits. Most other character sets devote 8 bits per character, which
saves space. TheUTF8 encoding encodes frequently-used Unicode characters as 8 bits, with
less-frequent ones stretching up to 24 bits. This saves space but allows the full range of
Unicode characters to be represented.

Many common cross-platform international character sets are supported;KOI8_R for
Russian text,Big5 andGBKfor Chinese, andSJIS for Japanese.

Java even supports a few downright obscure encodings, such as theEBCDICcharacter
encoding used on IBM mainframes.

25

Chapter 3. Working With Files

3.6. The File System Browser
Utilities>File System Browser displays a file system browser. By default, the file system
browser is shown in a floating window; it can be set to dock into the view in theDocking
pane of theUtilities>Global Options dialog box; see Section 2.2.1.

The directory to browse is specified in thePath text field. A subset of the current directory
to display can be specified in the form of a glob pattern in theFilter text field. See Appendix
D for information about glob patterns. Both text fields remember previously entered strings;
see Appendix C for details.

You can view an entire directory hierarchy at once by clicking the expander controls next to
directories in the tree.

The toolbar buttons perform the following actions, from left to right:

• Up - displays the current directory’s parent in the file system view. The popup arrow
next to this button displays a menu listing all the parent directories of the current
directory, up to the filesystem root

• Reload - reloads the file list

• Local Drives - displays all local drives. On Windows, this will be a list of drive letters;
on Unix, the list will only contain one entry, the root directory

• Home Directory - displays your home directory in the file system browser

• Parent Directory of Current Buffer - displays the directory containing the current
buffer in the file system browser

Clicking theMore button displays a menu containing several less frequently-used
commands:

• Show Hidden Files - a check box menu item that controls if hidden files will be
shown in the file list

• New Directory - creates a new directory, prompting for the desired name

• Search in Directory - displays the search and replace dialog box for searching in all
files in the current directory that match the current filename filter. See Section 4.11 for

26

Chapter 3. Working With Files

information about the search and replace feature

• Add to Favorites - adds the currently selected (or the currently displayed, if there is
nothing selected) directory to the favorites list

• Go to Favorites - displays the favorites list. To remove a directory from the list,
right-click on it and selectDelete from the resulting popup menu

Right-clicking on a file in the file system browser displays a popup menu, containing
commands for manipulating that file, in addition to all the commands from theMore menu.
If the file is already open, the popup will have commands to display it or close it. Unopened
file popups have commands for opening, opening with a different encoding, deleting and
renaming. Note that attempting to delete a directory containing files will give an error; only
empty directories may be deleted.

The file system browser can be navigated from the keyboard:

• Enter - opens the currently selected file or directory

• Left - goes to the current directory’s parent

• Up - selects previous file in list

• Down - selects next file in list

• Typing the first few characters of a file’s name will select that file

The file system view must have keyboard focus for these keys to work. In theOpen File
dialog box, it is given keyboard focus by default. In other instances, it can be given keyboard
focus by clicking with the mouse.

The file system browser can be customized in theFile System Browser pane of the
Utilities>Global Options dialog box. The following settings can be changed:

• The directory to display initially (either the directory containing the current buffer, your
home directory, the favorites list, or the most recently visited directory)

• If icons should be shown (disabling icons can save a lot of screen space)

• If hidden files should be shown by default

27

Chapter 3. Working With Files

• If the file list should be sorted

• If the sort should be case-insensitive

• If files are directories should be sorted together, as opposed to directories always being
at the top of the list

• If double-clicking an open file should close it

• If the file name filter inOpen andSave dialog boxes should be based on the current
buffer’s name

3.7. Reloading Files
If an open buffer is modified on disk by another application, a warning dialog box is
displayed, offering to either continue editing (and lose changes made by the other
application) or reload the buffer from disk (and lose any usaved changes). This feature can
be disabled in theGeneral pane of theUtilities>Global Options dialog box; see Section
6.3.

File>Reload can be used to discard unsaved changes and reload the current buffer from disk
at any other time; a confirmation dialog box will be displayed first if the buffer has unsaved
changes.

File>Reload All Buffers discards unsaved changes in all open buffers and reload them from
disk, asking for confirmation first.

3.8. Multi-Threaded I/O
To improve responsiveness and perceived performance, jEdit executes all input/output
operations asynchronously. While I/O is in progress, a small disk icon and progress meters
for each running operation are shown in the status bar. TheUtilities>I/O Progress Monitor
command displays a window with more detailed status information. Requests can also be
aborted in this window. Note that aborting a buffer save can result in data loss.

28

Chapter 3. Working With Files

By default, four I/O threads are created, which means that up to four buffers can be loaded
or saved simultaneously. The number of threads can be changed in theLoading and Saving
pane of theUtilities>Global Options dialog box; see Section 6.3. Setting the number to
zero disables multi-threaded I/O completely; doing this is not recommended.

3.9. Printing Files
File>Print (shortcut:Control -P) will print the current buffer. By default, the printed output
will have syntax highlighting, and each page will have a header with the file name, and a
footer with the current date/time and page number. The appearance of printed output can be
customized in thePrinting pane of theUtilities>Global Options dialog box. The following
settings can be changed:

• The font to use when printing

• If a header with the file name should be printed on each page

• If a footer with the page number and current date should be printed on each page

• If line numbers should be printed

• If the output should be styled according to the current mode’s syntax highlighting rules

• If the output should be colored according to the current mode’s syntax highlighting
rules (might look bad on grayscale printers)

• The page margins

3.10. Closing Files and Exiting jEdit
File>Close Buffer (shortcut:Control -W) closes the current buffer. If it has unsaved
changes, jEdit will ask if they should be saved first.

File>Close All Buffers (shortcut:Control -E Control -W) closes all buffers. If any buffers
have unsaved changes, they will be listed in a dialog box where they can be saved or

29

Chapter 3. Working With Files

discarded. In the dialog box, multiple buffers to operate on at once can be selected by
clicking on them in the list while holding downControl .

File>Exit (shortcut:Control -Q) will completely exit jEdit.

30

Chapter 4. Editing Text

4.1. Moving The Caret
The most direct way to move the caret is to click the mouse at the desired location in the text
area. It can also be moved using the keyboard.

TheLeft , Right, Up andDown keys move the caret in the respective direction, and thePage
Up andPage Downkeys move the caret up and down one screenful, respectively.

When pressed once, theHomekey moves the caret to the first non-whitespace character of
the current line. Pressing it a second time moves the caret to the beginning of the line.
Pressing it a third time moves the caret to the first visible line.

TheEnd key behaves in a similar manner, going to the last non-whitespace character, the
end of the line, and finally to the last visible line.

Control -HomeandControl -End move the caret to the beginning and end of the buffer,
respectively.

More advanced caret movement is covered in Section 4.5, Section 4.6 and Section 4.7.

4.2. Selecting Text
A selectionis a a block of text marked for further manipulation. Unlike many other
applications, jEdit supports both range and rectangular selections, and several chunks of text
can be selected simultaneously.

Dragging the mouse creates a range selection from where the mouse was pressed to where it
was released. Holding downShift while clicking a location in the buffer will create a
selection from the caret position to the clicked location.

Holding downShift in addition to a caret movement key (Left , Up, Home, etc) will extend
the selection in the specified direction. If no selection exists, one will be created.

Edit>Select All (shortcut:Control -A) selects the entire buffer.

31

Chapter 4. Editing Text

Edit>Select None (shortcut:Escape) deactivates the selection.

4.2.1. Rectangular Selection
Holding downControl and dragging will create a rectangular selection. Holding downShift
andControl while clicking a location in the buffer will create a rectangular selection from
the caret position to the clicked location.

It is possible to select a rectangle with zero width but non-zero height. This can be used to
insert a new column between two existing columns, for example. Such zero-width selections
are shown as a thin vertical line.

Rectangles can be deleted, copied, pasted, and operated on using ordinary editing
commands.

Note: Rectangular selections are implemented using character offsets, not absolute
screen positions, so they might not behave as you might expect if a proportional-width
font is being used, or hard tabs are enabled. For information about changing the font
used in the text area, see Section 6.3. For more information about hard and soft tabs,
see Section 5.4.1.

4.2.2. Multiple Selection
PressingControl -\ turns multiple selection mode on and off. In multiple selection mode,
multiple fragments of text can be selected and operated on simultaneously, and the text
multi is shown in black in the status bar.

While multiple selection mode is active, you can click and drag the mouse to reposition the
caret and create new selections.

Various jEdit commands behave differently with multiple selections:

• Commands that copy text place the contents of each selection, separated by line breaks,
in the specified register. Note that the selections are appended in the order they were
created, not the order they appear in the buffer. For example, if you select a chunk of

32

Chapter 4. Editing Text

text near the end of the buffer, another near the beginning, then invokeCopy, the
clipboard will contain the later chunk, followed by a line break, followed by the earlier
chunk.

• Commands that insert (or paste) text replace each selection with the entire text that is
being inserted.

• Commands that filter text (such asSpaces to Tabs, Range Comment, and even
Replace in Selection) operate on each selection, in turn.

• Line-based commands (such asShift Indent Left, Shift Indent Right, andLine
Comment) operate on each line that contains at least one selection, in addition to the
line containing the caret.

• Caret movement commands that would normally deactivate the selection (such as the
arrow keys, whileShift is not being held down), move the caret, leaving the selection
as-is.

• Some older plugins may not support multiple selection at all.

Tip: Deactivating multiple selection mode while a fragmented selection exists will
leave the selection in place, but it will prevent you from making further fragmented
selections. If a fragmented selection exists but multiple selection mode is not active,
the text multi will be shown in dark blue in the status bar.

4.3. Inserting and Deleting Text
Text entered at the keyboard is inserted into the buffer. If overwrite mode is on, one
character is deleted from in front of the caret position for every character that is inserted. To
activate overwrite mode, pressInsert. The caret is drawn as horizontal line while in
overwrite mode; the textover also appears in the status bar.

Inserting text while there is a selection will replace the selection with the inserted text.

Inserting text at the end of a line beyond the wrap column will automatically break the line
at the appropriate word boundary. The wrap column is indicated in the text area as a faint

33

Chapter 4. Editing Text

blue line and its location (specified in number of character positions from the left margin)
can be changed in one of several ways:

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box; see Section 6.3.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box; see Section 6.1.

• In the current buffer for future editing sessions by placing the following in one of the
first 10 lines of the buffer, wherecolumn is the desired wrap column position:

:maxLineLen= column :

To disable word wrap completely, set the wrap column to 0 using any of the above means.

Note: Word wrap is implemented using character offsets, not screen positions, so it
might not behave like you expect if a proportional-width font is being used. For
information about changing the font used in the text area, see Section 6.3.

When inserting text, keep in mind that theTab andEnter keys might not behave entirely
like you expect because of various indentation features; see Section 5.4 for details.

The simplest way to delete text is with theBackspaceandDeletekeys. If nothing is
selected, they delete the character before or after the caret, respectively. If a selection exists,
both delete the selection.

More advanced deletion commands are described in Section 4.5, Section 4.6 and Section 4.7.

4.4. Undo and Redo
Edit>Undo (shortcut:Control -Z) undoes the effects of the most recent text editing
command. For example, this can be used to restore unintentionally deleted text. More
complicated operations, such as a search and replace, can also be undone. By default, the
undo queue remembers the last 100 edits; older edits are discarded. The undo queue size can
be changed in theEditing pane of theUtilities>Global Options dialog box.

34

Chapter 4. Editing Text

Edit>Redo (shortcut:Control -R) goes forward in the undo queue, redoing changes which
were undone. For example, if some text was inserted,Undo will remove it from the buffer.
Redo will insert it again.

4.5. Working With Words
Holding downControl in addition toLeft or Right moves the caret a word at a time.
Holding downShift andControl in addition toLeft or Right extends the selection a word at
a time.

A single word can be selected by double-clicking with the mouse, or using the
Edit>Text>Select Word command (shortcut:Control -E W). A selection that begins and
ends on word boundaries can be created by double-clicking and dragging.

PressingControl in addition toBackspaceor Deletedeletes the word before or after the
caret, respectively.

Edit>Word Count displays a dialog box with the number of characters, words and lines in
the current buffer.

Edit>Complete Word (shortcut:Control -B) searches the current buffer for possible
completions of the current word. This feature be used to avoid retyping previously entered
identifiers in program source, for example.

If there is only one completion, it will be inserted into the buffer immediately. If multiple
completions were found, they will be listed in a popup below the caret position. To insert a
completion from the list, either click it with the mouse, or select it using theUp andDown
keys and pressEnter. To close the popup without inserting a completion, pressEscape.

4.6. Working With Lines
An entire line can be selected by triple-clicking with the mouse, or using the
Edit>Text>Select Line command (shortcut:Control -E L). A selection that begins and ends
on line boundaries can be created by triple-clicking and dragging.

35

Chapter 4. Editing Text

Edit>Go to Line (shortcut:Control -L) displays an input dialog box and moves the caret to
the specified line number.

Edit>Select Line Range (shortcutControl -E Control -L) selects all text between between
two specified line numbers, inclusive.

Edit>Text>Join Lines (shortcut:Control -J) removes any whitespace from the start of the
next line and joins it with the current line. For example, invokingJoin Lines on the first line
of the following Java code:

new Widget(Foo
.createDefaultFoo());

Will change it to:

new Widget(Foo.createDefaultFoo());

Edit>Text>Delete Line (shortcut:Control -D) deletes the current line.

Edit>Text>Delete to Start Of Line (shortcut:Shift-Backspace) deletes all text from the
start of the current line to the caret.

Edit>Text>Delete to End Of Line (shortcut:Shift-Delete) deletes all text from the caret to
the end of the current line.

Edit>Text>Remove Trailing Whitespace (shortcut:Control -E R) removes all whitespace
from the end of each selected line, or the current line if there is no selection.

4.7. Working With Paragraphs
As far as jEdit is concerned, “paragraphs” are delimited by double newlines. This is also
how TeX defines a paragraph. Note that jEdit doesn’t parse HTML files for “<P>” tags, nor
does it support paragraphs delimited only by a leading indent.

Holding downControl in addition toUp or Down moves the caret to the previous and next
paragraph, respectively. As with other caret movement commands, holding downShift in
addition to the above extends the selection, a paragraph at a time.

36

Chapter 4. Editing Text

Edit>Text>Select Paragraph (shortcut:Control -E P) selects the paragraph containing the
caret.

Edit>Text>Delete Paragraph (shortcut:Control -E D) deletes the paragraph containing the
caret.

Edit>Text>Format Paragraph (shortcut:Control -E F) splits and joins lines in the current
paragraph to make them fit within the wrap column position. See Section 4.3 for information
and word wrap and changing the wrap column.

4.8. Scrolling
View>Scrolling>Scroll to Current Line (shortcut:Control -E Control -J) centers the line
containing the caret on the screen.

View>Scrolling>Center Caret on Screen (shortcut:Control -E Control -I) moves the
caret to the line in the middle of the screen.

View>Scrolling>Line Scroll Up (shortcut:Control -’) scrolls the text area up by one line.

View>Scrolling>Line Scroll Down (shortcut:Control -/) scrolls the text area down by one
line.

View>Scrolling>Page Scroll Up (shortcut:Alt -’) scrolls the text area up by one screenful.

View>Scrolling>Page Scroll Down (shortcut:Alt -/) scrolls the text area down by one
screenful.

The above scrolling commands differ from the caret movement commands in that they don’t
actually move the caret; they just change the scroll bar position.

View>Scrolling>Synchronized Scrolling is a check box menu item, that if selected, forces
scrolling performed in one text area to be propagated to all other text areas in the current
view. Invoking the command a second time disables the feature.

37

Chapter 4. Editing Text

4.9. Transferring Text
jEdit provides a rich set of commands for moving and copying text usingregisters. A
register is a holding area with a single-character name that can hold once piece of text at a
time. Registers are global to the editor; all buffers share the same set. With the exception of
the clipboard, register contents are only accessable inside jEdit.

jEdit has three sets of commands for working with registers. The “quick copy” and system
clipboard features allow easy access to two specific registers. A third set of commands
allows access to all other registers.

4.9.1. Quick Copy
Holding down theAlt key and clicking the left mouse button in the text area inserts the most
recently selected text at the clicked location. If you have a three-button mouse, you can
simply click the middle mouse button, without holding downAlt .

Internally, this is implemented by storing the most recently selected text in the%register
(recall that registers have single-character names).

X Windows primary selection

If jEdit is being run under Java 2 version 1.4 on Unix, you will be able to transfer text
with other X Windows applications using the quick copy feature. On other platforms
and Java versions, the contents of the quick copy register are only accessable from
within jEdit.

4.9.2. The System Clipboard
Quick copy is very useful in many situations, but it has a number of drawbacks; it requires
the use of the mouse, it cannot be used to replace an existing selection, and it cannot be used
to transfer text between different applications (unless you are using Java 2 version 1.4 on
Unix).

38

Chapter 4. Editing Text

The system clipboard, internally known as the$ register, does not have these limitations, but
can be slightly less convinient to use.

Edit>Cut (shortcut:Control -X) places the selected text in the clipboard and removes it
from the buffer.

Edit>Copy (shortcut:Control -C) places the selected text in the clipboard and leaves it in
the buffer.

Edit>Cut Append (shortcut:Control -E Control -U) appends the selected text to the
clipboard, then removes it from the buffer. After this command has been invoked, the
clipboard will consist of the former clipboard contents, followed by a newline, followed by
the selected text.

Edit>Copy Append (shortcut:Control -E Control -A) appends the selected text to the
clipboard, and leaves it in the buffer. After this command has been invoked, the clipboard
will consist of the former clipboard contents, followed by a newline, followed by the
selected text.

Edit>Paste (shortcut:Control -V) inserts the clipboard contents in place of the selection (or
at the caret position, if there is no selection).

4.9.3. General Register Commands
These commands are slightly less convinient to use than the two methods of transferring text
described above, but have the advantage that they allow any number of strings to be copied
simultaneously.

These commands all expect a single-character register name to be typed at the keyboard
after the command is invoked, and subsequently operate on that register. PressingEscape
instead of specifying a register name will cancel the operation.

Edit>Registers>Cut to Register (shortcut:Control -R Control -X key) stores the selected
text in the specified register, removing it from the buffer.

Edit>Registers>Copy to Register (shortcut:Control -R Control -C key) stores the
selected text in the specified register, leaving it in the buffer.

39

Chapter 4. Editing Text

Edit>Registers>Cut Append to Register (shortcut:Control -R Control -U key) adds the
selected text to the existing contents of the specified register, and removes it from the buffer.

Edit>Registers>Copy Append to Register (shortcut:Control -R Control -A key) adds
the selected text to the existing contents of the specified register, without removing it from
the buffer.

Edit>Registers>Paste from Register (shortcut:Control -R Control -V key) replaces the
selection with the contents of the specified register.

Edit>Paste Previous (shortcut:Control -E Control -V) displays a dialog box listing
recently copied and pasted text. By default, the last 20 strings are remembered; this can be
changed in theGeneral pane of theUtilities>Global Options dialog box; see Section 6.3.

Edit>Registers>View Registers displays a dialog box for viewing the contents of registers
(including the clipboard).

4.10. Markers
Each buffer can have any number ofmarkersdefined, pointing to specific locations within
that buffer. Each line in a buffer can have at most one marker set pointing to it. Markers are
persistent; they are saved to. filename .marks , wherefilename is the file name. (The dot
prefix makes the markers file hidden on Unix systems.) Marker saving can be disabled in the
Loading and Saving pane of theUtilities>Global Options dialog box; see Section 6.3.

Markers are listed in theMarkers menu; selecting a marker from this menu is the simplest
way to return to its location. Each marker can optionally have a single-character shortcut;
markers without a shortcut can only be returned to using the menu, markers with a shortcut
can be accessed more quickly from the keyboard.

Lines which contain markers are indicated in the gutter with a highlight. Moving the mouse
over the highlight displays a tool tip showing the marker’s shortcut, if it has one. See Section
2.3 for information about the gutter.

Markers>Add/Remove Marker (shortcut:Control -E Control -M) adds a marker without a
shortcut pointing to the current line. If a marker is already set on the current line, the marker

40

Chapter 4. Editing Text

is removed instead. If text is selected, markers are added to the first and last line of each
selection.

Markers>Add Marker With Shortcut (shortcut:Control -T key) reads the next character
entered at the keyboard, and adds a marker with that shortcut pointing to the current line. If a
previously-defined marker already has that shortcut, it will no longer have that shortcut, but
will remain in the buffer. PressingEscapeinstead of specifying a marker shortcut after
invoking the command will cancel the operation.

Markers>Go to Marker (shortcut:Control -Y key) reads the next character entered at the
keyboard, and moves the caret to the location of the marker with that shortcut. Pressing
Escapeinstead of specifying a marker shortcut after invoking the command will cancel the
operation.

Markers>Select to Marker (shortcut:Control -U key) reads the next character entered at
the keyboard, and extends the selection to the location of the marker with that shortcut.
PressingEscapeinstead of specifying a marker shortcut after invoking the command will
cancel the operation.

Markers>Swap Caret and Marker (shortcut:Control -U key) reads the next character
entered at the keyboard, and swaps the position of the caret with the location of the marker
with that shortcut. PressingEscapeinstead of specifying a marker shortcut after invoking
the command will cancel the operation.

Markers>Go to Previous Marker (shortcut:Alt -Up) goes to the nearest marker before the
caret position.

Markers>Go to Next Marker (shortcut:Alt -Down) goes to the nearest marker after the
caret position.

Markers>Remove All Markers removes all markers set in the current buffer.

4.11. Search and Replace

4.11.1. Searching For Text
Search>Find (shortcut:Control -F) displays the search and replace dialog box.

41

Chapter 4. Editing Text

The search string can be entered in theSearch for text field. This text field remembers
previously entered strings; see Appendix C for details.

The search can be made case insensitive (for example, searching for “Hello” will match
“hello”, “HELLO” and “HeLlO”) by selecting theIgnore case check box. Regular
expressions may be used to match inexact sequences of text if theRegular expressions
check box is selected; see Appendix E for more information about regular expressions. Note
that regular expressions can only be used when searching forwards.

Clicking Find will locate the next (or previous, if searching backwards) occurrence of the
search string after the caret position. If theKeep dialog check box is selected, the dialog
box will remain open; otherwise, it will be closed after the search string is located.

If no occurrences could be found and theAuto wrap check box is selected, the search will
automatically be restarted and a message will be shown in the status bar to indicate that. If
the check box is not selected, a dialog box will be displayed, offering to restart the search.

Search>Find Next (shortcut:Control -G) locates the next occurrence of the most recent
search string without displaying the search and replace dialog box.

Search>Find Previous (shortcut:Control -H) locates the previous occurrence of the most
recent search string without displaying the search and replace dialog box.

Search>Find Selection (shortcut:Control -E Control -F) displays the search and replace
dialog box with the currently selected text entered in theSearch for text field.

4.11.2. Replacing Text
Occurrences of the search string can be replaced with either a replacement string or the
result of a BeanShell script snippet. Two radio buttons in the search and replace dialog box
can be used to choose between these two behaviors.

The replace string text field remembers previously entered strings; see Appendix C for
details.

Clicking Replace will perform a replacement in each text selection. ClickingReplace &
Find will perform a replacement in each text selection and locate the next occurrence of the

42

Chapter 4. Editing Text

search string. ClickingReplace All will perform a replacement in each buffer to be
searched.

In text replacement mode, the search string is replaced with the replacement string. If
regular expressions are enabled, positional parameters ($0, $1, $2, and so on) can be used to
insert the contents of matched subexpressions in the replacement text; see Appendix E for
more information.

In BeanShell replacement mode, the search string is replaced with the return value of a
BeanShell snippet. The following predefined variables can be referenced in the snippet:

• _0 – the text to be replaced

• _1 - _9 – if regular expressions are enabled, these contain the values of matched
subexpressions.

BeanShell syntax and features are covered in great detail in Part III injEdit 3.2 User’s
Guide, but here are some examples:

To convert all HTML tags to lower case, search for the following regular expression:

<(.*?)>

Replacing it with the following BeanShell snippet:

"<" + _1.toLowerCase() + ">"

To replace arithmetic expressions between curly braces with their result, search for the
following regular expression:

\{(.+)\}

Replacing it with the following BeanShell snippet:

eval(_1)

These two examples only scratch the surface; the possibilities are endless.

43

Chapter 4. Editing Text

4.11.3. HyperSearch
If the HyperSearch check box in the search and replace dialog box is selected, clicking
Find will list all occurrences of the search string, rather than locating them one by one.

By default, HyperSearch results are shown in a floating window; the window can be set to
dock into the view in theDocking pane of theUtilities>Global Options dialog box; see
Section 2.2.1.

Running searches can be stopped in theUtilities>I/O Progress Monitor dialog box.

4.11.4. Multiple File Search
Searching, replacement and HyperSearch can also be performed in all open buffers or all
files in a directory.

If the All buffers radio button in the search and replace dialog box is selected, all open
buffers whose names match the glob pattern entered in theFilter text field will be searched.
See Appendix D for more information about glob patterns.

If the Directory radio button is selected, all files in the directory whose names match the
glob will be searched. The directory to search in can either be entered in theDirectory text
field, or chosen in a file selector dialog box by clickingChoose. If the Search
subdirectories check box is selected, all subdirectories of the specified directory will also
be searched. Keep in mind that searching through directories with many files can take a long
time and consume a large amount of memory.

TheDirectory andFilter text fields remember previously entered strings; see Appendix C
for details.

Two convinience commands are provided for performing multiple file searches.

Search>Search in Open Buffers (shortcut:Control -E Control -B) displays the search
and replace dialog box, and selects theAll buffers radio button.

Search>Search in Directory (shortcut:Control -E Control -D) displays the search and
replace dialog box, and selects theDirectory radio button.

44

Chapter 4. Editing Text

4.11.5. The Search Bar
The search bar at the top of the view provides a convenient way to perform simple searches
without opening the search and replace dialog box first. Neither multiple file search nor
replacement can be done from the search bar.

Unless theHyperSearch check box is selected, the search bar will perform anincremental
search. In incremental search mode, the first occurrence of the search string is located in the
current buffer as is it is being typed. PressingEnter andShift-Enter searches for the next
and previous occurrence, respectively. Once the desired occurrence has been found, press
Escapeto return keyboard focus to the text area.

If the HyperSearch check box is selected, entering a search string and pressingEnter will
perform a HyperSearch. When in HyperSearch mode, the search bar remembers previously
entered strings; see Appendix C for details.

The search bar can be accessed from the keyboard using theSearch>Quick Incremental
Search (shortcut:Control -,) andSearch>Quick HyoerSearch (shortcut:Control -.)
commands.

The search bar can be disabled in theGeneral pane of theUtilities>Global Options dialog
box.

Note that incremental searches cannot be not recorded in macros. Use the search and replace
dialog box instead.

45

Chapter 5. Editing Source Code

5.1. Edit Modes
An edit modespecifies syntax highlighting rules, auto indent behavior, and various other
customizations for editing a certain file type. This section only covers using and selecting
edit modes; information about writing your own can be found in Part II injEdit 3.2 User’s
Guide.

5.1.1. Mode Selection
When a file is opened, jEdit first checks the file name against a list of known patterns. For
example, files whose names end with “.c” are edited in C mode, and files namedMakefile

are edited in Makefile mode. If a suitable match based on file name cannot be found, jEdit
checks the first line of the file. For example, files whose first line is “#!/bin/sh” are edited in
shell script mode.

If automatic mode selection is not appropriate, the edit mode can be specified manually. The
current buffer’s edit mode can be set on a one-time basis in theUtilities>Buffer Options
dialog box; see Section 6.1. To set a buffer’s edit mode for future editing sessions, place the
following in one of the first 10 lines of the buffer, whereedit mode is the name of the
desired edit mode:

:mode= edit mode :

5.1.2. Syntax Highlighting
Syntax highlighting is the display of programming language tokens using different fonts and
colors. This makes code easier to follow and errors such as misplaced quotes easier to spot.
All edit modes except for the plain text mode perform syntax highlighting.

The colors and styles used to highlight syntax tokens can be changed in theStyles pane of

46

Chapter 5. Editing Source Code

theUtilities>Global Options dialog box; see Section 6.3.

Syntax highlighting can be enabled or disabled in one of several ways:

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box; see Section 6.1.

• In the current buffer for future editing sessions, by placing the following in one of the
first 10 lines of the buffer, whereflag is either “true” or “false”:

:syntax= flag :

5.2. Abbreviations
Using abbreviations reduces the time spent typing long but commonly used strings. For
example, in Java mode, the abbreviation “sout” is defined to expand to
“System.out.println()”, so to insert “System.out.println()” in a Java buffer, you only need to
type “sout” followed byControl -;. Each abbreviation can either be global, in which case it
will expand in all edit modes, or mode-specific. Abbreviations can be edited in the
Abbreviations pane of theUtilities>Global Options dialog box; see Section 6.3. The Java,
SGML and VHDL edit modes include some pre-defined abbreviations you might find useful.

Edit>Expand Abbreviation (keyboard shortcut:Control -;) attempts to expand the word
before the caret. If no expansion could be found, it will offer to define one.

Automatic abbreviation expansion can be enabled in theAbbreviations pane of the
Utilities>Global Options dialog box; see Section 6.3. If enabled, pressing the space bar
after entering an abbreviation will automatically expand it.

If automatic expansion is enabled, a space can be inserted without expanding the word
before the caret by pressingControl -E V Space.

47

Chapter 5. Editing Source Code

5.2.1. Positional Parameters
Positional parameters are an advanced feature that make abbreviations much more useful.
The best way to describe them is with an example.

Suppose you have an abbreviation “F” that is set to expand to the following:

for(int $1 = 0; $1 < $2; $1++)

Now, simply entering “F” in the buffer and expanding it will insert the above text as-is.
However, if you expandF#j#array.length# , the following will be inserted:

for(int j = 0; j < array.length; j++)

Expansions can contain up to nine positional parameters. Note that a trailing hash character
(“#”) must be entered when expanding an abbreviation with parameters.

5.3. Bracket Matching
Misplaced and unmatched brackets are one of the most common syntax errors encountered
when writing code. jEdit has several features to make brackets easier to deal with.

If the character immediately before the caret position is a bracket, the matching one will be
highlighted (assuming it is visible on the screen). Bracket highlighting can be disabled in the
Text Area pane of theUtilities>Global Options dialog box; see Section 6.3.

Edit>Source Code>Go to Matching Bracket (shortcut:Control -]) goes to the bracket
matching the one before the caret.

Double-clicking on a bracket in the text area will select all text between the bracket and the
one matching it.

Edit>Source Code>Select Code Block (shortcut:Control -[) selects all text between the
two brackets nearest to the caret.

Edit>Source Code>Go to Previous Bracket (shortcut:Control -E [) moves the caret to
the previous opening bracket.

48

Chapter 5. Editing Source Code

Edit>Source Code>Go to Next Bracket (shortcut:Control -E]) moves the caret to the
next closing bracket.

Note: jEdit’s bracket matching algorithm only checks syntax tokens with the same type
as the original bracket for matches. So brackets inside string literals and comments will
not cause problems, as they will be skipped.

5.4. Tabbing and Indentation
jEdit makes a distinction between thetab width, which is is used when displaying tab
characters, and theindent width, which is used when a level of indent is to be added or
removed, for example by mode-specific smart indent routines. Both can be changed in one
of several ways:

• On a global or mode-specific basis inEditing andMode-Specific panes of the the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box; see Section 6.1.

• In the current buffer for future editing sessions by placing the following in one of the
first 10 lines of the buffer, wheren is the desired tab width, andmis the desired indent
width:

:tabSize= n:indentSize= m:

Edit>Source Code>Shift Indent Left (shortcut:Alt -Left) adds one level of indent to each
selected line, or the current line if there is no selection.

Edit>Source Code>Shift Indent Right (shortcut:Alt -Right) removes one level of indent
from each selected line, or the current line if there is no selection.

5.4.1. Soft Tabs
Because files indented using tab characters may look less than ideal when viewed on a

49

Chapter 5. Editing Source Code

system with a different default tab size, it is sometimes desirable to use multiple spaces,
known assoft tabs, instead of real tab characters, to indent code.

Soft tabs can be enabled or disabled in one of several ways:

• On a global or edit mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box; see Section 6.1.

• In the current buffer for future editing sessions by placing the following in one of the
first 10 lines of the buffer, whereflag is either “true” or “false”:

:noTabs= flag :

Changing the soft tabs setting has no effect on existing tab characters; it only affects
subsequently-inserted tabs.

Edit>Source Code>Spaces to Tabs converts soft tabs to hard tabs in the current selection.

Edit>Source Code>Tabs to Spaces converts hard tabs to soft tabs in the current selection.

5.4.2. Automatic Indent
The auto indent feature inserts the appropriate number of tabs or spaces at the beginning of a
line.

If indent on enter is enabled, pressingEnter will create a new line with the appropriate
amount of indent automatically. If indent on tab is enabled, pressingTab on an unindented
line will insert the appropriate amount of indentation. Pressing it again will insert a tab
character.

By default, indent on enter is enabled and indent on tab is disabled. This can be changed in
one of several ways:

• On a global or mode-specific basis in theEditing andMode-Specific panes of the
Utilities>Global Options dialog box.

50

Chapter 5. Editing Source Code

• In the current buffer for the duration of the editing session in theUtilities>Buffer
Options dialog box; see Section 6.1.

• In the current buffer for future editing sessions by placing the following in the first 10
lines of a buffer, whereflag is either “true” or “false”:

:indentOnEnter= flag :indentOnTab= flag :

Auto indent behavior is mode-specific. In most edit modes, the indent of the previous line is
simply copied over. However, in C-like languages (C, C++, Java, JavaScript), curly brackets
and language statements are taken into account and indent is added and removed as
necessary.

Edit>Source Code>Indent Selected Lines (shortcut:Control -I) indents all selected
lines, or the current line if there is no selection.

To insert a literal tab or newline without performing indentation, prefix the tab or newline
with Control -E V. For example, to create a new line without any indentation, type
Control -E V Enter .

5.5. Commenting Out Code
Most programming and markup languages support “comments”, or regions of code which
are ignored by the compiler/interpreter. jEdit has commands which make inserting
comments more convenient.

Edit>Source Code>Range Comment (shortcut:Control -E Control -C) encloses the
selection with comment start and end strings, for example/* and*/ in Java mode.

Comment start and end strings can be changed on a mode-specific basis in the
Mode-Specific pane of theUtilities>Global Options dialog box, or on a buffer-specific
basis using buffer-local properties. For example, placing the following in one of the first 10
lines of a buffer will change the range comment strings to(* and*) :

:commentStart=(*:commentEnd=*):

51

Chapter 5. Editing Source Code

Edit>Source Code>Line Comment (shortcut:Control -E Control -K) inserts the line
comment string, for example// in Java mode, at the start of each selected line.

The line comment string can be changed on a mode-specific basis in theMode-Specific
pane of theUtilities>Global Options dialog box, or on a buffer-specific basis using
buffer-local properties. For example, placing the following in one of the first 10 lines of a
buffer will change the line comment string to#:

:lineComment=#:

5.6. Folding
The folding feature allows lines to be hidden or shown depending on their indent level.
Since most programming languages use indentation to nest code, folding away lines with a
lot of indent has the effect of displaying an “overview” of the file only, while displaying
higher indent levels “zooms in” on the contents and shows more “detail”.

A set of consecutive lines with the same leading indent is referred to as afold. The visibility
of each fold can be set independently. A fold that is hidden is said to be “collapsed”; a
visible fold is “expanded”. Text hidden by folding is still present in the buffer, and can be
made visible again using the appropriate commands. Cursor movement commands skip over
the hidden text, but text manipulation commands act on it.

The initial fold visibility level, in multiples of the indent width, can be specified on a
mode-specific or global basis in theUtilities>Global Options dialog box; see Section 6.3.
Folds with a level higher than this will be automatically collapsed after a buffer is loaded.
Setting this value to zero makes all folds expanded initially (this is the default).

The simplest way to expand and collapse folds is to click the fold markers in the gutter to the
left of the text area; a fold marker is drawn next to the first line of each fold. An empty
square is drawn next to an expanded fold; a filled square next to a collapsed fold. Unless the
Shift key is held down, clicking a filled square will expand the fold by one level only; nested
folds will remain collapsed. Holding downShift while clicking will fully expand the fold
and all nested folds.

View>Folding>Collapse Fold (keyboard shortcut:Alt -Backspace) collapses the fold

52

Chapter 5. Editing Source Code

containing the caret.

View>Folding>Expand Fold One Level (keyboard shortcut:Alt -Enter) expands the fold
containing the caret. Nested folds will remain collapsed.

View>Folding>Expand Fold Fully (keyboard shortcut:Alt -Shift-Enter) expands the fold
containing the caret, also expanding any nested folds.

View>Folding>Expand All Folds (keyboard shortcut:Control -E Enter key) reads the
next character entered at the keyboard, and expands all folds in the buffer with a fold level
less than that specified, and collapsed all others.

View>Folding>Expand All Folds (keyboard shortcut:Control -E X) expands all folds in
the buffer.

View>Folding>Select Fold (keyboard shortcut:Control -E S) selects all lines in the fold
containing the caret. Control-clicking on a fold marker in the gutter on the left of the text
area has the same effect.

Because folding is based on indent levels, changing the leading indent of a line while folds
are collapsed may result in portions of the buffer becoming temporarily inaccessable. In
such a case, simply invokeExpand All Folds to restore the visibility of the hidden lines.

The textfold is shown in black the status bar if portions of the buffer are invisible due to
folding. Otherwise, it is grayed out.

5.6.1. Narrowing
The narrowing feature hides all parts of the buffer except for one specified region. While
that region appears to be all there is, the rest of the text is still in the buffer; just not visible.
While it may seem unrelated to folding, both folding and narrowing are implemented using
the same code internally.

View>Folding>Narrow Buffer to Selection (keyboard shortcut:Control -E N) hides all
lines the buffer except those in the selection.

View>Folding>Expand All Folds (keyboard shortcut:Control -E X) will make visible any
lines hidden by narrowing.

53

Chapter 6. Customizing jEdit

6.1. The Buffer Options Dialog Box
Utilities>Buffer Options displays a dialog box for changing editor settings on a per-buffer
basis. Any changes made in this dialog box are lost after the buffer is closed.

The following settings may be changed here:

• The edit mode (see Section 5.1)

• The tab width (see Section 5.4)

• The indent width

• The wrap column (see Section 4.3)

• The line separator (see Section 3.4)

• If syntax highlighting should be enabled (see Section 5.1.2)

• If auto indent and soft tabs should be enabled (see Section 5.4)

The “Corresponding buffer-local properties” text field displays buffer-local properties that
duplicate the current settings in the dialog box.

6.2. Buffer-Local Properties
Buffer-local properties provide an alternate way to change editor settings on a per-buffer
basis. While changes made in the Buffer Options dialog box are lost after the buffer is
closed, buffer-local properties take effect each time the file is opened, because they are
embedded in the file itself.

When jEdit loads a file, it checks the first 10 lines for colon-enclosed name/value pairs. The
following example changes the indent width to 4 characters, enables soft tabs, and sets the
buffer’s edit mode to Perl:

54

Chapter 6. Customizing jEdit

:indentSize=4:noTabs=true:mode=perl:

Note that adding buffer-local properties to a buffer only takes effect after the next time the
buffer is loaded.

The following table describes each buffer-local property in detail.

Property name Description

collapseFolds Folds with a level of this or higher will be collapsed when the
buffer is opened. If set to zero, all folds will be expanded initially.
See Section 5.6.

commentEnd The range comment end string. For example, in Java mode the
default value is “*/”. See Section 5.5.

commentStart The range comment start string. For example, in Java mode the
default value is “/*”. See Section 5.5.

indentOnEnter If set to “true”, pressingEnter will insert a line break and
automatically indent the new line. See Section 5.4.

indentOnTab If set to “true”, indentation will be performed when theTab key is
pressed. See Section 5.4.

indentSize The width, in characters, of one indent. Must be an integer greater
than 0. See Section 5.4.

lineComment The line comment string. For example, in Java mode the default
value is “//”. See Section 5.5.

maxLineLen The maximum line length and wrap column position. Inserting text
beyond this column will automatically insert a line break at the
appropriate position. See Section 4.3.

mode The default edit mode for the buffer. See Section 5.1.

noTabs If set to “true”, soft tabs (multiple space characters) will be used
instead of “real” tabs. See Section 5.4.

noWordSep A list of non-alphanumeric characters that arenot to be treated as
word separators.

55

Chapter 6. Customizing jEdit

Property name Description

syntax If set to “false”, syntax highlighting will be not be performed. See
Section 5.1.2.

tabSize The tab width. Must be an integer greater than 0. See Section 5.4.

wordBreakChars Characters, in addition to spaces and tabs, at which lines may be
split when word wrapping. See Section 4.3.

6.3. The Global Options Dialog Box
Utilities>Global Options displays the global options dialog box. The dialog box is divided
into several panes, each pane containing a set of related options. Use the list on the left of
the dialog box to switch between panes. Only panes created by jEdit are described here;
some plugins add their own option panes, and information about them can be found in the
documentation for the plugins in question.

The General Pane

TheGeneral option pane lets you change various miscellaneous settings, such as the
number of recent files to remember, the Swing look & feel, and such.

The Loading and Saving Pane

TheLoading and Saving option pane lets you change settings such as the autosave
frequency, backup settings, file encoding, and so on.

The Editing Pane

TheEditing option pane lets you change settings such as the tab size, syntax highlighting
and soft tabs on a global basis.

Due to the design of jEdit’s properties implementation, changes to some settings in this
option pane only take effect in subsequently opened files.

56

Chapter 6. Customizing jEdit

The Mode-Specific Pane

TheMode-Specific option pane lets you change settings such as the tab size, syntax
highlighting and soft tabs on a mode-specific basis.

TheFile name glob andFirst line glob text fields let you specify a glob pattern that names
and first lines of buffers will be matched against to determine the edit mode.

This option pane does not change XML mode definition files on disk; it merely writes values
to the user properties file which override those in mode files. To find out how to edit mode
files directly, see Part II injEdit 3.2 User’s Guide.

The Text Area Pane

TheText Area option pane lets you customize the appearance of the text area.

The Gutter Pane

TheGutter option pane lets you customize the appearance of the gutter.

The Colors Pane

TheColors option pane lets you change the text area’s color scheme.

The Styles Pane

TheStyles option pane lets you change the text styles and colors used for syntax
highlighting.

The Docking Pane

TheDocking option pane lets you specify which dockable windows should be floating, and
which should be docked in the view.

The Context Menu Pane

TheContext Menu option pane lets you edit the text area’s right-click context menu.

57

Chapter 6. Customizing jEdit

The Tool Bar Pane

TheTool Bar option pane lets you edit the tool bar, or disable it completely.

The Shortcuts Pane

TheShortcuts option pane let you change keyboard shortcuts. Each command can have up
to two shortcuts associated with it.

The combo box at the top of the option pane selects the shortcut set to edit (command,
plugin or macro shortcuts).

To change a shortcut, click the appropriate table entry and press the keys you want
associated with that command in the resulting dialog box. The dialog box will warn you if
the shortcut is already assigned.

The Abbreviations Pane

TheAbbreviations option pane lets you enable or disable automatic abbreviation
expansion, and edit currently defined abbreviations.

The combo box labelled “Abbrev set” selects the abbreviation set to edit. The first entry,
“global”, contains abbreviations available in all edit modes. The subsequent entries contain
mode-specific abbreviations.

To change an abbreviation expansion, click the appropriate table entry, which will display a
dialog box for doing so.

To add an abbreviation, enter it in the last line of the list, which is always blank. When the
last line is changed, a new, blank, line is added.

See Section 5.2.1 for information about positional parameters in abbreviations.

The Printing Pane

ThePrinting option pane lets you customize the appearance of printed output.

The File System Browser Pane

TheFile System Browser option pane lets you customize jEdit’s file system browser.

58

Chapter 6. Customizing jEdit

6.4. The jEdit Settings Directory
jEdit stores all settings, macros, and so on as files inside itssettings directory. In most cases,
editing these files is not necessary, since graphical tools and commands can do the job.
However, being familiar with the structure of the settings directory still comes in handy in
certain situations, for example when you want to copy jEdit settings between computers.

The location of the settings directory is system-specific; it is printed to the activity log
(Utilities>Activity Log). For example:

[message] jEdit: Settings directory is /home/slava/.jedit

Specifying the-settingsswitch on the command line instructs jEdit to store settings in a
different directory. For example, the following command will instruct jEdit to store all
settings in thejedit subdirectory of theC: drive:

C:\jedit> jedit -settings=C:\jedit

The-nosettingsswitch will force jEdit to not look for or create a settings directory. Default
settings will be used instead.

If you are using jEditLauncher to start jEdit on Windows, these parameters cannot be
specified on the MS-DOS prompt command line when starting jedit; they must be set as
described in Section G.2.

jEdit creates the following files and directories inside the settings directory; plugins may add
more:

• jars - this directory contains plugins. See Chapter 8.

• macros - this directory contains macros. See Chapter 7.

• modes - this directory contains custom edit modes. See Part II injEdit 3.2 User’s Guide.

• PluginManager.download - this directory is usually empty. It only contains files
while the plugin manager is downloading a plugin. For information about the plugin
manager, see Chapter 8.

• session - a list of files, used when restoring previously open files on startup.

59

Chapter 6. Customizing jEdit

• abbrevs - a plain text file which stores all defined abbreviations. See Section 5.2.

• activity.log - a plain text file which contains the full activity log. See Appendix B.

• history - a plain text file which stores history lists, used by history text fields and the
Edit>Paste Previous command. See Section 4.9 and Appendix C.

• properties - a plain text file which stores the majority of jEdit’s settings.

• recent.xml - an XML file which stores the list of recently opened files. jEdit
remembers the caret position, selection state and character encoding of each recent file,
and automatically restores those values when one of the files in the list is opened.

• server - a plain text file that only exists while jEdit is running. The edit server’s port
number and authorization key is stored here. See Chapter 1.

60

Chapter 7. Using Macros
Macros in jEdit are short scripts written in a scripting language calledBeanShell. They
provide an wasy way to automate repetitive keyboard and menu procedures, as well as
access to the objects and methods created by jEdit. Macros also provide a powerful facility
for customizing jEdit and automating complex text processing and programming tasks. In
this section we describe how to record and run macros. A detailed guide on writing macros
appears later in a separate part of the user’s guide; see Part III injEdit 3.2 User’s Guide.

7.1. Recording Macros
The simplest use of macros is to record a series of key strokes and menu commands as a
BeanShell script, and play them back at a later time. While this doesn’t let you take
advantage of the full power of BeanShell, it is still a great time saver and can even be used to
“prototype” more complicated macros.

Macros>Record Macro (shortcut:Control -M Control -R) prompts for a macro name and
begins recording.

While recording is in progress, the string “Macro recording” is displayed in the status bar.
jEdit records the following:

• Key strokes

• Menu item commands

• Tool bar clicks

• All search and replace operations except incremental search

Mouse clicks in the text area arenot recorded; to record the equivalent of mouse operations,
use the text selection commands or arrow keys.

Macros>Stop Recording (shortcut:Control -M Control -S) stops recording. It also
switches to the buffer containing the recorded macro, giving you a chance to check over the
recorded commands and make any necessary changes. The file name extension.bsh is

61

Chapter 7. Using Macros

automatically appended to the macro name, and all spaces are converted to underscore
characters, in order to make the macro name a valid file name. These two operations are
reversed when macros are displayed in theMacros menu. See Section 7.3 for details. When
you are happy with the macro, save the buffer and it will appear in theMacros menu. To
discard the macro, close the buffer without saving.

If a complicated operation only needs to be repeated a few of times, using the temporary
macro feature is quicker than saving a new macro file.

Macros>Record Temporary Macro (shortcut:Control -M Control -M) begins recording
to a buffer namedTemporary_Macro.bsh . Once recording is complete, you don’t need to
save theTemporary_Macro.bsh buffer before playing it back.

Macros>Run Temporary Macro (shortcut:Control -M Control -P) plays the macro
recorded to theTemporary_Macro.bsh buffer.

If you do not save the temporary macro, you must keep the buffer containing the macro
script open during your jEdit session. To have the macro available for your next jEdit
session, save the bufferTemporary_Macro.bsh as an ordinary macro with a descriptive
name of your choice. The new name will then be displayed in theMacros menu.

7.2. Running Macros
Macros supplied with jEdit, as well as macros that you record or write, are displayed under
theMacros menu in a hierarchical structure. The jEdit installation includes about 50 macros
divided into several major categories. Each category corresponds to a nested submenu under
theMacros menu. An index of these macros containing short descriptions and usage notes
is found in Appendix F.

To run a macro, choose theMacros menu, navigate through the hierarchy of submenus, and
select the name of the macro to execute. You can also assign execution of a particular macro
to a keyboard shortcut, toolbar button or context menu using theMacro Shortcuts, Tool
Bar or Context Menu panes of theUtilities>Global Options dialog; see Section 6.3.

Macros>Run Last Macro (shortcut:Control -M Control -L) runs the last macro run by
jEdit again.

62

Chapter 7. Using Macros

XInsert plugin

The XInsert plugin has a feature that lists the title of macros, organized by
subdirectories, as part of its tree list display. Clicking on the leaf of the tree
corresponding to a macro name causes jEdit to execute the macro immediately. The
plugin allows you to keep a list of macros and cut-and-paste text fragments available
while editing without opening menus. For information about installing plugins, see
Chapter 8.

7.3. How jEdit Organizes Macros
Every macro, whether or not you originally recorded it, is stored on disk and can be edited
as a text file. The file names of macros must have a.bsh extension. By default, jEdit
associates a.bsh file with the BeanShell edit mode for purposes of syntax highlighting,
indentation and other formatting. However, BeanShell syntax does not impose any
indentation or line break requirements.

TheMacros menu lists all macros stored in two places: themacros subdirectory of the jEdit
install directory, and themacros subdirectory of the user-specific settings directory (see
Section 6.4 for information about the settings directory). Any macros you record will be
stored in the user-specific directory.

Macros stored elsewhere can be run using theMacros>Run Other Macro command, which
displays a file chooser dialog box, and runs the specified file.

The listing of individual macros in theMacros menu can be organized in a hierarchy using
subdirectories in the general or user-specific macro directories; each subdirectory appears as
a submenu. You will find such a hierarchy in the default macro set included with jEdit.

When jEdit first loads, it scans the designated macro directories and assembles a listing of
individual macros in theMacros menu. When scanning the names, jEdit will delete
underscore characters and the.bsh extension for menu labels, so that
List_Useful_Information.bsh , for example, will be displayed in theMacros menu as
List Useful Information.

63

Chapter 7. Using Macros

Macros>Browse System Macros displays themacros subdirectory of the directory in
which jEdit is installed in the file system browser.

Macros>Browse User Macros displays themacros subdirectory of the user settings
directory in the file system browser.

Macros can be opened and edited much like ordinary files from the file system browser.
Editing macros from within jEdit will automatically update the macros menu; however, if
you modify macros from another program, theMacros>Rescan Macros will need to be
invoked to update the macro list.

64

Chapter 8. Installing and Using
Plugins
A plugin is an application which is loaded and runs as part of another, host application.
Plugins respond to user commands and perform tasks that supplement the host application’s
features.

This chapter covers installing, updating and removing plugins. Documentation for the
plugins themselves can be found inHelp>jEdit Help, and information about writing plugins
can be found in Part IV injEdit 3.2 User’s Guide.

8.1. The Plugin Manager
Plugins>Plugin Manager displays the plugin manager window. The plugin manager lists
all installed plugins; clicking on a plugin in the list will display information about it.

To remove plugins, select them (multiple plugins can be selected by holding downControl)
and clickRemove Plugins. This will display a confirmation dialog box first.

8.2. Installing Plugins
Plugins can be installed in two ways; manually, and from the plugin manager. In most cases,
plugins should be installed from the plugin manager. It is easier and more convinient.

To install plugins manually, go to http://plugins.jedit.org in a web browser and follow the
directions on that page.

To install plugins from the plugin manager, make sure you are connected to the Internet and
click theInstall Plugins button in the plugin manager window. The plugin manager will
then download information about available plugins from the jEdit web site1 and list those not
already installed in theInstall Plugins dialog box. Only plugins compatible with your jEdit
release will be shown, and installing a plugin will also automatically install any other
plugins it depends on. As a result of this, if you use the plugin manager to install plugins, it

65

Chapter 8. Installing and Using Plugins

is very hard to end up with a non-working set of plugins.

Click on a plugin in the list to see some information about it. To select plugins to be
installed, click the check box next to their names in the list.

TheInstall source code check box controls if source code for the plugins should be
downloaded and installed. Unless you are a developer, you probably don’t need the source.

The two radio buttons select the location where the plugins are to be installed. Plugins can
be installed in either thejars subdirectory of the jEdit installation directory, or thejars

subdirectory of the user-specific settings directory. For information about the settings
directory, Section 6.4.

Once you have specified plugins to install, clickInstall Plugins to begin the download
process. Once all plugins have been downloaded and installed, a dialog box is shown
advising that jEdit must be restarted before plugins can be used.

Firewalls

If you are connected to the Internet through a firewall or proxy, you will need to
configure firewall settings in thePlugin Options>Firewall pane of the
Utilities>Global Options dialog box, otherwise the plugin manager might not be able
to connect to the jEdit web site.

This assumes you chose to install the Firewall plugin when installing jEdit. This
plugin requires Java 2.

8.3. Updating Plugins
Clicking Update Plugins in the plugin manager will show a dialog box very similar to the
one for installing plugins. It will list plugins for which updated versions are available. It will
also offer to delete any obsolete plugins.

66

Chapter 8. Installing and Using Plugins

Notes
1. The list of plugins is downloaded from

http://plugins.jedit.org/export/new_plugin_manager.php, in XML format.

67

Appendix A. Keyboard Shortcuts
This appendix documents the default set of keyboard shortcuts. They can be customized to
suit your taste in theUtilities>Global Options dialog box; see Section 6.3.

Files
For details, see Section 2.1, Section 2.2 and Chapter 3.

Control-N New file.

Control-O Open file.

Control-W Close buffer.

Control-E Control-W Close all buffers.

Control-S Save buffer.

Control-E Control-S Save all buffers.

Control-P Print buffer.

Control-Page Up Go to previous buffer.

Control-Page Down Go to next buffer.

Control-‘ Go to recent buffer.

Control-Q Exit jEdit.

Views
For details, see Section 2.2.

Control-E Control-T Turn gutter (line numbering) on and off.

Control-2 Split view horizontally.

Control-3 Split view vertically.

Control-1 Unsplit.

68

Appendix A. Keyboard Shortcuts

Alt-Page Up Go to previous text area.

Alt-Page Down Go to next text area.

Control-E 1; 2; 3; 4 Collapse/expand top; bottom; left; right docking area.

Repeating
For details, see Section 2.4.

Control-Enter number
command

Repeat the command (it can be a keystroke, menu item
selection or tool bar click) the specified number of times.

Moving the Caret
For details, see Section 4.1, Section 4.5, Section 4.6, Section 4.7 and Section 5.3.

Arrow Move caret one character or line.

Control-Arrow Move caret one word or paragraph.

Page Up; Page Down Move caret one screenful.

Home First non-whitespace character of line, beginning of
line, first visible line (repeated presses).

End Last non-whitespace character of line, end of line, last
visible line (repeated presses).

Control-Home Beginning of buffer.

Control-End End of buffer.

Control-] Go to matching bracket.

Control-E [;] Go to previous; next bracket.

Control-L Go to line.

69

Appendix A. Keyboard Shortcuts

Selecting Text
For details, see Section 4.2, Section 4.5, Section 4.6, Section 4.7 and Section 5.3.

Shift-Arrow Extend selection by one character or line.

Control-Shift- Arrow Extend selection by one word or paragraph.

Shift-Page Up; Shift-Page
Down

Extend selection by one screenful.

Shift-Home Extend selection to first non-whitespace character of
line, beginning of line, first visible line (repeated
presses).

Shift-End Extend selection to last non-whitespace character of
line, end of line, last visible line (repeated presses).

Control-Shift-Home Extend selection to beginning of buffer.

Control-Shift-End Extend selection to end of buffer.

Control-[Select code block.

Control-E W; L; P Select word; line; paragraph.

Control-E Control-L Select line range.

Control-\ Switch between single and multiple selection mode.

Scrolling
For details, see Section 2.2.

Control-E Control-J Center current line on screen.

Control-E Control-I Center caret on screen.

Control-’; Control-/ Scroll up; down one line.

Alt-’; Alt-/ Scroll up; down one page.

70

Appendix A. Keyboard Shortcuts

Text Editing
For details, see Section 4.4, Section 4.3, Section 4.5, Section 4.6 and Section 4.7.

Control-Z Undo.

Control-E Control-Z Redo.

Backspace; Delete Delete character before; after caret.

Control-Backspace;
Control-Delete

Delete word before; after caret.

Control-D; Control-E D Delete line; paragraph.

Shift-Backspace; Shift-Delete Delete from caret to beginning; end of line.

Control-E R Remove trailing whitespace from the current line (or all
selected lines).

Control-J Join lines.

Control-B Complete word.

Control-E F Format paragraph (or selection).

Clipboard and Registers
For details, see Section 4.9.

Control-X Cut selected text to clipboard.

Control-C Copy selected text to clipboard.

Control-E Control-U Append selected text to clipboard, removing it from the
buffer.

Control-E Control-A Append selected text to clipboard, leaving it in the
buffer.

Control-V Paste clipboard contents.

Control-R Control-X key Cut selected text to registerkey.

Control-R Control-C key Copy selected text to registerkey.

71

Appendix A. Keyboard Shortcuts

Control-R Control-U key Append selected text to registerkey, removing it
from the buffer.

Control-R Control-A key Append selected text to registerkey, leaving it
in the buffer.

Control-R Control-V key Paste contents of registerkey.

Control-E Control-V Paste previous.

Markers
For details, see Section 4.10.

Control-E Control-M If current line doesn’t contain a marker, one will be
added. Otherwise, the existing marker will be removed.
Use theMarkers menu to return to markers added in
this manner.

Control-T key Add marker with shortcutkey.

Control-Y key Go to marker with shortcutkey.

Control-U key Select to marker with shortcutkey.

Control-K key Go to marker with shortcutkey, and move the
marker to the previous caret position.

Alt-Up; Alt-Down Move caret to previous; next marker.

Search and Replace
For details, see Section 4.11.

Control-F Open search and replace dialog box.

Control-G Find next.

72

Appendix A. Keyboard Shortcuts

Control-H Find previous.

Control-E Control-F Find selection.

Control-E Control-B Search in open buffers.

Control-E Control-D Search in directory.

Control-E Control-R Replace in selection.

Control-E Control-G Replace in selection and find next.

Control-, Quick incremental search.

Control-. Quick HyperSearch.

Source Code Editing
For details, see Section 5.2, Section 5.4 and Section 5.5.

Control-; Expand abbreviation.

Alt-Left; Alt-Right Shift current line (or all selected lines) left; right.

Control-I Indent current line (or all selected lines).

Control-E Control-C Wing comment selection.

Control-E Control-B Box comment selection.

Control-E Control-K Block comment selection.

Folding and Narrowing
For details, see Section 5.6 and Section 5.6.1.

Alt-Backspace Collapse fold containing caret.

Alt-Enter Expand fold containing caret one level only.

Alt-Shift-Enter Expand fold containing caret fully.

73

Appendix A. Keyboard Shortcuts

Control-E Enter key Expand folds with level less thankey, collapse
all others.

Control-E X Expand all folds.

Control-E S Select fold.

Control-E N Narrow to selection.

Macros
For details, see Chapter 7.

Control-M Control-R Record macro.

Control-M Control-M Record temporary macro.

Control-M Control-S Stop recording.

Control-M Control-P Run temporary macro.

Control-M Control-L Run most recently played or recorded macro.

74

Appendix B. The Activity Log
Theactivity log is very useful for troubleshooting problems, and helps when developing
plugins.

Utilities>Activity Log displays the last 500 lines of the activity log. By default, the activity
is shown in a floating window. It can be set to dock into the view in theDocking pane of the
Utilities>Global Options dialog box; see Section 2.2.1. The complete log can be found in
theactivity.log file inside the jEdit settings directory, the path of which is shown inside
the activity log window.

jEdit writes the following information to the activity log:

• Information about your Java implementation (version, operating system, architecture,
etc)

• All error messages and runtime exceptions (most errors are shown in dialog boxes as
well; but the activity log usually contains more detailed and technical information)

• All sorts of debugging information that can be helpful when tracking down bugs

• Information about loaded plugins

While jEdit is running, the log file on disk may not always accurately reflect what has been
logged, due to buffering being done for performance reasons. To ensure the file on disk is up
to date, invoke theUtilities>Update Activity Log on Disk command. The log file is also
automatically updated on disk when jEdit exits.

75

Appendix C. History Text Fields
The text fields in the search and replace dialog box and file system browser remember the
last 20 entered strings by default. The number of strings to remember can be changed in the
General pane of theUtilities>Global Options dialog box; see Section 6.3.

PressingUp recalls previous strings. PressingDown after recalling previous strings recalls
later strings.

PressingShift-Up or Shift-Down will search backwards or forwards, respectively, for
strings beginning with the text already entered in the text field.

Clicking the triangle to the right of the text field, or clicking with the right-mouse button
anywhere else will display a pop-up menu of all previously entered strings; selecting one
will input it into the text field. Holding downShift while clicking will display a menu of all
previously entered strings that begin with the text already entered.

76

Appendix D. Glob Patterns
jEdit uses glob patterns similar to those in the various Unix shells to implement file name
filters in the file system browser. Glob patterns resemble regular expressions somewhat, but
have a much simpler syntax. The following character sequences have special meaning
within a glob pattern:

• ? matches any one character

• * matches any number of characters

• { a, b, c } matches any one ofa, b or c

• [abc] matches any character in the seta, b or c

• [^ abc] matches any character not in the seta, b or c

• [a-z] matches any character in the rangea to z , inclusive. A leading or trailing dash
will be interpreted literally

Within a character class expression, the following sequences have special meaning:

• [:alnum:] Any alphanumeric character

• [:alpha:] Any alphabetical character

• [:blank:] A space or horizontal tab

• [:cntrl:] A control character

• [:digit:] A decimal digit

• [:graph:] A non-space, non-control character

• [:lower:] A lowercase letter

• [:print:] Same as[:graph:] , but also space and tab

• [:punct:] A punctuation character

• [:space:] Any whitespace character, including newlines

77

Appendix D. Glob Patterns

• [:upper:] An uppercase letter

• [:xdigit:] A valid hexadecimal digit

Here are some example glob patterns:

• * - all files

• *.java - all files whose names end with “.java”

• *.{c,h} - all files whose names end with either “.c” or “.h”

• *[^~] - all files whose names do not end with “~”

78

Appendix E. Regular Expressions
jEdit uses regular expressions to implement inexact search and replace. A regular expression
consists of a string where some characters are given special meaning with regard to pattern
matching.

Within a regular expression, the following characters have special meaning:

Positional Operators

• ^ matches at the beginning of a line

• $ matches at the end of a line

• \b matches at a word break

• \B matches at a non-word break

• \< matches at the start of a word

• \> matches at the end of a word

One-Character Operators

• . matches any single character

• \d matches any decimal digit

• \D matches any non-digit

• \n matches the newline character

• \s matches any whitespace character

• \S matches any non-whitespace character

• \t matches a horizontal tab character

• \w matches any word (alphanumeric) character

• \W matches any non-word (alphanumeric) character

79

Appendix E. Regular Expressions

• \\ matches the backslash (“\”) character

Character Class Operator

• [abc] matches any character in the seta, b or c

• [^ abc] matches any character not in the seta, b or c

• [a-z] matches any character in the rangea to z , inclusive. A leading or trailing dash
will be interpreted literally

Within a character class expression, the following sequences have special meaning:

• [:alnum:] Any alphanumeric character

• [:alpha:] Any alphabetical character

• [:blank:] A space or horizontal tab

• [:cntrl:] A control character

• [:digit:] A decimal digit

• [:graph:] A non-space, non-control character

• [:lower:] A lowercase letter

• [:print:] Same as[:graph:] , but also space and tab

• [:punct:] A punctuation character

• [:space:] Any whitespace character, including newlines

• [:upper:] An uppercase letter

• [:xdigit:] A valid hexadecimal digit

Subexpressions and Backreferences

• (abc) matches whatever the expressionabc would match, and saves it as a
subexpression. Also used for grouping

80

Appendix E. Regular Expressions

• (?: ...) pure grouping operator, does not save contents

• (?# ...) embedded comment, ignored by engine

• (?= ...) positive lookahead; the regular expression will match if the text in the
brackets matches, but that text will not be considered part of the match

• (?! ...) negative lookahead; the regular expression will match if the text in the
brackets does not match, and that text will not be considered part of the match

• \ n where 0 <n < 10, matches the same thing thenth subexpression matched. Can only
be used in the search string

• $n where 0 <n < 10, substituted with the text matched by thenth subexpression. Can
only be used in the replacement string

Branching (Alternation) Operator

• a| b matches whatever the expressiona would match, or whatever the expressionb
would match.

Repeating Operators

These symbols operate on the previous atomic expression.

• ? matches the preceding expression or the null string

• * matches the null string or any number of repetitions of the preceding expression

• + matches one or more repetitions of the preceding expression

• { m} matches exactlymrepetitions of the one-character expression

• { m, n} matches betweenmandn repetitions of the preceding expression, inclusive

• { m,} matchesmor more repetitions of the preceding expression

Stingy (Minimal) Matching

If a repeating operator (above) is immediately followed by a?, the repeating operator will
stop at the smallest number of repetitions that can complete the rest of the match.

81

Appendix F. Macros Included With
jEdit
jEdit comes with a large number of sample macros that perform a variety of tasks. The
following index provides short descriptions of each macro, in some cases accompanied by
usage notes.

F.1. File Management Macros
These macros automate the opening and closing of files.

• Browse_Directory.bsh

Opens a directory supplied by the user in the file system browser.

• Close_Except_Active.bsh

Closes all files except the current buffer.

Prompts the user to save any buffer containing unsaved changes.

• Go_to_File_System_Browser.bsh

Sets the input focus to the file system browser.

• Open_Path.bsh

Opens the file supplied by the user in an input dialog.

• Open_Selection.bsh

Opens the file named by the current buffer’s selected text.

82

Appendix F. Macros Included With jEdit

F.2. Text Macros
These macros generate various forms of formatted text.

• Add_Prefix_and_Suffix.bsh

Adds user-supplied “prefix” and “suffix” text to each line in a group of selected lines.

Text is added after leading whitespace and before trailing whitespace. A dialog window
receives input and “remembers” past entries.

• Color_Picker.bsh

Displays a color picker and inserts the selected color in hexadecimal format, prefixed
with a “#”.

• Duplicate_Line.bsh

Duplicates the line on which the caret lies immediately beneath it and moves the caret
to the new line.

• Insert_Date.bsh

Inserts the current date and time in the current buffer.

The inserted text includes a representation of the time in the “Internet Time” format.

• Insert_Tag.bsh

Inserts a balanced pair of markup tags as supplied in a input dialog.

• Toggle_Line_Comment.bsh

Toggles line comments, alternately inserting and deleting them at the beginning of each
selected line.

If there is no selection, the macro operates on the current line.

• Make_Double_Box_Comments.bsh

83

Appendix F. Macros Included With jEdit

Makes a individual wing style comment of equal width for each selected line in the
current buffer.

/* This is an example of the kind */
/* of comment (for Java or C/C++) produced */
/* by this macro. It has uniform width */
/* regardless of the width of the several lines. */

<!- HTML or SGML code ->
<!- will look like this when the macro is run ->

• Reverse.bsh

Reverses the selected text in the current buffer.

• Rot13.bsh

Replaces the selected text with the text encoded by the Rot13 “encryption” algorithm.

Rot13 is a simple encoding scheme involving fixed character substitution. A second
application of the algorithm restores the original text.

• Write_File_Header.bsh

Writes a formatted file header in the current buffer based upon user input.

This macro asks for the name of the file, the author and a brief description of its
contents. It also asks whether the file should be saved immediately after the header is
inserted. The header will be set off with block comments based upon the editing mode
of the buffer; if the user has not set an editing mode, the macro will select one based
upon the file extension.

Note: The notes accompanying the macro source code describe how the macro
can be modified to produce a file header conforming to to personal taste or
institutional requirements.

84

Appendix F. Macros Included With jEdit

F.3. Java Code Macros
These macros handle text formatting and generation tasks that are particularly useful in
writing Java code.

• Get_Class_Name.bsh

Inserts a Java class name based upon the buffer’s file name.

• Get_Package_Name.bsh

Inserts a plausible Java package name for the current buffer.

The macro compares the buffer’s path name with the elements of the classpath being
used by the jEdit session. An error message will be displayed if no suitable package
name is found. This macro will not work if jEdit is being run as a JAR file without
specifying a classpath. In that case the classpath seen by the macro consists solely of
the JAR file.

• Make_Get_and_Set_Methods.bsh

CreatesgetXXX() or setXXX() methods that can be pasted into the buffer text.

This macro presents a dialog that will “grab” the names of instance variables from the
caret line of the current buffer and paste a correspondinggetXXX() or setXXX()

method to one of two text areas in the dialog. The text can be edited in the dialog and
then pasted into the current buffer using theInsert... buttons. If the caret is set to a line
containing something other than an instance variable, the text grabbing routine is likely
to generate nonsense.

As explained in the notes accompanying the source code, the macro uses a global
variable which can be set to configure the macro to work with either Java or C++ code.
When set for use with C++ code, the macro will also write (in commented text)
definitions ofgetXXX() or setXXX() suitable for inclusion in a header file.

• Tidy_Block_Comments.bsh

Formats all end-of-line “block” comments to begin at a fixed column.

85

Appendix F. Macros Included With jEdit

This macro uses jEdit’s syntax parsing routines to identify block comments and place
them in a column specified by the user. If uncommented text extends beyond the
specified column, the block comment will be placed two columns after the end of the
uncommented text with an intervening whitespace.

An input dialog allows the user to specify the display column for block comments or to
accept a default value. The user can also select whether tabs will be substituted for
spaces and whether comments at the beginning of a line will be ignored. The macro
will complain if the current buffer’s editing mode does not support block comments.

F.4. Search Macros
These macros provide various shortcuts to search methods. A group of macros in this
category allow the user to search of other occurrences of the word that appear on or next to
the editing caret.

• Find_Matching_File.bsh

Switches between C++ header (.h) and source (.cpp) files with the same name in the
same directory.

Note: This macro is easily adapted to work with any pair of file extensions.

• Next_Char.bsh

Finds next occurence of character on current line.

The macro takes the next character typed after macro execution as the character being
searched. That character is not displayed. If the character does not appear in the
balance of the current line, no action occurs.

This macro illustrates the use ofInputHandler.readNextChar() as a means of
obtaining user input. See Section 14.1.4.

• Write_HyperSearch_Results.bsh

86

Appendix F. Macros Included With jEdit

This macro writes the contents of the “HyperSearch Results” window to a new text
buffer.

The macro employs a simple text report format. Since the HyperSearch window’s
object does not maintain the search settings that produced the displayed results, the
macro examines the current settings in theSearchAndReplace object. It confirms that
the HyperSearch option is selected before writing the report. However, the only way to
be sure that the report’s contents are completely accurate is to run the macro
immediately after a HyperSearch.

F.4.1. The Find_Occurrence Macro Group
This is a group of macros that enable searches in a text buffer for another occurrence of the
word situated at or immediately to the left of the editing caret. When these macros are linked
to keyboard shortcuts, they give the user the ability to search for occurrences of a word
without leaving the text buffer or interrupting use of the keyboard.

Because the searching routine for each procedure has common code, the set of macros
consists of four macros that set a temporary jEdit property and then call the main search
macro,Find_Occurrence.bsh . That macro reads the temporary property, executes the
corresponding search procedure, and erases the property. If the property cannot be found,
the search routine looks for the next succeeding occurrence of the search term.

The final macro retrieves the marker left by the searching macro for the file and caret
position applicable just prior to the search.

• Find_Occurrence.bsh

This macro runs the search routine corresponding to the property set by one of its
companion macros.

If the macro is called directly or if the search type property cannot be found, it will find
the next occurrence of the word on or to the left of the editing caret. If the search
succeeds, the macro sets a bookmark by creating temporary jEdit properties for the
buffer name and caret location.

87

Appendix F. Macros Included With jEdit

• Find_First_Occurrence.bsh

CallsFind_Occurrence to find the first occurrence of the word on or to the left of the
editing caret.

• Find_Previous_Occurrence.bsh

CallsFind_Occurrence to find the immediately preceding occurrence of the word on
or to the left of the editing caret.

• Find_Next_Occurrence.bsh

CallsFind_Occurrence to find the next occurrence of the word on or to the left of the
editing caret.

• Find_Last_Occurrence.bsh

CallsFind_Occurrence to find the last occurrence of the word on or to the left of the
editing caret.

• Return_From_Find.bsh

Returns the user to the buffer and location specified in the bookmark created by
Find_Occurrence , reopening a file if necessary.

The file is reopened if necessary; an error message is displayed if the file no longer
exists. If the file exists but the caret position index exceeds the size of the file (because
of intervening deletions, for example), the file is displayed and an error message alerts
the user that the bookmarked caret position is invalid. The bookmark is deleted
immediately after it is used.

F.5. Macros for Listing Properties
These macros produce lists or tables containing properties used by the Java platform or jEdit
itself.

88

Appendix F. Macros Included With jEdit

• jEdit_Properties.bsh

Writes an unsorted list of jEdit properties in a new buffer.

• System_Properties.bsh

Writes an unsorted list of all Java system properties in a new buffer.

• Look_and_Feel_Properties.bsh

Writes an unsorted list of the names of Java Look and Feel properties in a new buffer.

F.6. Miscellaneous Macros
While these macros do not fit easily into the other categories, they all provide interesting and
useful functions.

• Cascade_jEdit_Windows.bsh

Rearranges view and floating plugin windows.

The windows are arranged in an overlapping “cascade” pattern beginning near the
upper left corner of the display.

• Copy_Mode_Abbrevs.bsh

Copies all abbreviations from one editing mode to another, overwriting any duplicate
entries.

A number of jEdit editing modes target languages that share keywords, tags or other
features. Examples include “java” and “beanshell”, and “c” and “c++”. This macro
saves the trouble of manually editing abbreviations sets to share abbreviations between
editing modes. The macro will also permit copying of a mode’s abbreviations to the
“global” abbreviation set that is available in all buffers regardless of editing mode.

The macro will overwrite any existing abbreviations in the target editing mode using
the same abbreviation as a member of the source set. Use caution in copying from one
set to another, as any attempt to undo the copying must be done manually.

89

Appendix F. Macros Included With jEdit

• Display_Abbreviations.bsh

Displays the abbreviations registered for each of jEdit’s editing modes.

The macro provides a read-only view of the abbreviations contained in the
“Abbreviations” option pane. Pressing a letter key will scroll the table to the first entry
beginning with that letter. A further option is provided to write a selected mode’s
abbreviations or all abbreviations in a text buffer for printing as a reference. Notes in
the source code listing point out some display options that are configured by modifying
global variables.

• Display_Shortcuts.bsh

Displays a sorted list of the keyboard shortcuts currently in effect.

The macro provides a combined read-only view of command, macro and plugin
shortcuts. Pressing a letter key will scroll the table to the first entry beginning with that
letter. A further option is provided to write the shortcut assignments in a text buffer for
printing as a reference. Notes in the source code listing point out some display options
that are configured by modifying global variables.

• Evaluate_Buffer_in_BeanShell.bsh

Evaluates contents of current buffer as a BeanShell script, and opens a new buffer to
receive any text output.

This is a quick way to test a macro script even before its text is saved to a file. Opening
a new buffer for output is a precaution to prevent the macro from inadvertently erasing
or overwriting itself. BeanShell scripts that operate on the contents of the current buffer
will not work meaningfully when tested using this macro.

• Go_to_Text_Area.bsh

Sets the input focus to the text editing area.

Linked to a keyboard shortcut, this macro can quickly return input focus to the text area
after invoking a command that shifts focus to a docked plugin window.

• Include_Guard.bsh

90

Appendix F. Macros Included With jEdit

Intended for C/C++ header files, this macro inserts a preprocessor directive in the
current buffer to ensure that the header is included only once per compilation unit.

To use the macro, first place the caret at the beginning of the header file before any
uncommented text. The macro will return to this position upon completion. The defined
term that triggers the “include guard” is taken from the buffer’s name.

• List_Plugin_Internal_Names.bsh

Writes a sorted list of installed plugins to the current buffer.

The form of each name is that used byjEdit.getPlugin() .

Tip: The name can be used in a macro to test for the presence of a particular
plugin.

• Make_Bug_Report.bsh

Creates a new buffer with installation and error information extracted from the activity
log.

The macro extracts initial messages written to the activity log describing the user’s
operating system, JDK, jEdit version and installed plugins. It then appends the last set
of error messages written to the activity log. The new text buffer can be saved and
attached to an email message or a bug report made on SourceForge.

• Run_Macro_at_Caret.bsh

Executes the macro whose name appears at the editing caret.

When used with abbreviations for macro name, this macro allows the user to execute
any macro script from the keyboard by typing its name, without the.bsh extension. It
will search for the requested script in both the system and user macro directories, in
each case using the caret text as a relative path.

The full utility of this macro can be acheived when it is combined with abbreviations
for commonly used macros. To try it out, follow these steps:

91

Appendix F. Macros Included With jEdit

1. In the “Macro Shortcuts” option pane, AssociateRun_Macro_at_Caret with
the shortcutControl -Space.

2. In the “global” abbreviation group, associate the abbreviation “dtt” with the text
“/Text/Insert_Date”. The leading forward slash character is necessary and should
be used regardless of one’s operating system. Make sure that the abbreviation
option pane has the checkboxSpace bar expands abbrevs selected.

3. To activate the macro from the keyboard, typedtt in a text buffer.

4. Press the space bar to expandddt to /Text/Insert_Date

5. PressControl -Spaceto run the macro. The text/Text/Insert_Date will
be replaced by the output of theInsert_Date macro.

Repeating this procedure allows the user to execute macros from the keyboard using
shortcut names instead of keystrokes.

• Show_Free_Memory.bsh

Runs the Java garbage collection routine to free unneeded memory.

After running garbage collection, the macro displays a message box with text and
graphic displays of jEdit’s memory usage after garbage collection.

92

Appendix G. jEditLauncher for
Windows

G.1. Introduction
The jEditLauncher package is a set of lightweight components for running jEdit under the
Windows group of operating systems. The package is designed to run on Windows 95,
Windows 98, Windows Me, Windows NT (versions 4.0 and greater) and Windows 2000.

While jEdit does not make available a component-type interface, it does contains an
“EditServer” that listens on a socket for requests to load scripts written in the BeanShell
scripting language. When the server activates, it writes the server port number and a
pseudo-random, numeric authorization key to a text file. By default, the file is named
server and is located in the settings directory (see Section 6.4).

The jEditLauncher component locates and reads this file, opens a socket and attempts to
connect to the indicated port. If successful, it transmits the appropriate BeanShell script to
the server. If unsuccessful, it attempts to start jEdit and repeats the socket transmission once
it can obtain the port and key information. The component will abandon the effort to connect
roughly twenty seconds after it launches the application.

G.2. Starting jEdit
The main component of the jEditLauncher package is a client application entitledjedit.exe.
It may be executed either from Windows Explorer, or the command line. It uses the
jEditLauncher COM component to open files in jEdit that are listed as command line
parameters. It supports Windows and UNC file specifications as well as wild cards. If called
without parameters, it will launch jEdit. If jEdit is already running, it will simply open a
new, empty buffer.

jedit.exesupports four command-line options. If any of these options are invoked correctly,
the application will not load files or execute jEdit.

93

Appendix G. jEditLauncher for Windows

• The option/h causes a window to be displayed with a brief description of the
application and its various options.

• The option/p will activate a dialog window displaying the command-line parameters
to be used when calling jEdit. This option can also be triggered by selectingSet jEdit
Parameters from thejEdit section of the Windows Programs menu.

Using the dialog, you can change parameters specifying the executable for the Java
interpreter, the JAR archive file or class name used as the target of the interpreter, and
command line options for both. If the-jar option is not used for the Java executable,
the principal jEdit class oforg.gjt.sp.jedit.jEdit is set as fixed data. The working
directory for the Java interpreter’s process can also be specified. A read-only window at
the bottom of the dialog displays the full command-line that jEditLauncher will invoke.

Before committing changes to the command line parameters,jedit.exevalidates the
paths for the Java and jEdit targets as well as the working directory. It will complain if
the paths are invalid. It will not validate command-line options, but it will warn you if it
finds the-noserver option used for jEdit, since this will deactivate the edit server
and make it impossible for jEditLauncher to open files.

Note that due to the design of jEditLauncher, platform-independent command line
options handled by jEdit itself (such as-background and-norestore) must be entered
in the “Set jEdit Parameters” dialog box, and cannot be specified on thejedit.exe
command line directly. For information about platform-independent command line
options, see Section 1.4.

• The option/i is not mentioned in the help window forjedit.exe . It is intended
primarily to be used in conjunction with jEdit’s Java installer, but it can also be used to
install or reinstall jEditLauncher manually. When accompanied by a second parameter
specifying the directory where your preferred Java interpreter is located, jEditLauncher
will install itself and set a reasonable initial set of command line parameters for
executing jEdit. You can change these parameters later by runningjedit.exe with
the/p option.

• The option/u will cause jEditLauncher to be uninstalled by removing its registry
entries. This option does not delete any jEditLauncher or jEdit files.

94

Appendix G. jEditLauncher for Windows

G.3. The Context Menu Handler
The jEditLauncher package also implements a context menu handler for the Windows shell.
It is intended to be be installed as a handler available for any file. When you right-click on a
file or shortcut icon, the context menu that appears will include an item displaying the jEdit
icon and captionedOpen with jEdit. If the file has an extension, another item will appear
captionedOpen *.XXX with jEdit, where XXX is the extension of the selected file. Clicking
this item will cause jEdit to load all files with the same extension in the same directory as
the selected file. Multiple file selections are also supported; in this circumstance only the
Open with jEdit item appears.

If a single file with a.bsh extension is selected, the menu will also contain an item
captionedRun script in jEdit. Selecting this item will cause jEditLauncher to run the
selected file as a BeanShell script.

If exactly two files are selected, the menu will contain an entry forShow diff in jEdit.
Selecting this item will load the two files in jEdit and have them displayed side-by-side with
their differences highlighted by the JDiff plugin. The file selected first will be treated as the
base for comparison purposes. If the plugin is not installed, an error message will be
displayed in jEdit. See Chapter 8 for more information and installing plugins.

G.4. Uninstalling jEdit and jEditLauncher

There are three ways to uninstall jEdit and jEditLauncher.

• First, you can rununlaunch.exe in the jEdit installation directory.

• Second, you can chooseUninstall jEdit from thejEdit section of the Programs menu.

• Third, you can choose the uninstall option for jEdit in the Control Panel’s
Add/Remove Programs applet.

Each of these options will deactivate jEditLauncher and delete all files in jEdit’s installation
directory. As a safeguard, jEditLauncher displays a warning window and requires the user to
confirm an uninstall operation. Because the user’s settings directory can be set and changed

95

Appendix G. jEditLauncher for Windows

from one jEdit session to another, user settings files must be deleted manually.

To deactivate jEditLauncher without deleting any files, runjedit /u from any command
prompt where the jEdit installation directory is in the search path. This will remove the
entries for jEditLauncher from the Windows registry, and disable the context menu handler,
and the automatic launching and scripting capabilities. The package can reactivated by
executingjedit.exeagain, and jEdit can be started in the same manner as any other Java
application on your system.

G.5. The jEditLauncher Interface
The core of the jEditLauncher package is a COM component that can communicate with the
EditServer, or open jEdit if it is not running or is otherwise refusing a connection. The
component supports both Windows and UNC file specifications, including wild cards. It will
resolve shortcut links to identify and transmit the name of the underlying file.

Because it is implemented with a “dual interface”, the functions of jEditLauncher are
available to scripting languages in the Windows environment such as VBScript, JScript, Perl
(using the Win32::OLE package) and Python (using the win32com.client package).

The scriptable interface consists of two read-only properties and six functions:

Properties

• ServerPort - a read-only property that returns the port number found in jEdit’s server
file; the value is not tested for authenticity. It returns zero if the server information file
cannot be located.

• ServerKey - a read-only property that returns the numeric authorization key found in
jEdit’s server file; the value is not tested for authenticity. It returns zero if the server
information file cannot be located.

Functions

• OpenFile - a method that takes a single file name (with or without wild card
characters) as a parameter.

96

Appendix G. jEditLauncher for Windows

• OpenFiles - this method takes a array of file names (with or without wild card
characters) as a parameter. The form of the array is that which is used for arrays in the
scripting environment. In JScript, for example the data type of the VARIANT holding
the array is VT_DISPATCH; in VBScript, it is VT_ARRAY | VT_VARIANT, with
array members having data type VT_BSTR.

• Launch - this method with no parameters attempts to open jEdit without loading
additional files.

• RunScript - this method takes a file name or full file path as a parameter and runs the
referenced file as a BeanShell script in jEdit. The predefined variablesview , editPane ,
textArea andbuffer are available to the script. If more than one view is open, the
variable are initialized with reference to the earliest opened view. If no path is given for
the file it will use the working directory of the calling process.

• EvalScript - this method takes a string as a parameter containing one or more
BeanShell statements and runs the script in jEdit’s BeanShell interpreter. The
predefined variables are available on the same basis as inRunScript .

• RunDiff - this method takes two strings representing file names as parameters. If the
JDiff plugin is installed, this method will activate the JDiff plugin and display the two
files in the plugin’s graphical “dual diff” format. The first parameter is treated as the
base for display purposes. If the JDiff plugin is not installed, a error message box will
be displayed in jEdit.

G.6. Scripting Examples
Here are some brief examples of scripts using jEditLauncher. The first two will run under
Windows Script Host, which is either installed or available for download for 32-bit Windows
operating systems. The next example is written in Perl and requires the Win32::OLE
package. The last is written in Python and requires the win32gui and win32com.client
extensions.

If Windows Script Host is installed, you can run the first two scripts by typing the name of
the file containing the script at a command prompt. In jEdit’s Console plugin, you can type
cmd /c script_path or wscript script_path .

97

Appendix G. jEditLauncher for Windows

’ Example VBSscript using jEditLauncher interface
dim launcher
set launcher = CreateObject("JEdit.JEditLauncher")
a = Array("I:\Source Code Files\shellext\jeditshell*.h", _
"I:\Source Code Files\shellext\jeditshell*.cpp")
MsgBox "The server authorization code is " + _
FormatNumber(launcher.ServerKey, 0, 0, 0, 0) + ".", _
vbOKOnly + vbInformation, "jEditLauncher"
launcher.openFiles(a)
myScript = "jEdit.newFile(view); textArea.setSelectedText(" _

& CHR(34) _
& "Welcome to jEditLauncher." _
& CHR(34) & ");"

launcher.evalScript(myScript)

/* Example JScript using jEditLauncher interface
* Note: in contrast to VBScript, JScript does not
* directly support message boxes outside a browser window
*/

var launcher = WScript.createObject("JEdit.JEditLauncher");
var a = new Array("I:\\weather.html", "I:\\test.txt");
b = "I:*.pl";
launcher.openFiles(a);
launcher.openFile(b);
c = "G:\\Program Files\\jEdit\\macros\\Misc"

+ "\\Properties\\System_properties.bsh";
launcher.runScript(c);

Example Perl script using jEditLauncher interface
use Win32::OLE;
$launcher = Win32::OLE->new(’JEdit.JEditLauncher’) ||

die "JEditLauncher: not found !\n";
@files = ();
foreach $entry (@ARGV) {

@new = glob($entry);
push(@files,@new);

}
$launcher->openFiles(\@files);

98

Appendix G. jEditLauncher for Windows

my($script) = "Macros.message(view, \"I found "
.(scalar @files)." files.\");";

$launcher->evalScript($script);

Example Python script using jEditLauncher interface
import win32gui
import win32com.client
o = win32com.client.Dispatch("JEdit.JEditLauncher")
port = o.ServerPort
if port == 0:

port = "inactive. We will now launch jEdit"
win32gui.MessageBox(0, "The server port is %s." % port,

"jEditLauncher", 0)
path = "C:\\WINNT\\Profiles\\Administrator\\Desktop\\"
o.RunDiff(path + "Search.bsh", path + "Search2.bsh")

G.7. Legal Notice
All source code and software distributed as the jEditLauncher package in which the author
holds the copyright is made available under the GNU General Public License (“GPL”). A
copy of the GPL is included in the fileCOPYING.txt included with jEdit.

Notwithstanding the terms of the General Public License, the author grants permission to
compile and link object code generated by the compilation of this program with object code
and libraries that are not subject to the GNU General Public License, provided that the
executable output of such compilation shall be distributed with source code on substantially
the same basis as the jEditLauncher package of which this source code and software is a
part. By way of example, a distribution would satisfy this condition if it included a working
Makefile for any freely available make utility that runs on the Windows family of operating
systems. This condition does not require a licensee of this software to distribute any
proprietary software (including header files and libraries) that is licensed under terms
prohibiting or limiting redistribution to third parties.

The purpose of this specific permission is to allow a user to link files contained or generated
by the source code with library and other files licensed to the user by Microsoft or other

99

Appendix G. jEditLauncher for Windows

parties, whether or not that license conforms to the requirements of the GPL. This
permission should not be construed to expand the terms of any license for any source code
or other materials used in the creation of jEditLauncher.

100

II. Writing Edit Modes
This part of the user’s guide covers writing edit modes for jEdit.

Edit modes specify syntax highlighting rules, auto indent behavior, and various other
customizations for editing different file types. For general information about edit modes, see
Section 5.1.

This part of the user’s guide was written by Slava Pestov <slava@jedit.org >.

101

Chapter 9. Writing Edit Modes
Edit modes are defined using XML, theextensible markup language; mode files have the
extension.xml . XML is a very simple language, and as a result edit modes are easy to
create and modify. This section will start with a short XML primer, followed by detailed
information about each supported tag and highlighting rule.

Reload Edit Modes command

Utilities>Reload Edit Modes reloads all edit mode XML files from disk. It is very
useful when writing edit modes because it lets you see changes take effect without
having to restart jEdit.

9.1. An XML Primer
A very simple edit mode looks like so:

<?xml version="1.0"?>

<!DOCTYPE MODE SYSTEM "xmode.dtd">

<MODE>
<PROPS>

<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />

</PROPS>

<RULES>

<BEGIN>/*</BEGIN>
<END>*/</END>

</RULES>

</MODE>

102

Chapter 9. Writing Edit Modes

Note that each opening tag must have a corresponding closing tag. If there is nothing
between the opening and closing tags, for example<TAG></TAG>, the shorthand notation
<TAG /> may be used. An example of this shorthand can be seen in the<PROPERTY>tags
above.

XML is case sensitive.Span or span is not the same asSPAN.

To insert a special character such as < or > literally in XML (for example, inside an attribute
value), you must write it as anentity. An entity consists of the character’s symbolic name
enclosed with “&” and “;”. A full list of entities is out of the scope of this section, but the
most important are:

• < - The less-than (<) character

• > - The greater-than (>) character

• & - The ampersand (&) character

For example, the following will cause a syntax error:

<SEQ TYPE="OPERATOR">&</SEQ>

Instead, you must write:

<SEQ TYPE="OPERATOR">&</SEQ>

Now that the basics of XML have been covered, the rest of this section will cover each
construct in detail.

9.2. The Preamble and MODE tag
Each mode definition must begin with the following:

<?xml version="1.0"?>
<!DOCTYPE MODE SYSTEM "xmode.dtd">

Each mode definition must also contain exactly oneMODEtag. All other tags (PROPS, RULES)
must be placed inside theMODEtag.

103

Chapter 9. Writing Edit Modes

9.3. The PROPS Tag
ThePROPStag and thePROPERTYtags inside it are used to define mode-specific properties.
EachPROPERTYtag must have aNAMEattribute set to the property’s name, and aVALUE

attribute with the property’s value.

All buffer-local properties listed in Section 6.2 may be given values in edit modes. In
addition, the following mode properties have no buffer-local equivalent:

• indentCloseBrackets - A list of characters (usually brackets) that subtract indent
from thecurrent line. For example, in Java mode this property is set to “}”.

• indentOpenBrackets - A list of characters (usually brackets) that add indent to the
nextline. For example, in Java mode this property is set to “{”.

• indentPrevLine - When indenting a line, jEdit checks if the previous line matches the
regular expression stored in this property. If it does, a level of indent is added. For
example, in Java mode this regular expression matches language constructs such as
“if”, “else”, “while”, etc.

• doubleBracketIndent - If a line matches theindentPrevLine regular expression
and the next line contains an opening bracket, a level of indent will not be added to the
next line, unless this property is set to “true”. For example, with this property set to
“false”, Java code will be indented like so:

while(objects.hasMoreElements())
{

((Drawable)objects.nextElement()).draw();
}

On the other hand, settings this property to “true” will give the following result:

while(objects.hasMoreElements())
{

((Drawable)objects.nextElement()).draw();
}

Here is the complete<PROPS>tag for Java mode:

<PROPS>

104

Chapter 9. Writing Edit Modes

<PROPERTY NAME="indentOpenBrackets" VALUE="{" />
<PROPERTY NAME="indentCloseBrackets" VALUE="}" />
<PROPERTY NAME="indentPrevLine" VALUE="\s*(((if|while)

\s*\(|else|case|default)[^;]*|for\s*\(.*)" />
<PROPERTY NAME="doubleBracketIndent" VALUE="false" />
<PROPERTY NAME="commentStart" VALUE="/*" />
<PROPERTY NAME="commentEnd" VALUE="*/" />
<PROPERTY NAME="blockComment" VALUE="//" />
<PROPERTY NAME="noWordSep" VALUE="_" />
<PROPERTY NAME="wordBreakChars" VALUE=",+-=<>/?^&*" />

</PROPS>

9.4. The RULES Tag
RULEStags must be placed inside theMODEtag. EachRULEStag defines aruleset. A ruleset
consists of a number ofparser rules, with each parser rule specifying how to highlight a
specific syntax token. There must be at least one ruleset in each edit mode. There can also be
more than one, with different rulesets being used to highlight different parts of a buffer (for
example, in HTML mode, one rule set highlights HTML tags, and another highlights inline
JavaScript). For information about using more than one ruleset, see Section 9.4.3.

TheRULEStag supports the following attributes, all of which are optional:

• SET - the name of this ruleset. All rulesets other than the first must have a name.

• HIGHLIGHT_DIGITS - if set toTRUE, digits (0-9, as well as hexadecimal literals prefixed
with “0x”) will be highlighted with theDIGIT token type. Default isFALSE.

• IGNORE_CASE- if set toFALSE, matches will be case sensitive. Otherwise, case will not
matter. Default isTRUE.

• DEFAULT- the token type for text which doesn’t match any specific rule. Default is
NULL. See Section 9.4.9 for a list of token types.

Here is an exampleRULEStag:

<RULES IGNORE_CASE="FALSE" HIGHLIGHT_DIGITS="TRUE">

105

Chapter 9. Writing Edit Modes

... parser rules go here ...
</RULES>

106

Chapter 9. Writing Edit Modes

Rule Ordering Requirements

You might encounter this very common pitfall when writing your own modes.

Since jEdit checks buffer text against parser rules in the order they appear in the
ruleset, more specific rules must be placed before generalized ones, otherwise the
generalized rules will catch everything.

This is best demonstrated with an example. The following is incorrect rule ordering:

<BEGIN>[</BEGIN>
<END>]</END>

<BEGIN>[!</BEGIN>
<END>]</END>

If you write the above in a rule set, any occurrence of “[” (even things like
“[!DEFINE”, etc) will be highlighted using the first rule, because it will be the first to
match. This is most likely not the intended behavior.

The problem can be solved by placing the more specific rule before the general one:

<BEGIN>[!</BEGIN>
<END>]</END>

<BEGIN>[</BEGIN>
<END>]</END>

Now, if the buffer contains the text “[!SPECIAL]”, the rules will be checked in order,
and the first rule will be the first to match. However, if you write “[FOO]”, it will be
highlighted using the second rule, which is exactly what you would expect.

107

Chapter 9. Writing Edit Modes

9.4.1. The TERMINATE Rule
TheTERMINATErule specifies that parsing should stop after the specified number of
characters have been read from a line. The number of characters to terminate after should be
specified with theAT_CHARattribute. Here is an example:

<TERMINATE AT_CHAR="1" />

This rule is used in Patch mode, for example, because only the first character of each line
affects highlighting.

9.4.2. The WHITESPACE Rule
TheWHITESPACErule specifies characters which are to be treated as keyword delimiters.
Most rulesets will haveWHITESPACEtags for spaces and tabs. Here is an example:

<WHITESPACE> </WHITESPACE>
<WHITESPACE> </WHITESPACE>

9.4.3. The SPAN Rule
TheSPANrule highlights text between a start and end string. The start and end strings are
specified inside child elements of theSPANtag. The following attributes are supported:

• TYPE- The token type to highlight the span with. See Section 9.4.9 for a list of token
types

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a line

• EXCLUDE_MATCH- If set toTRUE, the start and end sequences will not be highlighted,
only the text between them will

108

Chapter 9. Writing Edit Modes

• NO_LINE_BREAK- If set toTRUE, the span will be highlighted with theINVALID token
type if it spans more than one line

• NO_WORD_BREAK- If set toTRUE, the span will be highlighted with theINVALID token
type if it includes whitespace

• DELEGATE- text inside the span will be highlighted with the specified ruleset. To
delegate to a ruleset defined in the current mode, just specify its name. To delegate to a
ruleset defined in another mode, specify a name of the formmode:: ruleset . Note that
the first (unnamed) ruleset in a mode is called “MAIN”.

Note: Do not delegate to rulesets that define a TERMINATErule (examples of such
rulesets include text::MAIN and patch::MAIN). It won’t work.

Here is aSPANthat highlights Java string literals, which cannot include line breaks:

<BEGIN>"</BEGIN>
<END>"</END>

Here is aSPANthat highlights Java documentation comments by delegating to the
“JAVADOC” ruleset defined elsewhere in the current mode:

<BEGIN>/**</BEGIN>
<END>*/</END>

Here is aSPANthat highlights HTML cascading stylesheets inside<STYLE> tags by
delegating to the main ruleset in the CSS edit mode:

<BEGIN><style></BEGIN>
<END></style></END>

109

Chapter 9. Writing Edit Modes

Tip: The <END>tag is optional. If it is not specified, any occurrence of the start string
will cause the remainder of the buffer to be highlighted with this rule.

This can be very useful when combined with delegation.

9.4.4. The EOL_SPAN Rule
An EOL_SPANis similar to aSPANexcept that highlighting stops at the end of the line, not
after the end sequence is found. The text to match is specified between the opening and
closingEOL_SPANtags. The following attributes are supported:

• TYPE- The token type to highlight the span with. See Section 9.4.9 for a list of token
types

• AT_LINE_START - If set toTRUE, the span will only be highlighted if the start sequence
occurs at the beginning of a line

• EXCLUDE_MATCH- If set toTRUE, the start sequence will not be highlighted, only the
text after it will

Here is anEOL_SPANthat highlights C++ comments:

<EOL_SPAN TYPE="COMMENT1">//</EOL_SPAN>

9.4.5. The MARK_PREVIOUS Rule
TheMARK_PREVIOUSrule highlights from the end of the previous syntax token to the
matched text. The text to match is specified between opening and closingMARK_PREVIOUS

tags. The following attributes are supported:

• TYPE- The token type to highlight the text with. See Section 9.4.9 for a list of token
types

• AT_LINE_START - If set toTRUE, the text will only be highlighted if it occurs at the
beginning of the line

110

Chapter 9. Writing Edit Modes

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text before
it will

Here is a rule that highlights labels in Java mode (for example, “XXX:”):

<MARK_PREVIOUS AT_LINE_START="TRUE"
EXCLUDE_MATCH="TRUE">:</MARK_PREVIOUS>

9.4.6. The MARK_FOLLOWING Rule
TheMARK_FOLLOWINGrule highlights from the start of the match to the next syntax token.
The text to match is specified between opening and closingMARK_FOLLOWINGtags. The
following attributes are supported:

• TYPE- The token type to highlight the text with. See Section 9.4.9 for a list of token
types

• AT_LINE_START - If set toTRUE, the text will only be highlighted if the start sequence
occurs at the beginning of a line

• EXCLUDE_MATCH- If set toTRUE, the match will not be highlighted, only the text after it
will

Here is a rule that highlights variables in Unix shell scripts (“$CLASSPATH”, “$IFS”, etc):

<MARK_FOLLOWING TYPE="KEYWORD2">$</MARK_FOLLOWING>

9.4.7. The SEQ Rule
TheSEQrule highlights fixed sequences of text. The text to highlight is specified between
opening and closingSEQtags. The following attributes are supported:

• TYPE- the token type to highlight the sequence with. See Section 9.4.9 for a list of
token types

111

Chapter 9. Writing Edit Modes

• AT_LINE_START - If set toTRUE, the sequence will only be highlighted if it occurs at
the beginning of a line

The following rules highlight a few Java operators:

<SEQ TYPE="OPERATOR">+</SEQ>
<SEQ TYPE="OPERATOR">-</SEQ>
<SEQ TYPE="OPERATOR">*</SEQ>
<SEQ TYPE="OPERATOR">/</SEQ>

9.4.8. The KEYWORDS Rule
There can only be oneKEYWORDStag per ruleset. TheKEYWORDSrule defines keywords to
highlight. Keywords are similar toSEQs, except thatSEQs match anywhere in the text,
whereas keywords only match whole words.

TheKEYWORDStag supports only one attribute,IGNORE_CASE. If set toFALSE, keywords will
be case sensitive. Otherwise, case will not matter. Default isTRUE.

Each child element of theKEYWORDStag should be named after the desired token type, with
the keyword text between the start and end tags. For example, the following rule highlights
the most common Java keywords:

<KEYWORDS IGNORE_CASE="FALSE">
<KEYWORD1>if</KEYWORD1>
<KEYWORD1>else</KEYWORD1>
<KEYWORD3>int</KEYWORD3>
<KEYWORD3>void</KEYWORD3>

</KEYWORDS>

9.4.9. Token Types
Parser rules can highlight tokens using any of the following token types:

• NULL - no special highlighting is performed on tokens of typeNULL

112

Chapter 9. Writing Edit Modes

• COMMENT1

• COMMENT2

• FUNCTION

• INVALID - tokens of this type are automatically added if aNO_WORD_BREAKor
NO_LINE_BREAK SPANspans more than one word or line, respectively.

• KEYWORD1

• KEYWORD2

• KEYWORD3

• LABEL

• LITERAL1

• LITERAL2

• MARKUP

• OPERATOR

113

Chapter 10. Installing Edit Modes
jEdit looks for edit modes in two locations; themodes subdirectory of the jEdit settings
directory, and themodes subdirectory of the jEdit install directory. The location of the
settings directory is system-specific; see Section 6.4.

Each mode directory contains acatalog file. All edit modes contained in that directory
must be listed in the catalog, otherwise they will not be available to jEdit.

Catalogs, like modes themselves, are written in XML. They consist of a singleMODEStag,
with a number ofMODEtags inside. Each mode tag associates a mode name with an XML
file, and specifies the file name and first line pattern for the mode. A sample mode catalog
looks like follows:

<?xml version="1.0"?>
<!DOCTYPE CATALOG SYSTEM "catalog.dtd">

<MODES>
<MODE NAME="shellscript" FILE="shellscript.xml"

FILE_NAME_GLOB="*.sh"
FIRST_LINE_GLOB="#!/*sh*" />

</MODES>

In the above example, a mode named “shellscript” is defined, and is used for files whose
names end with.sh , or whose first line starts with “#!/” and contains “sh”.

TheMODEtag supports the following attributes:

• NAME- the name of the edit mode, as it will appear in theBuffer Options dialog box,
the status bar, and so on

• FILE - the name of the XML file containing the mode definition

• FILE_NAME_GLOB- files whose names match this glob pattern will be opened in this
edit mode. See Appendix D for information about glob patterns

• FIRST_LINE_GLOB - files whose first line matches this glob pattern will be opened in
this edit mode. See Appendix D for information about glob patterns

114

Chapter 10. Installing Edit Modes

If an edit mode is defined in the user-specific catalog with the same name as an edit mode in
the global catalog, the version in the user-specific catalog will be used instead of the other
version.

115

III. Writing Macros
This part of the user’s guide covers writing macros for jEdit.

First, we will tell you a little about BeanShell, jEdit’s macro scripting language. Next, we
will walk through a few simple macros. We then present and analyze a dialog-based macro
to illustrate additional macro writing techniques. Finally, we discuss several tips and
techniques for writing and debugging macros.

This part of the user’s guide was written by John Gellene <jgellene@nyc.rr.com >.

116

Chapter 11. Introducing BeanShell
Here is how BeanShell’s author, Pat Niemeyer, describes his creation:

“BeanShell is a small, free, embeddable, Java source interpreter with object scripting language
features, written in Java. BeanShell executes standard Java statements and expressions, in
addition to obvious scripting commands and syntax. BeanShell supports scripted objects as
simple method closures like those in Perl and JavaScript.”

As you might gather from this short quote, BeanShell is very similar to Java and is designed
to be easy for Java programmers to learn. If you know how to program in Java, you already
know how to write BeanShell macros. Nonetheless, the premise of this guide is that you
should not have to know anything about Java to begin writing your own macros for jEdit.

If you are not a Java programmer, you will have to learn a little about Java classes and
syntax, but that’s not a bad thing. You will also have to learn a little (but not too much) about
some of the classes that are defined and used by the jEdit program itself. That is in fact the
major strength of using BeanShell with a program written in Java: it allows the user to
customize the program’s behavior by employing the same interfaces designed and used by
the program’s developer. Thus, BeanShell can turn a well-designed application into a
powerful toolkit.

This guide focuses on using BeanShell in macros. If you are interested in learning more
about BeanShell generally, consult the BeanShell web site (http://www.beanshell.org).
Information on how to run and organize macros, whether included with the jEdit installation
or written by you, can be found in Chapter 7.

11.1. Single Execution Macros
There are two ways jEdit lets you use BeanShell quickly on a “one time only” basis. You
will find both of them in theUtilities menu.

Utilities>Evaluate BeanShell Expression causes jEdit to display a text input dialog that
asks you to type a single line of BeanShell commands. You can type more than one
BeanShell statement so long as each of them ends with a semicolon. If BeanShell

117

Chapter 11. Introducing BeanShell

successfully interprets your input, a message box will appear with the return value of the last
statement. You can do the same thing using the BeanShell interpreter provided with the
Console plugin; the return value will appear in the output window.

Utilities>Evaluate Selection evaluates the selected text as a BeanShell script and replaces
the selected text with the return value of the last BeanShell statement.

UsingEvaluate Selection is an easy way to do arithmetic calculations inline while editing.
BeanShell uses numbers and arithmetic operations in an ordinary, intuitive way.

Try typing an expression like(3745*856)+74 in the buffer, select it, and choose
Utilities>Evaluate Selection. The selected text will be replaced by the answer,
3205794 .

118

Chapter 12. A Few Simple Macros

12.1. The Mandatory First Example

Macros.message(view, "Hello world!");

Running this one line script causes jEdit to display a message box (more precisely, a
JOptionPane object) with the traditional beginner’s message and anOK button. Let’s see
what is happening here.

This statement calls a static method (or function) namedmessage in jEdit’s Macros class. If
you don’t know anything about classes or static methods or Java (or C++, which employs
the same concept), you will need to gain some understanding of a few terms. Obviously this
is not the place for academic precision, but if you are entirely new to object-oriented
programming, here are a few skeleton ideas to help you with BeanShell.

• An objectis a collection of data that can be initialized, accessed and manipulated in
certain defined ways.

• A classis a specification of what data an object contains and what methods can be
used to work with the data. A Java application consists of one or more classes (in the
case of jEdit over 200 classes) written by the programmer that defines the application’s
behavior. A BeanShell macro uses these classes, along with built-in classes that are
supplied with the Java platform, to define its own behavior.

• A subclass(or child class) is a class which uses (or “inherits”) the data and methods of
its parent class along with additions or modifications that alter the subclass’s behavior.
Classes are typically organized in hierarchies of parent and child classes to organize
program code, to define common behavior in shared parent class code, and to specify
the types of similar behavior that child classes will perform in their own specific ways.

• A method(or function) is a procedure that works with data in a particular object, other
data (including other objects) supplied asparameters, or both. Methods typically are

119

Chapter 12. A Few Simple Macros

applied to a particular object which is aninstanceof the class to which the method
belongs.

• A static methoddiffers from other methods in that it does not deal with the data in a
particular object but is included within a class for the sake of convenience.

Java has a rich set of classes defined as part of the Java platform. Like all Java applications,
jEdit is organized as a set of classes that are themselves derived from the Java platform’s
classes. We will refer toJava classesandjEdit classesto make this distinction. Some of
jEdit’s classes (such as those dealing with regular expressions and XML) are derived from
or make use of classes in other open-source Java packages. Except for BeanShell itself, we
won’t be discussing them in this guide.

In our one line script, the static methodMacros.message() has two parameters because
that is the way the method is defined in theMacros class. You must specify both parameters
when you call the function. The first parameter,view , is a a variable naming aView object
- an instance of jEdit’sView class. AView represents a “parent” or top-level frame window
that contains the various visible components of the program, including the text area, menu
bar, toolbar, and any docked windows. It is a subclass of Java’sJFrame class. With jEdit,
you can create and display multiple views simultaneously. The variableview is predefined
for purposes of BeanShell as the current, activeView object. This is in fact the variable you
want to specify as the first parameter. Normally you would not want to associate a message
box with anything other than the currentView .

The second parameter, which appears to be quoted text, is astring literal - a sequence of
characters of fixed length and content. Behind the scenes, BeanShell and Java take this
string literal and use it to create aString object. Normally, if you want to create an object
in Java or BeanShell, you must construct the object using thenew keyword and aconstructor
method that is part of the object’s class. We’ll show an example of that later. However, both
Java and BeanShell let you use a string literal anytime a method’s parameter calls for a
String .

If you are a Java programmer, you might wonder about a few things missing from this one
line program. There is no class definition, for example. You can think of a BeanShell script
as an implicit definition of amain() method in an anonymous class. That is in fact how
BeanShell is implemented; the class is derived from a BeanShell class calledXThis . If you
don’t find that helpful, just think of a script as one or more blocks of procedural statements

120

Chapter 12. A Few Simple Macros

conforming to Java syntax rules. You will also get along fine (for the most part) with C or
C++ syntax if you leave out anything to do with pointers or memory management - Java and
BeanShell do not have pointers and deal with memory management automatically.

Another missing item from a Java perspective is apackage statement. In Java, such a
statement is used to bundle together a number of files so that their classes become visible to
one another. Packages are not part of BeanShell, and you don’t need to know anything about
them to write BeanShell macros.

Finally, there are noimport statements in this script. In Java, animport statement makes
public classes from other packages visible within the file in which the statement occurs
without having to specify a fully qualified class name. Without an import statement or a
fully qualified name, Java cannot identify most classes using a single name as an identifier.

jEdit automatically imports a number of commonly-used packages into the namespace of
every BeanShell script. Because of this, the script output of a recorded macro does not
containimport statements. For the same reason, most BeanShell scripts you write will not
requireimport statements.

Java requiresimport statement at the beginning of a source file. BeanShell allows you to
placeimport statements anywhere in a script, including inside of block of statements. The
import statement will cover all names used following the statement in the enclosing block.

If you try to use a class that is not imported without its fully-qualified name, the BeanShell
interpreter will complain with an error message relating to the offending line of code.

121

Chapter 12. A Few Simple Macros

Here is the full list of packages automatically imported by jEdit:

java.awt
java.awt.event
java.net
java.util
java.io
java.lang
javax.swing
javax.swing.event
org.gjt.sp.jedit
org.gjt.sp.jedit.browser
org.gjt.sp.jedit.gui
org.gjt.sp.jedit.io
org.gjt.sp.jedit.msg
org.gjt.sp.jedit.options
org.gjt.sp.jedit.pluginmgr
org.gjt.sp.jedit.search
org.gjt.sp.jedit.syntax
org.gjt.sp.jedit.textarea
org.gjt.sp.util

12.2. Helpful Methods in the Macros Class
Includingmessage() , there are four static methods in theMacros class that allow you to
converse easily with your macros. They all encapsulate calls to methods of the Java
platform’sJOptionPane class.

• public static void message (View view , String message);

• public static void error (View view , String message);

• public static String input (View view , String prompt);

• public static String input (View view , String prompt , String

122

Chapter 12. A Few Simple Macros

defaultValue);

The format of these fourdeclarationsprovides a concise reference to the way in which the
methods may be used. The keywordpublic means that the method can be used outside the
Macros class. The alternatives areprivate andprotected . For purposes of BeanShell, you
just have to know that BeanShell can only use public methods of other Java classes. The
keywordstatic we have already discussed. It means that the method does not operate on a
particular object. You call a static function using the name of the class (likeMacros) rather
than the name of a particular object (likeview). The third word is the type of the value
returned by the method. The keywordvoid is Java’s way of saying the the method does not
have a return value.

Theerror() method works just likemessage() but displays an error icon in the message
box. Theinput() method furnishes a text field for input, anOK button and aCancel
button. If “Cancel” is pressed, the method returnsnull . If OK is pressed, aString

containing the contents of the text field is returned. Note that there are two forms of the
input() method; the first form with two parameters displays an empty input field, the other
lets you specify an initial default value.

For those without Java experience, it is important to know thatnull is not the same as an
empty, “zero-length”String . It is Java’s way of saying that there is no object associated
with this variable. Whenever you seek to use a return value frominput() in your macro,
you should test it to see if it isnull . In most cases, you will want to exit gracefully from the
script with areturn statement, because the presence of a null value for an input variable
usually means that the user intended to cancel macro execution. BeanShell will complain if
you call any methods on anull object.

We’ve looked at usingMacros.message() . To use the other methods, you would write
something like the following:

Macros.error(view, "Goodbye, cruel world!");

String result = Macros.input(view, "Type something here.");

String result = Macros.input(view, "What is your name?",
"John Gellene");

123

Chapter 12. A Few Simple Macros

In the last two examples, placing the wordString before the variable nameresult tells
BeanShell that the variable refers to aString object, even before a particularString object
is assigned to it. In BeanShell, thisdeclarationof thetypeof result is not necessary;
BeanShell can figure it out when the macro runs. This can be helpful if you are not
comfortable with types and classes; just use your variables and let BeanShell worry about it.

Without an explicittype declarationlike String result , BeanShell variables can change
their type at runtime depending on the object or data assigned to it. This dynamic typing
allows you to write code like this (if you really wanted to):

// note: no type declaration
result = Macros.input(view, “Type something here.”);

// this is our predefined, current View
result = view;

// this is an “int” (for integer);
// in Java and BeanShell, int is one of a small number
// of “primitive” data types which are not classes
result = 14;

However, if you first declaredresult to be typeString and and then tried these
reassignments, BeanShell would complain.

One last thing before we bury our first macro. The double slashes in the examples just above
signify that everything following them on that line should be ignored by BeanShell as a
comment. As in Java and C/C++, you can also embed comments in your BeanShell code by
setting them off with pairs of/* */ , as in the following example:

/* This is a long comment that covers several lines
and will be totally ignored by BeanShell regardless of how
many lines it covers */

12.3. Now For Something Useful
Here is a macro that inserts the path of the current buffer in the text:

124

Chapter 12. A Few Simple Macros

String newText = buffer.getPath();
textArea.setSelectedText(newText);

Two of the new names we see here,buffer andtextArea , are predefined variables like
view . The variablebuffer represents a jEditBuffer object, andtextArea represents a
JEditTextArea object.

• A Buffer represents the contents of an open text file. It is derived from Java’s
PlainDocument class. The variablebuffer is predefined as the current buffer.

• A JEditTextArea is the visible component that displays the file being edited. It is
derived from theJComponent class. The variabletextArea represents the current
JEditTextArea object, which in turn displays the current buffer.

Unlike in our first macro example, here we are calling class methods on particular objects.
First, we callgetPath() on the currentBuffer object to get the full path of the text file
currently being edited. Next, we callsetSelectedText() on the current text display
component, specifying the text to be inserted as a parameter.

In precise terms, thesetSelectedText() method substitutes the contents of theString

parameter for a range of selected text that includes the current caret position. If no text is
selected at the caret position, the effect of this operation is simply to insert the new text at
that position.

Here’s a few alternatives to the full file path that you could use to insert various useful
things:

// the file name (without full path)
String newText = buffer.getName();

// today’s date
import java.text.DateFormat;

String newText = DateFormat.getDateInstance()
.format(new Date());

// a line count for the current buffer
String newText = "This file contains "

125

Chapter 12. A Few Simple Macros

+ textArea.getLineCount() + " lines.";

Here are brief comments on each:

• In the first, the call togetName() invokes another method of theBuffer class.

• The syntax of the second example chains the results of several methods. You could
write it this way:

import java.text.DateFormat;
Date d = new Date();
DateFormat df = DateFormat.getDateInstance();
String result = df.format(d);

Taking the pieces in order:

• A JavaDate object is created using thenew keyword. The empty parenthesis after
Date signify a call on theconstructor methodof Date having no parameters;
here, aDate is created representing the current date and time.

• DateFormat.getDateInstance() is a static method that creates and returns a
DateFormat object. As the name implies,DateFormat is a Java class that takes
Date objects and produces readable text. The methodgetDateInstance()

returns aDateFormat object that parses and formats dates. It will use the default
localeor text format specified in the user’s Java installation.

• Finally, DateFormat.format() is called on the newDateFormat object using
theDate object as a parameter. The result is aString containing the date in the
default locale.

• Note that theDate class is contained in thejava.util package, so an explicit
import statement is not required. However,DateFormat is part of thejava.text

package, which is not automatically imported, so an explicitimport statement
must be used.

• The third example shows three items of note:

• getLineCount() is a method in jEdit’sJEditTextArea class. It returns an int
representing the number of lines in the current text buffer. We call it ontextArea ,

126

Chapter 12. A Few Simple Macros

the pre-defined, currentJEditTextArea object.

• The use of the+ operator (which can be chained, as here) appends objects and
string literals to return a single, concatenatedString .

The other pre-defined variable

In addition toview , buffer andtextArea , there is one more pre-defined variable
available for use in macros –editPane . That variable is set to the currentEditPane

instance. AnEditPane object contains a text area and buffer switcher. A view can be
split to display multiple buffers, each in its own edit pane. Among other things, the
EditPane class contains methods for selecting the buffer to edit.

Most of the time your macros will manipulate thebuffer or thetextArea .
Sometimes you will need to useview as a parameter in a method call. You will
probably only need to useeditPane if your macros work with split views.

127

Chapter 13. A Dialog-Based Macro
Now we will look at a more complicated macro which will demonstrate some useful
techniques and BeanShell features.

13.1. Use of the Macro
Our new example adds prefix and suffix text to a series of selected lines. This macro can be
used to reduce typing for a series of text items that must be preceded and following by
identical text. In Java, for example, if we are interested in making a series of calls to
StringBuffer.append() to construct a lengthy, formatted string, we could type the
parameter for each call on successive lines as follows:

profileString_1
secretThing.toString()
name
address
addressSupp
city
“state/province”
country

Our macro would ask for input for the common “prefix” and “suffix” to be applied to each
line; in this case, the prefix isourStringBuffer.append(and the suffix is); . After
selecting these lines and running the macro, the the resulting text would look like this:

ourStringBuffer.append(profileString_1);
ourStringBuffer.append(secretThing.toString());
ourStringBuffer.append(name);
ourStringBuffer.append(address);
ourStringBuffer.append(addressSupp);
ourStringBuffer.append(city);
ourStringBuffer.append(“state/province”);
ourStringBuffer.append(country);

128

Chapter 13. A Dialog-Based Macro

13.2. Listing of the Macro
The macro script follows. You can find it in the jEdit distribution in theText subdirectory of
themacros directory. You can also try it out by invokingMacros>Text>Add Prefix and
Suffix.

// beginning of Add_Prefix_and_Suffix.bsh

// import statement (see Section 13.3.1)
import javax.swing.border.*;

// main routine
void prefixSuffixDialog()
{

// create dialog object (see Section 13.3.2)
title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
content.setPreferredSize(new Dimension(320, 160));
dialog.setContentPane(content);

// add the text fields (see Section 13.3.3)
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField(“macro.add-prefix”);
prefixLabel = new JLabel(“Prefix to add:”);
suffixField = new HistoryTextField(“macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, “Center”);

// add the buttons (see Section 13.3.4)
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));

129

Chapter 13. A Dialog-Based Macro

buttonPanel.add(Box.createGlue());
ok = new JButton(“OK”);
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());
dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

// register this method as an ActionListener for
// the buttons and text fields (see Section 13.3.5)
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

// locate the dialog in the center of the
// editing pane and make it visible (see Section 13.3.6)
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

// this method will be called when a button is clicked
// or when ENTER is pressed (see Section 13.3.7)
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();
}
dialog.dispose();

}

// this is where the work gets done to insert
// the prefix and suffix (see Section 13.3.8)
void processText()
{

130

Chapter 13. A Dialog-Based Macro

prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)

return;
if(prefix.length() != 0)

prefixField.addCurrentToHistory();
if(suffix.length() != 0)

suffixField.addCurrentToHistory();

// text manipulation begins here using calls
// to jEdit methods (see Section 13.3.9)
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{

offsetBOL = textArea.getLineStartOffset(
selectedLines[i]);

textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

}
}

}

// this single line of code is the script’s main routine
// (see Section 13.3.10)
prefixSuffixDialog();

// end of Add_Prefix_and_Suffix.bsh

131

Chapter 13. A Dialog-Based Macro

13.3. Analysis of the Macro

13.3.1. Import Statements

// import statement
import javax.swing.border.*;

This macro makes use of classes in thejavax.swing.border package, which is not
automatically imported. As we mentioned previously (see Section 12.1), jEdit’s
implementation of BeanShell causes a number of classes to be automatically imported.
Classes that are not automatically imported must be named by a full qualified name or be the
subject of animport statement.

13.3.2. Create the Dialog

// create dialog object
title = “Add prefix and suffix to selected lines”;
dialog = new JDialog(view, title, false);
content = new JPanel(new BorderLayout());
content.setBorder(new EmptyBorder(12, 12, 12, 12));
dialog.setContentPane(content);

To get input for the macro, we need a dialog that provides for input of the prefix and suffix
strings, anOK button to perform text insertion, and aCancel button in case we change our
mind. We have decided to make the dialog window non-modal. This will allow us to move
around in the text buffer to find things we may need (including text to cut and paste) while
the macro is running and the dialog is visible.

The Java object we need is aJDialog object from the Swing package. To construct one, we
use thenew keyword and call aconstructorfunction. The constructor we use takes three
parameters: the owner of the new dialog, the title to be displayed in the dialog frame, and a
boolean parameter (true or false) that specifies whether the dialog will be modal or

132

Chapter 13. A Dialog-Based Macro

non-modal. We define the variabletitle using a string literal, then use it immediately in the
JDialog constructor.

A JDialog object is a window containing a single object called acontent pane. The content
pane in turn contains the various visible components of the dialog. AJDialog creates an
empty content pane for itself as during its construction. However, to control the dialog’s
appearance as much as possible, we will separately create our own content pane and attach it
to theJDialog . We do this by creating aJPanel object. AJPanel is a lightweight container
for other components that can be set to a given size and color. It also contains alayout
scheme for arranging the size and position of its components. Here we are constructing a
JPanel as a content pane with aBorderLayout . We put aEmptyBorder inside it to serve as
a margin between the edge of the window and the components inside. We then attach the
JPanel as the dialog’s content pane, replacing the dialog’s home-grown version.

A BorderLayout is one of the simpler layout schemes available for Java Swing objects. A
BorderLayout divides the container into five sections: “North”, “South”, “”East, “West”
and “Center”. Components are added to the layout using the container’sadd method,
specifying the component to be added and the section to which it is assigned. Building a
component like our dialog window involves building a set of nested containers and
specifying the location of each of their member components. We have taken the first step by
creating aJPanel as the dialog’s content pane.

13.3.3. Create the Text Fields

// add the text fields
fieldPanel = new JPanel(new GridLayout(4, 1, 0, 6));
prefixField = new HistoryTextField("macro.add-prefix");
prefixLabel = new JLabel(“Prefix to add”:);
suffixField = new HistoryTextField(“macro.add-suffix”);
suffixLabel = new JLabel(“Suffix to add:”);
fieldPanel.add(prefixLabel);
fieldPanel.add(prefixField);
fieldPanel.add(suffixLabel);
fieldPanel.add(suffixField);
content.add(fieldPanel, “Center”);

133

Chapter 13. A Dialog-Based Macro

Next we shall create a smaller panel containing two fields for entering the prefix and suffix
text and two labels identfying the input fields.

For the text fields, we will use jEdit’sHistoryTextField class. It is derived from the Java
Swing classJTextField . This class offers the enhancement of a stored list of prior values
used as text input. The up and down keys scroll through the prior values for the variable.

To create theHistoryTextField objects we use a constructor method that takes a single
parameter: the name of the tag under which history values will be stored. Here we choose
names that are not likely to conflict with existing jEdit history items.

The labels areJLabel objects from the Java Swing package. The constructor we use takes
the label text as a singleString parameter.

We wish to arrange these four components from top to bottom, one after the other. To
achieve that, we use aJPanel object namedfieldPanel that will be nested inside the
dialog’s content pane that we have already created. In the constructor forfieldPanel , we
assign a newGridLayout with the indicated parameters: four rows, one column, zero
spacing between columns (a meaningless element of a grid with only one column, but
nevertheless a required parameter) and spacing of six pixels between rows. The spacing
between rows spreads out the four “grid” elements. After the components, the panel and the
layout are specified, the components are added tofieldPanel top to bottom, one “grid cell”
at a time. Finally, the completefieldPanel is added to the dialog’s content pane to occupy
the “Center” section of the content pane.

13.3.4. Create the Buttons

// add the buttons
buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.X_AXIS));
buttonPanel.setBorder(new EmptyBorder(12, 50, 0, 50));
buttonPanel.add(Box.createGlue());
ok = new JButton(“OK”);
cancel = new JButton(“Cancel”);
ok.setPreferredSize(cancel.getPreferredSize());

134

Chapter 13. A Dialog-Based Macro

dialog.getRootPane().setDefaultButton(ok);
buttonPanel.add(ok);
buttonPanel.add(Box.createHorizontalStrut(6));
buttonPanel.add(cancel);
buttonPanel.add(Box.createGlue());
content.add(buttonPanel, “South”);

Creating the buttons repeats the pattern we used in creating the text fields. First, we create a
new, nested panel with aBoxLayout . A BoxLayout places components either in a single row
or column, depending on the parameter passed to its constructor. We put anEmptyBorder in
the new panel to set margins for placing the buttons. Then we create the buttons, using a
JButton constructor that specifies the button text. After setting the size of theOK button to
equal the size of theCancel button, we designate theOK button as the default button in the
dialog. This causes theOK button to be outlined as the default button. Finally, we place the
button side by side with a 6 pixel gap between them (for aesthetic reasons), and place the
completedbuttonPanel in the “South” section of the dialog’s content pane.

13.3.5. Register the Action Listeners

// register this method as an ActionListener for
// the buttons and text fields
ok.addActionListener(this);
cancel.addActionListener(this);
prefixField.addActionListener(this);
suffixField.addActionListener(this);

In order to specify the action to be taken upon clicking a button or pressing theEnter key,
we must register anActionListener for each of the four active components of the dialog -
the twoHistoryTextField components and the two buttons. In Java, anActionListener

is aninterface- an abstract specification for a derived class to implement. The
ActionListener interface contains a single method to be implemented:

public void actionPerformed (ActionEvent e);

BeanShell does not permit a script to create derived classes. However, BeanShell offers a
useful substitute: a method can be used as a scripted object that can implement methods of a

135

Chapter 13. A Dialog-Based Macro

number of Java interfaces. The methodprefixSuffixDialog() that we are writing can
thus be treated as anActionListener . To accomplish this, we calladdActionListener()

on each of the four components specifyingthis as theActionListener . We still need to
implement the interface. We will do that shortly.

13.3.6. Make the Dialog Visible

// locate the dialog in the center of the
// editing pane and make it visible
dialog.pack();
dialog.setLocationRelativeTo(view);
dialog.setDefaultCloseOperation(JDialog.DISPOSE_ON_CLOSE);
dialog.setVisible(true);

Here we do three things. First, we activate all the layout routines we have established by
calling thepack() method for the dialog as the top-level window. Next we center the
dialog’s position in the active jEditview by callingsetLocationRelativeTo() on the
dialog. We also call thesetDefaultCloseOperation() function to specify that the dialog
box should be immediately disposed if the user clicks the close box. Finally, we activate the
dialog by callingsetVisible() with the state parameter set totrue .

At this point we have a decent looking dialog window that doesn’t do anything. Without
more code, it will not respond to user input and will not accomplish any text manipulation.
The remainder of the script deals with these two requirements.

13.3.7. The Action Listener

// this method will be called when a button is clicked
// or when ENTER is pressed
void actionPerformed(e)
{

if(e.getSource() != cancel)
{

processText();

136

Chapter 13. A Dialog-Based Macro

}
dialog.dispose();

}

The methodactionPerformed() nested insideprefixSuffixDialog() implements the
implicit ActionListener interface. It looks at the source of theActionEvent , determined
by a call togetSource() . What we do with this return value is straighforward: if the source
is not theCancel button, we call theprocessText() method to insert the prefix and suffix
text. Then the dialog is closed by calling itsdispose() method.

The ability to implement interfaces likeActionListener inside a BeanShell script is one of
the more powerful features of the BeanShell package. With anActionListener interface,
which has only a single method, implementation is simple. When using other interfaces with
multiple methods, however, there are some details to deal with that will vary depending on
the version of the Java platform that you are running. These techniques are discussed in the
next chapter; see Section 14.4.3.

13.3.8. Get the User’s Input

// this is where the work gets done to insert
// the prefix and suffix
void processText()
{

prefix = prefixField.getText();
suffix = suffixField.getText();
if(prefix.length() == 0 && suffix.length() == 0)

return;
if(prefix.length() != 0)

prefixField.addCurrentToHistory();
if(suffix.length() != 0)

suffixField.addCurrentToHistory();

The methodprocessText() does the work of our macro. First we obtain the input from the
two text fields with a call to theirgetText() methods. If they are both empty, there is
nothing to do, so the method returns. If there is input, any text in the field is added to that
field’s stored history list by callingaddCurrentToHistory() .

137

Chapter 13. A Dialog-Based Macro

13.3.9. Call jEdit Methods to Manipulate Text

// text manipulation begins here using calls
// to jEdit methods
selectedLines = textArea.getSelectedLines();
for(i = 0; i < selectedLines.length; ++i)
{

offsetBOL = textArea.getLineStartOffset(
selectedLines[i]);

textArea.setCaretPosition(offsetBOL);
textArea.goToStartOfWhiteSpace(false);
textArea.goToEndOfWhiteSpace(true);
text = textArea.getSelectedText();
if(text == null) text = "";
textArea.setSelectedText(prefix + text + suffix);

}
}

The text manipulation routine loops through each selected line in the text buffer. We get the
loop parameters by callingtextArea.getSelectedLines() , which returns an array
consisting of the line numbers of every selected line. The array includes the number of the
current line, whether or not it is selected, and the line numbers are sorted in increasing order.
We iterate through each member of theselectedLines array, which represents the number
of a selected line, and apply the following routine:

• Get the buffer position of the start of the line (expressed as a zero-based index from the
start of the buffer) by callingtextArea.getLineStartOffset(selectedLines[i]) ;

• Move the caret to that position by callingtextArea.setCaretPosition() ;

• Find the first and last non-whitespace characters on the line by calling
textArea.goToStartOfWhiteSpace() andtextArea.goToEndOfWhiteSpace() ;

ThegoTo... methods inJEditTextArea take a single parameter which tells jEdit
whether the text between the current caret position and the desired position should be
selected. Here, we calltextArea.goToStartOfWhiteSpace(false) so that no text is

138

Chapter 13. A Dialog-Based Macro

selected, then calltextArea.goToEndOfWhiteSpace(true) so that all of the text
between the beginning and ending whitespace is selected.

• Retrieve the selected text by storing the return value of
textArea.getSelectedText() in a new variabletext .

If the line is empty,getSelectedText() will return null . In that case, we assign an
empty string totext to avoid calling methods on a null object.

• Change the selected text toprefix + text + suffix by calling
textArea.setSelectedText() . If there is no selected text (for example, if the line is
empty), the prefix and suffix will be inserted without any intervening characters.

13.3.10. The Main Routine

// this single line of code is the script’s main routine
prefixSuffixDialog();

The call toprefixSuffixDialog() is the only line in the macro that is not inside an
enclosing block. BeanShell treats such code as a top-levelmain method and begins
execution with it.

Our analysis ofAdd_Prefix_and_Suffix.bsh is now complete. In the next section, we
look at other ways in which a macro can obtain user input, as well as other macro writing
techniques.

139

Chapter 14. Macro Tips and
Techniques

14.1. Getting Input for a Macro
The dialog-based macro discussed in Chapter 13 reflects a conventional approach to
obtaining input in a Java program. Nevertheless, it can be too lengthy or tedious for
someone trying to write a macro quickly. Not every macro needs a user interface specified in
such detail; some macros require only a single keystroke or no input at all. In this section we
outline some other techniques for obtaining input that will help you write macros quickly.

14.1.1. Getting a Single Line of Text
As mentioned earlier in Section 12.2, the methodMacros.input() offers a convenient way
to obtain a single line of text input. Here is an example that inserts a pair of HTML markup
tags specified by the user.

// Insert_Tag.bsh

void insertTag()
{

caret = textArea.getCaretPosition();
tag = Macros.input(view, “Enter name of tag:”);
if(tag == null || tag.length() == 0) return;
text = textArea.getSelectedText();
if(text == null) text = “”;
sb = new StringBuffer();
sb.append(“<”).append(tag).append(“>”);
sb.append(text);
sb.append(“</”).append(tag).append(“>”);
textArea.setSelectedText(sb.toString());
if(text.length() == 0)

textArea.setCaretPosition(caret + tag.length() + 2);
}

140

Chapter 14. Macro Tips and Techniques

insertTag();

// end Insert_Tag.bsh

Here the call toMacros.input() seeks the name of the markup tag. This method sets the
message box title to a fixed string, “Macro input”, but the specific messageEnter name of
tag provides all the information necessary. The return valuetag must be tested to see if it is
null. This would occur if the user presses theCancel button or closes the dialog window
displayed byMacros.input() .

14.1.2. Getting Multiple Data Items
If more than one item of input is needed, a succession of calls toMacros.input() is a
possible, but awkward approach, because it would not be possible to correct early input after
the corresponding message box is dismissed. Where more is required, but a full dialog
layout is either unnecessary or too much work, the Java method
JOptionPane.showConfirmDialog() is available. The version to use has the following
prototype:

• public static int showConfirmDialog (Component parentComponent ,

Object message , String title , int optionType , int messageType);

The usefulness of this method arises from the fact that themessage parameter can be an
object of any Java class (since all classes are derived fromObject), or any array of objects.
The following example shows how this feature can be used.

// excerpt from Write_File_Header.bsh

title = “Write file header”;

currentName = buffer.getName();

nameField = new JTextField(currentName);
authorField = new JTextField(“Your name here”);
descField = new JTextField(“”, 25);

141

Chapter 14. Macro Tips and Techniques

namePanel = new JPanel(new GridLayout(1, 2));
nameLabel = new JLabel(“Name of file:”, SwingConstants.LEFT);
nameLabel.setForeground(Color.black);
saveField = new JCheckBox(“Save file when done”,

!buffer.isNewFile());
namePanel.add(nameLabel);
namePanel.add(saveField);

message = new Object[9];
message[0] = namePanel;
message[1] = nameField;
message[2] = Box.createVerticalStrut(10);
message[3] = “Author’s name:”;
message[4] = authorField;
message[5] = Box.createVerticalStrut(10);
message[6] = “Enter description:”;
message[7] = descField;
message[8] = Box.createVerticalStrut(5);

if(JOptionPane.OK_OPTION !=
JOptionPane.showConfirmDialog(view, message, title,

JOptionPane.OK_CANCEL_OPTION,
JOptionPane.QUESTION_MESSAGE))

return null;

// *****remainder of macro script omitted*****

// end excerpt from Write_File_Header.bsh

This macro takes several items of user input and produces a formatted file header at the
begining of the buffer. The full macro is included in the set of macros installed by jEdit.
There are a number of input features of this excerpt worth noting.

• The macro uses a total of seven visible components. Two of them are created behind
the scenes byshowConfirmDialog() , the rest are made by the macro. To arrange
them, the script creates an array ofObject objects and assigns components to each

142

Chapter 14. Macro Tips and Techniques

location in the array. This translates to a fixed, top-to-bottom arrangement in the
message box created byshowConfirmDialog() .

• The macro usesJTextField objects to obtain most of the input data. The fields
nameField andauthorField are created with constructors that take the initial, default
text to be displayed in the field as a parameter. When the message box is displayed, the
default text will appear and can be altered or deleted by the user.

• The text fielddescField uses an empty string for its initial value. The second
parameter in its constructor sets the width of the text field component, expressed as the
number of characters of “average” width. WhenshowConfirmDialog() prepares the
layout of the message box, it sets the width wide enough to accomodate the designated
with of descField . This technique produces a message box and input text fields that
are wide enough for your data with one line of code.

• The displayed message box includes aJCheckBox component that determines whether
the buffer will be saved to disk immediately after the file header is written. To conserve
space in the message box, we want to display the check box to the right of the label
Name of file:. To do that, we create aJPanel object and populate it with the label and
the checkbox in a left-to-rightGridLayout . TheJPanel containing the two
components is then added to the beginning ofmessage array.

• The two visible components created byshowConfirmDialog() appear at positions 3
and 6 of themessage array. Only the text is required; they are rendered as text labels.
Note that the constructor sets the foreground colornameLabel to black. The default
text color ofJLabel objects is gray for Java’s default look-and-feel, so the color was
reset for consistency with the rest of the message box.

• There are three invisible components created byshowConfirmDialog() . Each of
them involves a call toBox.createVerticalStrut() . TheBox class is a sophisticated
layout class that gives the user great flexibility in sizing and positioning components.
Here we use astatic method of theBox class that produces a verticalstruct. This is a
transparent component whose width expands to fill its parent component (in this case,
the message box). The single parameter indicates the fixed height of the spacing “strut”
in pixels. The last call tocreateVerticalStrut() separates the description text field
from theOK andCancel buttons that are automatically added by
showConfirmDialog() .

143

Chapter 14. Macro Tips and Techniques

• Finally, the call toshowConfirmDialog() uses defined constants for the option type
and the message type. The option type signifies the use ofOK andCancel buttons. The
QUERY_MESSAGEmessage type causes the message box to display a question mark icon.

The return value of the method is tested against the valueOK_OPTION. If the return
value is something else (because theCancel button was pressed or because the
message box window was closed without a button press), anull value is returned to a
calling function, signalling that the user cancelled macro execution. If the return value
is OK_OPTION, each of the input components can yield their contents for further
processing by calls toJTextField.getText() (or, in the case of the check box,
JCheckBox.isSelected()).

14.1.3. Selecting Input From a List
Another useful way to get user input for a macro is to use a combo box containing a number
of pre-set options. If this is the only input required, one of the versions of
showInputDialog() in theJOptionPane class provides a shortcut. Here is its prototype:

• public static Object showInputDialog (Component parentComponent ,

Object message , String title , int messageType , Icon icon , Object[]

selectionValues , Object initialSelectionValue);

This method creates a message box containing a drop-down list of the options specified in
the method’s parameters, along withOK andCancel buttons. Compared to
showConfirmDialog() , this method lacks anoptionType parameter and has three
additional parameters: anicon to display in the dialog (which can be set tonull), an array
of selectionValues objects, and a reference to one of the options as the
initialSelectionValue to be displayed. In addition, instead of returning an int
representing the user’s action,showInputDialog() returns theObject corresponding to
the user’s selection, ornull if the selection is cancelled.

The following macro fragment illustrates the use of this method.

// fragment illustrating use of showInputDialog()
options = new Object[5];

144

Chapter 14. Macro Tips and Techniques

options[0] = "JLabel";
options[1] = "JTextField";
options[2] = "JCheckBox";
options[3] = "HistoryTextField";
options[4} = "- other -";

result = JOptionPane.showInputDialog(view,
"Choose component class",
"Select class for input component",
JOptionPane.QUESTION_MESSAGE,
null, options, options[0]);

The return valueresult will contain either theString object representing the selected text
item ornull representing no selection. Any further use of this fragment would have to test
the value ofresult and likely exit from the macro if the value equallednull .

A set of options can be similarly placed in aJComboBox component created as part of a
larger dialog orshowMessageDialog() layout. Here are some code fragments showing this
approach:

// fragments from Display_Abbreviations.bsh
// import statements and other code omitted

// from main routine, this method call returns an array
// of Strings representing the names of abbreviation sets

abbrevSets = getActiveSets();

...

// from showAbbrevs() method

combo = new JComboBox(abbrevSets);
// set width to uniform size regardless of combobox contents
Dimension dim = combo.getPreferredSize();
dim.width = Math.max(dim.width, 120);
combo.setPreferredSize(dim);
combo.setSelectedItem(STARTING_SET); // defined as "global"

145

Chapter 14. Macro Tips and Techniques

// end fragments

14.1.4. Using a Single Keypress as Input
Some macros may choose to emulate the style of character-based text editors such as emacs
or vi. They will require only a single keypress as input that would be handled by the macro
but not displayed on the screen. If the keypress corresponds to a character value, jEdit can
pass that value as a parameter to a BeanShell script.

The jEdit classInputHandler is an abstract class that that manages associations between
keyboard input and editing actions, along with the recording of macros. Keyboard input in
jEdit is normally managed by the derived classDefaultInputHandler . One of the methods
in the InputHandler class handles input from a single keypress:

• public void readNextChar (String prompt , String code);

When this method is called, the contents of theprompt parameter is shown in the view’s
status bar. The method then waits for a key press, after which the contents of thecode

parameter will be run as a BeanShell script, with one important modification. Each time the
string__char__ appears in the parameter script, it will be substituted by the character
pressed. The key press is “consumed” byreadNextChar() . It will not be displayed on the
screen or otherwise processed by jEdit.

UsingreadNextChar() requires a macro within the macro, formatted as a single,
potentially lengthy string literal. The following macro illustrates this technique. It selects a
line of text from the current caret position to the first occurrence of the character next typed
by the user. If the character does not appear on the line, no new selection occurs and the
display remains unchanged.

// Next_Char.bsh

script = new StringBuffer(512);
script.append("start = textArea.getCaretPosition();");
script.append("line = textArea.getCaretLine();");
script.append("end = textArea.getLineEndOffset(line) + 1;");

146

Chapter 14. Macro Tips and Techniques

script.append("text = buffer.getText(start, end - start);");
script.append("match = text.indexOf(__char__, 1);");
script.append("if(match != -1) {");
script.append("if(__char__ != ’\\n’) ++match;");
script.append("textArea.select(start, start + match - 1);");
script.append("}");

view.getInputHandler().readNextChar("Enter a character",
script.toString());

// end Next_Char.bsh

Once again, here are a few comments on the macro’s design.

• A StringBuffer object is used for efficiency; it obviates multiple creation of
fixed-lengthString objects. The parameter to the constructor ofscript specifies the
initial size of the buffer that will receive the contents of the child script.

• Besides the quoting of the script code, the formatting of the macro is entirely optional
but (hopefully) makes it easier to read.

• It is important that the child script be self-contained. It does not run in the same
namespace as the “parent” macroNext_Char.bsh and therefore does not share
variables, methods, or scripted objects defined in the parent macro.

• Finally, access to theInputHandler object used by jEdit is available by calling
getInputHandler() on the current view.

14.2. Startup Scripts
On startup, jEdit runs any BeanShell scripts located in thestartup subdirectory of the jEdit
installation and user settings directories (see Section 6.4). As with macros, the scripts must
have a.bsh file name extension. Startup scripts are run near the end of the startup sequence,
after plugins, properties and such have been initialized, but before the first view is opened.

147

Chapter 14. Macro Tips and Techniques

Startup scripts can perform initialization tasks that cannot be handled by command line
options or ordinary configuration options, such as customizing jEdit’s user interface by
changing entries in the Java platform’sUIManager class.

Startup scripts have an additonal feature that can help you further customize jEdit. Unlike
with macros, variables and methods defined in a startup script are available in all instances
of the BeanShell interpreter created in jEdit. This allows you to create a personal library of
methods and objects that can be accessed at any time during the editing session in another
macro, the BeanShell shell of the Console plugin, or menu items such asUtilities>Evaluate
BeanShell Expression.

The startup script routine will run script files in the installation directory first, followed by
scripts in the user settings directory. In each case, scripts will be executed in alphabetical
order, applied without regard to whether the file name contains upper or lower case
characters.

If a startup script throws an exception (becuase, for example, it attempts to call a method on
a null object). jEdit will show an error dialog box and move on to the next startup script. If
script bugs are causing jEdit to crash or hang on startup, you can use the-nostartupscripts
command line option to disable them for that editing session.

Another important difference between startup scripts and ordinary macros is that startup
scripts cannot use the pre-defined variablesview , textArea , editPane andbuffer . This is
because they are executed before the initial view is created.

If you are writing a method in a startup script and wish to use one of the above variables,
pass parameters of the appropriate type to the method, so that a macro calling them after
startup can supply the appropriate values. For example, a startup script could include a
method

void doSomethingWithView(View v, String s) {
...

}

so that during the editing session another macro can call the method using

doSomethingWithView(view, "something");

148

Chapter 14. Macro Tips and Techniques

14.3. Running Scripts from the Command
Line
The-run command line switch specifies a BeanShell script to run on startup:

$ jedit -run=test.bsh

Note that just like with startup scripts, theview , textArea , editPane andbuffer variables
are not defined.

If another instance is already running, the script will be run in that instance, and you will be
able to use thejEdit.getLastView() method to obtain a view. However, if a new instance
of jEdit is being started, the script will be run at the same time as all other startup scripts;
that is, before the first view is opened.

If your script needs a view instance to operate on, you can use the following code snippet to
obtain one, no matter how the script is being run:

void doSomethingUseful()
{

void run()
{

view = jEdit.getLastView();

// put actual script body here
}

if(jEdit.getLastView() == null)
VFSManager.runInAWTThread(this);

else
run();

}

doSomethingUseful();

If the script is being run in a loaded instance, therun() method can be invoked directly. If
the script is running on startup, a bit of magic has to be performed first. The method that

149

Chapter 14. Macro Tips and Techniques

does the script’s work must be namedrun() so that the closure can implement the
Runnable interface; this closure is then passed to therunInAWTThread() method.

When therunInAWTThread() method is invoked during startup, it schedules the specified
Runnable to be run after startup is complete. If invoked when jEdit is fully loaded, the
runnable will be run after all pending input/output is complete, or immediately if there are
no pending I/O operations. Only the former behavior is useful in macros.

14.4. Advanced BeanShell Techniques
BeanShell has a few advanced features that we haven’t mentioned yet. They will be
discussed in this section.

14.4.1. BeanShell’s Convenience Syntax
We noted earlier that BeanShell syntax does not require that variables be declared or defined
with their type, and that variables that are not typed when first used can have values of
differing types assigned to them. In addition to this “loose” syntax, BeanShell allows a
“convenience” syntax for dealing with the properties of JavaBeans. They may be accessed or
set as if they were data members. They may also be accessed using the name of the property
enclosed in quotation marks and curly brackets. For example, the following statement are all
equivalent, assumingbtn is aJButton instance:

b.setText("Choose");
b.text = "Choose";
b{"text"} = "Choose";

The last form can also be used to access a key-value pair of aHashtable object. It can even
be used to obtain the values of buffer-local properties; the following two statements are
equivalent:

buffer.getProperty("tabSize")
buffer{"tabSize"}

150

Chapter 14. Macro Tips and Techniques

14.4.2. Special BeanShell Keywords
BeanShell uses special keywords to refer to variables or methods defined in the current or an
enclosing block’s scope:

• The keywordthis refers to the current scope.

• The keywordsuper refers to the immediately enclosing scope.

• The keywordglobal refers to the top-level scope of the macro script.

The following script illustrates the use of these keywords:

a = "top\n";
foo() {

a = "middle\n";
bar() {

a = "bottom\n";
textArea.setSelectedText(global.a);
textArea.setSelectedText(super.a);
// equivalent to textArea.setSelectedText(this.a):
textArea.setSelectedText(a);

}

bar();
}
foo();

When the script is run, the following text is inserted in the current buffer:

top
middle
bottom

14.4.3. Implementing Interfaces
As discussed in the macro example in Chapter 13, scripted objects can implement Java
interfaces such asActionListener . Which interfaces may be implemented varies

151

Chapter 14. Macro Tips and Techniques

depending upon the version of the Java runtime environment being used. If running under
Java 1.1 or 1.2, BeanShell objects can only implement the AWT or Swing event listener
interfaces contained in thejava.awt.event andjavax.swing.event packages, and the
java.lang.Runnable interface. If running under Java 1.3 or 1.4, any interface can be
implemented.

Frequently it will not be necessary to implement all of the methods of a particular interface
in order to specify the behavior of a scripted object. Under Java 1.2 and below, BeanShell
will automatically ignore calls on unimplemented members of an interface. Under Java 1.3
and above, however, the reflection mechanism will throw an exception for any missing
interface methods, which will result in an error dialog box being shown when your macro
runs; not a pretty sight. The solution is to implement theinvoke() method, which is called
when an undefined method is invoked on a scripted object. Typically, the implementation of
this method will do nothing, as in the following example:

invoke(method, args) {}

14.4.4. BeanShell Commands
BeanShell comes with a large number of built-in scripted “commands” that are useful in
many circumstances. Documentation for commands that are helpful when writing macros
can be found in Chapter 19.

14.5. Debugging Macros
Here are a few techniques that can prove helpful in debugging macros.

14.5.1. Identifying Exceptions
An exceptionis a condition reflecting an error or other unusual result of program execution
that requires interruption of normal program flow and some kind of special handling. Java
has a rich (and extendable) collection of exception classes which represent such conditions.

152

Chapter 14. Macro Tips and Techniques

jEdit catches exceptions thrown by BeanShell scripts and displays them in a dialog box. In
addition, the full traceback is written to the activity log (see Appendix B for more
information about the activity log).

There are two broad categories of errors that will result in exceptions:

• Interpreter errors, which may arise from typing mistakes like mismatched brackets or
missing semicolons, or from BeanShell’s failure to find a class corresponding to a
particular variable.

Interpreter errors are usually accompanied by the line number in the script, along with
the cause of the error.

• Execution errors, which result from runtime exceptions thrown by the Java platform
when macro code is executed.

Some exceptions thrown by the Java platform can often seem cryptic. Nevertheless,
examining the contents of the activity log may reveals clues as to the cause of the error.

14.5.2. Using the Activity Log as a Tracing Tool
Sometimes exception tracebacks will say what kind of error occurred but not where it arose
in the script. In those cases, you can insert calls that log messages to the activity log in your
macro. If the logged messages appear when the macro is run, it means that up to that point
the macro is fine; but if an exception is logged first, it means the logging call is located after
the cause of the error.

To write a message to the activity log, use the following method of theLog class:

• public static void log (int urgency , Object source , Object message);

The parameterurgency can take one of the following constant values:

• Log.DEBUG

• Log.MESSAGE

153

Chapter 14. Macro Tips and Techniques

• Log.NOTICE

• Log.WARNING

• Log.ERROR

Note that theurgency parameter merely changes the string prefixed to the log message; it
does not change the logging behavior in any other way.

The parametersource can be either an object or a class instance. When writing log
messages from macros, set this parameter toBeanShell.class to make macro errors easier
to spot in the activity log.

The following code sends a typical debugging message to the activity log:

Log.log(Log.DEBUG, BeanShell.class,
"counter = " + String.valueOf(counter));

The corresponding activity log entry might read as follows:

[debug] BeanShell: counter = 15

Using message dialog boxes as a tracing tool

If you would prefer not having to deal with the activity log, you can use the
Macros.message() method as a tracing tool. Just insert calls like the following in the
macro code:

Macros.message(view,"tracing");

Execution of the macro is halted until the message dialog box is closed.

154

IV. Writing Plugins
This part of the user’s guide covers writing plugins for jEdit.

Like jEdit itself, plugins are written primarily in Java. While this guide assumes some
working knowledge of the language, you are not required to be a Java wizard. If you can
write a useful application of any size in Java, you can write a plugin.

This part of the user’s guide was written by John Gellene <jgellene@nyc.rr.com >.

155

Chapter 15. Introducing the Plugin
API
The jEdit Plugin APIprovides a framework for hosting plugin applications without
imposing any requirements on the design or function of the plugin itself. You could write a
application that performs spell checking, displays a clock or plays chess and turn it into a
jEdit plugin. There are currently over 40 released plugins for jEdit. While none of them play
chess, they perform a wide variety of editing and file management tasks. A detailed listing of
available plugins is available at the jEdit Plugin Central (http://plugins.jedit.org) web site.

Using the plugin manager feature of jEdit, users with an Internet connnection can check for
new or updated plugins and install and remove them without leaving jEdit. See Chapter 8 for
details.

In order to “plug in” to jEdit, a plugin must implement interfaces that deal with the
following matters:

• Ths plugin must supply information about itself, such as its name, version, author, and
compatibility with versions of jEdit.

• The plugin must provide for activating, displaying and deactivating itself upon
direction from jEdit, typically in response to user input.

• The plugin may, but need not, provide a user interface.

If the plugin has a visible interface, it can be shown in any object derived from one of
Java top-level container classes:JWindow , JDialog , or JFrame . jEdit also provides a
dockable window API, which allows plugin windows to be docked into views or shown
in top-level frames, at the user’s request.

Plugins can also act directly upon jEdit’s text area. They can add graphical elements to
the text display (like error highlighting in the case of the ErrorList plugin) or
decorations surrounding the text area (like the JDiff plugin’s summary views).

• Plugins may (and typically do) defineactionsthat jEdit will perform on behalf of the
plugin upon user request. Actions are short snippets of BeanShell code that provide the

156

Chapter 15. Introducing the Plugin API

“glue” between user input and specifc plugin routines.

By convention, plugins display their available actions in submenus of jEdit’sPlugins
menu; each menu item corresponds to an action. The user can also assign actions to
keyboard shortcuts, toolbar buttons or entries in the text area’s right-click menu.

• Plugins may provide a range of options that the user can modify to alter its
configuration.

If a plugin provides configuration options in accordance with the plugin API, jEdit will
make them available in theGlobal Options dialog. Each plugin with options is listed
in the tree view in that dialog underPlugin Options. Clicking on the tree node for a
plugin causes the corresponding set of options to be displayed.

As noted, many of these features are optional; it is possible to write a plugin that does not
provide actions, configuration options, or dockable windows. The majority of plugins,
however, provide most of these services.

In the following chapters, we will begin by briefly describing jEdit’s host capabilities, which
includes the loading and display of plugins. Next we will describe the principal classes and
data structures that a plugin must implement. Finally, we will outline the building of a
modest plugin, “QuickNotepad”, that illustrates the requirements and some of the
techniques of jEdit plugin design.

Plugins and different jEdit versions

As jEdit continues to evolve and improve, elements of the plugin API or jEdit’s
general API may change with a new jEdit release. For example, version 3.2 of jEdit
introduced a set ofSelection classes that enable multiple text selections in the text
area. On occasion an API change will break code used by plugins, although efforts are
made to maintain or deprecate plugin-related code where possible. While the majority
of plugins are unaffected by most changes and will continue working, it is a good idea
to monitor the jEdit change log and mailing lists for API changes and update your
plugin as necessary.

157

Chapter 16. jEdit as a Plugin Host
A good way to start learning what a plugin requires is to look at what the host application
does with one. We start our discussion of plugins by outlining how jEdit loads and displays
them. This section only provides a broad overview of the more important components that
make up jEdit; specifics of the API will be documented in subsequent chapters.

16.1. Loading Plugins
As part of its startup routine, jEdit’smain method calls various methods to load and
initialize plugins. This occurs after the application has done the following:

• parsed command line options;

• started the edit server (unless instructed not to by a command line option) and;

• loaded application properties, any user-supplied properties, and the application’s set of
actions that will be available from jEdit’s menu bar (as well as the toolbar and keyboard
shortcuts);

Plugin loading occurs before jEdit creates any windows or loads any files for editing. It also
occurs before jEdit runs any startup scripts.

16.1.1. The JARClassLoader
Plugins are loaded from files with the.jar filename extension located in thejars

subdirectories of the jEdit installation and user settings directories (see Section 6.4).

For each JAR archive file it finds, jEdit creates an instance of theJARClassLoader class.
This is a jEdit-specific class that implements the Java platform’s abstract class
ClassLoader . The constructor for theJARClassLoader object does the following:

• Adds any class file with a name ending withPlugin.class to an internal collection of
plugin class names maintained by theJARClassLoader . See Section 17.1.

158

Chapter 16. jEdit as a Plugin Host

• Loads any properties defined in files ending with the extension.props that are
contained in the archive. See Section 17.4.2.

• Loads any data on the plugin’s actions from a file namedactions.xml (if it exists)
contained at the top level of the archive file. See Section 17.4.1.

• Adds to a collection maintained by jEdit a new object of typeEditPlugin.JAR . This
is a data structure holding the name of the jar archive file, a reference to the
JARClassLoader and a collection, initially empty, of plugins found in the archive file.

Once all plugin JAR files have been examined for the above resources, jEdit initializes all
class files whose names end inPlugin.class , as identified in the first pass through the JAR
archive. We will call these classesplugin core classes. Plugin core classes are the principal
point of contact between jEdit and the plugin, and must extend jEdit’s abstractEditPlugin

class.

For each plugin core class, the loader first checks the plugin’s properties to see if it is subject
to any dependencies. For example, a plugin may require that the version of the Java runtime
environment or of jEdit itself be equal to or above some threshold version. A plugin can also
require the presence of another plugin. If any dependency is not satisified, the loader marks
the plugin as “broken” and logs an error message.

If all dependencies are satisfied, a new instance of the plugin core class is created and added
to the collection maintained by the appropriateEditPlugin.JAR object. By accessing that
object, jEdit can keep track of plugins it has successfully loaded, and call methods or
perform routines on them.

159

Chapter 16. jEdit as a Plugin Host

Class libraries

JAR files with no plugin core classes are also loaded by jEdit; no special initialization
is performed on them, and the classes they contain are made available to other plugins.

Many plugins that rely on third-party class libraries ship them as separate JARs, for
example.

A plugin that bundles extra JARs needs to define a property that lists these JAR files in
order for the plugin manager to be able to remove the plugin completely. See Section
17.4.2.

16.1.2. Starting the Plugin
After creating and storing the plugin core object, jEdit calls thestart() method of the
plugin core class. This method is defined as an empty “no-op” in theEditPlugin abstract
class, therefore it is not required that plugins provide their own implementation. Only trivial
plugins will not need to perform some kind of initialization, however.

Thestart() method can perform initialization of the object’s data members. It can also
register its identity and other information with jEdit’sEditBusobject, which manages
messaging between plugins and the host application. We will discuss the EditBus in more
detail in Section 16.2.2 and Chapter 21.

At this point, we can identify the following practical requirements for a plugin:

• it must be packaged as a JAR archive;

• the JAR archive must contain at least one plugin core class whose name ends in
Plugin ;

• each plugin core class must exnted theEditPlugin abstract class;

• the JAR archive may contain data concerning actions for display in jEdit’s menu bar
and elsewhere in a file entitledactions.xml ; and

160

Chapter 16. jEdit as a Plugin Host

• the archive must contain at least one properties file having a.props extension. Certain
properties giving information about the plugin must be defined.

We will provide more detail on these requirements later.

16.2. The User Interface of a Plugin
To display a user interface, plugins can either directly extend Java’sJFrame , JDialog , or
JWindow classes, or use jEdit’s dockable window API. Plugin windows are typically defined
in classes that are part of the plugin package but separate from the plugin core class.

16.2.1. The Role of the View Object
A View is jEdit’s top-level frame window that contains one or more (if the view is split) text
areas, a menu bar, a toolbar and other window decorations, as well as docked plugin
windows. TheView class performs two important operations that deal with plugins: creating
plugin menu items, and managing dockable windows.

When a view is being created, it iterates through the collection of loaded plugins and calls
thecreateMenuItems() method of each plugin core class. Again, implementing this
method is not necessary, but very few plugins will be able to get away with not adding
anything to jEdit’s menu bar. As we will explain in the next chapter, the typical plugin,
instead of creating JavaJMenu andJMenuItem objects directly, relies on a method in a
utility class to create menu entries.

TheView also creates and initializes aDockableWindowManager object. This object is
responsible for creating, closing and managing dockable windows.

TheView class contains a number of methods that can be called from plugins; see Section
20.2 for details.

16.2.2. The DockableWindowManager and the EditBus

161

Chapter 16. jEdit as a Plugin Host

TheDockableWindowManager keeps track of docked and floating windows. When theView

object initializes itsDockableWindowManager , the manager iterates through the list of
registered dockable windows and causes those specified by the user to “auto open” in the
Global Options dialog box to be displayed. TheDockableWindowManager class is also
invoked at any other time the user requests a dockable window is opened or closed.

TheDockableWindowManager creates and displays plugin windows by routing messages
through the application’sEditBus object that we mentioned earlier. The EditBus mantains a
list of objects that have requested to receive messages. When a message is sent using this
class, all registered components receive it in turn.

EditBus subscribers must implement theEBComponent interface, which defines the single
methodhandleMessage() . A View , for example, can receive and handle EditBus messages
because it also implementsEBComponent.

Plugins that wish to receive messages can explicitly provide implementations of this
interface, and register them with the EditBus using theEditBus.addToBus() method.
However, it can be more convinient to have the plugin core class extend theEBPlugin

abstract class, which is identical to theEditPlugin class, except it implements the interface
mentioned above, and automatically adds itself to the EditBus.

To activate a plugin window, theDockableWindowManager creates a
CreateDockableWindow message object containing three data items: a reference to the
view that will contain the plugin, the name of the plugin and the relative position of the
window in which the plugin will be placed. That message is sent to the EditBus using the
send() method of theEditBus class.

16.2.3. Message Routing and Dockable Window
Creation
In the case of aCreateDockableWindow message, successive subscribers to the EditBus
receive the message, through a call to each subscriber’shandleMessage() method, until
one subscriber signals that it has handled the message. This occurs when a subscriber
matches the message’sname data member with the name of a dockable window the plugin

162

Chapter 16. jEdit as a Plugin Host

provides. The intended recipient then handles the message by creating an appropriate plugin
window and attaching it to the message, so that when message routing is completed, the
DockableWindowManager can retrieve and store the new plugin window.

As a final step in plugin activation, the manager create another window object that will
contain the visible components of the plugin. This object implements the
DockableWindowContainer interface; depending on the settings for the plugin selected by
the user, it will either be a tabbed window pane in one of the docked windows attached to
theView object, or a separate, floating frame window. Plugins need not be aware of the
implementation details of the container.

Eventually theDockableWindowManager destroys the plugin window, whether docking or
floating, in response to user action or as part of the destruction of the correspondingView

object.

TheDockableWindowManager andEditBus classes contain a number of methods that can
be called from plugins; see Section 20.2 for details.

This summary shows that a plugin wishing to use the dockable window API has the
following additional requirements:

• the plugin class must extendEBPlugin instead ofEditPlugin in order to receive the
CreateDockableWindow message;

• it must register its dockable windows in itsstart() method; and

• it must create and arrange any dockable windows it provides in response to the
appropriateCreateDockableWindow message;

With this broad outline of how jEdit behaves as a plugin host in the background, we will
next review the programming elements that make up a plugin.

163

Chapter 17. The jEdit Plugin API

17.1. Plugin Core Classes
As mentioned earlier, a plugin must provide a “plugin core class”, otherwise it will not do
anything useful (but recall that a class library intended for use by other plugins need not
provide a plugin core class). That class must extend eitherEditPlugin or its convinience
subclass,EBPlugin . We begin our review of the jEdit plugin API with these two classes.

17.1.1. Class EditPlugin
This abstract class is the base for every plugin core class. Its methods provide for basic
interaction between the plugin and jEdit. The class has four methods which are called by
jEdit at various times. None of these methods are required to be implemented, but most
plugins will override at least one.

• public void start ();

The jEdit startup routine calls this method for each loaded plugin. Plugins typically use
this method to register information with the EditBus and perform other initialization.

• public void stop ();

When jEdit is exiting, it calls this method on each plugin. If a plugin uses or creates
state information or other persistent data that should be stored in a special format, this
would be a good place to write the data to storage. Note that most plugins will use
jEdit’s properties API to save settings, and the persistance of properties is handled
automatically by jEdit and requires no special processing in thestop() method.

• public void createMenuItems (Vector menuItems);

When aView object is created, it calls this method on each plugin to obtain entries to
be displayed in the view’sPlugins menu. ThemenuItems parameter is aVector that
accumilates menu items and menus as it is passed from plugin to plugin.

164

Chapter 17. The jEdit Plugin API

jEdit does not require a plugin to supply menu items. If menu items are desired, the
easiest way to provide for them is to package the desired menu items as entries in the
plugin’s property file and implementcreateMenuItems() with a call to jEdit’s
GUIUtilities.loadMenu() method; for example:

public void createMenuItems(Vector menuItems)
{

menuItems.addElement(GUIUtilities.loadMenu(
"myplugin.menu"));

}

The parameter passed toloadMenu() is the name of a property containing menu data.
We will explain the format of the menu data in Section 18.2.3.2

TheGUIUtilities.loadMenuItem() method is also available for plugins that only
wish to add a single menu item to thePlugins menu.

• public void createOptionPanes (OptionsDialog dialog);

This method is called for each plugin during the creation of theGlobal Options dialog
box. To show an option pane, the plugin should define an option pane class and
implementcreateOptionPane() as follows:

dialog.addOptionPane(new MyPluginOptionPane());

Plugins can also define more than one option pane, grouped in an “option group”. We
will discuss the design and elements of the option pane API in Section 17.3.

This class defines two other methods which may be useful to some plugins, but are mainly
of use to the jEdit core:

• public String getClassName

This shortcut method returnsgetClass().getName() .

• public EditPlugin.JAR getJAR

This method returns theEditPlugin.JAR data object associated with the plugin.

165

Chapter 17. The jEdit Plugin API

17.1.2. Class EBPlugin
Every plugin core class class that uses the EditBus for receiving messages must extend this
class. This class implements theEBComponent interface, required for any object that wishes
to receive EditBus messages.

TheEBComponent interface contains a single method that an implementing class (including
any class derived fromEBPlugin) must provide:

• public void handleMessage (EBMessage message);

The parameter’s type,EBMessage, is another abstract class which establishes the core
elements of any message that is published to the EditBus. It has two attributes: an
EBComponent that is the source of the message (the source will be null in some cases), and a
boolean data member,vetoed . This flag indicates whether a prior recipient of the message
has determined that the message has been handled and need not be passed on to other
subscribers. The flag is set by a call to theveto() method of theEBMessage. Some message
classes, however, are configured so that they cannot be vetoed, to ensure they are received by
all subscribers.

Message classes extendingEBMessage typically add other data members and methods to
provide subscribers with whatever is needed to handle the message appropriately.
Descriptions of specific message classes can be found in Chapter 21.

ThehandleMessage() method must specify the type of responses the plugin will have for
various subclasses of theEBMessage class. Typically this is done with one or moreif

blocks that test whether the message is an instance of a derived message class in which the
plugin has an interest, for example like so:

if(msg instanceof CreateDockableWindow)
// create dockable window, if necessary

else if(msg instanceof BufferUpdate)
// a buffer’s state has changed!

else if(msg instanceof ViewUpdate)
// a view’s state has changed!

// ... and so on

166

Chapter 17. The jEdit Plugin API

If a plugin defines dockable windows, it should respond to aCreateDockableWindow

message by creating the appropriate user interface objects and setting the relevant data field
in the message, for example like so:

if(msg instanceof CreateDockableWindow)
{

CreateDockableWindow cmsg = (CreateDockableWindow)msg;
if(cmsg.getDockableWindowName().equals("myplugin"))

cmsg.setDockableWindow(new MyPluginWindow());
}

Note that any object, whether or not derived fromEBComponent, can send a message to the
EditBus by calling the static methodEditBus.send() . This method takes a single
parameter, anEBMessage object that is the message being sent. Most plugins, however, will
only concern themselves with receiving, not sending, messages.

17.2. Interface DockableWindow
The dockable plugin API consists of a single interface,DockableWindow . It links the visible
components of a plugin with the dockable window management facility. The interface gives
developers flexibility and minimizes code refactoring, for it can be implemented as part of
the plugin’s top-level display window or in a separate lightweight class. The dockable
window API handles the display of windows as either docked or floating without specific
direction from the plugin.

This interface provides the connection between the plugin’s visible components and a
top-levelView object of the host application. As mentioned earlier, the plugin window class
implementing this interface must be created by the plugin core class in response to a
CreateDockableWindow message. After its creation, the plugin window object is attached
to the message for routing back to jEdit.

TheDockableWindow interface contains two methods that must be implemented by a
derived plugin window class:

167

Chapter 17. The jEdit Plugin API

• String getName ();

This method should return the internal working name of the plugin window, used to key
various properties.

• Component getComponent ();

This method should return the top-level visible component of the plugin. Typically this
component is aJPanel containing other components, but any object derived from the
JavaComponent class will suffice. If the top-level component implements the
DockableWindow interface, so that the plugin window and the top-level visible window
are implemented in the same class, the implementation ofgetComponent() would
simply returnthis .

17.3. Plugin Option Pane Classes
The plugin API provides a mechanism for displaying a plugin’s configuration options in the
Global Options dialog. A plugin that allows user configuration should provide one or more
implementations of jEdit’sOptionPane interface to have configuration options displayed in
a manner consistent wth the rest of the application.

17.3.1. Class AbstractOptionPane
Most plugin option panes extend this implementation ofOptionPane , instead of
implementingOptionPane directly. It provides a convenient default framework for laying
out configuration options in a manner similar to the option panes created by jEdit itself. It is
derived from Java’sJPanel class and contains aGridBagLayout object for component
management. It also contains shortcut methods to simplify layout.

The constructor for a class derived fromAbstractOptionPane should call the parent
constructor and pass the option pane’s “internal name” as a parameter. The internal name is
used to key a property where the option pane’s label is stored; see Section 17.4.2. It should
also implement two methods:

168

Chapter 17. The jEdit Plugin API

• protected void _init ();

This method should create and arrange the components of the option pane and initialize
the option data displayed to the user. This method is called when the option pane is first
displayed, and is not called again for the lifetime of the object.

• protected void _save ();

This method should save any settings, to the jEdit properties or other data store.

AbstractOptionPane also contains three shortcut methods, typically called from_init() ,
for adding components to the option pane:

• protected void addComponent (String label , Component comp);

• protected void addComponent (Component comp);

These shortcut methods add components to the option pane in a single vertical column,
running top to bottom. The first displays the text of thelabel parameter to the left of
theComponent represented bycomp.

• protected void addSeparator (String label);

This is another shortcut method that adds a text label between two horizontal separators
to the option pane. Thelabel parameter represents the name of a property (typically a
property defined in the plugin’s property file) whose value will be used as the separator
text.

17.3.2. Class OptionGroup
In those cases where a single option pane is inadequate to present all of a plugin’s
configuration options, this class can be used to create a group of options panes. The group
will appear as a single node in the options dialog tree-based index. The member option
panes will appear as leaf nodes under the group’s node. Threee simple methods create and
populate an option pane:

169

Chapter 17. The jEdit Plugin API

• public OptionGroup (String name);

The constructor’s single parameter represents the internal name of the option group.
The internal name is used to key a property where the option group’s label is stored; see
Section 17.4.2.

• public void addOptionPane (OptionPane pane);

• public void addOptionGroup (OptionGroup group);

This pair of methods adds members to the option group. The second method enables
option groups to be nested, for plugins with a particularly large set of configurable
options.

17.4. Other Plugin Resources
There are three other types of files containing resources used by a plugin:

• a catalog of the plugin’s user actions in a specified XML format, contained in a file
namedactions.xml ;

• one or more properties files named with a.props extension, each containing
key-value pairs in conventional Java format; and

• a help file written in HTML format. The name of this file must be specified in a
property; see Section 17.4.2.

17.4.1. The Action Catalog
Actions define procedures that can be bound to a menu item, a toolbar button or a keyboard
shortcut. They can perform any task encompassed in a public method of any class currently
loaded in jEdit, including plugin classes and classes of the host application. Among other
things, they can cause the appearance and disappearance of plugin windows.

170

Chapter 17. The jEdit Plugin API

To manage user actions, jEdit maintains a lookup table of actions using descriptive strings as
keys. The values in the table are sets of statements written in BeanShell, jEdit’s macro
scripting language. These scripts either direct the action themselves, delegate to a method in
one of the plugin’s classes that encapsulates the action, or do a little of both. The scripts are
usually short; elaborate action protocols are usually contained in compiled code, rather than
an interpreted macro script, to speed execution.

Actions are defined by creating an XML file entitledactions.xml at the top level of the
plugin JAR file. A sample action catalog looks like so:

<!DOCTYPE ACTIONS SYSTEM "actions.dtd">

<ACTIONS>
<ACTION NAME="quicknotepad.toggle">

<CODE>
view.getDockableWindowManager()

.toggleDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
<IS_SELECTED>

return view.getDockableWindowManager()
.isDockableWindowVisible(QuickNotepadPlugin.NAME);

</IS_SELECTED>
</ACTION>

<ACTION NAME="quicknotepad-to-front">
<CODE>

view.getDockableWindowManager()
.addDockableWindow(QuickNotepadPlugin.NAME);

</CODE>
</ACTION>

</ACTIONS>

The defined elements have the following functions:

• ACTIONSis the top-level element and refers to the set of actions used by the plugin.

• An ACTIONcontains the data for a particular action. It has three attributes: a required
NAME; an optionalNO_REPEAT, which is a flag indicating whether the action should not

171

Chapter 17. The jEdit Plugin API

be repeated with theControl -Enter command (see Section 2.4); and an optional
NO_RECORDwhich is a a flag indicating whether the action should be recorded if it is
invoked while a user is recording a macro. The two flag attributes can have two
possible values, “TRUE” or “FALSE”. In both cases, “FALSE” is the default if the
attribute is not specified.

• An ACTIONcan have two child elements within it: a requiredCODEelement which
specifies the BeanShell code that will be executed when the action is invoked, and an
optionalIS_SELECTEDelement, used for checkbox menu items. TheIS_SELECTED

element contains BeanShell code that returns a boolean flag that will determine the
state of the checkbox.

More discussion of the action catalog can be found in Section 18.2.3.1.

17.4.2. Plugin Properties
jEdit maintains a list of “properties”, which are name/value pairs used to store
human-readable strings, user settings, and various other forms of meta-data. During startup,
jEdit loads the default set of properties, followed by plugin properties stored in plugin JAR
files, finally followed by user properties. Plugins can access properties from all three
sources.

Property files contained in plugin JARs must end with the filename extension.props , and
have a very simple syntax, which the following example suffices to describe:

Lines starting with ’#’ are ignored.
name=value
another.name=another value
long.property=Long property value, split over \

several lines
escape.property=Newlines and tabs can be inserted \

using the \t and \n escapes
backslash.property=A backslash can be inserted by writing \\.

The following types of plugin information are supplied using properties:

172

Chapter 17. The jEdit Plugin API

• Information regarding the name, author, and version of the plugin. This information is
required. Here is an example:

plugin.MyPlugin.name=My Plugin
plugin.MyPlugin.author=Joe Random Hacker
plugin.MyPlugin.version=1.0.3

Note that each property is prefixed withplugin. , followed by the fully qualified name
of the plugin core class (including a package name, if there is one).

• Identification of any dependencies the plugin may have on a particular version of a
Java runtime environment, the jEdit application, or other plugins.

Each dependency is defined in a property prefixed withplugin. class

name.depend. , followed by a number. Dependencies must be numbered in order,
starting from zero.

The value of a dependency property is one of the wordsjdk , jedit , class or plugin ,
followed by a Java version number, a jEdit build number, a class name, or plugin class
name and plugin version number, respectively.

Here are some examples:

plugin.MyPlugin.depend.0=jdk 1.2
plugin.MyPlugin.depend.1=jedit 03.02.97.00
plugin.MyPlugin.depend.2=class com.ice.tar.tar
plugin.MyPlugin.depend.3=plugin console.ConsolePlugin 3.0

• A list of external class library JARs shipped with the plugin. If your plugin bundles
extra JARs, this property is required for the plugin manager to be able to remove the
plugin completely.

The property is a space-separated list of filenames. Here is an example:

plugin.AntFarmPlugin.jars=crimson.jar jaxp.jar

• The titles of dockable windows, as displayed in a tabbed or floating container.

173

Chapter 17. The jEdit Plugin API

These labels are specified in properties named by the return value of the dockable
window’s getName() method, suffixed with.title . For example:

quick-notepad.title=QuickNotepad

• Labels for user actions for inclusion in menus and option panes relating to toolbars and
keyboard shortcuts.

Action labels are defined in properties named by the action’s internal name as specified
in the action catalog, followed by.label :

myplugin.label=My Plugin
myplugin-grok.label=Grok Current Buffer

• The list of menu items contained in plugin menus, if any.

This is discussed in detail in Section 18.2.3.2.

• Labels and other information regarding the controls contained in the plugin’s windows.
These properties can be named any way you like, however take care not to choose
names which may conflict with those in other plugins.

17.4.3. Plugin Documentation
While not required by the plugin API, a help file is an essential element of any plugin
written for public release. A single web page is often all that is required. There are no
specific requirements on layout, but because of the design of jEdit’s help viewer, the use of
frames should be avoided. Topics that would be useful include the following:

• a description of the purpose of the plugin;

• an explanation of the type of input the user can supply through its visible interface
(such as mouse action or text entry in controls);

• a listing of available user actions that can be taken when the plugin does not have input
focus;

174

Chapter 17. The jEdit Plugin API

• a summary of configuration options;

• information on development of the plugin (such as a change log, a list of “to do” items,
and contact information for the plugin’s author); and

• licensing information, including acknowledgements for any library software used by
the plugin.

The location of the plugin’s help file should be stored in theplugin. class name .docs

property.

175

Chapter 18. Writing a Plugin
One way to organize a plugin project is to design the software as if it were a “stand alone”
application, with three exceptions:

• The plugin can access theView object with which it is associated, as well as static
methods of thejEdit class, to obtain and manipulate various data and host application
objects;

• If the plugin has visible components, they are ultimately contained in aJPanel object
instead of a top-level frame window; and

• The plugin implements the necessary elements of the jEdit plugin API that were
outlined in the last chapter: a plugin core class, perhaps a number of plugin window
classes, maybe a plugin option pane class, and a set of required plugin resources.

Not every plugin has configurable options; some do not have a visible window.
However, all will need a plugin core class and a minimum set of other resources.

We will now illustrate this approach by introducing an example plugin.

18.1. QuickNotepad: An Example Plugin
There are many applications for the leading operating systems that provide a “scratch-pad”
or “sticky note” facility for the desktop display. A similar type of facility operating within
the jEdit display would be a convenience. The use of docking windows would allow the
notepad to be displayed or hidden with a single mouse click or keypress (if a keyboard
shortcut were defined). The contents of the notepad could be saved at program exit (or, if
earlier, deactivation of the plugin) and retrieved at program startup or plugin activation.

We will keep the capabilities of this plugin modest, but a few other features would be
worthwhile. The user should be able to write the contents of the notepad to storage on
demand. It should also be possible to choose the name and location of the file that will be
used to hold the notepad text. This would allow the user to load other files into the notepad
display. The path of the notepad file should be displayed in the plugin window, but will give

176

Chapter 18. Writing a Plugin

the user the option to hide the file name. Finally, there should be an action by which a single
click or keypress would cause the contents of the notepad to be written to the new text buffer
for further processing.

The full source code for QuickNotepad is contained in jEdit’s source code distribution. We
will provide excerpts in this discussion where it is helpful to illustrate specific points. You
are invited to obtain the source code for further study or to use as a starting point for your
own plugin.

18.2. Writing a Plugin Core Class
The major issues encountered when writing a plugin core class arise from the developer’s
decisions on what features the plugin will make available. These issues have implications for
other plugin elements as well.

• Will the plugin provide for actions that the user can trigger using jEdit’s menu items,
toolbar buttons and keyboard shortcuts?

• Will the plugin have its own visible interface?

• Will the plugin use jEdit’s dockable window API?

If a plugin will use the dockable window API, it must handle a targeted
CreateDockableWindow message.

• Will the plugin respond to any other messages reflecting changes in the host
application’s state?

• Will the plugin have settings that the user can configure?

18.2.1. Choosing a Base Class
If the plugin will respond to EditBus messages, it must be derived fromEBPlugin .
Otherwise,EditPlugin will suffice as a base class.

177

Chapter 18. Writing a Plugin

Knowing what types of messages are made available by the plugin API is obviously helpful
is determining both the base plugin class and the contents of ahandleMessage() method.
The message classes derived fromEBMessage cover the opening and closing of the
application, changes in the status of text buffers and their container and changes in user
settings, as well as changes in the state of other program features. Specific message classes
of potential interest to a plugin include the following:

• EditorStarted , sent during the application’s startup routine, just prior to the creation
of the initial View ;

• EditorExitRequested , sent when a request to exit has been made, but before saving
open buffers and writing user settings to storage;

• EditorExiting , sent just before jEdit actually exits;

• EditPaneUpdate , sent when an edit pane containing a text area (including a pane
created by splitting an existing window) has been created or destroyed, or when a
buffer displayed in an edit pane has been changed;

• BufferUpdate , sent when a text buffer is created, loaded, or being saved, or when its
editing mode or markers have changed;

• ViewUpdate , sent when aView is created or closed; and

• PropertiesChanged , sent when the properties of the application or a plugin has been
changed through theGeneral Options dialog;

Detailed documentation for each message class can be found in Chapter 21.

18.2.2. Implementing Base Class Methods

18.2.2.1. General Considerations

If EditPlugin is selected as the base plugin core class, the implementations ofstart()

andstop() in the plugin’s derived class are likely to be trivial, or not present at all (in
which case they will be “no-ops”). IfEBPlugin is selected to provide messaging capability,
however, there are a few fixed requirements.

178

Chapter 18. Writing a Plugin

If the plugin is to use the dockable window API, the “ internal names” of any dockable
windows must be registered with the EditBus component. The EditBus stores such
information in one of a number of “named lists”. Here is how the QuickNotepad plugin
registers its dockable window:

EditBus.addToNamedList(DockableWindow.DOCKABLE_WINDOW_LIST, NAME);

The first parameter is aString constant identifying the dockable window list. The second is
a staticString constant which is initialized in the plugin core class as the dockable
window’s internal name.

The use ofNAMEas the second parameter employs an idiom found in many plugins. The
plugin class can includestatic final String data members containing information to be
registered with the EditBus or key names for certain types of plugin properties. This makes
it easier to refer to the information when a method such ashandleMessage() examines the
contents of a message. The kind of data that can be handled in this fashion include the
following:

• the internal working name of dockable windows that will be used in the
CreateDockableWindow message and elsewhere;

• a label for identifying the plugin’s menu;

• a prefix for labelling properties required by the plugin API; and

• a prefix to be used in labelling items used in the plugin’s option pane

18.2.2.2. Example Plugin Core Class

We will derive the plugin core class for QuickNotepad fromEBPlugin to allow the plugin
core object to subscribe to the EditBus and receive aCreateDockableWindow message.
There are no other messages to which the plugin core object needs to respond, so the
implementation ofhandleMessage() will only deal with one class of message. We will
define a few staticString data members to enforce consistent syntax for the name of
properties we will use throughout the plugin. Finally, we will use a standalone plugin

179

Chapter 18. Writing a Plugin

window class to separate the functions of that class from the visible component class we will
create.

The resulting plugin core class is lightweight and straightforward to implement:

public class QuickNotepadPlugin extends EBPlugin {
public static final String NAME = "quicknotepad";
public static final String MENU = "quicknotepad.menu";
public static final String PROPERTY_PREFIX

= "plugin.QuickNotepadPlugin.";
public static final String OPTION_PREFIX

= "options.quicknotepad.";

public void start() {
EditBus.addToNamedList(DockableWindow

.DOCKABLE_WINDOW_LIST, NAME);
}

public void createMenuItems(Vector menuItems) {
menuItems.addElement(GUIUtilities.loadMenu(MENU));

}

public void createOptionPanes(OptionsDialog od) {
od.addOptionPane(new QuickNotepadOptionPane());

}

public void handleMessage(EBMessage message) {
if(message instanceof CreateDockableWindow) {

CreateDockableWindow cmsg = (CreateDockableWindow)
message;

if (cmsg.getDockableWindowName().equals(NAME)) {
DockableWindow win = new QuickNotepadDockable(

cmsg.getView(), cmsg.getPosition());
cmsg.setDockableWindow(win);

}
}

}
}

180

Chapter 18. Writing a Plugin

The implementations ofcreateMenuItems() andcreateOptionPane() are typically
trivial, because the real work will be done using other plugin elements. Menu creation is
performed by a utility function in jEdit’s API, using properties defined in the plugin’s
properties file. The option pane is constructed in its own class.

If the plugin only had a single menu item (for example, a checkbox item that toggled
activation of a dockable window), we would callGUIUtilities.loadMenuItem() instead
of loadMenu() . We will explain the use of both methods in the next section.

The constructor forQuickNotepadDockable takes the values of theView object and the
docking position contained in theCreateDockableWindow message. This will enable the
plugin to “know” where it is located and modify its behavior accordingly. In another plugin,
it could enable the plugin to obtain and manipulate various data that are available through a
View object.

18.2.3. Resources for the Plugin Core Class

18.2.3.1. Actions

The plugin’s user action catalog,actions.xml , is the resource used by the plugin API to get
the names and definitions of user actions. The followingactions.xml file from the
QuickNotepad plugin can provide a model:

<!DOCTYPE ACTIONS SYSTEM "actions.dtd">

<ACTIONS>
<ACTION NAME="quicknotepad.toggle">

<CODE>
view.getDockableWindowManager()

.toggleDockableWindow(QuickNotepadPlugin.NAME);
</CODE>
<IS_SELECTED>

return view.getDockableWindowManager()
.isDockableWindowVisible(QuickNotepadPlugin.NAME);

</IS_SELECTED>

181

Chapter 18. Writing a Plugin

</ACTION>

<ACTION NAME="quicknotepad-to-front">
<CODE>

view.getDockableWindowManager()
.addDockableWindow(QuickNotepadPlugin.NAME);

</CODE>
</ACTION>

<ACTION NAME="quicknotepad.choose-file">
<CODE>

wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);
wm.getDockableWindow(QuickNotepadPlugin.NAME)

.chooseFile();
</CODE>

</ACTION>

<ACTION NAME="quicknotepad.save-file">
<CODE>

wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);
wm.getDockableWindow(QuickNotepadPlugin.NAME)

.saveFile();
</CODE>

</ACTION>

<ACTION NAME="quicknotepad.copy-to-buffer">
<CODE>

wm = view.getDockableWindowManager();
wm.addDockableWindow(QuickNotepadPlugin.NAME);
wm.getDockableWindow(QuickNotepadPlugin.NAME)

.copyToBuffer();
</CODE>

</ACTION>
</ACTIONS>

This file defines five actions. The first action uses the QuickNotepad’s internal plugin
window name to toggle its visible state. The second action places QuickNotepad at the top

182

Chapter 18. Writing a Plugin

of a stack of overlapping plugin windows. The other actions usewm, the
DockableWindowManager object contained in the current view, to find the QuickNotepad
plugin window and call the desired method.

If you are unfamiliar with BeanShell code, you may nevertheless notice that the code
statements bear a strong resemblance to Java code, with two exceptions: the variablewmis
not typed, and the variableview is never assigned any value.

For complete answers to these and other BeanShell mysteries, see Part III injEdit 3.2 User’s
Guide; two observations will suffice here. First, the BeanShell scripting language is based
upon Java syntax, but allows variables to be typed at run time, so explicit types for variables
such aswmneed not be declared. Second, the variableview is predefined by jEdit’s
implementation of BeanShell to refer to the currentView object.

A formal description of each element of theactions.xml file can be found in Section
17.4.1.

18.2.3.2. Action Labels and Menu Items

Now that we have named and defined actions for the plugin, we have to put them to work.
To do so, we must first give them labels that can be used in menu items and in the sections of
jEdit’s options dialog that deal with toolbar buttons, keyboard shortcuts and context menu
items. We supply this information to jEdit through entries in the plugin’s properties file. A
call to GUIUtilities.loadMenu() or GUIUtilities.loadMenuItem() will read and
extract the necessary labels from the contents of a properties file.

The following excerpt fromQuickNotepad.props illustrates the format required for action
labels and menu items:

action labels
quicknotepad.toggle.label=QuickNotepad
quicknotepad-to-front.label=Bring QuickNotepad to front
quicknotepad.choose-file.label=Choose notepad file
quicknotepad.save-file.label=Save notepad file
quicknotepad.copy-to-buffer.label=Copy notepad to buffer

application menu items

183

Chapter 18. Writing a Plugin

quicknotepad.menu.label=QuickNotepad
quicknotepad.menu=quicknotepad.toggle - quicknotepad.choose-file \

quicknotepad.save-file quicknotepad.copy-to-buffer

GUIUtilities.loadMenuItem() andGUIUtilites.loadMenu() use syntatical
conventions for the value of a menu property that simplifies menu layout. InloadMenu() ,
the use of the dash, as in the second item in the example menu list, signifies the placement of
a separator. Finally, the character’%’ used as a prefix on a label causesloadMenu() to call
itself recursively with the prefixed label as the source of submenu data. Most plugins will
not need to define menus that contain other submenus.

Note also thatquicknotepad-to-front is not included in the menu listing. It will appear,
however, on theShortcuts pane of theGlobal Options dialog, so that the action can be
associated with a keyboard shortcut.

18.3. Implementing a Dockable Window
Class
The QuickNotepad plugin uses the dockable window API and provides one dockable
window. Dockable window classes must implement theDockableWindow interface. There
are basically two approaches to doing this. One is to have the top-level visible component
also serve as the plugin window. The other is to derive a lightweight class that will create
and hold the top-level window component. We will ilustrate both approaches.

18.3.1. Using a Single Window Class
A single window class must implement theDockableWindow interface as well as provide
for the creation and layout of the plugin’s visible components, and execution of user actions.
The window for QuickNotepad will also implement theEBComponent so it can receive
messages from the EditBus whenever the user has changed the plugin’s settings in the
Global Options dialog. Here is an excerpt from a class definition showing the
implementation of both interfaces:

184

Chapter 18. Writing a Plugin

public class QuickNotepad extends JPanel
implements EBComponent, DockableWindow

{
private View view;
private String position;
...
public QuickNotepad(View view, String position) {

this.view = view;
this.position = position;
...

}

public String getName() {
return QuickNotepadPlugin.NAME;

}

public Component getComponent() {
return this;

}
...
public void handleMessage(EBMessage message) {

if (message instanceof PropertiesChanged) {
propertiesChanged();

}
}
...

}

This excerpt does not set forth the layout of the plugin’s visible components, nor does it
show how our user actions will be implemented. To provide more structure to the code, we
will implement theDockableWindow interface in a separate, lightweight class.

18.3.2. An Action Interface
When an action is invoked, program control must pass to the component responsible for
executing the action. The use of an internal table of BeanShell scripts that implement actions
avoids the need for plugins to implementActionListener or similar objects to respond to

185

Chapter 18. Writing a Plugin

actions. Instead, the BeanShell scripts address the plugin through static methods, or if
instance data is needed, the currentView , its DockableWindowManager , and the plugin’s
DockableWindow object. When the plugin window class is separated from the class
containing its visible components, there is one more link in the chain of control. This means
that the plugin window should either execute the action itself or delgte it to the visible
component.

We will use delegation between QuickNotepad’s plugin window, which we will call
QuickNotepadDockable , and the revised, slimmerQuickNotepad object. To represent that
delegation we will employ aQuickNotepadActions interface as an organizational tool:

public interface QuickNotepadActions {
void chooseFile();
void saveFile();
void copyToBuffer();

}

18.3.3. A Lightweight Dockable Window Class
Here is the complete definition of theQuickNotepadDockable class:

public class QuickNotepadDockable
implements DockableWindow, QuickNotepadActions

{
private QuickNotepad notepad;

public QuickNotepadDockable(View view, String position) {
notepad = new QuickNotepad(view, position);

}

public String getName() {
return QuickNotepadPlugin.NAME;

}

public Component getComponent() {
return notepad;

186

Chapter 18. Writing a Plugin

}

public void chooseFile() {
notepad.chooseFile();

}

public void saveFile() {
notepad.saveFile();

}

public void copyToBuffer() {
notepad.copyToBuffer();

}

}

Once again we use a static data member of the plugin core class to provide a name for the
plugin window to itsDockableWindowManager . The last three methods implement the
QuickNotepadActions interface.

18.4. The Plugin’s Visible Window

18.4.1. Class QuickNotepad
Here is where most of the features of the plugin will be implemented. To work with the
dockable window API, the top level window will be aJPanel . The visible components
reflect a simple layout. Inside the top-level panel we will place a scroll pane with a text area.
Above the scroll pane we will place a panel containing a small tool bar and a label
displaying the path of the current notepad file.

We have identified three user actions in theQuickNotepadActions interface that need
implementation here:chooseFile() , saveFile() , andcopyToBuffer() . As noted earlier,
we also want the text area to change its appearance in immediate response to a change in

187

Chapter 18. Writing a Plugin

user options settings. In order to do that, the window class must respond to a
PropertiesChanged message from the EditBus.

Unlike theEBPlugin class, theEBComponent interface does not deal with the component’s
actual subscribing and unsubscribing to the EditBus. To accomplish this, we use a pair of
methods inherited from the Java platform’sJComponent that are called when the visible
window becomes is assigned and unassigned to itsDockableWindowContainer . These two
methods,addNotify() andremoveNotify() , are overridden to add and remove the visible
window from the list of EditBus subscribers.

We will provide for two minor features when the notepad is displayed in the floating
window. First, when a floating plugin window is created, we will give the notepad text area
input focus. Second, when the notepad if floating and has input focus, we will have the
Escapekey dismiss the notepad window. AnAncestorListener and aKeyListener will
implement these details.

Here is the listing for the data members, the constructor, and the implementation of the
EBComponent interface:

public class QuickNotepad extends JPanel
implements EBComponent, QuickNotepadActions
{

private String filename;
private String defaultFilename;
private View view;
private boolean floating;

private QuickNotepadTextArea textArea;
private QuickNotepadToolPanel toolPanel;

//
// Constructor
//

public QuickNotepad(View view, String position)
{

super(new BorderLayout());

188

Chapter 18. Writing a Plugin

this.view = view;
this.floating = position.equals(

DockableWindowManager.FLOATING);

this.filename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath");

if(this.filename == null || this.filename.length() == 0)
{

this.filename = new String(jEdit.getSettingsDirectory()
+ File.separator + "qn.txt");

jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX
+ "filepath",this.filename);

}
this.defaultFilename = new String(this.filename);

this.toolPanel = new QuickNotepadToolPanel(this);
add(BorderLayout.NORTH, this.toolPanel);

if(floating)
this.setPreferredSize(new Dimension(500, 250));

textArea = new QuickNotepadTextArea();
textArea.setFont(QuickNotepadOptionPane.makeFont());
textArea.addKeyListener(new KeyHandler());
textArea.addAncestorListener(new AncestorHandler());

JScrollPane pane = new JScrollPane(textArea);
add(BorderLayout.CENTER, pane);

readFile();
}

//
// Attribute methods
//

// for toolBar display
public String getFilename()
{

189

Chapter 18. Writing a Plugin

return filename;
}

//
// EBComponent implementation
//

public void handleMessage(EBMessage message)
{

if (message instanceof PropertiesChanged)
{

propertiesChanged();
}

}

private void propertiesChanged()
{

String propertyFilename = jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "filepath");

if(!defaultFilename.equals(propertyFilename))
{

saveFile();
toolPanel.propertiesChanged();
defaultFilename = propertyFilename.clone();
filename = defaultFilename.clone();
readFile();

}
Font newFont = QuickNotepadOptionPane.makeFont();
if(!newFont.equals(textArea.getFont()))
{

textArea.setFont(newFont);
textArea.invalidate();

}
}

// These JComponent methods provide the appropriate points
// to subscribe and unsubscribe this object to the EditBus

public void addNotify()

190

Chapter 18. Writing a Plugin

{
super.addNotify();
EditBus.addToBus(this);

}

public void removeNotify()
{

saveFile();
super.removeNotify();
EditBus.removeFromBus(this);

}

...

}

This listing refers to aQuickNotebookTextArea object. It is currently implemented as a
JTextArea with word wrap and tab sizes hard-coded. Placing the object in a separate class
will simply future modifications.

18.4.2. Class QuickNotepadToolBar
There is nothing remarkable about the toolbar panel that is placed inside theQuickNotepad

object. The constructor shows the continued use of items from the plugin’s properties file.

public class QuickNotepadToolPanel extends JPanel
{

private QuickNotepad pad;
private JLabel label;

public QuickNotepadToolPanel(QuickNotepad qnpad)
{

pad = qnpad;
JToolBar toolBar = new JToolBar();
toolBar.setFloatable(false);

191

Chapter 18. Writing a Plugin

toolBar.add(makeCustomButton("quicknotepad.choose-file",
new ActionListener() {

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.chooseFile();

}
}));

toolBar.add(makeCustomButton("quicknotepad.save-file",
new ActionListener() {

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.saveFile();

}
}));

toolBar.add(makeCustomButton("quicknotepad.copy-to-buffer",
new ActionListener() {

public void actionPerformed(ActionEvent evt) {
QuickNotepadToolPanel.this.pad.copyToBuffer();

}
}));

label = new JLabel(pad.getFilename(),
SwingConstants.RIGHT);

label.setForeground(Color.black);
label.setVisible(jEdit.getProperty(

QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath").equals("true"));

this.setLayout(new BorderLayout(10, 0));
this.add(BorderLayout.WEST, toolBar);
this.add(BorderLayout.CENTER, label);
this.setBorder(BorderFactory.createEmptyBorder(0, 0, 3, 10));

}

...

}

The methodmakeCustomButton() provides uniform attributes for the three toolbar buttons
corresponding to three of the plugin’s use actions. The menu titles for the user actions serve
double duty as tooltip text for the buttons. There is also apropertiesChanged() method
for the toolbar that sets the text and visibility of the label containing the notepad file path.

192

Chapter 18. Writing a Plugin

18.5. Designing an Option Pane
Using the default implementation provided byAbstractOptionPane reduces the
preparation of an option pane to two principal tasks: writing a_init() method to layout
and initialize the pane, and writing a_save() method to commit any settings changed by
user input. If a button on the option pane should trigger another dialog, such as a
JFileChooser or jEdit’s own enhancedVFSFileChooserDialog , the option pane will also
have to implement theActionListener interface to display additional components.

The QuickNotepad plugin has only three options to set: the path name of the file that will
store the notepad text, the visibility of the path name on the tool bar, and the notepad’s
display font. Using the shortcut methods of the plugin API, the implementation of_init()

looks like this:

public class QuickNotepadOptionPane extends AbstractOptionPane
implements ActionListener

{
private JTextField pathName;
private JButton pickPath;
private FontSelector font;

...

public void _init()
{

showPath = new JCheckBox(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "show-filepath.title"),

jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "show-filepath")
.equals("true"));

addComponent(showPath);

pathName = new JTextField(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX
+ "filepath"));

JButton pickPath = new JButton(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX

193

Chapter 18. Writing a Plugin

+ "choose-file"));
pickPath.addActionListener(this);

JPanel pathPanel = new JPanel(new BorderLayout(0, 0));
pathPanel.add(pathName, BorderLayout.CENTER);
pathPanel.add(pickPath, BorderLayout.EAST);

addComponent(jEdit.getProperty(
QuickNotepadPlugin.OPTION_PREFIX + "file"),
pathPanel);

font = new FontSelector(makeFont());
addComponent(jEdit.getProperty(

QuickNotepadPlugin.OPTION_PREFIX + "choose-font"),
font);

}

...

}

Here we adopt the vertical arrangement offered by use of theaddComponent() method with
one embellishment. We want the first “row” of the option pane to contain a text field with
the current notepad file path and a button that will trigger a file chooser dialog when pressed.
To place both of them on the same line (along with an identifying label for the file option),
we create aJPanel to contain both components and pass the configured panel to
addComponent() .

The_init() method uses properties from the plugin’s property file to provide the names of
label for the components placed in the option pane. It also uses a property whose name
begins withPROPERTY_PREFIXas a persistent data item - the path of the current notepad
file. The elements of the notepad’s font are also extracted from properties using a static
method of the option pane class.

The_save() method extracts data from the user input components and assigns them to the
plugin’s properties. The implementation is straighforward:

public void _save()

194

Chapter 18. Writing a Plugin

{
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "filepath", pathName.getText());
Font _font = font.getFont();
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "font", _font.getFamily());
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "fontsize", String.valueOf(_font.getSize()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "fontstyle", String.valueOf(_font.getStyle()));
jEdit.setProperty(QuickNotepadPlugin.OPTION_PREFIX

+ "show-filepath", String.valueOf(showPath.isSelected()));
}

The class has only two other methods, one to display a file chooser dialog in response to
user action, and the other to construct aFont object from the plugin’s font properties. They
do not require discussion here.

18.6. Creating Other Plugin Resources
We have already covered in some detail one of the three types of resources that plugins
include with their class files - the user action catalog - and the need for help documentation
does not require extended discussion. The remaining resource is the properties file.

The first type of property data is information about the plugin itself. The first few entries
from the QuickNotepad plugin’s properties file fulfills this requirement:

general plugin information
plugin.QuickNotepadPlugin.name=QuickNotepad
plugin.QuickNotepadPlugin.author=John Gellene
plugin.QuickNotepadPlugin.version=1.0
plugin.QuickNotepadPlugin.docs=QuickNotepad.html
plugin.QuickNotepadPlugin.depend.0=jdk 1.2
plugin.QuickNotepadPlugin.depend.1=jedit 03.01.99.00

These properties are described in detail in Section 17.4.2 and do not require further
discussion here.

195

Chapter 18. Writing a Plugin

Next in the file comes a property that sets the title of the plugin in docked or frame windows.
The use of the suffix.title in the property’s key name is required by the plugin API.

dockable window name
quicknotepad.title=QuickNotepad

The next sections, consisting of the action label and menu item properties, have been
discussed earlier in Section 18.2.3.2.

action labels
quicknotepad.toggle.label=QuickNotepad
quicknotepad-to-front.label=Bring QuickNotepad to front
quicknotepad.choose-file.label=Choose notepad file
quicknotepad.save-file.label=Save notepad file
quicknotepad.copy-to-buffer.label=Copy notepad to buffer

application menu items
quicknotepad.menu=quicknotepad.toggle - quicknotepad.choose-file \

quicknotepad.save-file quicknotepad.copy-to-buffer

We have created a small toolbar as a component of QuickNotepad, so file names for the
button icons follow:

plugin toolbar buttons
quicknotepad.choose-file.icon=Open.gif
quicknotepad.save-file.icon=Save.gif
quicknotepad.copy-to-buffer.icon=Edit.gif

The menu labels corresponding to these icons will also serve as tooltip text.

Finally, the properties file set forth the labels and settings used by the option pane:

Option pane labels
options.quicknotepad.label=QuickNotepad
options.quicknotepad.file=File:
options.quicknotepad.choose-file=Choose
options.quicknotepad.choose-file.title=Choose a notepad file
options.quicknotepad.choose-font=Font:

196

Chapter 18. Writing a Plugin

options.quicknotepad.show-filepath.title=Display notepad file path

Initial default font settings
options.quicknotepad.show-filepath=true
options.quicknotepad.font=Monospaced
options.quicknotepad.fontstyle=0
options.quicknotepad.fontsize=14

Setting not defined but supplied for completeness
options.quicknotepad.filepath=

We do not define a default setting for thefilepath property because of differences among
operating systems. We will define a default file programatically that will reside in the
directory jEdit designates for user settings.

18.7. Compiling the Plugin
We have already outlined the contents of the user action catalog, the properties file and the
documentation file in our earlier dicusssion. The final step is to compile the source file and
build the archive file that will hold the class files and the plugin’s other resources.

Publicly released plugins include with their source a makefile for the jmk utility. The format
for this file requires few changes from plugin to plugin. Here is the version of
makefile.jmk used by QuickNotepad and many other plugins:

A plugin makefile
#
To recompile this plugin, start jmk
in the plugin’s source directory.
#

jar_name = "QuickNotepad";

##
javac executable and args
##
#javac_bin = "javac";

197

Chapter 18. Writing a Plugin

#javac_opts = "-deprecation";

javac_bin = "jikes";
javac_opts = "-g" "-deprecation" "+E";

set up the class path
new_class_path = "../../jedit.jar;.";
old_class_path = (getprop "java.class.path");

concatenate the old and new class paths
if (equal "", old_class_path) then class_path = new_class_path;
else class_path = (cat old_class_path ";" new_class_path); end

cmd_javac = javac_bin "-classpath" class_path javac_opts;

##
jar executable and args
##
jar_bin = "jar";
jar_opts = "cf0";
cmd_jar = jar_bin jar_opts;

srcs = (subst ".java", ".class",
(glob (join (join (dirs "."), "/"), "*Plugin.java" "*.java"))

);
jar = (cat "../" jar_name ".jar");

get_files = function (dummy)
{

extensions = "class" "gif" "html" "props";
file_globs = (join "/*.", extensions);
other_files = "actions.xml";

(glob (join (dirs "."), file_globs)) other_files
}
end;

"all": jar;

"%.class" : "%.java";

198

Chapter 18. Writing a Plugin

{
exec cmd_javac <;

}

jar: srcs;
{

exec cmd_jar @ (get_files "1");
}

"clean":;
{

delete (glob (join (dirs "."), "/*.class"));
}

".PHONY": "all";

For a full discussion of thejmk file format and command syntax, you should consult the jmk
documentation site (http://jmk.sourceforge.net/edu/neu/ccs/jmk/jmk.html). Modifying this
makefile for a different plugin will likely only require three changes:

• the name of the plugin;

• the choice of compiler (made by inserting and deleting the comment character’#’);
and

• the classpath variables forjedit.jar any plugins this one depends on.

If you have reached this point in the text, you are probably serious about writing a plugin for
jEdit. Good luck with your efforts, and thank you for contributing to the jEdit project.

199

V. jEdit API Reference
This part of the user’s guide covers the jEditapplication programmer interface. The
information in this part is only useful to macro and plugin developers; you do not need to
read it if you only want to use jEdit.

The first two chapter covers BeanShell commands, which are can only be used in macros.
The second chapter covers APIs useful to both macros and plugins. The final chapter covers
the EditBus message system, which is typically only used by plugins.

This part of the user’s guide was written by John Gellene <jgellene@nyc.rr.com >.

200

Chapter 19. BeanShell Commands
BeanShell includes a set ofcommands; subroutines that can be called from any script or
macro. The following is a summary of those commands which may be useful within jEdit.

Note: Plugins, because they are written in Java and not BeanShell, cannot make use
of BeanShell commands.

19.1. Output Commands

• void print (arg);

Writes the string value of the argument to the activity log, or if run from the Console
plugin, to the current output window. Ifarg is an array,print runs itself recursively
on the array’s elements.

• void cat (String filename);

Writes the contents offilename to the activity log.

• void javap (String | Object | Class target);

Writes the public fields and methods of the specified class to the output stream of the
current process. Requires Java 2 version 1.3 or greater.

19.2. File Management Commands

• void dir (String dirname);

Displays the contents of directorydirname . The format of the display is similar to the
Unix ls -l command.

201

Chapter 19. BeanShell Commands

• File pathToFile (String filename);

Create aFile object corresponding tofilename . Relative paths are resolved with
reference to the BeanShell interpreter’s working directory.

• void cd (String dirname);

Changes the working directory of the BeanShell interpreter todirname .

• void pwd

Writes the current working directory of the BeanShell interpreter to the output stream
of the current process.

• mv(String fromFile , String toFile);

Moves the file named byfromFile to toFile .

• void rm(String pathname);

Deletes the file name bypathname .

19.3. Component Commands

• Object load (String filename);

Loads and returns a serialized Java object fromfilename .

• void save (Component component , String filename);

Savescomponent in serialized form tofilename .

• JFrame frame (Component frame);

Displays the component in a top-levelJFrame , centered and packed. Returns the
JFrame object.

• Font setFont (Component comp, int ptsize);

202

Chapter 19. BeanShell Commands

Set the font size ofcomponent to ptsize and returns the new font.

19.4. Resource Management Commands

• URL getResource (String path);

Returns the resource specified bypath . A absolute path must be used to return any
resource available in the current classpath.

19.5. Script Execution Commands

• exec (String cmdline);

Start the external process by callingRuntime.exec() oncmdline . Any output is
directed to the output stream of the calling process.

• void source (String filename);

Evaluates the contents offilename as a BeanShell script in the interpreter’s current
namespace.

• Object eval (String expression);

Evaluates the stringexpression as a BeanShell script in the interpreter’s current
namespace. Returns the result of the evaluation ofnull .

• bsh.This run (String filename);

Run the BeanShell script named byfilename in a copy of the existing namespace.
The return value represent the object context of the script, allowing you to access its
variables and methods.

203

Chapter 19. BeanShell Commands

• Thread bg(String filename);

Run the BeanShell script named byfilename in a copy of the existing namespace
and in a separate thread. Returns theThread object so created.

• void server (int port);

Createes a “server” version of the BeanShell interpreter that shares the same namespace
as the current interpreter. The server interpreter listens on the designated port.

This requires thebsh.util package, which is not included with jEdit. It can be found
in the stand-alone BeanShell distribution, available from http://www.beanshell.org.

Caution
Security of this port is not guaranteed. Use this command with
extreme caution.

19.6. BeanShell Object Management
Commands

• bsh.This object

Creates a new BeanShellThis scripted object which can hold data members. You can
use this to create an object for storing miscellaneous crufties, like so:

crufties = object();
crufties.foo = "hello world";
crufties.counter = 5;
...

• bsh.This extend (bsh.This object);

Creates a new BeanShellThis scripted object that is a child of the parameterobject .

204

Chapter 19. BeanShell Commands

• bsh.This super (String scopename);

Returns a refernece to the BeanShellThis object representing the enclosing method
scope specified byscopename . This method work similar to thesuper keyword but
can refer to enclosing scope at higher levels in a hierarchy of scopes.

• bind (bsh.This ths , bsh.Namespace namespace);

Binds the scripted objectths to namespace .

• void unset (String name);

Removes the variable named byname from the current interpreter namespace. This has
the effect of “undefining” the variable.

• setNameSpace (bsh.Namespace namespace);

Set the namespace of the current scope tonamespace .

19.7. Other Commands

• void exit

CallsSystem.exit(0) .

Caution
While this command is available, you should always call
jEdit.exit() instead so the application will shutdown in an
orderly fashion.

• void debug

Toggles BeanShell’s internal debug reporting to the output stream of the current
process.

205

Chapter 19. BeanShell Commands

• getSourceFileInfo

Returns the name of the file or other source from which the BeanShell interpreter is
reading.

206

Chapter 20. General jEdit Classes

20.1. Class jEdit
This is the main class of the application. All the methods in this class are static methods, so
they are called with the following syntax, from both macros and plugins:

jEdit. method (parameters)

Here are a few key methods:

• public static Buffer openFile (View view , String path);

Opens the file namedpath in the givenView . To open a file in the current view, use the
predefined variableview for the first parameter.

• public static Buffer newFile (View view);

This creates a new buffer captionedUntitled-<n>in the givenView .

• public static boolean closeBuffer (View view , Buffer buffer);

Closes the buffer namedbuffer in the view namedview . The user will be prompted to
save the buffer before closing if there are unsaved changes.

• public static void saveAllBuffers (View view , boolean confirm);

This saves all open buffers with unsaved changes in the givenView . The parameter
confirm determines whether jEdit initially asks for confirmation of the save
operation.

• public static boolean closeAllBuffers (View view);

Closes all buffers in the givenView . A dialog window will be displayed for any buffers
with unsaved changes to obtain user instructions.

• public static void exit (View view , boolean reallyExit);

207

Chapter 20. General jEdit Classes

This method causes jEdit to exit. IfreallyExit is false and jEdit is running in
background mode, the application will simply close all buffers and views and remain in
background mode.

• public static String getProperty (String name);

Returns the value of the property named byname, or null if the property is undefined.

• public static boolean getBooleanProperty (String name);

Returns a boolean value oftrue or false for the property named byname by
examining the contents of the property; returnsfalse if the property cannot be found.

• public static void setProperty (String name, String property);

This method sets the property named byname with the valueproperty . An existing
property is overwritten.

• public static void setBooleanProperty (String name, boolean value);

This method sets the property named byname to value . The boolean value is stored
internally as the string “true” or “false”.

• public static void setTemporaryProperty (String name, String

property);

This sets a property that will not be stored during the current jEdit session only. This
method is useful for storing a value obtained by one macro for use by another macro.

• public static String getJEditHome

Returns the path of the directory containing the jEdit executable file.

• public static String getSettingsDirectory

Returns the path of the directory in which user-specific settings are stored. This will be
null if jEdit was started with the-nosettingscommand-line switch; so do not blindly
use this method without checking for a null return value first.

208

Chapter 20. General jEdit Classes

The jEdit object also maintains a number of collections which are useful in some situations.
They include the following:

• public static EditAction[] getActions

Returns an array of “actions” or short routines maintained and used by the editor.

• public static EditAction getAction (String action);

Returns the action namedaction , or null if it does not exist.

• public static Buffer[] getBuffers

Returns an array of open buffers.

• public static Properties getProperties

Returns a JavaProperties object (a class derived fromHashtable) holding all
properties currently used by the program. The constituent properties fall into three
categories: application properties, “site” properties, and “user” properties. Site
properties take precedence over application properties with the same “key” or name,
and user properties take precedence over both application and site properties. User
settings are written to a file namedproperties in the user settings directory upon
program exit or wheneverjEdit.saveSettings() is called.

• public static int getBufferCount

Returns the number of open buffers.

• public static Buffer getBuffer (String path);

Returns theBuffer object containing the file namedpath . or null if the buffer does
not exist.

• public static Mode[] getModes

Returns an array containing all editing modes used by jEdit.

• public static Mode getMode (String name);

209

Chapter 20. General jEdit Classes

Returns the editing mode named byname, or null if such a mode does not exist.

• public static EditPlugin[] getPlugins

Returns an array containing all existing plugins.

• plugin static EditPlugin getPlugin (String name);

Returns the plugin named byname, or null if such a plugin does not exist.

20.2. Class View
This class represents the “parent” or top-level frame window in which the editing occurs. It
contains the various visible components of the program, including the editing pane,
menubar, toolbar, and any docking windows containing plugins.

Some useful methods from this class include the following:

• public void splitHorizontally

Splits the view horizontally.

• public void splitVertically

Splits the view vertically.

• public void unsplit

Unsplits the view.

• public synchronized void showWaitCursor

Shows a “waiting” cursor (typically, an hourglass).

• public synchronized void hideWaitCursor

Removes the “waiting” cursor. This method andshowWaitCursor() are implemented
using a reference count of requests for wait cursors, so that nested calls work correctly;
however, you should be careful to use these methods in tandem.

210

Chapter 20. General jEdit Classes

• public StatusBar getStatus

EeachView displays aStatusBar at its bottom edge. It shows the current cursor
position, the editing mode of the current buffer and other information. The method
setMessage(String message) can be called on the return value ofgetStatus() to
display reminders or updates. The message remains until the method is called again. To
display a temporary message in the status bar, callsetMessageAndClear(String

message) , which will erase the message automatically after ten seconds.

• public DockableWindowManager getDockableWindowManager

The object returned by this method keeps track of all dockable windows. See Section
20.5.

20.3. Class Registers
A Register is string of text indexed by a single character. Typically the text is taken from
selected buffer text and the index character is a keyboard character selected by the user.

The application maintains a singleRegisters object consisting of an dynamically sized
array ofRegister objects. TheRegisters class defines a number of methods that give
each register the properties of a virtual clipboard.

The following methods provide a clipboard operations for register objects:

• public static void copy (JEditTextArea textArea , char register);

Saves the selected text in the designatedtextArea to the register indexed at
register . This will replace the existing contents of the designated register.

• public static void cut (JEditTextArea textArea , char register);

Saves the selected text in the designatedtextArea to the register indexed at
register , and removes the text from the text area. This will replace the existing
contents of the designated register.

211

Chapter 20. General jEdit Classes

• public static void append (JEditTextArea textArea , char register ,

String separator , boolean cut);

• public static void append (JEditTextArea textArea , char register ,

String separator);

• public static void append (JEditTextArea textArea , char register);

These three methods append the selected text in thetextArea to the designated
register. If thecut parameter is not specified, the selected text remains in the text area.
If the separator parameter is not specified, a newline character is used to separate
the appended text from any existng register text.

The following methods provide a lower-level interface for working with registers:

• public static void setRegister (char name, Register register);

• public static void setRegister (char name, Register newRegister);

• public static void clearRegister (char name);

Sets the text of the designated register tonull . If the register is one of the two registers
reserved by the application (as discussed in the next section), the text value is set to an
empty string.

• public static Register getRegister (char name);

• public static Register[] getRegisters

20.4. Interface Registers.Register
This interface requires implementation of two methods:setValue() , which takes aString

parameter, andtoString() , which return a textual representation of the register’s contents.
Two classes implement this interface. AClipboardRegister is tied to the contents of the
application’s clipboard. The application assigns aClipboardRegister to the register
indexed under the character$. A StringRegister is created for registers assigned by the

212

Chapter 20. General jEdit Classes

user. In addition, the application assigns to theStringRegister indexed under%the last
text segment selected in the text area.

A Register object does not maintain a copy of its index key. Indexing is performed by the
Registers object.

20.5. Class DockableWindowManager
Windows conforming to jEdit’s dockable window API can appear in “panes” located above,
below or to the left or right of the main editing pane. They can also be displayed in
“floating” frame windows. ADockableWindowManager keeps track of the plugins
associated with a particularView . EachView object contains an instance of this class.

• public DockableWindow getDockableWindow (String name);

This method returns theDockableWindow object named by thename parameter. The
name of aDockableWindow is a required property of the plugin. If there is no
DockableWindow bearing the requested name, the method returnsnull .

• public void addDockableWindow (String name);

If the DockableWindow named by thename parameter does not exist, a message is sent
to the associated plugin to create it. TheDockableWindow is then made visible.

• public void showDockableWindow (String name);

• public void removeDockableWindow (String name);

• public void toggleDockableWindow (String name);

These methods, respectively show, hide and toggle the visibility of the
DockableWindow object named by thename parameter. If the
DockableWindowManager does not contain a reference to the window, these methods
send an error message to the activity log and have no other effect. Only
addDockableWindow() can cause the creation of aDockableWindow .

213

Chapter 20. General jEdit Classes

20.6. Class JEditTextArea
This class is the visible component that displays the file being edited. It is derived from
Java’sJComponent class.

Methods in this class that deal with selecting text rely upon classes derived from jEdit’s
Selection class. The “Selection API” permits selection and concurrent manipulation of
multiple, non-contiguous regions of text. After describing the selection classes, we will
outline the selection methods ofJEditTextArea , followed by a listing of other methods in
this class that are useful in writing macros.

20.6.1. Class Selection
This is anabstract classwhich holds data on a region of selected text. As an abstract class, it
cannot be used directly, but instead serves as a parent class for specific types of selection
structures. The definition ofSelection contains two child classes used by the Selection
API:

• Selection.Range - representing an ordinary range of selected text

• Selection.Rect - representing a rectangular selection region

A new instance of either type ofSelection can be created by specifying its starting and
ending caret positions:

selRange = new Selection.Range(start, end);

setRect = new Selection.Rect(start, end);

Both classes inherit or implement the following methods of the parentSelection class:

• public int getStart

• public int getEnd

Retrieves the buffer position representing the start or end of the selection.

214

Chapter 20. General jEdit Classes

• public int getStartLine

• public int getEndLine

Retrieves the zero-based index number representing the line on which the selection
starts or ends.

• public int getStart (Buffer buffer , int line);

• public int getEnd (Buffer buffer , int line);

These two methods return the position of the beginning or end of that portion of the
selection falling on the line referenced by theline parameter. The parameterbuffer
is required because aSelection object is a lightweight structure that does not contain
a reference to theBuffer object to which it relates.

These methods do not check whether theline parameter is within the range of lines
actually covered by the selection. They would typically be used within a loop defined
by thegetStartLine() andgetEndLine() methods to manipulate selection text on a
line-by-line basis. Using them without range checking could cause unintended
behavior.

20.6.2. Selection methods in JEditTextArea
A JEditTextArea object maintains anVector of currentSelection objects. When a
selection is added, theJEditTextArea attempts to merge the new selection with any
existing selection whose range contains or overlaps with the new item. When selections are
added or removed using by these methods, the editing display is updated to show the change
in selection status.

Here are the principal methods ofJEditTextArea dealing withSelection objects:

20.6.2.1. Adding and removing selections

• public void setMultipleSelectionEnabled (boolean multi);

215

Chapter 20. General jEdit Classes

Set multiple selection on or off according to the value ofmulti . This only affects the
ability to make multiple selections in the user interface; macros and plugins can
manipulate them regardless of the setting of this flag. In fact, in most cases, calling this
method should not be necessary.

• public Selection[] getSelection

Returns an array containing a copy of the current selections.

• public int getSelectionCount

Returns the current number of selections. This can be used to test for the existence of
selections.

• public Selection getSelectionAtOffset (int offset);

Returns theSelection containing the specific offset, ornull if there is no selection at
that offset.

• public void addToSelection (Selection selection);

• public void addToSelection (Selection[] selection);

Adds a singleSelection or an array ofSelection objects to the existing collection
maintined by theJEditTextArea . Nested or overlapping selections will be merged
where possible.

• public void extendSelection (int offset , int end);

Extends the existing selection containing the position atoffset to the position
represented byend . If there is no selection containingoffset the method creates a
newSelection.Range extending fromoffset to end and adds it to the current
collection.

• public void removeFromSelection (Selection sel);

• public void removeFromSelection (int offset);

These methods remove a selection from the current collection. The second version
removes any selection that contains the position atoffset , and has no effect if no

216

Chapter 20. General jEdit Classes

such selection exists.

20.6.2.2. Getting and setting selected text

• public String getSelectedText (Selection s);

• public String getSelectedText (String separator);

• public String getSelectedText

These three methods return aString containing text corresponding to the current
selections. The first version returns the text corresponding to a particular selection
named as the parameter, allowing for iteration through the collection or focus on a
specific selection (such as a selection containing the current caret position). The second
version combines all selection text in a singleString , separated by theString given
as theseparator . The final version operates like the second version, separating
individual selections with newline characters.

• public void setSelectedText (Selection s , String selectedText);

• public void setSelectedText (String selectedText);

The first version changes the text of the selection represented bys to
selectedText . The second version sets the text of all active selections; if there are
no selections, the text will be inserted at the current caret position.

The second version ofsetSelectedText() is the method that will typically be used in
macro scripts to insert text.

• public int[] getSelectedLines

Returns a sorted array of line numbers on which a selection or selections are present.
The current line is included in the array whether or not it is part of a selection.

This method is the most convenient way to iterate through selected lines in a buffer.
The line numbers in the array returned by this method can be passed as a parameter to
such methods asgetLineText() , as discussed below.

217

Chapter 20. General jEdit Classes

20.6.2.3. Other selection methods

The following methods perform selection operations without usingSelection objects as
parameters or return values. These methods should only be used in macros.

• public void selectBlock

Selects the code block surrounding the caret.

• public void selectWord

• public void selectLine

• public void selectParagraph

• public void selectFold

Selects the “fold” (a portion of text sharing a given indentation level) that contains the
line where the editing caret is positioned.

• public void selectFoldAt (int line);

Selects the fold containing the line referenced byline .

• public void selectAll

• public void selectNone

• public void indentSelectedLines

20.6.3. Other methods in JEditTextArea

20.6.3.1. Editing caret methods

These methods are used to get, set and move the position of the editing caret:

• public int getCaretPosition

218

Chapter 20. General jEdit Classes

Returns a zero-based index of the caret position in the existing buffer.

• public void setCaretPosition (int caret);

Sets the caret position atcaret and deactivates any selection of text.

• public void moveCaretPosition (int caret);

This moves the caret to the position represented bycaret without affecting any
selection of text.

• public int getCaretLine

Returns the line on which the caret is positioned.

Each of the following shortcut methods moves the caret. If theselect parameter is set to
true , the intervening text will be selected as well.

• public void goToStartOfLine (boolean select);

• public void goToEndOfLine (boolean select);

• public void goToStartOfWhiteSpace (boolean select);

• public void goToEndOfWhiteSpace (boolean select);

• public void goToFirstVisibleLine (boolean select);

• public void goToLastVisibleLine (boolean select);

• public void goToNextCharacter (boolean select);

• public void goToPrevCharacter (boolean select);

• public void goToNextWord (boolean select);

• public void goToPrevWord (boolean select);

• public void goToNextLine (boolean select);

• public void goToPrevLine (boolean select);

• public void goToNextParagraph (boolean select);

219

Chapter 20. General jEdit Classes

• public void goToPrevParagraph (boolean select);

• public void goToNextBracket (boolean select);

• public void goToPrevBracket (boolean select);

20.6.3.2. Methods for scrolling the text area

• public void scrollUpLine

• public void scrollUpPage

• public void scrollDownLine

• public void scrollUpPage

• public void scrollToCaret (boolean doElectricScroll);

Scrolls the text area to ensure that the caret is visible. ThedoElectricScroll
parameter detemines whether “electric scrolling” will occur. This leaves a minimum
number of lines between the caret line and the top and bottom of the editing pane.

• public void centerCaret

Scrolls the text area so that the line containing the edit caret is vertically centered.

• public void setFirstLine (int firstLine);

• public int getFirstLine

This pair of methods deals with the line number of the first line displayed at the top of
the text area. Lines that are hidden by folds or narrowing are ignored when making this
“virtual” line count, so the line number will not necessarily conform to the line
numbers displayed in the text area’s gutter. In addition, the virtual line index is
zero-based, sogetFirstLine() will always return zero for the first line of text.

To convert a virtual line count to a physical count or vice versa, see Section 20.7.3.4.

• public void setElectricScroll (int electricScroll);

220

Chapter 20. General jEdit Classes

• public int getElectricScroll

The “electric scroll” attribute is the number of lines above and below the editing caret
that always remain visible when scrolling.

20.6.3.3. Methods for calculating editing positions

• public int getLineOfOffset (int offset);

Returns the line on which the given offset is found.

• public int getLineStartOffset (int line);

• public int getLineEndOffset (int line);

Returns the offset of the beginning or end of the given line.

20.6.3.4. Other methods for retrieving text

These methods can retrieve buffer text without regard to a selection or the position of the
editing caret.

• public String getText (int start , int len);

Returns the text located between buffer offset positions.

• public String getLineText (int lineIndex);

Returns the text on the given line.

• public String getText

Returns the entire text in the text area.

• public void setText (String text);

Sets (and replaces) the entire text of the text area.

221

Chapter 20. General jEdit Classes

20.6.3.5. Methods for deleting text

• public void delete

Deletes the character to the left of the editing caret.

• public void deleteWord

• public void deleteLine

• public void deleteParagraph

• public void deleteToStartOfLine

• public void deleteToEndOfLine

20.6.3.6. Methods for modifying text

• public void toLowerCase

• public void toUpperCase

These two methods operate on all selected text, including multiple selections.

• public void joinLines

Joins the current line with the following line.

• public void setOverwriteEnabled (boolean overwrite);

• public boolean isOverwriteEnabled

Sets and gets whether added text will overwrite text at the editing caret or whether it
will be inserted immediately to the right of the caret.

• public void userInput (char ch);

Inserts the character at the caret position as if it were typed at the keyboard (keyboard
input is actually passed to this method). UnlikesetSelectedText() , or

222

Chapter 20. General jEdit Classes

insertString() in theBuffer class, this method triggers any active text formatting
features such as auto indent, abbreviation expansion and word wrap.

20.6.3.7. Methods for creating comments

• public void lineComment

This inserts the line comment string at the beginning of each selected line.

• public void rangeComment

This surrounds each selected text chunk with the comment start and end strings.

20.6.3.8. Methods for getting buffer statistics

• public int getBufferLength

Returns the number of characters in the buffer.

• public int getLineCount

Returns the number of lines in the buffer being edited.

• public int getVirtualLineCount

Returns the number of “virtual” or visible lines in the buffer being edited, which may
be less than the total number of lines because of folding or narrowing.

To convert a virtual line count to a physical count or vice versa, see Section 20.7.3.4.

• public int getLineLength (int line);

Returns the length of the line numberline (using a zero-based count).

223

Chapter 20. General jEdit Classes

20.7. Class Buffer
A Buffer represents the contents of an open text file as it is maintained in the computer’s
memory (as opposed to how it may be stored on a disk). It is derived from Java’s
PlainDocument class.

20.7.1. File attribute methods

• public String getName

• public String getPath

• public File getFile

This method may returnnull if the file is stored on a remote file system (for example,
if the FTP or Archive plugins are in use). This method should be avoided if possible.

• public boolean isNewFile

Returns whether a buffer lacks a corresponding version on disk.

• public boolean isDirty

Returns whether there have been unsaved changes to the buffer.

• public boolean isReadOnly

• public boolean isUntitled

20.7.2. Editing attribute methods

• public Mode getMode

• public void setMode (Mode mode);

Gets and sets the editing mode for the buffer.

224

Chapter 20. General jEdit Classes

• public int getIndentSize

• public int getTabSize

These methods return the size of an initial indentation at the beginning of a line and the
distance between tab stops, each measured in character columns. If these properties are
not individually set for a specific buffer, they are inherited from the properties of the
buffer’s associated editing mode.

The following two methods are inherited by theBuffer class.

• public void putProperty (Object key , Object value);

• public Object getProperty (Object key);

TheBuffer object maintains a table of properties that describe a broad range of
attributes. The value of each property is stored using a key for indexing purposes,
usually aString that names the particular property. Property values can be set and
retreived using these two methods. TheObject returned bygetProperty() usually
has to be cast to a derived type to be useful. Most of these properties are documented in
Section 6.2.

These two methods provide shortcuts for getting snd setting boolean properties.

• public static boolean getBooleanProperty (String name);

Returns a boolean value oftrue or false for the property named byname by
examining the contents of the property; returnsfalse if the property cannot be found.

• public static void setBooleanProperty (String name, boolean value);

This method sets the property named byname to value . The boolean value is stored
internally as the string “true” or “false”.

225

Chapter 20. General jEdit Classes

20.7.3. Editing action methods

20.7.3.1. General editing methods

• public void reload (View view);

Reloads the buffer from disk intoview , asking for confirmation if the buffer has
unsaved changes.

• public boolean save (View view , String path);

• public boolean save (View view , String path , boolean rename);

Therename parameter causes a buffer’s name to change if set totrue ; if false , a
copy is saved topath .

• public boolean saveAs (View view , boolean rename);

Prompts the user for a new name for saving the file.

• public void beginCompoundEdit

• public void endCompoundEdit

Marks the beginning and end of a series of editing operations that will be dealt with by
a singleUndo command.

• public void removeTrailingWhiteSpace (int[] lines);

Removes trailing whitespace in the lines referenced by the index numbers inlines
array.

The following methods are inherited byBuffer from its parent class.

• public String getText (int offset , int length);

• public void getText (int offset , int length , Segment text);

226

Chapter 20. General jEdit Classes

These methods extract a portion of buffer text having lengthlength beginning at offset
positionoffset . The first method returns a newly createdString containing the
requested excerpt. The second version initializes an existingSegment object with the
location of the requested excerpt. TheSegment object represents array locations within
theBuffer object’s data and should be used on a read-only basis. CallingtoString()

on theSegment will create a new object suitable for manipulation.

• public void insertString (int offset , String text , AttributeSet

attr);

This method inserts the stringtext at offsetoffset in the buffer. The attributeattr is
not used by jEdit and should be left asnull .

• public int getLength

This method returns the number of characters in the buffer.

20.7.3.2. Marker methods

Buffers may have one or moremarkerswhich serve as textual bookmarks. AMarker has
three key attributes: theBuffer to which it relates, the line number to which the marker
refers, and an optional shortcut character. The shortcut identifies the the key that can be
pressed with theMarkers>Go To Marker command to move the editing caret to the marker
line location.

The position and shortcut character of aMarker object can be retrieved with the methods
getPosition() andgetShortcut() .

TheBuffer class includes the following methods to set and retrieve markers:

• public void addMarker (char shortcut , int pos);

Adds a marker for the line indicated bypos usingshortcut . Setshortcut to
’\0’ to indicate the absence of a shortcut.

• public Vector getMarkers

227

Chapter 20. General jEdit Classes

Returns aVector containing the buffer’s current markers.

• public Marker getMarkerAtLine (int line);

Returns the first marker at the specified line, ornull if no marker is present at the line.

• public Marker getMarker (char shortcut);

Returns the marker with the specified shortcut, ornull if no such marker exists.

• public void removeMarker (int line);

Removes all markers at the specified line.

• public void removeAllMarkers

Removes all markers in the buffer.

20.7.3.3. Folding methods

The “folding” features of jEdit allow sections of source code with a given indentation level
to be hidden, creating “folds” that can be hidden and expanded, as well as a virtual line
numbering scheme that skips hidden, folded lines. The following methods in theBuffer

class deal with the folding mechanism.

• public boolean collapseFoldAt (int line);

Collapses the fold that contains the specified line number. The method returnsfalse if
there are no folds in the buffer for the indicated line.

• public boolean expandFoldAt (int line , boolean fully , JEditTextArea

textArea);

Expands the fold that contains the specified line number. Iffully is true, all folds at
the line will be expanded, otherwise only one level of folding will be expanded. The
textArea parameter is provided to the method to facilitiate scrolling after folds are
expanded.

228

Chapter 20. General jEdit Classes

The method returnsfalse if there are no folds in the buffer for the indicated line.

• public void expandFolds (int level);

This method expands all folds in the buffer up tolevel and collapses all folds with a
higher level. Thelevel parameter represents the number of indentations, not the
actual number of indented spaces.

• public void expandAllFolds

Expands all folds in the buffer.

• public void narrow (int start , int end);

Narrows the visible portion of the buffer to the specified line range. To undo the
narrowing, call theBuffer.expandAllFolds() method.

20.7.3.4. Virtual and physical line indices

When jEdit’s folding or narrowing features are used to hide portions of a buffer, the
“virtual” line count visible in the text area is generally not equal to the “physical” line count
of the buffer represented by the gutter’s display. The following pair of methods translate one
enumeration to the other.

• public int virtualToPhysical (int lineNo);

• public int physicalToVirtual (int lineNo);

20.8. Class Macros
The following shortcut methods are useful in displaying output messages or obtaining input
from a macro.

229

Chapter 20. General jEdit Classes

• public static void message (View view , String message);

Displays the text ofmessage (with an information icon) in a modal message box
centered on the designatedview .

• public static void error (View view , String message);

Similar tomessage but displays an error icon.

• public static String input (View view , String prompt);

• public static String input (View view , String prompt , String

defaultValue);

Displays the text ofprompt , a text input field, and a question icon in the designated
view . In the second version, the text field will initially contain the text of
defaultValue . Returns the contents of the text field if the dialog box is dismissed
by pressing theOK button, ornull if the Cancel button is pressed.

20.9. Class SearchAndReplace
Search and replace routines are undertaken by jEdit’sSearchAndReplace class.

The following static methods allow you to set or get the parameters for a search. You can do
this prior to or even without activating the search dialog.

• public static void setSearchString (String search);

• public static String getSearchString

• public static void setReplaceString (String replace);

• public static String getReplaceString

• public static void setIgnoreCase (boolean ignoreCase);

• public static boolean getIgnoreCase

• public static void setRegexp (boolean regexp);

230

Chapter 20. General jEdit Classes

• public static boolean getRegexp

Determines whether the search term is interpreted as a regular expression.

• public static void setReverseSearch (boolean reverse);

• public static boolean getReverseSearch

Determines whether a reverse search will conducted from the current position to the
beginning of a buffer. Currently, only literal reverse searches are supported.

• public static void setBeanShellReplace (boolean beanshell);

• public static boolean getBeanShellReplace

Determines whether the replace string will be interpreted as a BeanShell expression.

• public static void setAutoWrapAround (boolean wrap);

• public static boolean getAutoWrapAround

Determines whether a search will automatically “wrap” to the beginning of a buffer
after the search reaches the buffer’s end. If this flag is set tofalse , a dialog will
request confirmation of a wrap-around search.

• public static void setSearchFileSet (SearchFileSet fileset);

A SearchFileSet is an abstract class representing the set of files that are the subject of
a search. There are four classes derived fromSearchFileSet :

DirectoryListSet
This represents a set of files taken from a directory. It can be extended recursively to
include files in subdirectories. The constructor for this class has the following syntax:

• public DirectoryListSet (String directory , String glob , boolean

recurse);

The parameterglob is the glob pattern that determines which files from the
directory will be selected (see Appendix D for information about glob patterns),

231

Chapter 20. General jEdit Classes

andrecurse determines whether the selection will recurse into subdirectories.

class AllBufferSet
This class represents the set of all buffers currently open. The constructor for this class
takes a file mask as a single parameter:

• public AllBufferSet (String glob);

class CurrentBufferSet
This class represents a buffer set consisting of the current buffer only. The constructor
has no parameters.

• public CurrentBufferSet

class BufferListSet

This class represents a buffer set containing an arbitrary set of files specified by the
user. The constructor takes a singleVector parameter containing the path names of the
files to be searched.

• public BufferListSet (Vector files);

The actual tasks of searching and replacing, based on these parameters, are performed by the
following methods. The return value of each indicates whether the operation succeeded.

• public static boolean find (View view);

This will select the next instance of matching text if the search is successful.

• public static boolean replace (View view);

This will replace the each occurrence of the “search string” in selected text with the
“replace string”. If no text is selected, the method has no effect.

232

Chapter 20. General jEdit Classes

• public static boolean replace (View view , Buffer buffer , int start ,

int end);

This will replace the each occurrence of the “search string” in the specified range with
the “replace string”.

• public static boolean replaceAll (View view);

This method performs a replacement in all buffers in theSearchFileSet . Text
selection is ignored.

• public static boolean hyperSearch (View view);

This collects all instances of matching text in the members of theSearchFileSet and
displays them in a dedicated window. Text selection is ignored.

The “HyperSearch” and “Keep dialog” features, as reflected in checkbox options in the
search dialog, are not handled from withinSearchAndReplace . If you wish to have these
options set before the search dialog appears, make a prior call to either or both of the
following:

jEdit.setBooleanProperty(“search.hypersearch.toggle”,true);
jEdit.setBooleanProperty(“search.keepDialog.toggle”,true);

If you are not using the dialog to undertake a search or replace, you may call any of the
search and replace methods (includinghyperSearch()) without concern for the value of
these properties.

To create and display the search and replace dialog, first assign desired values to the search
settings using the methods described above. Then create a newSearchDialog object using
the following constructor:

• public SearchDialog (View view , String searchString , int searchIn);

The parametersearchIn can take the defined constant valuesCURRENT_BUFFER,
ALL_BUFFERSor DIRECTORY, defined in theSearchDialog class. This parameter
determines which file set radio button to preselect in the dialog box.

233

Chapter 20. General jEdit Classes

20.10. Class GUIUtilities
The methods dealing with creating menus and menu items are described in Section 18.2.3.2.
One other static method in this class encapsulates the creation and display of jEdit’s custom
file chooser dialog box.

• public static String[] showVFSFileDialog (View view , String path , int

type , boolean multipleSelection);

This method displays theVFSFileChooserDialog provided by jEdit. Ifpath is set to
null , the dialog will display the directory of the current buffer. Thetype parameter
can either beJFileChooser.OPEN_DIALOG or JFileChooser.SAVE_DIALOG (you
might need to import theJFileChooser class from thejavax.swing package). The
final parameter determines whether multiple selection of files is permitted.

20.11. Class TextUtilities
This class contains a number of static methods that can be helpful in handling buffer text.

• public static int findMatchingBracket (Buffer buffer , int line , int

offset);

Returns the offset of the bracket matching the one at offsetoffset of line line of
the buffer; returns -1 if the bracket is unmatched or if the specified character is not a
bracket. The method throws aBadLocationException if the line or offset
parameters are out of range.

• public static int findWordStart (String line , int pos , String

noWordSep);

• public static int findWordEnd (String line , int pos , String

noWordSep);

Returns the position on which the word found on lineline , positionline begins or
ends. The parameternoWordSep contains those non-alphanumeric characters that

234

Chapter 20. General jEdit Classes

will be treated as part of a word for purposes of finding the beginning or end of word
(such as an underscore character).

• public static String format (String text , int maxLineLength);

Reformats a string and inserts line separators as necessary so that no line exceeds
maxLineLength in length.

• public static String spacesToTabs (String in , int tabSize);

• public static String tabsToSpaces (String in , int tabSize);

Makes the indicated change based upon a tab size oftabSize .

20.12. Class MiscUtilities
This class is another collection of static utility methods.

These methods extract various elements from a path name:

• public static String getFileName (String path);

• public static String getFileExtension (String name);

• public static String getParentOfFile (String path);

Returns the directory containing the specified local file.

The following method creates a string of whitespace characters that uses as many tabs as
possible:

• public static String createWhiteSpace (int len , int tabSize);

If tabSize is set to zero, the string will consist entirely of space characters. To get a
whitespace string tuned to the current buffer’s settings, call this method as follows:

myWhitespace = MiscUtilities.createWhiteSpace(myLength,
buffer.getTabSize());

235

Chapter 20. General jEdit Classes

Here are two sorting methods, one for simple arrays and one for JavaVector objects:

• public static void quicksort (Object[] obj , Compare compare);

• public static void quicksort (Vector vector , Compare compare);

The type of the second parameter in both methods is a Javainterfacedefined inside the
MiscUtilities class. Any Java class implementing an interface must implement each of
the methods set forth in the interface’s abstract specification. TheCompare interface consists
of a single method:

• public int compare (Object obj1 , Object obj2);

To work correctly with thequicksort algorithm, this method should return a negative value
if obj1 is ordered prior toobj2 , a positive value ifobj2 is prior, and zero if the two
objects are equivalent for ordering purposes.

When writing macros, keep in mind that under Java versions earlier than 1.3, BeanShell
cannot implement arbitrary interfaces such asCompare (although, as we have noted in
Section 14.4.3, a BeanShell method can implement a number of specific listener interfaces).
Fortunately, jEdit provides a number of classes implementingCompare for sorting purposes.
Among them areStringCompare andStringICaseCompare . Both classes compare
String object; the latter class compares two strings on a case-insentive basis.

Calling quicksort on aVector of String objects could therefore take the following form:

MiscUtilities.quicksort(myVectorOfStrings,
new StringICaseCompare());

There is no return value, but theVector provided as the first parameter will be now be
sorted on a case-insensitive basis.

20.13. Class BeanShell
This class integrates the BeanShell interpreter into jEdit. One method is worth mentioning
here because it can be used in a macro to chain together execution of several macros:

236

Chapter 20. General jEdit Classes

• public static void runScript (View view , String path , boolean

ownNamespace, boolean rethrowBshErrors);

This method runs the script file identified bypath . Within that script, references to
buffer , textArea andeditPane are determined with reference to theview
parameter. IfrethrowBshErrors is set to true, any runtime exception thrown by the
child script will be rethrown to the parent script for additional handling.

The parameterownNamespace determines whether a separate namespace will be
established for the BeanShell interpreter. If set tofalse , methods and variables defined in
the script will be available to all future uses of BeanShell; if set totrue , they will be lost as
soon as the script finishes executing. jEdit uses a value offalse when running startup
scripts, and a value oftrue when running all other macros.

237

Chapter 21. EditBus Classes
This section describes theEditBus class itself, as well as the abstractEBMessage class and
all classes that derive from it. See Section 16.2.3 for an overview of how the EditBus works.

21.1. Class EditBus
This class provides a messaging system for all components that implement the
EBComponent interface, includingView andEBPlugin objects.

• public static void addToBus (EBComponent component);

• public static void removeFromBus (EBComponent component);

Adds or removes a subscribing component.

• public static void addToNamedList (Object tag , Object entry);

• public static void removeFromNamedList (Object tag , Object entry);

Manages arbitriary lists of objects. Used by jEdit to manage dockable windows. The
ErrorList plugin also uses these methods to manage error sources.

• public EBComponent[] getComponents

Returns an array of all components connected to the EditBus.

• public void send (EBMessage message);

Send the specified message to all subscribers on the EditBus.

21.2. Interface EBComponent
This interface is required for any class that subscribes to messages published on the EditBus.
It contains a single method.

238

Chapter 21. EditBus Classes

• public void handleMessage (EBMessage message);

21.3. Class EBMessage
This abstract class defines a message that can be sent on the EditBus to subscribing
components. It contains two attributes that can be obtained with the following methods:

• public Component getSource

• public boolean isVetoed

• public void veto

This sets thevetoed state totrue , which terminates circulation of the message to
subscribers on the EditBus. To prevent a message from being vetoed, the message
object must be derived from the abstract classEBMessage.NonVetoable . An object of
this class will throw anInternalError if the veto() method is called on it.

A summary of classes derived fromEBMessage can be found in the following sections.

21.4. Class BufferUpdate
This message is sent when the status of a buffer changes. It may not be vetoed by a
subscriber, so that all subscribers are assured of receiving it regardless of an individual
subscriber’s response.

• public Buffer getBuffer

• public View getView

This may benull with some message types.

• public Object getWhat

Returns one of the following constants defined in theBufferUpdate class:

239

Chapter 21. EditBus Classes

• CREATED

• LOAD_STARTED

• DIRTY_CHANGED- a change in the buffer’s “dirty” status

• MARKERS_CHANGED

• MODE_CHANGED

• ENCODING_CHANGED

• SAVING

21.5. Class CreateDockableWindow
This message is sent by theaddDockableWindow() method of the
DockableWindowManager class; see Section 16.2.3.

• public View getView

• public String getDockableWindowName

Returns the internal name of the requested dockable window. Your plugin should check
if this is the name of one of the dockables it provides, and if so, call
setDockableWindow() with the new dockable window instance.

• public String getPosition

Returns one of the following constants defined in theDockableWindowManager class:

• FLOATING

• TOP

• BOTTOM

• LEFT

• RIGHT

240

Chapter 21. EditBus Classes

• public void setDockableWindow (DockableWindow window);

Attaches a dockable window to the message. This prevents the message from being
passed on to further subscribers.

21.6. Class EditorExiting
This message signifies that the host application is about to exit. The message has no
parameters and may not be vetoed.

21.7. Class EditorExitRequested
This message signifies that a request has been made for the host application to exit. The
request is subject to cancellation in response to a request to write a modified buffer to
storage. It may not be vetoed.

• public View getView

21.8. Class EditorStarted
This message signifies that the host application has started. The message is sent before any
views are created. The message has no parameters and it may not be vetoed.

21.9. Class EditPaneUpdate
This message is sent when the status of a edit pane changes. It may not be vetoed.

• public EditPane getEditPane

• public Object getWhat

241

Chapter 21. EditBus Classes

Returns one of the following constants defined in theEditPaneUpdate class:

• CREATED

• DESTROYED

• BUFFER_CHANGED- a change in the buffer displayed in the edit pane

21.10. Class MacrosChanged
This message signifies that the list of available macros have changed. The message has no
parameters and may not be vetoed.

21.11. Class PropertiesChanged
This message is sent when configuration settings have been changed through any of the
option panes in the options dialog. The message has no parameters and may be vetoed.

21.12. Class SearchSettingsChanged
This message is sent when settings in the “Search and Replace” dialog have changed. The
message has no parameters and may be vetoed.

21.13. Class VFSUpdate
This message is sent when the status of a file or directory changes. This allows subscribers
that display or operate upon files an opportunity to adjust their state. This message may not
be vetoed.

• public String getPath

242

Chapter 21. EditBus Classes

21.14. Class ViewUpdate
This message is sent when the status of a view changes. It may not be vetoed.

• public View getView

• public Object getWhat

Returns one of the following constants defined in theViewUpdate class:

• CREATED

• CLOSED

243

	Table of Contents
	Chapter 1. Starting jEdit
	1.1. Conventions
	1.2. Platform-Independent Instructions
	1.3. Starting jEdit on Windows
	1.4. Command Line Usage

	Chapter 2. jEdit Basics
	2.1. Buffers
	2.2. Views
	2.2.1. Window Docking
	2.2.2. The Status Bar

	2.3. The Text Area
	2.4. Command Repetition

	Chapter 3. Working With Files
	3.1. Creating New Files
	3.2. Opening Files
	3.3. Saving Files
	3.3.1. Autosave and Crash Recovery
	3.3.2. Backups

	3.4. Line Separators
	3.5. Character Encodings
	3.5.1. Commonly Used Encodings

	3.6. The File System Browser
	3.7. Reloading Files
	3.8. Multi-Threaded I/O
	3.9. Printing Files
	3.10. Closing Files and Exiting jEdit

	Chapter 4. Editing Text
	4.1. Moving The Caret
	4.2. Selecting Text
	4.2.1. Rectangular Selection
	4.2.2. Multiple Selection

	4.3. Inserting and Deleting Text
	4.4. Undo and Redo
	4.5. Working With Words
	4.6. Working With Lines
	4.7. Working With Paragraphs
	4.8. Scrolling
	4.9. Transferring Text
	4.9.1. Quick Copy
	4.9.2. The System Clipboard
	4.9.3. General Register Commands

	4.10. Markers
	4.11. Search and Replace
	4.11.1. Searching For Text
	4.11.2. Replacing Text
	4.11.3. HyperSearch
	4.11.4. Multiple File Search
	4.11.5. The Search Bar

	Chapter 5. Editing Source Code
	5.1. Edit Modes
	5.1.1. Mode Selection
	5.1.2. Syntax Highlighting

	5.2. Abbreviations
	5.2.1. Positional Parameters

	5.3. Bracket Matching
	5.4. Tabbing and Indentation
	5.4.1. Soft Tabs
	5.4.2. Automatic Indent

	5.5. Commenting Out Code
	5.6. Folding
	5.6.1. Narrowing

	Chapter 6. Customizing jEdit
	6.1. The Buffer Options Dialog Box
	6.2. Buffer-Local Properties
	6.3. The Global Options Dialog Box
	6.4. The jEdit Settings Directory

	Chapter 7. Using Macros
	7.1. Recording Macros
	7.2. Running Macros
	7.3. How jEdit Organizes Macros

	Chapter 8. Installing and Using Plugins
	8.1. The Plugin Manager
	8.2. Installing Plugins
	8.3. Updating Plugins

	Appendix A. Keyboard Shortcuts
	Appendix B. The Activity Log
	Appendix C. History Text Fields
	Appendix D. Glob Patterns
	Appendix E. Regular Expressions
	Appendix F. Macros Included With jEdit
	F.1. File Management Macros
	F.2. Text Macros
	F.3. Java Code Macros
	F.4. Search Macros
	F.4.1. The Find_Occurrence Macro Group

	F.5. Macros for Listing Properties
	F.6. Miscellaneous Macros

	Appendix G. jEditLauncher for Windows
	G.1. Introduction
	G.2. Starting jEdit
	G.3. The Context Menu Handler
	G.4. Uninstalling jEdit and jEditLauncher
	G.5. The jEditLauncher Interface
	G.6. Scripting Examples
	G.7. Legal Notice

	Chapter 9. Writing Edit Modes
	9.1. An XML Primer
	9.2. The Preamble and MODE tag
	9.3. The PROPS Tag
	9.4. The RULES Tag
	9.4.1. The TERMINATE Rule
	9.4.2. The WHITESPACE Rule
	9.4.3. The SPAN Rule
	9.4.4. The EOL_SPAN Rule
	9.4.5. The MARK_PREVIOUS Rule
	9.4.6. The MARK_FOLLOWING Rule
	9.4.7. The SEQ Rule
	9.4.8. The KEYWORDS Rule
	9.4.9. Token Types

	Chapter 10. Installing Edit Modes
	Chapter 11. Introducing BeanShell
	11.1. Single Execution Macros

	Chapter 12. A Few Simple Macros
	12.1. The Mandatory First Example
	12.2. Helpful Methods in the Macros Class
	12.3. Now For Something Useful

	Chapter 13. A Dialog-Based Macro
	13.1. Use of the Macro
	13.2. Listing of the Macro
	13.3. Analysis of the Macro
	13.3.1. Import Statements
	13.3.2. Create the Dialog
	13.3.3. Create the Text Fields
	13.3.4. Create the Buttons
	13.3.5. Register the Action Listeners
	13.3.6. Make the Dialog Visible
	13.3.7. The Action Listener
	13.3.8. Get the User's Input
	13.3.9. Call jEdit Methods to Manipulate Text
	13.3.10. The Main Routine

	Chapter 14. Macro Tips and Techniques
	14.1. Getting Input for a Macro
	14.1.1. Getting a Single Line of Text
	14.1.2. Getting Multiple Data Items
	14.1.3. Selecting Input From a List
	14.1.4. Using a Single Keypress as Input

	14.2. Startup Scripts
	14.3. Running Scripts from the Command Line
	14.4. Advanced BeanShell Techniques
	14.4.1. BeanShell's Convenience Syntax
	14.4.2. Special BeanShell Keywords
	14.4.3. Implementing Interfaces
	14.4.4. BeanShell Commands

	14.5. Debugging Macros
	14.5.1. Identifying Exceptions
	14.5.2. Using the Activity Log as a Tracing Tool

	Chapter 15. Introducing the Plugin API
	Chapter 16. jEdit as a Plugin Host
	16.1. Loading Plugins
	16.1.1. The JARClassLoader
	16.1.2. Starting the Plugin

	16.2. The User Interface of a Plugin
	16.2.1. The Role of the View Object
	16.2.2. The DockableWindowManager and the EditBus
	16.2.3. Message Routing and Dockable Window Creation

	Chapter 17. The jEdit Plugin API
	17.1. Plugin Core Classes
	17.1.1. Class EditPlugin
	17.1.2. Class EBPlugin

	17.2. Interface DockableWindow
	17.3. Plugin Option Pane Classes
	17.3.1. Class AbstractOptionPane
	17.3.2. Class OptionGroup

	17.4. Other Plugin Resources
	17.4.1. The Action Catalog
	17.4.2. Plugin Properties
	17.4.3. Plugin Documentation

	Chapter 18. Writing a Plugin
	18.1. QuickNotepad: An Example Plugin
	18.2. Writing a Plugin Core Class
	18.2.1. Choosing a Base Class
	18.2.2. Implementing Base Class Methods
	18.2.2.1. General Considerations
	18.2.2.2. Example Plugin Core Class

	18.2.3. Resources for the Plugin Core Class
	18.2.3.1. Actions
	18.2.3.2. Action Labels and Menu Items

	18.3. Implementing a Dockable Window Class
	18.3.1. Using a Single Window Class
	18.3.2. An Action Interface
	18.3.3. A Lightweight Dockable Window Class

	18.4. The Plugin's Visible Window
	18.4.1. Class QuickNotepad
	18.4.2. Class QuickNotepadToolBar

	18.5. Designing an Option Pane
	18.6. Creating Other Plugin Resources
	18.7. Compiling the Plugin

	Chapter 19. BeanShell Commands
	19.1. Output Commands
	19.2. File Management Commands
	19.3. Component Commands
	19.4. Resource Management Commands
	19.5. Script Execution Commands
	19.6. BeanShell Object Management Commands
	19.7. Other Commands

	Chapter 20. General jEdit Classes
	20.1. Class jEdit
	20.2. Class View
	20.3. Class Registers
	20.4. Interface Registers.Register
	20.5. Class DockableWindowManager
	20.6. Class JEditTextArea
	20.6.1. Class Selection
	20.6.2. Selection methods in JEditTextArea
	20.6.2.1. Adding and removing selections
	20.6.2.2. Getting and setting selected text
	20.6.2.3. Other selection methods

	20.6.3. Other methods in JEditTextArea
	20.6.3.1. Editing caret methods
	20.6.3.2. Methods for scrolling the text area
	20.6.3.3. Methods for calculating editing positions
	20.6.3.4. Other methods for retrieving text
	20.6.3.5. Methods for deleting text
	20.6.3.6. Methods for modifying text
	20.6.3.7. Methods for creating comments
	20.6.3.8. Methods for getting buffer statistics

	20.7. Class Buffer
	20.7.1. File attribute methods
	20.7.2. Editing attribute methods
	20.7.3. Editing action methods
	20.7.3.1. General editing methods
	20.7.3.2. Marker methods
	20.7.3.3. Folding methods
	20.7.3.4. Virtual and physical line indices

	20.8. Class Macros
	20.9. Class SearchAndReplace
	20.10. Class GUIUtilities
	20.11. Class TextUtilities
	20.12. Class MiscUtilities
	20.13. Class BeanShell

	Chapter 21. EditBus Classes
	21.1. Class EditBus
	21.2. Interface EBComponent
	21.3. Class EBMessage
	21.4. Class BufferUpdate
	21.5. Class CreateDockableWindow
	21.6. Class EditorExiting
	21.7. Class EditorExitRequested
	21.8. Class EditorStarted
	21.9. Class EditPaneUpdate
	21.10. Class MacrosChanged
	21.11. Class PropertiesChanged
	21.12. Class SearchSettingsChanged
	21.13. Class VFSUpdate
	21.14. Class ViewUpdate

